1
|
Qi F, Zha G, Zhang Y, Liu S, Yang Y, Sun W, Wang D, Liu Z, Lu Z, Zhang D. Integrative analysis of bulk and single-cell transcriptomic data reveals novel insights into lipid metabolism and prognostic factors in hepatocellular carcinoma. Discov Oncol 2024; 15:591. [PMID: 39453509 PMCID: PMC11511805 DOI: 10.1007/s12672-024-01487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with high mortality rate. This study investigated the status of lipid metabolism-related genes in HCC. Bulk transcriptomic and single-cell sequencing data for HCC were retrieved from public databases. The single-cell sequencing data was subjected to dimensionality reduction, which facilitated the annotation of distinct cell subpopulations and marker gene expression analysis within each subpopulation. Genes associated with lipid metabolism in liver cells were identified, and a machine-learning model was developed using the bulk transcriptomic data randomly partitioned into training and validation sets. The efficacy of the model was validated using these two sets. A multifactorial Cox analysis on the model genes combined with clinical features, led to the identification of age, HMGCS2, HNRNPU, and RAN as independent prognostic factors, which were included in the nomogram model construction and validation. A weighted gene co-expression analysis of all genes of the bulk transcriptome samples revealed the correlation between gene modules and risk score. Genes with cor > 0.4 in the highest-expressing module were selected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis. Immune-related analysis was conducted based on seven algorithms for immune cell infiltration prediction. For the genes in the nomogram model, the expression in clinical pathological factors was also analyzed. The drug sensitivity analysis offered a reference for the selection of targeting drugs. This investigation provides novel insights and a theoretical basis for the prognosis, treatment, and pharmaceutical advancements for patients diagnosed with HCC.
Collapse
Affiliation(s)
- Feiyu Qi
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China
| | - Guiming Zha
- Department of Chest Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Yanfang Zhang
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China
| | - Sihua Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China
| | - Yuhang Yang
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China
| | - Wanliang Sun
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China
| | - Dongdong Wang
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China
| | - Zhong Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China
| | - Zheng Lu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China.
| | - Dengyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, No.287 Chang Huai Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
2
|
Yu X, Du J, Zhang W, Zhang X, Zhao H, Wen Q, Xu R. Screening of serum markers in patients with resistant hypertension. Heliyon 2024; 10:e36333. [PMID: 39286109 PMCID: PMC11403418 DOI: 10.1016/j.heliyon.2024.e36333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background This study delves into the intricacies of resistant hypertension (RH), a prevalent yet enigmatic chronic cardiovascular ailment that is linked to a myriad of complications. Although its full pathogenesis is still shrouded in mystery, the field of proteomics offers a beacon of hope, with its potential to shed light on the proteins that orchestrate the tapestry of life. Harnessing the power of proteomics is essential for demystifying the pathogenesis of RH, enabling more precise diagnostics and treatments, and ultimately improving prognostic outcomes. Methods Our approach was to employ rigorous statistical analyses to home in on proteins with significant expression variances between our two cohorts. We complemented this with bioinformatics tools to unravel the intricate functions and pathways of these proteins. By synthesizing these insights with the clinical profiles of our patients, we were able to distill a set of definitive biomarkers with diagnostic potential. In our quest for clarity, we also embarked on a retrospective journey, amassing and scrutinizing clinical data from both RH and hypertension (HTN) patients. We crafted and rigorously assessed risk factor models to evaluate their diagnostic prowess. Results Our exploration spanned across 30 blood samples from RH patients and 20 from those grappling with HTN. Our inquiry yielded some compelling revelations: (1) RH patients showcased 29 unique proteins, in contrast to the 59 unique proteins found in HTN patients. A deeper dive into the proteomic data unveiled molecular functions predominantly tied to lipid metabolism, protein networking, and oxidative stress, with a spotlight on pathways such as cholesterol metabolism, coagulation, and the complement cascade. (2) By charting receiver operating characteristic curves and rigorously analyzing the proteomic data, we surfaced 11 proteins with notable diagnostic potential, tightly interwoven with clinical metrics. Conclusion Our research has pinpointed 11 proteins that stand as promising serum biomarkers, endowed with significant diagnostic value. This discovery marks a stride towards a more nuanced understanding and management of resistant hypertension.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, 250013, China
| | - Jianmin Du
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Wenyu Zhang
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Xinghai Zhang
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Hengli Zhao
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Qing Wen
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Rui Xu
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
3
|
Hong SH, Yu X, Zhu Y, Chen Y. Liver epigenomic signature associated with chronic oxidative stress in a mouse model of glutathione deficiency. Chem Biol Interact 2024; 398:111093. [PMID: 38830566 PMCID: PMC11223951 DOI: 10.1016/j.cbi.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Oxidative stress is intimately involved in the pathogenesis of fatty liver disease (FLD). A major factor contributing to oxidative stress is the depletion of the ubiquitous antioxidant glutathione (GSH). Unexpectedly, chronic GSH deficiency renders glutamate-cysteine ligase modifier subunit (Gclm)-null mice protected from fatty liver injuries. Epigenetic regulation serves as an important cellular mechanism in modulating gene expression and disease outcome in FLD, although it is not well understood how systemic redox imbalance modifies the liver epigenome. In the current study, utilizing the Gclm-null mouse model, we aimed to elucidate redox-associated epigenomic changes and their implications in liver stress response. We performed high-throughput array-based DNA methylation profiling (MeDIP array) in 22,327 gene promoter regions (from -1300 bp to +500 bp of the Transcription Start Sites) in the liver and peripheral blood cells. Results from the MeDIP array demonstrate that, although global methylation enrichment in gene promoters did not change, low GSH resulted in prevalent demethylation at the individual promoter level. Such an effect likely attributed to a declined availability of the methyl donor S-adenosyl methionine (SAM) in Gclm-null liver. Functional enrichment analysis of liver target genes is suggestive of a potential role of epigenetic mechanisms in promoting cellular survival and lipid homeostasis in Gclm-null liver. In comparison with the liver tissue, MeDIP array in peripheral blood cells revealed a panel of 19 gene promoters that are candidate circulating biomarkers for hepatic epigenomic changes associated with chronic GSH deficiency. Collectively, our results provided new insights into the in vivo interplay between liver redox state and DNA methylation status. The current study laid the groundwork for future epigenetic/epigenomic investigations in experimental settings or human populations under conditions of liver oxidative stress induced by environmental or dietary challenges.
Collapse
Affiliation(s)
- Seong Hwi Hong
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Moore LL, Qu D, Sureban S, Mitchell S, Pitts K, Cooper N, Fazili J, Harty R, Oseini A, Ding K, Bronze M, Houchen CW. From Inflammation to Oncogenesis: Tracing Serum DCLK1 and miRNA Signatures in Chronic Liver Diseases. Int J Mol Sci 2024; 25:6481. [PMID: 38928187 PMCID: PMC11203803 DOI: 10.3390/ijms25126481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic liver diseases, fibrosis, cirrhosis, and HCC are often a consequence of persistent inflammation. However, the transition mechanisms from a normal liver to fibrosis, then cirrhosis, and further to HCC are not well understood. This study focused on the role of the tumor stem cell protein doublecortin-like kinase 1 (DCLK1) in the modulation of molecular factors in fibrosis, cirrhosis, or HCC. Serum samples from patients with hepatic fibrosis, cirrhosis, and HCC were analyzed via ELISA or NextGen sequencing and were compared with control samples. Differentially expressed (DE) microRNAs (miRNA) identified from these patient sera were correlated with DCLK1 expression. We observed elevated serum DCLK1 levels in fibrosis, cirrhosis, and HCC patients; however, TGF-β levels were only elevated in fibrosis and cirrhosis. While DE miRNAs were identified for all three disease states, miR-12136 was elevated in fibrosis but was significantly increased further in cirrhosis. Additionally, miR-1246 and miR-184 were upregulated when DCLK1 was high, while miR-206 was downregulated. This work distinguishes DCLK1 and miRNAs' potential role in different axes promoting inflammation to tumor progression and may serve to identify biomarkers for tracking the progression from pre-neoplastic states to HCC in chronic liver disease patients as well as provide targets for treatment.
Collapse
Affiliation(s)
- Landon L. Moore
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Sripathi Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stephanie Mitchell
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Kamille Pitts
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Nasya Cooper
- Department of Natural Sciences, Langston University, Langston, OK 73050, USA;
| | - Javid Fazili
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Richard Harty
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Abdul Oseini
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Michael Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
6
|
Xu J, Liu C, Qu K, Zhang J, Liu S, Meng F, Wan Y. m6A methyltransferase METTL14‑mediated RP1‑228H13.5 promotes the occurrence of liver cancer by targeting hsa‑miR‑205/ZIK1. Oncol Rep 2024; 51:59. [PMID: 38426536 PMCID: PMC10926101 DOI: 10.3892/or.2024.8718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
The aim of the present study was to explore the association between N6‑methyladenosine (m6A) modification regulatory gene‑related long noncoding (lnc)RNA RP1‑228H13.5 and cancer prognosis through bioinformatics analysis, as well as the impact of RP1‑228H13.5 on cell biology‑related behaviors and specific molecular mechanisms. Bioinformatics analysis was used to construct a risk model consisting of nine genes. This model can reflect the survival time and differentiation degree of cancer. Subsequently, a competing endogenous RNA network consisting of 3 m6A‑related lncRNAs, six microRNAs (miRs) and 201 mRNAs was constructed. A cell assay confirmed that RP1‑228H13.5 is significantly upregulated in liver cancer cells, which can promote liver cancer cell proliferation, migration and invasion, and inhibit liver cancer cell apoptosis. The specific molecular mechanism may be the regulation of the expression of zinc finger protein interacting with K protein 1 (ZIK1) by targeting the downstream hsa‑miR‑205. Further experiments found that the m6A methyltransferase 14, N6‑adenosine‑methyltransferase subunit mediates the regulation of miR‑205‑5p expression by RP1‑228H13.5. m6A methylation regulatory factor‑related lncRNA has an important role in cancer. The targeting of hsa‑miR‑205 by RP1‑228H13.5 to regulate ZIK1 may serve as a potential mechanism in the occurrence and development of liver cancer.
Collapse
Affiliation(s)
- Jia Xu
- Department of Hepatobiliary Pancreatic and Liver Transplantation Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
- Department of General Surgery, Leping People's Hospital, Jingdezhen, Jiangxi 333300, P.R. China
| | - Chang Liu
- Department of Hepatobiliary Pancreatic and Liver Transplantation Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Kai Qu
- Department of Hepatobiliary Pancreatic and Liver Transplantation Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jingyao Zhang
- Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sinan Liu
- Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fandi Meng
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yong Wan
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Zhang Z, Ju M, Tang Z, He Z, Hua S. DNAJC8: a prognostic marker and potential therapeutic target for hepatocellular carcinoma. Front Immunol 2024; 14:1289548. [PMID: 38274804 PMCID: PMC10808467 DOI: 10.3389/fimmu.2023.1289548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer, accounting for ~90% of the total cases. DnaJ heat shock protein family member C8 (DNAJC8), belonging to the heat shock protein 40 (HSP40) family, is known to regulate cancer biology function. However, the role of DNAJC8 on HCC development remains unknown. Methods The Cancer Genome Atlas, GTEx, cBioPortal, and Human Protein Atlas were used to analyze the expression and clinical significance of DNAJC8 in HCC. Two HCC cell lines, MHCC-97H and Huh-7, were utilized to determine the biological function of DNAJC8. Results DNAJC8 expression was upregulated in HCC tissues and correlated with poor clinical prognosis. It was closely related to spliceosome, nucleocytoplasmic transport, and cell cycle and might be involved in the formation of tumor immunosuppressive microenvironment. Knockdown of DNAJC8 severely inhibited HCC cell proliferation and induced apoptosis. Conclusion Our study demonstrate that DNAJC8 functions as an oncogene in HCC and hence may be used as a potential therapeutic target and prognostic marker for HCC.
Collapse
Affiliation(s)
| | | | | | | | - Shengni Hua
- Department of Radiation Oncology, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
8
|
Mon AM, Intuyod K, Klungsaeng S, Jusakul A, Pongking T, Lert-Itthiporn W, Luvira V, Pairojkul C, Plengsuriyakarn T, Na-Bangchang K, Pinlaor S, Pinlaor P. Overexpression of microRNA-205-5p promotes cholangiocarcinoma growth by reducing expression of homeodomain-interacting protein kinase 3. Sci Rep 2023; 13:22444. [PMID: 38105269 PMCID: PMC10725890 DOI: 10.1038/s41598-023-49694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
The microRNA miR-205-5p has diverse effects in different malignancies, including cholangiocarcinoma (CCA), but its effects on CCA progression is unclear. Here we investigated the role and function of miR-205-5p in CCA. Three CCA cell lines and human serum samples were found to have much higher expression levels of miR-205-5p than seen in typical cholangiocyte cell lines and healthy controls. Inhibition of miR-205-5p suppressed CCA cell motility, invasion and proliferation of KKU-213B whereby overexpression of miR-205-5p promoted cell proliferation and motility of KKU-100 cells. Bioinformatics tools (miRDB, TargetScan, miRWalk, and GEPIA) all predicted various miR-205-5p targets. Experiments using miR-205-5p inhibitor and mimic indicated that homeodomain-interacting protein kinase 3 (HIPK3) was a potential direct target of miR-205-5p. Overexpression of HIPK3 using HIPK3 plasmid cloning DNA suppressed migration and proliferation of KKU-100 cells. Notably, HIPK3 expression was lower in human CCA tissues than in normal adjacent tissues. High HIPK3 expression was significantly associated with longer survival time of CCA patients. Multivariate regression analysis indicated tissue HIPK3 levels as an independent prognostic factor for CCA patients. These findings indicate that overexpression of miR-205-5p promotes CCA cells proliferation and migration partly via HIPK3-dependent way. Therefore, targeting miR-205-5p may be a potential treatment approach for CCA.
Collapse
Affiliation(s)
- Aye Myat Mon
- Medical Technology Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinapha Klungsaeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thatsanapong Pongking
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Worachart Lert-Itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Program in Bioclinical Sciences, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, 12120, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
9
|
Chakraborty A, Li Y, Zhang C, Li Y, Rebello KR, Li S, Xu S, Vasquez HG, Zhang L, Luo W, Wang G, Chen K, Coselli JS, LeMaire SA, Shen YH. Epigenetic Induction of Smooth Muscle Cell Phenotypic Alterations in Aortic Aneurysms and Dissections. Circulation 2023; 148:959-977. [PMID: 37555319 PMCID: PMC10529114 DOI: 10.1161/circulationaha.123.063332] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Smooth muscle cell (SMC) phenotypic switching has been increasingly detected in aortic aneurysm and dissection (AAD) tissues. However, the diverse SMC phenotypes in AAD tissues and the mechanisms driving SMC phenotypic alterations remain to be identified. METHODS We examined the transcriptomic and epigenomic dynamics of aortic SMC phenotypic changes in mice with angiotensin II-induced AAD by using single-cell RNA sequencing and single-cell sequencing assay for transposase-accessible chromatin. SMC phenotypic alteration in aortas from patients with ascending thoracic AAD was examined by using single-cell RNA sequencing analysis. RESULTS Single-cell RNA sequencing analysis revealed that aortic stress induced the transition of SMCs from a primary contractile phenotype to proliferative, extracellular matrix-producing, and inflammatory phenotypes. Lineage tracing showed the complete transformation of SMCs to fibroblasts and macrophages. Single-cell sequencing assay for transposase-accessible chromatin analysis indicated that these phenotypic alterations were controlled by chromatin remodeling marked by the reduced chromatin accessibility of contractile genes and the induced chromatin accessibility of genes involved in proliferation, extracellular matrix, and inflammation. IRF3 (interferon regulatory factor 3), a proinflammatory transcription factor activated by cytosolic DNA, was identified as a key driver of the transition of aortic SMCs from a contractile phenotype to an inflammatory phenotype. In cultured SMCs, cytosolic DNA signaled through its sensor STING (stimulator of interferon genes)-TBK1 (tank-binding kinase 1) to activate IRF3, which bound and recruited EZH2 (enhancer of zeste homolog 2) to contractile genes to induce repressive H3K27me3 modification and gene suppression. In contrast, double-stranded DNA-STING-IRF3 signaling induced inflammatory gene expression in SMCs. In Sting-/- mice, the aortic stress-induced transition of SMCs into an inflammatory phenotype was prevented, and SMC populations were preserved. Finally, profound SMC phenotypic alterations toward diverse directions were detected in human ascending thoracic AAD tissues. CONCLUSIONS Our study reveals the dynamic epigenetic induction of SMC phenotypic alterations in AAD. DNA damage and cytosolic leakage drive SMCs from a contractile phenotype to an inflammatory phenotype.
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yang Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Kimberly R Rebello
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Shengyu Li
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Samantha Xu
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Kaifu Chen
- Department of Pediatrics, Harvard Medical School, Boston, MA (K.C.)
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
10
|
Zhang X, Nadolny C, Chen Q, Ali W, Hashmi SF, Deng R. Dysregulation and oncogenic activities of ubiquitin specific peptidase 2a in the pathogenesis of hepatocellular carcinoma. Am J Cancer Res 2023; 13:2392-2409. [PMID: 37424823 PMCID: PMC10326592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023] Open
Abstract
Ubiquitin specific peptidase 2a (USP2a) plays critical roles in protein degradation and other cellular activities. Currently, our understanding on USP2a dysregulation in subjects with hepatocellular carcinoma (HCC) and its roles in HCC pathogenesis is limited. In this study, we found that USP2a mRNA and protein levels were significantly upregulated in HCC tumors from both human and mice. USP2a overexpression in HepG2 and Huh 7 cells significantly increased cell proliferation while inhibition of USP2a activity by chemical inhibitor or stable knockout of USP2 by CRISPR markedly reduced cell proliferation. In addition, USP2a overexpression significantly augmented the resistance while knockout of USP2a markedly increased the susceptibility of HepG2 cells to bile acid-induced apoptosis and necrosis. Consistent with the oncogenic activities detected in vitro, overexpression of USP2a promoted de novo HCC development in mice with significantly increased tumor occurrence rates, tumor sizes and liver/body ratios. Further investigations with unbiased co-immunoprecipitation (Co-IP)-coupled proteomic analysis and Western blot identified novel USP2a target proteins involved in cell proliferation, apoptosis, and tumorigenesis. Analysis of those USP2a target proteins revealed that USP2a's oncogenic activities are mediated through multiple pathways, including modulating protein folding and assembling through regulating protein chaperones/co-chaperones HSPA1A, DNAJA1 and TCP1, promoting DNA replication and transcription through regulating RUVBL1, PCNA and TARDBP, and altering mitochondrial apoptotic pathway through regulating VDAC2. Indeed, those newly identified USP2a target proteins were markedly dysregulated in HCC tumors. In summary, USP2a was upregulated in HCC subjects and acted as an oncogene in the pathogenesis of HCC through multiple downstream pathways. The findings provided molecular and pathogenesis bases for developing interventions to treat HCC by targeting USP2a or its downstream pathways.
Collapse
Affiliation(s)
- Xinmu Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Christina Nadolny
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Qiwen Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Winifer Ali
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Syed F Hashmi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
11
|
miRNA-205: a future therapeutic molecule for liver diseases. FUTURE DRUG DISCOVERY 2023; 4:FDD78. [PMID: 36908931 PMCID: PMC9990095 DOI: 10.4155/fdd-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 01/28/2023] Open
|