1
|
Chen J, Doyle MF, Fang Y, Mez J, Crane PK, Scollard P, Satizabal CL, Alosco ML, Qiu WQ, Murabito JM, Lunetta KL. Peripheral inflammatory biomarkers are associated with cognitive function and dementia: Framingham Heart Study Offspring cohort. Aging Cell 2023; 22:e13955. [PMID: 37584418 PMCID: PMC10577533 DOI: 10.1111/acel.13955] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023] Open
Abstract
Inflammatory protein biomarkers induced by immune responses have been associated with cognitive decline and the pathogenesis of Alzheimer's disease (AD). Here, we investigate associations between a panel of inflammatory biomarkers and cognitive function and incident dementia outcomes in the well-characterized Framingham Heart Study Offspring cohort. Participants aged ≥40 years and dementia-free at Exam 7 who had a stored plasma sample were selected for profiling using the OLINK proteomics inflammation panel. Cross-sectional associations of the biomarkers with cognitive domain scores (N = 708, 53% female, 22% apolipoprotein E (APOE) ε4 carriers, 15% APOE ε2 carriers, mean age 61) and incident all-cause and AD dementia during up to 20 years of follow-up were tested. APOE genotype-stratified analyses were performed to explore effect modification. Higher levels of 12 and 3 proteins were associated with worse executive function and language domain factor scores, respectively. Several proteins were associated with more than one cognitive domain, including IL10, LIF-R, TWEAK, CCL19, IL-17C, MCP-4, and TGF-alpha. Stratified analyses suggested differential effects between APOE ε2 and ε4 carriers: most ε4 carrier associations were with executive function and memory domains, whereas most ε2 associations were with the visuospatial domain. Higher levels of TNFB and CDCP1 were associated with higher risks of incident all-cause and AD dementia. Our study found that TWEAK concentration was associated both with cognitive function and risks for AD dementia. The association of these inflammatory biomarkers with cognitive function and incident dementia may contribute to the discovery of therapeutic interventions for the prevention and treatment of cognitive decline.
Collapse
Affiliation(s)
- Jiachen Chen
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| | - Margaret F. Doyle
- Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonVermontUSA
| | - Yuan Fang
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| | - Jesse Mez
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of MedicineFraminghamMassachusettsUSA
| | - Paul K. Crane
- Division of General Internal Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Phoebe Scollard
- Division of General Internal Medicine, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | | | - Claudia L. Satizabal
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- University of Texas Health Science Center at San Antonio, Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
| | - Michael L. Alosco
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Wei Qiao Qiu
- Boston University Chobanian & Avedisian School of Medicine, Boston University Alzheimer's Disease Research Center and CTE CenterBostonMassachusettsUSA
- Department of PsychiatryBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Boston University Chobanian & Avedisian School of MedicineDepartment of Pharmacology & Experimental TherapeuticsBostonMassachusettsUSA
| | - Joanne M. Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of MedicineFraminghamMassachusettsUSA
- Department of Medicine, Section of General Internal MedicineBoston University Chobanian & Avedisian School of Medicine and Boston Medical CenterBostonMassachusettsUSA
| | - Kathryn L. Lunetta
- Boston University School of Public HealthDepartment of BiostatisticsBostonMassachusettsUSA
| |
Collapse
|
2
|
Methods in Medicine CAM. Retracted: Analysis of Correlation between Serum Inflammatory Factors and Cognitive Function, Language, and Memory in Alzheimer's Disease and Its Clinical Significance. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9786391. [PMID: 37416118 PMCID: PMC10322516 DOI: 10.1155/2023/9786391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/2701748.].
Collapse
|
3
|
Ma Z, Yang F, Fan J, Li X, Liu Y, Chen W, Sun H, Ma T, Wang Q, Maihaiti Y, Ren X. Identification and immune characteristics of molecular subtypes related to protein glycosylation in Alzheimer's disease. Front Aging Neurosci 2022; 14:968190. [PMID: 36408104 PMCID: PMC9667030 DOI: 10.3389/fnagi.2022.968190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Protein glycosylation has been confirmed to be involved in the pathological mechanisms of Alzheimer's disease (AD); however, there is still a lack of systematic analysis of the immune processes mediated by protein glycosylation-related genes (PGRGs) in AD. MATERIALS AND METHODS Transcriptomic data of AD patients were obtained from the Gene Expression Omnibus database and divided into training and verification datasets. The core PGRGs of the training set were identified by weighted gene co-expression network analysis, and protein glycosylation-related subtypes in AD were identified based on k-means unsupervised clustering. Protein glycosylation scores and neuroinflammatory levels of different subtypes were compared, and functional enrichment analysis and drug prediction were performed based on the differentially expressed genes (DEGs) between the subtypes. A random forest model was used to select important DEGs as diagnostic markers between subtypes, and a line chart model was constructed and verified in other datasets. We evaluated the differences in immune cell infiltration between the subtypes through the single-sample gene set enrichment analysis, analyzed the correlation between core diagnostic markers and immune cells, and explored the expression regulation network of the core diagnostic markers. RESULTS Eight core PGRGs were differentially expressed between the training set and control samples. AD was divided into two subtypes with significantly different biological processes, such as vesicle-mediated transport in synapses and neuroactive ligand-receptor interactions. The high protein glycosylation subtype had a higher level of neuroinflammation. Riluzole and sulfasalazine were found to have potential clinical value in this subtype. A reliable construction line chart model was constructed based on nine diagnostic markers, and SERPINA3 was identified as the core diagnostic marker. There were significant differences in immune cell infiltration between the two subtypes. SERPINA3 was found to be closely related to immune cells, and the expression of SERPINA3 in AD was found to be regulated by a competing endogenous RNA network that involves eight long non-coding RNAs and seven microRNAs. CONCLUSION Protein glycosylation and its corresponding immune process play an important role in the occurrence and development of AD. Understanding the role of PGRGs in AD may provide a new potential therapeutic target for AD.
Collapse
Affiliation(s)
- Zhaotian Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajia Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Honghao Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tengfei Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiongying Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueriguli Maihaiti
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqiao Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Xiaoqiao Ren,
| |
Collapse
|
4
|
Alvarez M, Trent E, Goncalves BDS, Pereira DG, Puri R, Frazier NA, Sodhi K, Pillai SS. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front Aging Neurosci 2022; 14:1020092. [PMID: 36268187 PMCID: PMC9577202 DOI: 10.3389/fnagi.2022.1020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sneha S. Pillai
- Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
5
|
Jiang J, Wang Z, Yu R, Yang J, Tian H, Liu H, Wang S, Li Z, Zhu X. Effects of Electroacupuncture on the Correlation between Serum and Central Immunity in AD Model Animals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3478847. [PMID: 36147643 PMCID: PMC9489346 DOI: 10.1155/2022/3478847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
Objective The goal was to investigate the connection between neuroinflammation in the brain and serum inflammatory markers as Alzheimer's disease progressed. We also sought to determine whether electroacupuncture had an effect on inflammatory markers found in blood and other brain regions. Methods As an animal model for AD, we used senescence-accelerated mouse prone 8 (SAMP8) mice. To examine the effects and probable mechanism of electroacupuncture, we used HE staining, immunofluorescence staining, western blotting, and enzyme-linked immunosorbent assay. Results Electroacupuncture therapy protected neurons, significantly downregulated the Iba-1 level in the hippocampus (p value was 0.003), frontal lobe cortex (p value was 0.042), and temporal lobe cortex (p value was 0.013) of the AD animal model, all of which had significantly lower levels of IL-6 (p value was 0.001), IL-1β (p value was 0.001), and TNF-α (p value was 0.001) in their serum. Conclusion The amounts of IL-6, IL-1β, and TNF-α detected in the serum were strongly linked to the levels discovered in the hippocampus and the frontal lobes of the brain, respectively. A better understanding of the electroacupuncture process as well as the course of Alzheimer's disease and the therapeutic benefits of electroacupuncture may be gained by using biomarkers such as serum inflammatory marker biomarkers.
Collapse
Affiliation(s)
- Jing Jiang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Zidong Wang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Ruxia Yu
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Jiayi Yang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Huiling Tian
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Hao Liu
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Shun Wang
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Zhigang Li
- Beijing University of Chinese Medicine, School of Nursing, Beijing, China
| | - Xiaoshu Zhu
- Western Sydney University, School of Health Sciences, Sydney, Australia
| |
Collapse
|