1
|
Li X, Gao H, Liu L, Yang Y, Sun S, Liu Y. Genetic polymorphisms of BACH2, a key gene regulating Th2 immune response, increasing risk of allergic rhinitis. Gene 2024; 926:148624. [PMID: 38824974 DOI: 10.1016/j.gene.2024.148624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) is an allergic disease characterized by the dominant differentiation of T helper cell 2 (Th2). BACH2 plays a key role in regulating Th2 immune response. This study aimed to explore the association between BACH2 single nucleotide polymorphism (SNPs) and susceptibility to AR. METHODS Han population from northern Shaanxi, China was chosen as subjects. After the DNA extraction from the peripheral blood of subjects, genotyping was completed through the Agena MassARRAY platform. Logistic regression analysis was used to assess the association. Multivariate dimensionality reduction (MDR) was used to evaluate the effect of the interaction between 'SNP-SNP' on susceptibility to AR. Using false-positive report probability (FPRP) analysis to test whether the significant results obtained in this study were noteworthy. RESULTS BACH2-rs905670 and -rs2134814 were significantly associated with increased risk of AR. The mutant allele 'A' of rs905670 (OR = 1.36, p = 0.018) and mutant allele 'G' of rs2134814 (OR = 1.34, p = 0.027) were risk genetic factors for AR. The above genetic association was further observed in the stratified analysis: BACH2-rs905670 and-rs2134814 were significantly associated with an increased risk of AR in females, aging older than 43 years, and participants working and living in the loess hills (OR > 1, p < 0.05). CONCLUSION BACH2-rs905670 and -rs2134814 are significantly associated with increasing AR risk.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Respiratory and Critical Care Medicine, Shenmu Hospital, the Affifiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Huiping Gao
- Neurological Department, Yulin No.2 Hospital, Yulin, China
| | - Lizhen Liu
- Department of Function, Shenmu Hospital, the Affifiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Yanlong Yang
- Department of Science and Education, Shenmu Hospital, the Affifiliated Shenmu Hospital of Northwest University, Shenmu, China
| | - Shengli Sun
- Neurological Department, Shenmu Hospital, the Affifiliated Shenmu Hospital of Northwest University, Shenmu, China.
| | - Yonglin Liu
- Department of Science and Education, Shenmu Hospital, the Affifiliated Shenmu Hospital of Northwest University, Shenmu, China.
| |
Collapse
|
2
|
Duarte RRR, Nixon DF, Powell TR. Ancient viral DNA in the human genome linked to neurodegenerative diseases. Brain Behav Immun 2024; 123:765-770. [PMID: 39401554 DOI: 10.1016/j.bbi.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) are sequences in the human genome that originated from infections with ancient retroviruses during our evolution. Previous studies have linked HERVs to neurodegenerative diseases, but defining their role in aetiology has been challenging. Here, we used a retrotranscriptome-wide association study (rTWAS) approach to assess the relationships between genetic risk for neurodegenerative diseases and HERV expression in the brain, calculated with genomic precision. METHODS We analysed genetic association statistics pertaining to Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Parkinson's disease, using HERV expression models calculated from 792 cortical samples. Robust risk factors were considered those that survived multiple testing correction in the primary analysis, which were also significant in conditional and joint analyses, and that had a posterior inclusion probability above 0.5 in fine-mapping analyses. RESULTS The primary analysis identified 12 HERV expression signatures associated with neurodegenerative disease susceptibility. We found one HERV expression signature robustly associated with amyotrophic lateral sclerosis on chromosome 12q14 (MER61_12q14.2) and one robustly associated with multiple sclerosis on chromosome 1p36 (ERVLE_1p36.32a). A co-expression analysis suggested that these HERVs are involved in homophilic cell adhesion via plasma membrane adhesion molecules. CONCLUSIONS We found HERV expression profiles robustly associated with amyotrophic lateral sclerosis and multiple sclerosis susceptibility, highlighting novel risk mechanisms underlying neurodegenerative disease, and offering potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rodrigo R R Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, the United States of America.
| | - Douglas F Nixon
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, the United States of America
| | - Timothy R Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, the United States of America.
| |
Collapse
|
3
|
Zeng X, Wang L, Zhang X, Zheng H, Song S, Xu T, Zhang H, Yang P. Nemo mRNA vaccination improves airway barrier function in mice with airway allergy. Cell Signal 2024; 121:111257. [PMID: 38857681 DOI: 10.1016/j.cellsig.2024.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Epithelial barrier dysfunction plays an important role in the pathogenesis of Th2 bias. The mechanism requires further clarification. NEMO is associated with regulating apoptotic activities in the cell. The purpose of this study is to investigate the role of insufficient Nemo signals in developing Th2 bias in the respiratory tract. Nemof/fEpcam-Cre mice (A mouse strain carrying NEMO-deficient epithelial cells. NemoKO mice, in short) was generated. An airway Th2 bias mouse model was established with the ovalbumin/alum protocol. The NemoKO mice exhibited spontaneous airway Th2 bias. Respiratory tract epithelial barrier integrity was compromised in NemoKO mice. Apoptosis was found in approximately 10% of the epithelial cells of the respiratory tract in NemoKO mice. The reconstruction of the Nemo expression restored homeostasis within the epithelial barrier of the airways. Restoration of Nemo gene expression in epithelial cells by Nemo mRNA vaccination alleviated Th2 bias in mice with airway allergy. To sum up, NEMO plays an important role in maintaining the integrity of the epithelial barrier in the respiratory tract. Administration of NEMO mRNA vaccines can restore epithelial barrier functions and alleviate Th2 bias in the airways.
Collapse
Affiliation(s)
- Xianhai Zeng
- Longgang ENT Hospital, Shenzhen ENT Institute & Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Lihuan Wang
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiwen Zhang
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China; Department of General Practice Medicine and Pulmonary Medicine, Third Hospital of Shenzhen University, Shenzhen, China
| | - Haoyue Zheng
- Shenzhen Clinical School of Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China; Department of General Practice Medicine and Pulmonary Medicine, Third Hospital of Shenzhen University, Shenzhen, China
| | - Shuo Song
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China; Department of General Practice Medicine and Pulmonary Medicine, Third Hospital of Shenzhen University, Shenzhen, China
| | - Tao Xu
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China; Department of General Practice Medicine and Pulmonary Medicine, Third Hospital of Shenzhen University, Shenzhen, China
| | - Huanping Zhang
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
| | - Pingchang Yang
- Longgang ENT Hospital, Shenzhen ENT Institute & Shenzhen Key Laboratory of ENT, Shenzhen, China; State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology of Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
4
|
Stikker B, Trap L, Sedaghati-Khayat B, de Bruijn MJW, van Ijcken WFJ, de Roos E, Ikram A, Hendriks RW, Brusselle G, van Rooij J, Stadhouders R. Epigenomic partitioning of a polygenic risk score for asthma reveals distinct genetically driven disease pathways. Eur Respir J 2024; 64:2302059. [PMID: 38901884 PMCID: PMC11358516 DOI: 10.1183/13993003.02059-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Individual differences in susceptibility to developing asthma, a heterogeneous chronic inflammatory lung disease, are poorly understood. Whether genetics can predict asthma risk and how genetic variants modulate the complex pathophysiology of asthma are still debated. AIM To build polygenic risk scores for asthma risk prediction and epigenomically link predictive genetic variants to pathophysiological mechanisms. METHODS Restricted polygenic risk scores were constructed using single nucleotide variants derived from genome-wide association studies and validated using data generated in the Rotterdam Study, a Dutch prospective cohort of 14 926 individuals. Outcomes used were asthma, childhood-onset asthma, adulthood-onset asthma, eosinophilic asthma and asthma exacerbations. Genome-wide chromatin analysis data from 19 disease-relevant cell types were used for epigenomic polygenic risk score partitioning. RESULTS The polygenic risk scores obtained predicted asthma and related outcomes, with the strongest associations observed for childhood-onset asthma (2.55 odds ratios per polygenic risk score standard deviation, area under the curve of 0.760). Polygenic risk scores allowed for the classification of individuals into high-risk and low-risk groups. Polygenic risk score partitioning using epigenomic profiles identified five clusters of variants within putative gene regulatory regions linked to specific asthma-relevant cells, genes and biological pathways. CONCLUSIONS Polygenic risk scores were associated with asthma(-related traits) in a Dutch prospective cohort, with substantially higher predictive power observed for childhood-onset than adult-onset asthma. Importantly, polygenic risk score variants could be epigenomically partitioned into clusters of regulatory variants with different pathophysiological association patterns and effect estimates, which likely represent distinct genetically driven disease pathways. Our findings have potential implications for personalised risk mitigation and treatment strategies.
Collapse
Affiliation(s)
- Bernard Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lianne Trap
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- L. Trap and B. Sedaghati-Khayat made an equal contribution to this study
| | - Bahar Sedaghati-Khayat
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- L. Trap and B. Sedaghati-Khayat made an equal contribution to this study
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emmely de Roos
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guy Brusselle
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- J. van Rooij and R. Stadhouders contributed equally to this article as lead authors and supervised the work
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- J. van Rooij and R. Stadhouders contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
5
|
Shen J, Bian N, Zhao L, Wei J. The role of T-lymphocytes in central nervous system diseases. Brain Res Bull 2024; 209:110904. [PMID: 38387531 DOI: 10.1016/j.brainresbull.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.
Collapse
Affiliation(s)
- Jianing Shen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
6
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
7
|
Weng X, Zheng M, Liu Y, Lou G. The role of Bach2 in regulating CD8 + T cell development and function. Cell Commun Signal 2024; 22:169. [PMID: 38459508 PMCID: PMC10921639 DOI: 10.1186/s12964-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Bach2 was initially discovered in B cells, where it was revealed to control the transcription involved in cell differentiation. Bach2 is intimately connected to CD8 + T lymphocytes in various differentiation states and subsets according to recent findings. Bach2 can regulate primitive T cells, stimulate the development and differentiation of memory CD8 + T cells, inhibit the differentiation of effector CD8 + T cells, and play a significant role in the exhaustion of CD8 + T cells. The appearance and development of diseases are tightly linked to irregular CD8 + T cell differentiation and function. Accordingly, Bach2 offers novel approaches and possible targets for the clinical treatment of associated disorders based on research on these pathways. Here, we summarize the role of Bach2 in the function and differentiation of CD8 + T cells and its potential clinical applications.
Collapse
Affiliation(s)
- Xinyu Weng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China.
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, 6A-5, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Albloushi S, Al-Ahmad M. Exploring the latest understanding on the role of immune mediators, genetic and environmental factors in pathogenesis of allergic rhinitis: a systematic review. FRONTIERS IN ALLERGY 2023; 4:1223427. [PMID: 37692890 PMCID: PMC10485773 DOI: 10.3389/falgy.2023.1223427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Despite well-defined clinical phenotypes of chronic rhinitis, the underlying in-depth pathophysiological mechanism, particularly with reference to the involvement of immune mediators, genetic, and environmental factors, are still not fully understood. Therefore, our aim was to give updated information on the pathogenesis of allergic rhinitis (AR), with an emphasis on the role of cytokines in adults aged 18 years and above. Additionally, we investigated the impact of genetic and environmental factors in the pathogenesis of AR. Results A search in various databases identified 1,178 records, and 18 studies were ultimately selected from January 2018 to April 2023. The total sample size in our studies was 4,317, with 2,186 in the experimental and 2,131 in control groups, respectively. The mean age was 33.4 years, with 43% were male, while 57% were female. According to the selected studies, various factors, including immune mediators, particularly cytokines, genetic, and environmental factors, were identified in the development of AR. Conclusion The selected studies presented findings on different factors and sub-factors in the pathogenesis of AR, making it a challenge for us to compare their results. However, based on our findings, researchers can link our identified factors to potential therapies for AR.
Collapse
Affiliation(s)
| | - Mona Al-Ahmad
- Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait
- Microbiology Department, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
9
|
Zhu Y, Yu J, Zhu X, Yuan J, Dai M, Bao Y, Jiang Y. Experimental observation of the effect of immunotherapy on CD4+ T cells and Th1/Th2 cytokines in mice with allergic rhinitis. Sci Rep 2023; 13:5273. [PMID: 37002325 PMCID: PMC10066377 DOI: 10.1038/s41598-023-32507-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The present study aims to investigate the effect of immunotherapy in a mouse model of allergic rhinitis (AR) and to explore the possible molecular mechanisms of action. An animal model of AR was established by sensitization and challenge of BALB/c mice with house dust mite (HDM) extract. The mice were injected subcutaneously with HDM for immunotherapy. AR nasal symptoms were evaluated according to the frequencies of nose rubbing and sneezing and the degree of rhinorrhea. The nasal mucosa and lung tissue architecture and inflammatory status by histological analysis; the infiltration of eosinophils in nasal lavage fluid (NALF) of mice was observed by Diff-Quik stain; ELISA-based quantification of serum HDM-specific IgE and TH1/TH2 cytokine concentration; and flow cytometry detected the number of serum CD4+/CD8+ cells to evaluate the mechanism of immunotherapy. It was found that after immunotherapy, the AR symptom score was reduced, the number of eosinophils in NALF was reduced, and the infiltration of inflammatory cells and tissue damage in the nasal mucosa and lung tissue were alleviated. Immunotherapy can increase the number of CD4+ T cells in the peripheral blood, increase the ratio of CD4+/CD8+ cells, increase the expression of Th1 cytokines such as IL-2 and IFN-γ, reduce the expression of Th2 cytokines such as IL-4 and IL-5. The results showed that repeated intraperitoneal injection of crude extract of HDM for sensitization, followed by nasal drops can effectively construct a mouse model of AR, and subcutaneous injection of immunotherapy in mice can reduce allergic inflammation in model mice and improve the inflammatory infiltration of the nasal cavity in allergic rhinitis. Immunotherapy can reduce the expression of inflammatory factors in AR, improve Th1/Th2 balance, and may play a role in the treatment of AR by improving the function of immune cells.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - XinHua Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - JiaSheng Yuan
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - MeiNa Dai
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YouWei Bao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YinLi Jiang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
10
|
Li RB, Yang XH, Zhang JD, Cui W. GAS6-AS1, a long noncoding RNA, functions as a key candidate gene in atrial fibrillation related stroke determined by ceRNA network analysis and WGCNA. BMC Med Genomics 2023; 16:51. [PMID: 36894947 PMCID: PMC9996875 DOI: 10.1186/s12920-023-01478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Stroke attributable to atrial fibrillation (AF related stroke, AFST) accounts for 13 ~ 26% of ischemic stroke. It has been found that AFST patients have a higher risk of disability and mortality than those without AF. Additionally, it's still a great challenge to treat AFST patients because its exact mechanism at the molecular level remains unclear. Thus, it's vital to investigate the mechanism of AFST and search for molecular targets of treatment. Long non-coding RNAs (lncRNAs) are related to the pathogenesis of various diseases. However, the role of lncRNAs in AFST remains unclear. In this study, AFST-related lncRNAs are explored using competing endogenous RNA (ceRNA) network analysis and weighted gene co-expression network analysis (WGCNA). METHODS GSE66724 and GSE58294 datasets were downloaded from GEO database. After data preprocessing and probe reannotation, differentially expressed lncRNAs (DELs) and differentially expressed mRNAs (DEMs) between AFST and AF samples were explored. Then, functional enrichment analysis and protein-protein interaction (PPI) network analysis of the DEMs were performed. At the meantime, ceRNA network analysis and WGCNA were performed to identify hub lncRNAs. The hub lncRNAs identified both by ceRNA network analysis and WGCNA were further validated by Comparative Toxicogenomics Database (CTD). RESULTS In all, 19 DELs and 317 DEMs were identified between the AFST and AF samples. Functional enrichment analysis suggested that the DEMs associated with AFST were mainly enriched in the activation of the immune response. Two lncRNAs which overlapped between the three lncRNAs identified by the ceRNA network analysis and the 28 lncRNAs identified by the WGCNA were screened as hub lncRNAs for further validation. Finally, lncRNA GAS6-AS1 turned out to be associated with AFST by CTD validation. CONCLUSION These findings suggested that low expression of GAS6-AS1 might exert an essential role in AFST through downregulating its downstream target mRNAs GOLGA8A and BACH2, and GAS6-AS1 might be a potential target for AFST therapy.
Collapse
Affiliation(s)
- Rui-Bin Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiao-Hong Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Ji-Dong Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
11
|
Trezise S, Kong IY, Hawkins ED, Herold MJ, Willis SN, Nutt SL. An arrayed CRISPR screen of primary B cells reveals the essential elements of the antibody secretion pathway. Front Immunol 2023; 14:1089243. [PMID: 36860866 PMCID: PMC9969136 DOI: 10.3389/fimmu.2023.1089243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Background Humoral immunity depends on the differentiation of B cells into antibody secreting cells (ASCs). Excess or inappropriate ASC differentiation can lead to antibody-mediated autoimmune diseases, while impaired differentiation results in immunodeficiency. Methods We have used CRISPR/Cas9 technology in primary B cells to screen for regulators of terminal differentiation and antibody production. Results We identified several new positive (Sec61a1, Hspa5) and negative (Arhgef18, Pold1, Pax5, Ets1) regulators that impacted on the differentiation process. Other genes limited the proliferative capacity of activated B cells (Sumo2, Vcp, Selk). The largest number of genes identified in this screen (35) were required for antibody secretion. These included genes involved in endoplasmic reticulum-associated degradation and the unfolded protein response, as well as post-translational protein modifications. Discussion The genes identified in this study represent weak links in the antibody-secretion pathway that are potential drug targets for antibody-mediated diseases, as well as candidates for genes whose mutation results in primary immune deficiency.
Collapse
Affiliation(s)
- Stephanie Trezise
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Isabella Y Kong
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marco J Herold
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Simon N Willis
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|