1
|
Maheshwari R, Sharma M, Chidrawar VR. Development of engineered transferosomal gel containing meloxicam for the treatment of osteoarthritis. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:830-839. [PMID: 38657858 DOI: 10.1016/j.pharma.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE .In this study, we investigated the potential of meloxicam (MLX) developed as transferosomal gel as a novel lipidic drug delivery system to address osteoarthritis (OTA), a degenerative joint disease that causes pain and stiffness. By incorporating meloxicam into a transferosomal gel, our aim was to provide a targeted and efficient delivery system capable of alleviating symptoms and slowing down the progression of OTA. MATERIAL AND METHODS Classical lipid film hydration technique was utilized to formulate different transferosomal formulations. Different transferosomal formulations were prepared by varying the molar ratio of phospholipon-90H (phosphodylcholine) to DSPE (50:50, 60:40, 70:30, 80:20, and 90:10) and per batch, 80mg of total lipid was used. The quality control parameters such as entrapment efficiency, particle size and morphology, polydispersity and surface electric charge, in vitro drug release, ex vivo permeation and stability were measured. RESULTS The optimized transferosomal formulations revealed a small vesicle size (121±12nm) and greater MLX entrapment (68.98±2.3%). Transferosomes mediated gel formulation MLX34 displayed pH (6.3±0.2), viscosity (6236±12.3 cps), spreadability (13.77±1.77 gm.cm/sec) and also displayed sustained release pattern of drug release (81.76±7.87% MLX released from Carbopol-934 gel matrix in 24h). MLX34 revealed close to substantial anti-inflammatory response, with ∼81% inhibition of TNF-α in 48h. Physical stability analysis concluded that refrigerator temperature was the preferred temperature to store transferosomal gel. CONCLUSION MLX loaded transferosomes containing gel improved the skin penetration and therefore resulted into increased inhibition of TNF-α level.
Collapse
Affiliation(s)
- Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla, Hyderabad 509301, India.
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur 425405, India
| | - Vijay R Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
2
|
Zhang JY, Xiang XN, Yu X, Liu Y, Jiang HY, Peng JL, He CQ, He HC. Mechanisms and applications of the regenerative capacity of platelets-based therapy in knee osteoarthritis. Biomed Pharmacother 2024; 178:117226. [PMID: 39079262 DOI: 10.1016/j.biopha.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease in the elderly population and its substantial morbidity and disability impose a heavy economic burden on patients and society. Knee osteoarthritis (KOA) is the most common subtype of OA, which is characterized by damage to progressive articular cartilage, synovitis, and subchondral bone sclerosis. Most current treatments for OA are palliative, primarily aim at symptom management, and do not prevent the progression of the disease or restore degraded cartilage. The activation of α-granules in platelets releases various growth factors that are involved in multiple stages of tissue repair, suggesting potential for disease modification. In recent years, platelet-based therapies, such as platelet-rich plasma, platelet-rich fibrin, and platelet lysates, have emerged as promising regenerative treatments for KOA, but their related effects and mechanisms are still unclear. Therefore, this review aims to summarize the biological characteristics and functions of platelets, classify the products of platelet-based therapy and related preparation methods. Moreover, we summarize the basic research of platelet-based regeneration strategies for KOA and discuss the cellular effects and molecular mechanisms. Further, we describe the general clinical application of platelet-based therapy in the treatment of KOA and the results of the meta-analysis of randomized controlled trials.
Collapse
Affiliation(s)
- Jiang-Yin Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao-Na Xiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xi Yu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yan Liu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Ying Jiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jia-Lei Peng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Chen He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Ospina J, Carmona JU, López C. Short-Term Effects of Two COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs on the Release of Growth Factors and Cytokines from Canine Platelet-Rich Gel Supernatants. Gels 2024; 10:396. [PMID: 38920942 PMCID: PMC11202787 DOI: 10.3390/gels10060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: There is a lack of knowledge about how a single dose of COX-2 selective non-steroidal anti-inflammatory drugs (NSAIDs) might affect the release of growth factors (GFs) and cytokines from canine platelet-rich gels (PRGs) and other hemocomponents. (2) Methods: A crossover study was conducted in six adult mongrel dogs. Animals were randomized to receive a single dose of either carprofen or firocoxib. PRG, temperature-induced platelet lysate (TIPL), chemically induced PL (CIPL), and plasma hemocomponents were obtained from each dog before (1 h) and after (6 h) the treatments. Platelet and leukocyte counts and determination of the concentrations of platelet-derived growth factor-BB, (PDGF-BB), transforming growth factor beta-1 (TGF-β1), interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and IL-10 concentrations were assayed by ELISA in all hemocomponents. (3) Results: Both platelet and leukocyte counts and PDGF-BB concentrations were not affected by NSAIDs and time. Total TGF-β1 concentrations were not affected by NSAIDs; however, the release of this GF was increased in PRG supernatants (PRGS) at 6 h. IL-1β and TNF-α concentrations were significantly (p < 0.001) lower in both firocoxib PRGS and plasma at 6 h, respectively. IL-10 concentrations were significantly (p < 0.001) lower at 6 h in all hemocomponents treated with both NSAIDs. (4) Conclusions: The clinical implications of our findings could indicate that these drugs should be withdrawn from patients to allow their clearance before the clinical use of PRP/PRG. On the other hand, the prophylactic use of NSAIDs to avoid the inflammatory reactions that some patients might have after PRP/PRG treatment should be performed only in those animals with severe reactive inflammation to the treatment.
Collapse
Affiliation(s)
- Julián Ospina
- Grupo de Investigación Patología Clínica Veterinaria, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales 170004, Colombia;
| | - Jorge U. Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales 170004, Colombia
| | - Catalina López
- Grupo de Investigación Patología Clínica Veterinaria, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales 170004, Colombia;
| |
Collapse
|
4
|
Garland A, Wierenga C, McCrae P, Pearson W. Cartilage-Sparing Properties of Equine Omega Complete in an Organ Culture Model of Cartilage Inflammation. J Equine Vet Sci 2023; 121:104165. [PMID: 36423791 DOI: 10.1016/j.jevs.2022.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to determine anti-inflammatory and/or chondroprotective effects of Equine Omega Complete (EOC) on cartilage explants stimulated with lipopolysaccharide (LPS). Explants were aseptically prepared from the intercarpal joints of 17 market-weight pigs and placed in culture at 37°C for a total of 120 hours. For the final 96 hours, explants were conditioned with a simulated digestion extract of EOC (0, 36 or 180 μL/mL), and for the final 48 hours explants were stimulated with LPS (0 or 15µg/mL). Media was removed and replaced every 24 hours. Samples from the final 48 hours were analyzed for biomarkers of cartilage inflammation (prostaglandin E2 [PGE2] and nitric oxide [NO]) and cartilage structure (glycosaminoglycan [GAG]). At the end of the culture period cartilage explants were stained for an estimate of cell viability. Stimulation of unconditioned explants with LPS significantly increased media concentrations of PGE2, GAG and NO compared with that from unstimulated explants. LPS stimulation did not significantly affect cell viability. Both concentrations of EOC prevented significant LPS-stimulated cartilage release of GAG without impairing chondrocyte viability. No other effects of treatment were observed. These data provide evidence for a non-cytotoxic, chondroprotective effect of EOC in cartilage. This in vitro experiment supports the use of EOC in protecting against the detrimental effects of inflammation on cartilage structure.
Collapse
Affiliation(s)
- Anna Garland
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Corina Wierenga
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Persephone McCrae
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|