1
|
Fatemi K, Lau SY, Obayomi KS, Kiew SF, Coorey R, Chung LY, Fatemi R, Heshmatipour Z, Premarathna KSD. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria. Anal Biochem 2024; 695:115639. [PMID: 39127327 DOI: 10.1016/j.ab.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.
Collapse
Affiliation(s)
- Kiyana Fatemi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia.
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Siaw Fui Kiew
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Reza Fatemi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - K S D Premarathna
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| |
Collapse
|
2
|
Manjunathan J, Pavithra K, Nangan S, Prakash S, Saxena KK, Sharma K, Muzammil K, Verma D, Gnanapragasam JR, Ramasubburayan R, Revathi M. Polyethylene terephthalate waste derived nanomaterials (WDNMs) and its utilization in electrochemical devices. CHEMOSPHERE 2024; 353:141541. [PMID: 38423149 DOI: 10.1016/j.chemosphere.2024.141541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/01/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Plastics are a vital component of our daily lives in the contemporary globalization period; they are present in all facets of modern life. Because the bulk of synthetic plastics utilized in the market are non-biodegradable by nature, the issues associated with their contamination are unavoidable in an era dominated by polymers. Polyethylene terephthalate (PET), which is extensively used in industries such as automotive, packaging, textile, food, and beverages production represents a major share of these non-biodegradable polymer productions. Given its extensive application across various sectors, PET usage results in a considerable amount of post-consumer waste, majority of which require disposal after a certain period. However, the recycling of polymeric waste materials has emerged as a prominent topic in research, driven by growing environmental consciousness. Numerous studies indicate that products derived from polymeric waste can be converted into a new polymeric resource in diverse sectors, including organic coatings and regenerative medicine. This review aims to consolidate significant scientific literatures on the recycling PET waste for electrochemical device applications. It also highlights the current challenges in scaling up these processes for industrial application.
Collapse
Affiliation(s)
- J Manjunathan
- Department of Biotechnology, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, 600117, India
| | - K Pavithra
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, 600 117, Tamilnadu, India
| | - Senthilkumar Nangan
- Department of Chemistry, Graphic Era Deemed to be University, Dehradun, Uttarkhand, India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| | - S Prakash
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamilnadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Chennai, Tamilnadu, India
| | - Kuldeep K Saxena
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Kuldeep Sharma
- Centre for Research Impact and Outcomes, Chitkara University, Rajpura, Punjab, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - Deepak Verma
- Department of Mechanical Engineering, Graphic Era Hill University, Dehradun, Uttarkhand, India
| | | | - R Ramasubburayan
- Centre for Marine Research and Conservation, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamilnadu, India.
| | - M Revathi
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, 600 117, Tamilnadu, India.
| |
Collapse
|
3
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Mazzoni E, Iaquinta MR, Mosaico M, De Pace R, D'Agostino A, Tognon M, Martini F. Human Mesenchymal Stem Cells and Innovative Scaffolds for Bone Tissue Engineering Applications. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:514-531. [PMID: 37212264 DOI: 10.1089/ten.teb.2022.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stem cell-based therapy is a significant topic in regenerative medicine, with a predominant role being played by human mesenchymal stem cells (hMSCs). The hMSCs have been shown to be suitable in regenerative medicine for the treatment of bone tissue. In the last few years, the average lifespan of our population has gradually increased. The need of biocompatible materials, which exhibit high performances, such as efficiency in bone regeneration, has been highlighted by aging. Current studies emphasize the benefit of using biomimetic biomaterials, also known as scaffolds, for bone grafts to speed up bone repair at the fracture site. For the healing of injured bone and bone regeneration, regenerative medicine techniques utilizing a combination of these biomaterials, together with cells and bioactive substances, have drawn a great interest. Cell therapy, based on the use of hMSCs, alongside materials for the healing of damaged bone, has obtained promising results. In this work, several aspects of cell biology, tissue engineering, and biomaterials applied to bone healing/regrowth will be considered. In addition, the role of hMSCs in these fields and recent progress in clinical applications are discussed. Impact Statement The restoration of large bone defects is both a challenging clinical issue and a socioeconomic problem on a global scale. Different therapeutic approaches have been proposed for human mesenchymal stem cells (hMSCs), considering their paracrine effect and potential differentiation into osteoblasts. However, different limitations are still to be overcome in using hMSCs as a therapeutic opportunity in bone fracture repair, including hMSC administration methods. To identify a suitable hMSC delivery system, new strategies have been proposed using innovative biomaterials. This review provides an update of the literature on hMSC/scaffold clinical applications for the management of bone fractures.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, and University of Ferrara, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Dentistry and Maxillo-Facial Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Maria Mosaico
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Raffaella De Pace
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio D'Agostino
- Dentistry and Maxillo-Facial Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Parente M, Sitharaman B. Synthesis and Characterization of Carbon Microbeads. ACS OMEGA 2023; 8:34034-34043. [PMID: 37744801 PMCID: PMC10515371 DOI: 10.1021/acsomega.3c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
We report a microfluidic-based droplet generation platform for synthesizing micron-sized porous carbon microspheres. The setup employs carbon materials such as graphite, carbon nanotubes, graphene, fullerenes, and carbon black as starting materials. Custom composition, structure, and function are achieved through combinations of carbon materials, cross-linkers, and additives along with variations in process parameters. Carbon materials can be assembled into spheres with a mean diameter of units to hundreds of μm with relatively tight size distribution (<25% RSD). Pore structure and size (tens to hundreds of angstrom) can be modulated by incorporating porogen/coporogen dilutants during synthesis. The microbeads have excellent mechanical stability with an elastic modulus of hundreds of MPa. They can sustain high dynamic fluid flow pressures of up to 9000 psi. This work lays the foundation for synthesizing novel tailorable and customizable carbon microbeads. It opens avenues for applying these novel materials for composite and additive manufacturing, energy, life science, and biomedical applications.
Collapse
|
6
|
Biowaste-Derived Heteroatom-Doped Porous Carbon as a Sustainable Electrocatalyst for Hydrogen Evolution Reaction. Catalysts 2023. [DOI: 10.3390/catal13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Heteroatom-doped porous carbon material (H-PCM) was synthesized using Anacardium occidentale (cashew) nut’s skin by a simple pyrolysis route. The resulting H-PCM was thoroughly characterized by various analytical techniques such as field emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray (EDX) spectroscopy, high-resolution transmittance electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption–desorption isotherms, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The obtained results strongly demonstrated that the synthesized H-PCM exhibited a porous nature, continuous sponge-like and sheet-like smooth morphology, and a moderate degree of graphitization/crystallinity with oxygen-, nitrogen-, and sulfur-containing functionalities in the carbon matrix. After the structural confirmation, as-prepared H-PCM has used a sustainable electrocatalyst for hydrogen evolution reaction (HER) because the metal-free carbonaceous catalysts are one of the most promising candidates. The H-PCM showed excellent HER activities with a lowest Tafel slope of 75 mV dec−1 and durable stability in 0.5 M H2SO4 aqueous solution. Moreover, this work provides a versatile and effective strategy for designing excellent metal-free electrocatalysts from the cheapest biowaste/biomass for large-scale production of hydrogen gas through electrochemical water splitting.
Collapse
|
7
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
8
|
Aidonojie PA, Ukhurebor KE, Oaihimire IE, Ngonso BF, Egielewa PE, Akinsehinde BO, Kusuma HS, Darmokoesoemo H. Bioenergy revamping and complimenting the global environmental legal framework on the reduction of waste materials: A facile review. Heliyon 2023; 9:e12860. [PMID: 36685427 PMCID: PMC9851859 DOI: 10.1016/j.heliyon.2023.e12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The challenges posed by climate change/global warming are very alarming, and they have become the focal point of attention for researchers within the global environmental domains. The development of bioenergy can help salvage this situation as a renewable energy source that makes use of recycled waste materials to create useful energy products. This review study found that the development of sustainable bioenergy is environmentally friendly, and it has been proven to be a better means of recycling waste materials into final energy products for sustainable development. The study hereby concluded and recommended that environmental policies concerning the sustainable development of bioenergy should be adopted within the various nations' local laws and the global environment at large, as this will result in adhering strictly to international environmental legal frameworks regulating the prevention and reduction of waste materials. The possible correlation of bioenergy with the Sustainable Development Goals is also highlighted.
Collapse
Affiliation(s)
- Paul Atagamen Aidonojie
- Department of Public and International Law, Faculty of Law, Edo State University Uzairue, Edo State, Nigeria
| | - Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, Edo State, Nigeria,Corresponding author.;
| | | | | | | | | | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia,Corresponding author.
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia,Corresponding author.
| |
Collapse
|
9
|
El-Nemr MA, Aigbe UO, Ukhurebor KE, Onyancha RB, El Nemr A, Ragab S, Osibote OA, Hassaan MA. Adsorption of Cr 6+ ion using activated Pisum sativum peels-triethylenetetramine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91036-91060. [PMID: 35881295 PMCID: PMC9722890 DOI: 10.1007/s11356-022-21957-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/06/2022] [Indexed: 05/21/2023]
Abstract
The adsorption of Cr6+ ions from water-soluble solution onto activated pea peels (PPs) embellished with triethylenetetramine (TETA) was studied. The synthesized activated TETA-PP biosorbent was further characterized by SEM together with EDX, FTIR and BET to determine the morphology and elementary composition, functional groups (FGs) present and the biosorbent surface area. The confiscation of Cr6+ ions to activated TETA-PP biosorbent was observed to be pH-reliant, with optimum removal noticed at pH 1.6 (99%). Cr6+ ion adsorption to activated TETA-PP biosorbent was well defined using the Langmuir (LNR) and the pseudo-second-order (PSO) models, with a determined biosorption capacity of 312.50 mg/g. Also, it was found that the activated TETA-PP biosorbent can be restored up to six regeneration cycles for the sequestration of Cr6+ ions in this study. In comparison with other biosorbents, it was found that this biosorbent was a cost-effective and resourceful agro-waste for the Cr6+ ion confiscation. The possible mechanism of Cr6+ to the biosorbent was by electrostatic attraction following the surface protonation of the activated TETA-PP biosorbent sites.
Collapse
Affiliation(s)
- Mohamed A. El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, Egypt
| | - Uyiosa O. Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Kingsley E. Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, Iyamho, Edo State Nigeria
| | - Robert B. Onyancha
- Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology, Technical University of Kenya, Nairobi, Kenya
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Otolorin A. Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mohamed A. Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| |
Collapse
|
10
|
Carbon nanomaterial production using waste plastic pyrolysis over a new catalyst made from mining residues: effect of plastic type. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|