1
|
Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol 2024; 98:3381-3395. [PMID: 38953992 PMCID: PMC11402862 DOI: 10.1007/s00204-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many industrial applications. Exposure to PFAS is associated with several health risks, including a decrease in infant birth weight, hepatoxicity, disruption of lipid metabolism, and decreased immune response. We used the in vitro cell models to screen six less studied PFAS [perfluorooctane sulfonamide (PFOSA), perfluoropentanoic acid (PFPeA), perfluoropropionic acid (PFPrA), 6:2 fluorotelomer alcohol (6:2 FTOH), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and 8:2 fluorotelomer sulfonic acid (8:2 FTSA)] for their capacity to activate nuclear receptors and to cause differential expression of genes involved in lipid metabolism. Cytotoxicity assays were run in parallel to exclude that observed differential gene expression was due to cytotoxicity. Based on the cytotoxicity assays and gene expression studies, PFOSA was shown to be more potent than other tested PFAS. PFOSA decreased the gene expression of crucial genes involved in bile acid synthesis and detoxification, cholesterol synthesis, bile acid and cholesterol transport, and lipid metabolism regulation. Except for 6:2 FTOH and 8:2 FTSA, all tested PFAS downregulated PPARA gene expression. The reporter gene assay also showed that 8:2 FTSA transactivated the farnesoid X receptor (FXR). Based on this study, PFOSA, 6:2 FTSA, and 8:2 FTSA were prioritized for further studies to confirm and understand their possible effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Moon HR, Yun JM. Effect of Siegesbeckia glabrescens Extract on Foam Cell Formation in THP-1 Macrophages. Prev Nutr Food Sci 2024; 29:288-300. [PMID: 39371520 PMCID: PMC11450289 DOI: 10.3746/pnf.2024.29.3.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/08/2024] Open
Abstract
The accumulation of cholesterol-bearing macrophage foam cells in the initial stages of atherosclerosis serves as a characteristic feature of atherosclerotic lesions. The inhibitory effect of Siegesbeckia glabrescens, a species of flowering plant in the Asteraceae family, on foam cell formation in THP-1 macrophages has not yet been elucidated. In this study, we explored the effect of S. glabrescens ethanol extract (SGEE) and hot water extract (SGWE) on foam cell formation via co-treatment with oxidized low density lipoprotein (ox-LDL) and lipopolysaccharide (LPS), mimicking the occurrence of atherosclerosis in vitro, and studied the regulation of its underlying mechanisms. THP-1 cells differentiated by PMA (1 μM) for 48 h were subsequently treated with/without SGWE and SGEE for 48 h. THP-1 macrophages were treated with ox-LDL (20 μg/mL) and LPS (500 ng/mL) for 24 h. Treatment with ox-LDL and LPS for 24 h enhanced the lipid accumulation in foam cells compared to in untreated cells, as determined by oil red O staining. In contrast, SGWE and SGEE treatment inhibited lipid accumulation in foam cells. Both extracts significantly upregulated ABCA1, LXRα, and PPARγ expression in ox-LDL- and LPS-treated cells (P<0.05). Moreover, both SGWE and SGEE decreased LOX-1, CD36, and SR-A1 expression. The co-treatment of ox-LDL and LPS increased NF-κB, COX-2, and pro-inflammatory activation and expression compared with untreated cells. However, this increase suppressed NF-κB, COX-2, and pro-inflammatory expression by SGWE and SGEE. The results indicated that both extracts can partially inhibit foam cell formation and contribute to protective effects by suppressing cholesterol accumulation during the onset of atherosclerosis.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonam National University, Gwangju 61186, Korea
| |
Collapse
|
3
|
Stankovic M, Zeljkovic A, Vekic J, Antonic T, Ardalic D, Miljkovic-Trailovic M, Munjas J, Saric Matutinovic M, Gojkovic T, Jovicic S, Mikovic Z, Stefanovic A. Differences in HDL Remodeling during Healthy Pregnancy and Pregnancy with Cardiometabolic Complications. Antioxidants (Basel) 2024; 13:948. [PMID: 39199194 PMCID: PMC11352027 DOI: 10.3390/antiox13080948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigated the longitudinal trajectory of changes in antioxidative and anti-inflammatory high-density lipoprotein (HDL) components during healthy pregnancy and pregnancy with cardiometabolic complications. We recruited and longitudinally followed 84 women with healthy pregnancies and 46 pregnant women who developed cardiometabolic pregnancy complications (gestational diabetes mellitus and hypertensive disorders of pregnancy). Their general lipid profiles, oxidative stress status, inflammatory status, and antioxidative and anti-inflammatory HDL components were analyzed. The results of our study confirmed the expected trajectory for the routine lipid parameters. Our study results indicate more intensive oxidative stress and a higher level of inflammation in the group with complications compared with the control group. Sphingosine-1-phosphate (S1P) was significantly lower in the first trimester in the group with complications compared with the control group (p < 0.05). We did not find significant differences in the apolipoprotein A1 (Apo A1) concentrations in the first trimester between the control group and the group with complications, but in the second and third trimesters, the group with complications had significantly higher concentrations (p < 0.001, p < 0.05, respectively). The S1P, paraoxonase 1 (PON1), and serum amyloid A (SAA) concentrations were significantly lower in the group with complications in the first trimester. During the second trimester, only the SAA concentrations were identified as significantly lower in the group with complications compared with the control group, while in the third trimester, the PON1, apolipoprotein M (Apo M), and SAA concentrations were all significantly lower in the group with complications. Through a multivariate binary logistic regression analysis, the S1P concentration in the first trimester was distinguished as an HDL-associated marker independently associated with cardiometabolic pregnancy complications. In conclusion, our study results showed that HDL remodeling differs between healthy pregnancies and pregnancies with maternal cardiometabolic complications, with changed HDL composition and functionality consequently impacting its biological functionality in the latter case.
Collapse
Affiliation(s)
- Marko Stankovic
- Gynecology and Obstetrics Clinic Narodni Front, 11000 Belgrade, Serbia; (M.S.); (D.A.); (Z.M.)
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Tamara Antonic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Daniela Ardalic
- Gynecology and Obstetrics Clinic Narodni Front, 11000 Belgrade, Serbia; (M.S.); (D.A.); (Z.M.)
| | - Milica Miljkovic-Trailovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Marija Saric Matutinovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Tamara Gojkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Snezana Jovicic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| | - Zeljko Mikovic
- Gynecology and Obstetrics Clinic Narodni Front, 11000 Belgrade, Serbia; (M.S.); (D.A.); (Z.M.)
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia; (A.Z.); (J.V.); (T.A.); (M.M.-T.); (J.M.); (M.S.M.); (T.G.); (S.J.)
| |
Collapse
|
4
|
Zhao D, Han X, Mu Q, Wu Y, Shan L, Su L, Wang W, Wang P, Kang Y, Wang F. Association of cerebrospinal fluid NPY with peripheral ApoA: a moderation effect of BMI. Nutr Metab (Lond) 2024; 21:52. [PMID: 39054540 PMCID: PMC11270855 DOI: 10.1186/s12986-024-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Apoprotein A-I (ApoA-I) and Apoprotein B (ApoB) have emerged as novel cardiovascular risk biomarkers influenced by feeding behavior. Hypothalamic appetite peptides regulate feeding behavior and impact lipoprotein levels, which effects vary in different weight states. This study explores the intricate relationship between body mass index (BMI), hypothalamic appetite peptides, and apolipoproteins with emphasis on the moderating role of body weight in the association between neuropeptide Y (NPY), ghrelin, orexin A (OXA), oxytocin in cerebrospinal fluid (CSF) and peripheral ApoA-I and ApoB. METHODS In this cross-sectional study, we included participants with a mean age of 31.77 ± 10.25 years, categorized into a normal weight (NW) (n = 73) and an overweight/obese (OW/OB) (n = 117) group based on BMI. NPY, ghrelin, OXA, and oxytocin levels in CSF were measured. RESULTS In the NW group, peripheral ApoA-I levels were higher, while ApoB levels were lower than in the OW/OB group (all p < 0.05). CSF NPY exhibited a positive correlation with peripheral ApoA-I in the NW group (r = 0.39, p = 0.001). Notably, participants with higher CSF NPY levels had higher peripheral ApoA-I levels in the NW group and lower peripheral ApoA-I levels in the OW/OB group, showing the significant moderating effect of BMI on this association (R2 = 0.144, β=-0.54, p < 0.001). The correlation between ghrelin, OXA and oxytocin in CSF and peripheral ApoB in both groups exhibited opposing trends (Ghrelin: r = -0.03 and r = 0.04; OXA: r = 0.23 and r=-0.01; Oxytocin: r=-0.09 and r = 0.04). CONCLUSION This study provides hitherto undocumented evidence that BMI moderates the relationship between CSF NPY and peripheral ApoA-I levels. It also reveals the protective role of NPY in the NW population, contrasting with its risk factor role in the OW/OB population, which was associated with the at-risk for cardiovascular disease.
Collapse
Affiliation(s)
- Danyang Zhao
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship hospital of Urumqi in Xinjiang, Urumqi, 830049, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Ligang Shan
- Department of Anesthesiology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, China
| | - Lidong Su
- Department of Anesthesiology, the Third Affiliated Hospital of Inner Mongolia Medical University, BaoGang Hospital, Baotou, 014010, China
| | - Wenyan Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Pengxiang Wang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China.
| |
Collapse
|
5
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10540-8. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
6
|
Varghese TP. Genetic Markers of Cardiovascular Disease. Curr Probl Cardiol 2024; 49:102588. [PMID: 38657720 DOI: 10.1016/j.cpcardiol.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Cardiovascular Disorders (CVDs) are the leading cause mortality in developed as well as developing nations, and has now emerged as one of the leading causes of disability and mortality around the globe. According to the World Health Organization, four out of every five patients with cardiovascular disease die from a myocardial infarction each year. Numerous genes have been linked to coronary artery disease, influencing mechanisms such as blood pressure regulation, lipid metabolism, inflammation, and cardiac activity. Genetic variations or mutations in these genes can affect lipid metabolism, blood pressure management, and heart function, increasing the risk of obesity, metabolic disorders, and resulting in the development of cardiovascular disease. Understanding the role of genes and related complications are essential for the identification, management, and prevention of cardiovascular conditions. Performing a genetic test for variations in the gene may help identify people as well as their families who are at a greater risk of heart disease, which enables risk identification and timely intervention. . This article investigates the applications of genetic biomarkers in cardiac disorders such as coronary artery disease, hypertension, arrhythmias, cardiomyopathy, and heart failure, with an emphasis on individual genes and their effects on mutation.
Collapse
Affiliation(s)
- Treesa P Varghese
- Department of Pharmacy Practice, Yenepoya Pharmacy College & Research centre, Yenepoya (Deemed to be University), Ayush campus, Naringana, Mangalore, Karnataka, India.
| |
Collapse
|
7
|
Chen T, Li Y, Wang Y, Li X, Wan Y, Xiao X. ApoB, non-HDL-C, and LDL-C Are More Prominent in Retinal Artery Occlusion Compared to Retinal Vein Occlusion. Ocul Immunol Inflamm 2024; 32:534-540. [PMID: 36758248 DOI: 10.1080/09273948.2023.2173245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/12/2022] [Accepted: 01/22/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE To evaluate and compare the blood lipid profile in retinal artery occlusion (RAO) and retinal vein occlusion (RVO). METHODS We included 82 RAO patients and 95 RVO patients in this retrospective case-control study. Controls were matched to RAO or RVO patients at a 1:1 ratio, respectively. Associated lipid variates were analyzed in multivariable logistic regression models. RESULTS LDL-C (OR = 1.69), non-HDL-C (OR = 1.87), and ApoB (OR = 11.72) individually significantly increased the risk of RAO. ApoA1 was associated with RVO (OR = 0.02), and with 75.8% sensitivity and 67.4% specificity. TG (OR = 1.61), LDL-C (OR = 1.69), non-HDL-C (OR = 1.91), and ApoB (OR = 12.12) each significantly increased the risk of RAO when compared with RVO. CONCLUSIONS ApoB, non-HDL-C, and LDL-C may be potential biomarkers in RAO patients. Low ApoA1 is an independent risk factor for the development of RVO.
Collapse
Affiliation(s)
- Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuejie Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Huang YW, Luo F, Zhang M, Wang L, Meng W, Hu D, Yang J, Sheng J, Wang X. 20( S )-Protopanaxatriol Improves Atherosclerosis by Inhibiting Low-Density Lipoprotein Receptor Degradation in ApoE KO Mice. J Cardiovasc Pharmacol 2024; 84:45-57. [PMID: 38922585 PMCID: PMC11230660 DOI: 10.1097/fjc.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/24/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT Atherosclerosis (AS) is a chronic progressive disease caused by various factors and causes various cerebrovascular and cardiovascular diseases (CVDs). Reducing the plasma levels of low-density lipoprotein cholesterol is the primary goal in preventing and treating AS. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in regulating low-density lipoprotein cholesterol metabolism. Panax notoginseng has potent lipid-reducing effects and protects against CVDs, and its saponins induce vascular dilatation, inhibit thrombus formation, and are used in treating CVDs. However, the anti-AS effect of the secondary metabolite, 20( S )-protopanaxatriol (20( S )-PPT), remains unclear. In this study, the anti-AS effect and molecular mechanism of 20( S )-PPT were investigated in vivo and in vitro by Western blotting, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence staining, and other assays. The in vitro experiments revealed that 20( S )-PPT reduced the levels of PCSK9 in the supernatant of HepG2 cells, upregulated low-density lipoprotein receptor protein levels, promoted low-density lipoprotein uptake by HepG2 cells, and reduced PCSK9 mRNA transcription by upregulating the levels of forkhead box O3 protein and mRNA and decreasing the levels of HNF1α and SREBP2 protein and mRNA. The in vivo experiments revealed that 20( S )-PPT upregulated aortic α-smooth muscle actin expression, increased the stability of atherosclerotic plaques, and reduced aortic plaque formation induced by a high-cholesterol diet in ApoE -/- mice (high-cholesterol diet-fed group). Additionally, 20( S )-PPT reduced the aortic expression of CD68, reduced inflammation in the aortic root, and alleviated the hepatic lesions in the high-cholesterol diet-fed group. The study revealed that 20( S )-PPT inhibited low-density lipoprotein receptor degradation via PCSK9 to alleviate AS.
Collapse
Affiliation(s)
- Ye-wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fang Luo
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meng Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Litian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - WenLuer Meng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dandan Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Jinbo Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China; and
| | - Xuanjun Wang
- School of Chinese Materia Medical and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
9
|
Van Tuyen N, Hoang Ngoc N, Quoc Hoan P, Thi Yen N, Hoan NX, Cam Thach N. Differential distribution of plasma apoA-I and apoB levels and clinical significance of apoB/apoA-I ratio in ischemic stroke subtypes. Front Neurol 2024; 15:1398830. [PMID: 38978811 PMCID: PMC11228298 DOI: 10.3389/fneur.2024.1398830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background and purpose Ischemic stroke (IS) is classified into clinical subtypes and likely influenced by various lipid components. Nevertheless, the roles of apolipoprotein A-I (apoA-I), apolipoprotein B (apoB), and apoB/apoA-I ratio in different IS subtypes remain underexplored. This study aimed to investigate the differential distribution of plasma apoA-I and apoB levels among IS subtypes and to evaluate the predictive value of the apoB/apoA-I ratio in assessing IS subtypes and disease severity. Methods In this study, 406 IS patients were categorized into three IS-subtypes based on clinical manifestations and imaging assessment, including intracranial atherosclerosis-related IS patients (ICAS, n = 193), extracranial atherosclerosis-related IS patients (ECAS, n = 111), and small artery occlusion-related IS patients (SAO, n = 102). Plasma apoA-I and apoB levels were measured upon hospital admission. Random forest (RF) models were performed to assess predictive values of these apolipoproteins apoB, apoA-I and their ratio in assessing IS subtype stratification and disease severity. Results Serum apoA-I levels were significantly lower in ICAS compared to ECAS and SAO patients (p < 0.0001), while apoB levels were higher in ICAS patients (p < 0.0001). The apoB/apoA-I ratio was significantly higher in ICAS compared to ECAS and SAO patients (p < 0.0001). Correlation analyses found a significant correlation between the apoB/apoA-I ratio and conventional lipid components. Additionally, RF models and plots of variable importance and distribution of minimal depth revealed that the apoB/apoA-I ratio played the most influential predictor in predicting IS subtypes and stenosis severity. Conclusion Our study shows the differential distribution of apoA-I and apoB IS subtypes and reveals the significance of the apoB/apoA-I ratio in assessing IS subtypes and arterial stenosis severity. Further studies are warranted to validate these findings and enhance their clinical applicability.
Collapse
Affiliation(s)
- Nguyen Van Tuyen
- Department of Stroke, Institute of Neurology, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
- VNU University of Medicine and Pharmacy, Hanoi, Vietnam
| | - Nguyen Hoang Ngoc
- Department of Stroke, Institute of Neurology, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Phan Quoc Hoan
- Department of Molecular Biology, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Nguyen Thi Yen
- Department of Biochemistry, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- Department of Molecular Biology, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Nguyen Cam Thach
- Department of Biochemistry, 108 Institute of Clinical Medical and Pharmaceutical Sciences, Hanoi, Vietnam
| |
Collapse
|
10
|
Xiao Q, Wang J, Wang L, Ding H. APOA1/C3/A4/A5 Gene Cluster at 11q23.3 and Lipid Metabolism Disorders: From Epigenetic Mechanisms to Clinical Practices. Biomedicines 2024; 12:1224. [PMID: 38927431 PMCID: PMC11201263 DOI: 10.3390/biomedicines12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
11
|
Kumari A, Saini V, Kumar V. Decreased mRNA expression of NR1H3 and ABCA1 in pulmonary tuberculosis patients from population of Punjab, India. Mol Biol Rep 2024; 51:657. [PMID: 38740636 DOI: 10.1007/s11033-024-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Mycobacterium tuberculosis (MTB) is the causative organism of tuberculosis. Cholesterol is a crucial carbon source required for the survival of MTB in host cells. Transcription factor NR1H3 along with its important target genes ABCA1 and ApoE play important role in removal of extra cholesterol from cells. Changes in the gene expression of NR1H3, ABCA1 and ApoE can affect cholesterol homeostasis and thus the survival of MTB in host cells.Therefore, the present study was designed to analyze the mRNA expression of NR1H3, ABCA1 and ApoE in pulmonary TB (PTB) patients from the population of Punjab, India. METHODS AND RESULTS In this study, mRNA expression of the transcription factor NR1H3 and its target genes ABCA1 and ApoE was analyzed in 89 subjects, including 41 PTB patients and 48 healthy controls (HCs) by real-time quantitative PCR. It was found that the mRNA expression of both NR1H3 and ABCA1 genes was significantly lower in TB patients than in HCs (p < 0.001). Even after sex-wise stratification of the subjects, mRNA expression of NR1H3 and ABCA1 was found to be down-regulated in both male and female TB patients. No significant difference was observed in expression of ApoE (p = 0.98). CONCLUSIONS The present study found that the mRNA expression of NR1H3 and ABCA1 is down-regulated in TB patients from Punjab state of India.
Collapse
Affiliation(s)
- Anju Kumari
- Department of Zoology, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Sector-32, Chandigarh, India
| | - Vijay Kumar
- Department of Zoology, Panjab University, Sector-14, Chandigarh, 160014, India.
| |
Collapse
|
12
|
Dong J, Kong L, Wang S, Xia M, Zhang Y, Wu J, Yang F, Zuo S, Wei J. Oncolytic adenovirus encoding apolipoprotein A1 suppresses metastasis of triple-negative breast cancer in mice. J Exp Clin Cancer Res 2024; 43:102. [PMID: 38566092 PMCID: PMC10988920 DOI: 10.1186/s13046-024-03011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Dysregulation of cholesterol metabolism is associated with the metastasis of triple-negative breast cancer (TNBC). Apolipoprotein A1 (ApoA1) is widely recognized for its pivotal role in regulating cholesterol efflux and maintaining cellular cholesterol homeostasis. However, further exploration is needed to determine whether it inhibits TNBC metastasis by affecting cholesterol metabolism. Additionally, it is necessary to investigate whether ApoA1-based oncolytic virus therapy can be used to treat TNBC. METHODS In vitro experiments and mouse breast cancer models were utilized to evaluate the molecular mechanism of ApoA1 in regulating cholesterol efflux and inhibiting breast cancer progression and metastasis. The gene encoding ApoA1 was inserted into the adenovirus genome to construct a recombinant adenovirus (ADV-ApoA1). Subsequently, the efficacy of ADV-ApoA1 in inhibiting the growth and metastasis of TNBC was evaluated in several mouse models, including orthotopic breast cancer, spontaneous breast cancer, and human xenografts. In addition, a comprehensive safety assessment of Syrian hamsters and rhesus monkeys injected with oncolytic adenovirus was conducted. RESULTS This study found that dysregulation of cholesterol homeostasis is critical for the progression and metastasis of TNBC. In a mouse orthotopic model of TNBC, a high-cholesterol diet promoted lung and liver metastasis, which was associated with keratin 14 (KRT14), a protein responsible for TNBC metastasis. Furthermore, studies have shown that ApoA1, a cholesterol reverse transporter, inhibits TNBC metastasis by regulating the cholesterol/IKBKB/FOXO3a/KRT14 axis. Moreover, ADV-ApoA1 was found to promote cholesterol efflux, inhibit tumor growth, reduce lung metastasis, and prolonged the survival of mice with TNBC. Importantly, high doses of ADV-ApoA1 administered intravenously and subcutaneously were well tolerated in rhesus monkeys and Syrian hamsters. CONCLUSIONS This study provides a promising oncolytic virus treatment strategy for TNBC based on targeting dysregulated cholesterol metabolism. It also establishes a basis for subsequent clinical trials of ADV-ApoA1 in the treatment of TNBC.
Collapse
Affiliation(s)
- Jie Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Shiqun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mao Xia
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Yenan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Jingyi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Fuming Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China.
| | - Shuguang Zuo
- Liuzhou Key Laboratory of Molecular Diagnosis, Guangxi Key Laboratory of Molecular Diagnosis and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Jiwu Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China.
| |
Collapse
|
13
|
Feng L, Wang L, Hernández-Wolters B, Prabahar K, Velu P, Kord-Varkaneh H. The impact of medroxyprogesterone acetate on lipid profiles in Women: A time and dose-response meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2024; 209:111073. [PMID: 38142749 DOI: 10.1016/j.diabres.2023.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND The effect of MPA on the lipid profile and CVD risk is still controversial; hence, this comprehensive dose-response meta-analysis of randomized controlled trials was conducted to assess the effect of MPA on lipid profiles in women. METHODS A comprehensive search was conducted in the following databases: Web of Science, Scopus, PubMed/Medline, and Embase, up to October 20, 2023. A random-effects meta-analysis approach based on the DerSimonian and Laird method was used to compute the combined estimates of the intervention's impact on the lipid profile. RESULTS 35 eligible studies with 58 arms were included in our meta-analyses analysis. Combined effect sizes suggested a significant effect of MPA on total cholesterol (TC) levels (WMD: -3.43 mg/dL, 95 % CI: -5.38 to -1.48, p < 0.001), HDL-C levels (WMD: -3.34 mg/dL, 95 % CI: -3.77 to -2.91, p < 0.001), and triglyceride (TG) levels (WMD: -9.13 mg/dL, 95 % CI: -10.92 to -7.33, p < 0.001). The subgroup meta-analysis revealed a more substantial reduction in TC in studies with dosages > 2.5 mg/day (WMD: -4.10 mg/dL), mean participant age lower than 60 years (WMD: -3.80 mg/dL), mean BMI lower than 25 kg/m2 (WMD: -5.61 mg/dL), duration of intervention of 12 months or more (WMD: -3.98 mg/dL), and when the baseline TC value was equal to or greater than 200 mg/dL (WMD: -4.13 mg/dL). CONCLUSIONS The current meta-analysis showed a statistically significant decrease in TC, TG, and HDL-C levels and a non-significant increase in LDL-C levels after MPA administration in women.
Collapse
Affiliation(s)
- Li Feng
- Department of Rehabilitation Medicine, The People's Hospital of Huaiyin. Jinan, Jinan-250001, China
| | - Le Wang
- Department of Emergency Medicine, The People's Hospital of Huaiyin. Jinan, Jinan-250001, China.
| | | | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt. Ltd., Nagapattinam, Tamil Nadu, India
| | - Hamed Kord-Varkaneh
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Annunziato M, Bashirova N, Eeza MNH, Lawson A, Fernandez-Lima F, Tose LV, Matysik J, Alia A, Berry JP. An Integrated Metabolomics-Based Model, and Identification of Potential Biomarkers, of Perfluorooctane Sulfonic Acid Toxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38411227 DOI: 10.1002/etc.5824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Known for their high stability and surfactant properties, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of manufactured products. Despite being largely phased out due to concerns regarding their persistence, bioaccumulation, and toxicity, legacy PFAS such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid continue to persist at high levels in the environment, posing risks to aquatic organisms. We used high-resolution magic angle spinning nuclear magnetic resonance spectroscopy in intact zebrafish (Danio rerio) embryos to investigate the metabolic pathways altered by PFOS both before and after hatching (i.e., 24 and 72 h post fertilization [hpf], respectively). Assessment of embryotoxicity found embryo lethality in the parts-per-million range with no significant difference in mortality between the 24- and 72-hpf exposure groups. Metabolic profiling revealed mostly consistent changes between the two exposure groups, with altered metabolites generally associated with oxidative stress, lipid metabolism, energy production, and mitochondrial function, as well as specific targeting of the liver and central nervous system as key systems. These metabolic changes were further supported by analyses of tissue-specific production of reactive oxygen species, as well as nontargeted mass spectrometric lipid profiling. Our findings suggest that PFOS-induced metabolic changes in zebrafish embryos may be mediated through previously described interactions with regulatory and transcription factors leading to disruption of mitochondrial function and energy metabolism. The present study proposes a systems-level model of PFOS toxicity in early life stages of zebrafish, and also identifies potential biomarkers of effect and exposure for improved environmental biomonitoring. Environ Toxicol Chem 2024;00:1-19. © 2024 SETAC.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Francisco Fernandez-Lima
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Lilian V Tose
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John P Berry
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
15
|
Xue M, Li B, Lu Y, Zhang L, Yang B, Shi L. FOXM1 Participates in Scleral Remodeling in Myopia by Upregulating APOA1 Expression Through METTL3/YTHDF2. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 38190128 PMCID: PMC10777875 DOI: 10.1167/iovs.65.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Apolipoprotein A1 (APOA1) is a potential crucial protein and treatment goal for pathological myopia in humans. This study set out to discover the function of APOA1 in scleral remodeling in myopia and its underlying mechanisms. Methods A myopic cell model was induced using hypoxia. Following loss- and gain-of function experiments, the expression of the myofibroblast transdifferentiation-related and collagen production-related factors Forkhead box M1 (FOXM1), APOA1, and methyltransferase-like 3 (METTL3) in the myopic cell model was examined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The proliferation and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Chromatin immunoprecipitation (ChIP) was employed to examine FOXM1 enrichment in the METTL3 promoter, methylated RNA immunoprecipitation (Me-RIP) to examine the N6-methyladenosine (m6A) modification level of APOA1, and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to examine the binding between METTL3 and APOA1. Results Hypoxia-induced human scleral fibroblasts (HSFs) had high APOA1 and FOXM1 expression and low METTL3 expression. FOXM1 knockdown elevated METTL3 expression and downregulated APOA1 expression. FOXM1 was enriched in METTL3 promoter. APOA1 or FOXM1 knockdown or METTL3 overexpression reversed the hypoxia-induced elevation in vinculin, paxillin, and α-smooth muscle actin (α-SMA) levels and apoptosis and the reduction in collagen, type I, alpha 1 (COL1A1) level and cell proliferation in HSFs. METTL3 or YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) knockdown or APOA1 overexpression reversed the impacts of FOXM1 knockdown on vinculin, paxillin, α-SMA, and COL1A1 expression and cell proliferation and apoptosis. Conclusions FOXM1 elevated the m6A methylation level of APOA1 by repressing METTL3 transcription and enhanced APOA1 mRNA stability and transcription by reducing the YTHDF2-recognized m6A methylated transcripts.
Collapse
Affiliation(s)
- Min Xue
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui No. 2 Provincial People's Hospital Clinical College, Anhui Medical University/Anhui No. 2 Provincial People's Hospital Clinical College, Bengbu Medical University/Anhui Eye Hospital, Hefei, Anhui, China
| | - Boai Li
- Dehong People's Hospital, The Affiliated Dehong Hospital of Kunming Medical University, Dehong, Yunan, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Yao Lu
- Graduate School of Bengbu Medical University, Bengbu, Anhui, China
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui Eye Hospital, Hefei, Anhui, China
| | - Luyuan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bing Yang
- School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Lei Shi
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital/Anhui No. 2 Provincial People's Hospital Clinical College, Anhui Medical University/Anhui No. 2 Provincial People's Hospital Clinical College, Bengbu Medical University/Anhui Eye Hospital, Hefei, Anhui, China
| |
Collapse
|
16
|
McMullan JE, Yeates AJ, Allsopp PJ, Mulhern MS, Strain JJ, van Wijngaarden E, Myers GJ, Shroff E, Shamlaye CF, McSorley EM. Fish consumption and its lipid modifying effects - A review of intervention studies. Neurotoxicology 2023; 99:82-96. [PMID: 37820771 DOI: 10.1016/j.neuro.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Fish is an important source of nutrients, particularly the long chain n-3 polyunsaturated fatty acids (n-3 PUFAs). The incorporation of fish into the diet has been shown to have several health benefits, including lowering the risk of cardiovascular disease (CVD). Elevated plasma lipids are one of the main modifiable risk factors contributing to CVD and may be partly mediated by n-3 PUFAs. Although n-3 PUFAs in the form of supplementation have been shown to exert lipid modifying effects, the effects of fish consumption on the lipid profile have not been well summarised to date. Therefore, the aim of the present review is to discuss the current evidence from intervention studies investigating the effect of fish consumption on the lipid profile in both apparently healthy and non-healthy populations. Existing evidence appears to support the role of fish in promoting a shift towards a less inflammatory lipid profile through raising n-3 PUFAs and potentially lowering n-6 PUFA and triglyceride concentrations in both healthy and non-healthy populations. Fish consumption has a negligible effect on cholesterol concentrations; however, fish consumption may promote a small increase in high density lipoprotein (HDL) cholesterol amongst people with lower HDL at baseline. Limited studies have shown fish consumption to result in shifts in phospholipid and sphingolipid species and structure, albeit it is not yet clear whether these alterations have any meaningful impact on CVD risk. Future well-designed studies that utilise NMR and/or lipidomics analysis are warranted to explore the effects of these shifts in lipid content and structure in the context of disease development. Public health guidance should emphasise the cardioprotective benefits of fish and encourage consumption particularly in the Global North where fish consumption remains low.
Collapse
Affiliation(s)
- James E McMullan
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Emelyn Shroff
- The Ministry of Health, Mahé, Republic of Seychelles
| | | | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
17
|
He X, Luo Y, Hao J, Hu R, Yang X, Ren L. High Atherogenic Risk in Ketosis-Prone Type 2 Diabetic Individuals with Ketosis Episodes: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2023; 16:3085-3094. [PMID: 37818406 PMCID: PMC10561756 DOI: 10.2147/dmso.s421203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Purpose Diabetes is an important contributor to the progression of atherosclerosis (AS). We aimed to investigate the correlation between ketosis episodes and lipid-related parameters in patients with new-onset ketosis-prone type 2 diabetes (KPT2D), further attempting to assess the impact of ketosis episodes on AS. Patients and Methods A cross-sectional study of 147 subjects with new-onset diabetes was performed, including 65 KPT2D subjects (KPT2D group) and 82 non-ketotic type 2 diabetes (T2D) (T2D group) subjects. Anthropometric and biochemical parameters were measured in all subjects. Calculation of atherogenic index of plasma (AIP) by traditional lipid parameters. Results The AIP (P = 0.008) level and the percentage of AIP ≥ 0.24 (P = 0.026) in subjects with KPT2D were higher than in subjects with T2D. The apoA1 (P = 0.001) levels were significantly lower in patients with KPT2D than in patients with T2D. In the KPT2D group, plasma ketones were positively correlated with AIP (P = 0.023) and negatively correlated with apoA1 (P = 0.002). Univariate logistic regression suggested that plasma ketone (OR = 1.704, P = 0.040) was an important related factor for the AS in subjects with KPT2D. Multiple linear regression suggested plasma ketone was significantly positive with AIP (β = 0.437, P = 0.020). In multiple linear regression analysis suggests that apolipoprotein A1 (β = -0.335, P = 0.033) is strongly associated with ketotic episodes in newly diagnosed ketosis-prone type 2 diabetic patients. Conclusion Ketosis episodes in patients with KPT2D were significantly and positively associated with elevated AIP levels and reduced apoA1 levels. Frequent ketosis episodes may accelerate the progression of AS.
Collapse
Affiliation(s)
- Xiaoyu He
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Yu Luo
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Jianan Hao
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Rui Hu
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiaoyue Yang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
18
|
Tabansi D, Dahiru D, Patrick AT, Jahng WJ. Anti-Atherosclerosis and Anti-Hyperlipidemia Functions of Terminalia catappa Fruit. ACS OMEGA 2023; 8:35571-35579. [PMID: 37810701 PMCID: PMC10552119 DOI: 10.1021/acsomega.3c00685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Background: Atherosclerosis is a chronic pathological condition that has remained clinically silent for decades, and the epidemic has continued to be on the rise due to risk factors, including diet, lifestyle, hyperlipidemia, pathogenic microorganisms, and aging. Using various synthetic drugs in treating atherosclerosis is associated with a high risk of myositis, angioedema, myoglobinuria, and acute renal failure. Various side effects of the available drugs have been reported; attempts are underway to explore natural sources with antiatherosclerotic activity. Aim and objective: Using a diet-induced atherosclerosis rat model, the current study tested the hypothesis of antiatherosclerotic and antihyperlipidemic roles of Terminalia catappa fruit extracts. Materials and Methods: Atherosclerosis in Wistar rats was induced using an atherogenic diet. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (AP), creatine kinase (CK), and lactate dehydrogenase (LDH) were determined using analytical kits. Results: Quantitative phytochemical analysis of the extracts demonstrated that the plant had flavonoids, saponins, tannins, terpenoids, alkaloids, cardiac glycosides, sterols, phenols, and anthraquinones. Diet-induced atherogenic Wistar rats showed a significant (p < 0.05) increase in total cholesterol, triglyceride, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol compared to the healthy control group; however, the atherogenic lipid profile was reversed by the treatment of T. catappa fruit extracts. The biochemical experiments demonstrate that T. catappa fruit extracts have an antihyperlipidaemic effect, shown by a decreased coronary risk index and the atherogenic index, and an increased cardioprotective index, compared to disease control. Conclusion: The current study indicates that T. catappa fruit extracts may contain bioactive molecules to treat atherosclerosis.
Collapse
Affiliation(s)
- Doris Tabansi
- Department
of Biochemistry, Faculty of Life Sciences, Modibbo Adama University of Technology, Yola 640101, Nigeria
| | - Daniel Dahiru
- Department
of Biochemistry, Faculty of Life Sciences, Modibbo Adama University of Technology, Yola 640101, Nigeria
| | - Ambrose Teru Patrick
- Department
of Cellular and Molecular Medicine, Chosun
University, Gwangju 61452, Korea
- Department
of Ophthalmology, Julia Laboratory, Suwon 16232, Korea
| | - Wan Jin Jahng
- Department
of Ophthalmology, Julia Laboratory, Suwon 16232, Korea
- Department
of Drug Discoveries, Julia Eye Institute, Suwon 16243, Korea
| |
Collapse
|
19
|
Li Y, Luo X, Hua Z, Xue X, Wang X, Pang M, Wang T, Lyu A, Liu Y. Apolipoproteins as potential communicators play an essential role in the pathogenesis and treatment of early atherosclerosis. Int J Biol Sci 2023; 19:4493-4510. [PMID: 37781031 PMCID: PMC10535700 DOI: 10.7150/ijbs.86475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Atherosclerosis as the leading cause of the cardiovascular disease is closely related to cholesterol deposition within subendothelial areas of the arteries. Significantly, early atherosclerosis intervention is the critical phase for its reversal. As atherosclerosis progresses, early foam cells formation may evolve into fibrous plaques and atheromatous plaque, ulteriorly rupture of atheromatous plaque increases risks of myocardial infarction and ischemic stroke, resulting in high morbidity and mortality worldwide. Notably, amphiphilic apolipoproteins (Apos) can concomitantly combine with lipids to form soluble lipoproteins that have been demonstrated to associate with atherosclerosis. Apos act as crucial communicators of lipoproteins, which not only can mediate lipids metabolism, but also can involve in pro-atherogenic and anti-atherogenic processes of atherosclerosis via affecting subendothelial retention and aggregation of low-density lipoprotein (LDL), oxidative modification of LDL, foam cells formation and reverse cholesterol transport (RCT) in macrophage cells. Correspondingly, Apos can be used as endogenous and/or exogenous targeting agents to effectively attenuate the development of atherosclerosis. The article reviews the classification, structure, and relationship between Apos and lipids, how Apos serve as communicators of lipoproteins to participate in the pathogenesis progression of early atherosclerosis, as well as how Apos as the meaningful targeting mass is used in early atherosclerosis treatment.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong 999077, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
20
|
Hwang S, Hicks A, Hoo CZ, Kwon YS, Cho YE, Moore J, Gao B. Novel treatment of acute and acute-on-chronic liver failure: Interleukin-22. Liver Int 2023:10.1111/liv.15619. [PMID: 37208937 PMCID: PMC10657333 DOI: 10.1111/liv.15619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Acute liver failure (ALF) is a life-threatening medical condition, characterized by rapidly progressive hepatic dysfunction, coagulopathy and hepatic encephalopathy in patients without chronic liver disease, while acute-on-chronic liver failure (ACLF) occurs in patients with existing chronic liver disease. ALF and ACLF are often associated with multiple organ failure and a high short-term mortality. In this review, we briefly discuss the causes and pathogenesis of ALF and ACLF, the current options available for the treatment of both deadly maladies and interleukin-22 (IL-22), a novel promising drug that may have great therapeutic potential for ALF and ACLF treatment. IL-22 is a cytokine produced by immune cells but mainly targets epithelial cells including hepatocytes. IL-22 has been shown to protect against organ damage and reduce bacterial infection in many preclinical models and several clinical trials including alcohol-associated hepatitis. The potential application of IL-22 for the treatment of ALF and ACLF is also elaborated.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Amy Hicks
- Leeds Liver Unit, St James’s University Hospital, UK
| | - Chai Zhen Hoo
- Leeds Liver Unit, St James’s University Hospital, UK
| | - Yong Seong Kwon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Joanna Moore
- Leeds Liver Unit, St James’s University Hospital, UK
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Rani A, Marsche G. A Current Update on the Role of HDL-Based Nanomedicine in Targeting Macrophages in Cardiovascular Disease. Pharmaceutics 2023; 15:1504. [PMID: 37242746 PMCID: PMC10221824 DOI: 10.3390/pharmaceutics15051504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High-density lipoproteins (HDL) are complex endogenous nanoparticles involved in important functions such as reverse cholesterol transport and immunomodulatory activities, ensuring metabolic homeostasis and vascular health. The ability of HDL to interact with a plethora of immune cells and structural cells places it in the center of numerous disease pathophysiologies. However, inflammatory dysregulation can lead to pathogenic remodeling and post-translational modification of HDL, rendering HDL dysfunctional or even pro-inflammatory. Monocytes and macrophages play a critical role in mediating vascular inflammation, such as in coronary artery disease (CAD). The fact that HDL nanoparticles have potent anti-inflammatory effects on mononuclear phagocytes has opened new avenues for the development of nanotherapeutics to restore vascular integrity. HDL infusion therapies are being developed to improve the physiological functions of HDL and to quantitatively restore or increase the native HDL pool. The components and design of HDL-based nanoparticles have evolved significantly since their initial introduction with highly anticipated results in an ongoing phase III clinical trial in subjects with acute coronary syndrome. The understanding of mechanisms involved in HDL-based synthetic nanotherapeutics is critical to their design, therapeutic potential and effectiveness. In this review, we provide a current update on HDL-ApoA-I mimetic nanotherapeutics, highlighting the scope of treating vascular diseases by targeting monocytes and macrophages.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
22
|
Sphingolipidomic profile and HDL subfractions in obese dyslipidemic type 2 diabetic patients. Prostaglandins Other Lipid Mediat 2023; 166:106719. [PMID: 36863606 DOI: 10.1016/j.prostaglandins.2023.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE The aim of the study was to investigate changes in serum sphingolipid levels and high density lipoprotein (HDL) subtypes with relation to low-density lipoprotein cholesterol (LDL-C), non-HDL-C and triglyceride (TG) levels in type 2 diabetes mellitus (T2DM) patients. METHODS Blood was obtained from 60 patients with T2DM. Levels of sphingosine-1-phosphate (S1P), C16-C24 sphingomyelins (SMs), C16-C24 ceramides (CERs), and C16 CER-1 P were determined by LC-MS/MS. Serum concentrations of cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT) and apolipoprotein A-1 (apoA-I) were analyzed by enzyme-linked immunosorbent assay (ELISA). HDL subfraction analysis was performed by Disc polyacrylamide gel electrophoresis. RESULTS C16 SM, C24 SM, C24-C16 CER and C16 CER-1 P levels were significantly increased in T2DM patients with LDL-C above 160 mg/dL, compared to those with LDL-C below 100 mg/dL. A significant correlation was observed between C24:C16 SM, C24:C16 CER ratios and LDL-C, non HDL-C levels. Higher serum levels of C24 SM, C24-C18 CER and C24:C16 SM ratio was seen in obese T2DM patients (BMI>30) compared to those with BMI 27-30. Patients with fasting TG levels below 150 mg/dL had significantly increased HDL-large and significantly decreased HDL-small fractions compared to those with fasting TG levels above 150 mg/dL. CONCLUSION Obese dyslipidemic T2DM patients had increased levels of serum sphingomyelins, ceramides and HDL-small fractions. The ratio of serum C24:C16 SM, C24:C16 CER and long chain CER levels may be used as diagnostic and prognostic indicators of dyslipidemia in T2DM.
Collapse
|
23
|
Zhang X, Geng T, Li N, Wu L, Wang Y, Zheng D, Guo B, Wang B. Associations of Lipids and Lipid-Lowering Drugs with Risk of Vascular Dementia: A Mendelian Randomization Study. Nutrients 2022; 15:69. [PMID: 36615727 PMCID: PMC9824558 DOI: 10.3390/nu15010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Accumulating observational studies suggested that hypercholesterolemia is associated with vascular dementia (VaD); however, the causality between them remains unclear. Hence, the aim of this study is to infer causal associations of circulating lipid-related traits [including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), apolipoprotein A-I (apoA-I), and apolipoprotein B (apoB)] with VaD jointly using univariable MR (uvMR), multivariable MR (mvMR) and bidirectional two-sample MR methods. Then, the summary-data-based MR (SMR) and two-sample MR analysis were conducted to investigate the association of lipid-lowering drugs target genes expression (including HMGCR, PCSK9, NPC1L1, and APOB) and LDL-C level mediated by these target genes with VaD. The results of forward MR analyses found that genetically predicted HDL-C, LDL-C, TG, apoA-I, and apoB concentrations were not significantly associated with the risk of VaD (all p > 0.05). Notably, there was suggestive evidence for a causal effect of genetically predicted VaD on HDL-C via reverse MR analysis [odds ratio (OR), 0.997; 95% confidence interval (CI), 0.994−0.999; p = 0.022]. On the contrary, the MR results showed no significant relationship between VaD with LDL-C, TG, apoA-I, and apoB. The results for the SMR method found that there was no evidence of association for expression of HMGCR, PCSK9, NPC1L1, and APOB gene with risk of VaD. Furthermore, the result of MR analysis provided evidence for the decreased LDL-C level mediated by gene HMGCR reduced the risk of VaD (OR, 18.381; 95% CI, 2.092−161.474; p = 0.009). Oppositely, none of the IVW methods indicated any causal effects for the other three genes. Using genetic data, this study provides evidence that the VaD risk may cause a reduction of HDL-C level. Additionally, the finding supports the hypothesis that lowering LDL-C levels using statins may be an effective prevention strategy for VaD risk, which requires clinical trials to confirm this result in the future.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tao Geng
- Geriatric Department, Emergency General Hospital, Beijing 100028, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Youxin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bo Guo
- Department of Hematology, The Second Medical Centre & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Baoguo Wang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
24
|
Bhale AS, Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother 2022; 154:113634. [PMID: 36063649 DOI: 10.1016/j.biopha.2022.113634] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a member of the Apolipoprotein family of proteins. It's a vital protein that helps in the production of high-density lipoprotein (HDL) particles, which are crucial for reverse cholesterol transport (RCT). It also has anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-thrombotic properties. These functions interact to give HDL particles their cardioprotective characteristics. ApoA1 has recently been investigated for its potential role in atherosclerosis, diabetes, neurological diseases, cancer, and certain infectious diseases. Since ApoA1's discovery, numerous mutations have been reported that affect its structural integrity and alter its function. Hence these insights have led to the development of clinically relevant peptides and synthetic reconstituted HDL (rHDL) that mimics the function of ApoA1. As a result, this review has aimed to provide an organized explanation of our understanding of the ApoA1 protein structure and its role in various essential pathways. Furthermore, we have comprehensively reviewed the important ApoA1 mutations (24 mutations) that are reported to be involved in various diseases. Finally, we've focused on the therapeutic potentials of some of the beneficial mutations, small peptides, and synthetic rHDL that are currently being researched or developed, since these will aid in the development of novel therapeutics in the future.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
25
|
Apolipoproteins—New Biomarkers of Overweight and Obesity among Childhood Acute Lymphoblastic Leukemia Survivors? Int J Mol Sci 2022; 23:ijms231810634. [PMID: 36142534 PMCID: PMC9505294 DOI: 10.3390/ijms231810634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 01/19/2023] Open
Abstract
Patients suffering from childhood acute lymphoblastic leukemia (ALL) are at risk of late adverse treatment-related effects. The examination of targeted biomarkers could be used to improve the diagnosis and prediction of life-threatening ALL sequelae. The purpose of this cross-sectional study was to search for treatment-related alterations in apolipoprotein (Apo) levels as potential markers of the occurrence of obesity in subjects treated for ALL, and to assess the relationships between weight, gender, anticancer treatment, and Apo concentrations. Fifty-eight ALL survivors were included in the study. The mean time of follow-up after treatment cessation was 5.41 ± 4.29 years. Serum levels of apolipoproteins were measured using a multiplex assay kit. Among ALL survivors, we observed a significant correlation of Apo-C1, Apo-C3, Apo-H, and Apo-J levels, depending on body mass index (BMI). Marked differences were observed in the area under the curve of Apo-A1, Apo-A2, Apo-C1, Apo-D. In our study, patients with a history of childhood ALL developed alterations in their Apo profile. Furthermore, this is the first study revealing that some apolipoproteins may act as valuable biomarkers useful in the prognosis of metabolic imbalance. We believe that this paper, at least partially, will highlight the importance of long-term prognosis of metabolic complications associated with the anticancer chemotherapy used to treat hematological malignancies in children.
Collapse
|