1
|
Aniba R, Dihmane A, Raqraq H, Ressmi A, Nayme K, Timinouni M, Barguigua A. Exploring staphylococcus in urinary tract infections: A systematic review and meta-analysis on the epidemiology, antibiotic resistance and biofilm formation. Diagn Microbiol Infect Dis 2024; 110:116470. [PMID: 39180785 DOI: 10.1016/j.diagmicrobio.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
This study aimed to determine the epidemiology, biofilm formation and antibiotic resistance of staphylococci collected worldwide in the context of UTIs. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Forty studies from 23 countries were selected for quantitative review. Electronic databases (PubMed, Scopus, Google Scholar, and Web of Sciences) were searched for articles published between 2010 and 2024 on the epidemiology, biofilm formation, and antibiotic resistance of uropathogenic staphylococci. Strict inclusion and exclusion standards were applied during the review of the articles. Forty articles were included in this systematic review. The prevalence of uropathogenic staphylococci varies from country to country, with the pooled prevalence of S. aureus and coagulase-negative staphylococci (CoNS) being 8.71 % (95 %CI: 6.145-11.69) and 13.17 % (95 %CI: 8.08-19.27) respectively. Among CoNS isolates, S. epidermidis was the most common with 19.3 % (95 %CI: 5.88-38.05). The prevalence of methicillin-resistant S. aureus isolates increased significantly from 23 % in 2010-2015 to 47 % in 2021-2024 (p = 0.03). S. haemolyticus is the most antibiotic-resistant species in CoNS, with 45 % of isolates resistant to methicillin, 33 % to gentamicin, and 29 % to tetracycline. Eighty-eight S. aureus strains were biofilm producers, including 35 % moderate biofilm producers and 48 % strong biofilm producers. The combined frequencies of icaA, clfA and fnbpA were 100, 99, and 89 %, respectively. The development of antibiotic resistance and biofilm formation by staphylococci involved in UTIs explains the need for periodic regional surveillance of these infections, which poses a serious public health problem.
Collapse
Affiliation(s)
- Rafik Aniba
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco; Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco.
| | - Asmaa Dihmane
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Habiba Raqraq
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Amina Ressmi
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Mohammed Timinouni
- Laboratoire de Biotechnologie et bio-informatique: Ecole des Hautes Etudes de Biotechnologie et de santé (EHEB), Casablanca, Morocco
| | - Abouddihaj Barguigua
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
2
|
Ijaz M, Sabir MJ, Javed MU, Ahmed A, Rasheed H, Jabir AA. Molecular insights into expression and silencing of resistance determinants in Staphylococcus aureus. Trop Med Int Health 2024; 29:526-535. [PMID: 38715472 DOI: 10.1111/tmi.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
OBJECTIVE This study aimed to investigate the status of antimicrobial-resistant strains of Staphylococcus aureus in Pakistan, their association in terms of co-occurrence with the biofilm-forming genes, resistance profiling and associated discrepancies in diagnostic methods. METHODOLOGY A total of 384 milk samples from bovine was collected by using convenient sampling technique and were initially screened for subclinical mastitis, further preceded by isolation and confirmation of S. aureus. The S. aureus isolates were subjected to evaluation of antimicrobial resistance by phenotypic identification using Kirby-Bauer disc diffusion method, while the genotypic estimation was done by polymerase chain reaction to declare isolates as methicillin, beta-lactam, vancomycin, tetracycline, and aminoglycoside resistant S. aureus (MRSA, BRSA, VRSA, TRSA, and ARSA), respectively. RESULTS The current study revealed an overall prevalence of subclinical mastitis and S. aureus to be 59.11% and 46.69%, respectively. On a phenotypic basis, the prevalence of MRSA, BRSA, VRSA, TRSA, and ARSA was found to be 44.33%, 58.49%, 20.75%, 35.84%, and 30.18%, respectively. The results of PCR analysis showed that 46.80% of the tested isolates were declared as MRSA, 37.09% as BRSA, and 36.36% as VRSA, while the occurrence of TRSA and ARSA was observed in 26.31% and 18.75%, respectively. The current study also reported the existence of biofilm-producing genes (icaA and icaD) in 49.06% and 40.57% isolates, respectively. Lastly, this study also reported a high incidence of discrepancies for both genotypic and phenotypic identification methods of resistance evaluation, with the highest discrepancy ratio for the accA-aphD gene, followed by tetK, vanB, blaZ, and mecA genes. CONCLUSION The study concluded that different antibiotic resistance strains of S. aureus are prevalent in study districts with high potential to transmit between human populations. The study also determined that there are multiple resistance determinants and mechanisms that are responsible for the silencing and expression of antibiotic resistance genes.
Collapse
Affiliation(s)
- Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Jawad Sabir
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Umar Javed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arslan Ahmed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hamza Rasheed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Abdullah Jabir
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
3
|
Sousa M, Afonso AC, Saavedra MJ, Simões LC, Simões M. Hydrocinnamic acid and perillyl alcohol are effective against Escherichia coli biofilms when used alone and combined with antibiotics. J Appl Microbiol 2023; 134:lxad234. [PMID: 37827567 DOI: 10.1093/jambio/lxad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
AIMS The use of phytochemicals to improve the effectiveness of antibiotics is a promising strategy for the development of novel antimicrobials. In this study, the antibiofilm activity of perillyl alcohol and hydrocinnamic acid, both phytochemicals present in several plants, and two antibiotics from different classes (amoxicillin and chloramphenicol) was tested, alone and in combination, against Escherichia coli. METHODS AND RESULTS Each molecule was tested at the minimum inhibitory concentration (MIC), 5 × MIC, and 10 × MIC, and characterized concerning biomass removal, metabolic inactivation, and cellular culturability. The highest percentages of metabolic inactivation (88.5% for 10 × MIC) and biomass reduction (61.7% for 10 × MIC) were obtained with amoxicillin. Interestingly, for 5 × MIC and 10 × MIC, phytochemicals provided a total reduction of colony-forming units (CFUs). Dual and triple combinations of phytochemicals and antibiotics (at MIC and 5 × MIC) demonstrated high efficacy in metabolic inactivation, moderate efficacy in terms of biomass reduction, and total reduction of cellular culturability for 5 × MIC. CONCLUSIONS The results demonstrated the antibiofilm potential of phytochemicals, highlighting the advantage of phytochemical/antibiotic combinations for biofilm control.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Cristina Afonso
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CEB, LABBELS-Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Maria José Saavedra
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lúcia Chaves Simões
- CEB, LABBELS-Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Alaei M, Aghakhani F, Falsafi S, Mazaheri H, Behrouzi A. Introduce a novel post-biotic against Pseudomonas aeruginosa biofilm formation using Escherchia coli Nissle1917 outer membrane vesicles. BMC Res Notes 2023; 16:201. [PMID: 37689727 PMCID: PMC10493014 DOI: 10.1186/s13104-023-06504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that can cause acute infections as well as chronic ones in humans. The expression of algD and PpyR genes involved in biofilm formation in clinical isolates of P. aeruginosa in the presence of Escherichia coli Nissle1917 outer membranes vesicles (EcN OMVs) was evaluated. All isolates were tested for biofilm formation. qPCR and disk diffusion were used to identify the expression of algD and PpyR genes, and antimicrobial resistance, respectively. EcN OMVs caused a more significant loss of algD and PpyR expression, compared with the control group. EcN OMVs contain a variety of biomolecules that are capable of influencing the biofilm formation genes. EcN OMVs treatment reduced P. aeruginosa biofilm formation significantly, which emphasizes their positive role in inhibiting biofilm formation. As a result, EcN OMVs can be used as new therapeutic strategies for inhibiting P. aeruginosa biofilm formation.
Collapse
Affiliation(s)
- Maryam Alaei
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Aghakhani
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Sarvenaz Falsafi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Hoora Mazaheri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Santos PR, Kraus RB, Ladeira SL, Pereira GM, Cunha KF, Palhares KE, Silva ACA, Dors GC, Lima HG, Cereser ND, Nascente PS. Resistance profile and biofilm production of Enterococcus spp., Staphylococcus sp., and Streptococcus spp. from dairy farms in southern Brazil. Braz J Microbiol 2023; 54:1217-1229. [PMID: 36811767 PMCID: PMC10235326 DOI: 10.1007/s42770-023-00929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Milk is a high nutritional value food that helps in human development and growth. However, it can also harbor microorganisms. Therefore, the objective of this study was to isolate, identify and evaluate the resistance profile and pathogenicity factors of gram-positive cocci isolated from liners in milking rooms in the south of Rio Grande do Sul, Brazil. Biochemical and molecular tests were performed for the identification. The following were isolated: Enterococcus faecalis (10), Enterococcus faecium (4), Staphylococcus intermedius (1), Streptococcus uberis (1), and Streptococcus dysgalactiae (1). The susceptibility of isolated microorganisms to eight antibiotics was evaluated according to CLSI, and the genus that proved to be resistant to most of those was Enterococcus. In addition, all 17 isolates were able to form biofilm, which remained viable after the use of neutral, alkaline and alkaline-chlorinated detergent. The only product that was effective against biofilm of all microorganisms was chlorhexidine 2%. The results obtained highlight the importance of pre- and post-dipping tests on dairy properties, in which chlorhexidine is one of the disinfectants used. As observed, products indicated for cleaning and descaling pipes were not effective on biofilms of the different species tested.
Collapse
Affiliation(s)
- P. R. Santos
- Departament of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - R. B. Kraus
- Departament of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - S. L. Ladeira
- Regional Laboratory of Diagnostics, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - G. M. Pereira
- Departament of Mathematics and Statistics, Institute of Physics and Mathematics, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - K. F. Cunha
- Departament of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - K. E. Palhares
- Departament of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - A. C. A. Silva
- Campus Xapuri, Federal Institute of Acre, Xapuri, 78900-000 Brazil
| | - G. C. Dors
- Departament of Agribusiness Science and Technology, Eliseu Maciel College of Agronomy, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - H. G. Lima
- Departament of Preventive Veterinary, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - N. D. Cereser
- Departament of Preventive Veterinary, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| | - P. S. Nascente
- Departament of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, 96010-900 Brazil
| |
Collapse
|