1
|
Song Q, Wang Y, Liu S. Subtype-specific transcription factors affect polyamine metabolism and the tumor microenvironment in breast cancer. CANCER INNOVATION 2025; 4:e138. [PMID: 39629335 PMCID: PMC11612022 DOI: 10.1002/cai2.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 12/07/2024]
Abstract
Background Polyamines play important roles in cell growth and proliferation. Polyamine metabolism genes are dysregulated in various tumors. Some polyamine metabolism genes are regulated by transcription factors. However, the transcription factors that regulate polyamine metabolism genes have not been completely identified. Additionally, whether any of the transcriptional regulations depend on tumor heterogeneity and the tumor microenvironment has not been investigated. Methods We used bulk RNA-seq data to identify dysregulated polyamine metabolism genes and their transcription factors across breast cancer subtypes. Genes highly correlated with polyamine changes were obtained, and their subtype-specific expressions were checked in tumor microenvironment cells using single-cell RNA (scRNA)-seq data. Gene Ontology enrichment analysis was used to explore their molecular functions and biological processes, and survival analysis was used to examine the impact of these genes on therapeutic outcome. Results We first analyzed the dysregulation of polyamine synthesis, catabolism, and transport in four breast cancer subtypes. Genes such as AGMAT and CAV1 were dysregulated across all subtypes, while APRT, SAT1, and other genes were dysregulated in the more lethal subtypes. Among the dysregulated genes of polyamine metabolism, we focused on three genes (SRM, APRT, and SAT1) and identified their transcription factors (SPI1 and IRF1 correspond to SAT1, and IRF3 corresponds to SRM and APRT). With scRNA-seq data, we verified that these three transcription factors also regulated these three polyamine metabolism genes in the tumor microenvironment. Both bulk RNA-seq and scRNA-seq data indicated that these genes were specifically upregulated in high-risk breast cancer subtypes, such as the basal-like type. High expression of these genes corresponded to worse outcomes in the basal-like subtype under chemotherapy and radiation treatment. Conclusion Our work identified three subtype-specific transcription factors that regulate three polyamine metabolism genes in high-risk breast cancer subtypes and the tumor microenvironment. Our results deepen the understanding of the role of polyamine metabolism in breast cancer and may help the clinical therapy of advanced breast cancer subtypes.
Collapse
Affiliation(s)
- Qi Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)WuhanHubeiChina
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular PharmaceuticsHubei University of TechnologyWuhanHubeiChina
| | - Yixuan Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)WuhanHubeiChina
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular PharmaceuticsHubei University of TechnologyWuhanHubeiChina
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province)Key Laboratory of Fermentation Engineering (Ministry of Education)WuhanHubeiChina
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular PharmaceuticsHubei University of TechnologyWuhanHubeiChina
| |
Collapse
|
2
|
Li C, Yang Y, Lin Y, Lian Y, Pan D, Lin L, Li L. Activation of ferritin light chain (FTL) by transcription factor salmonella pathogenicity island 1 modulates glycolysis to drive metastasis of ovarian cancer cells. Expert Rev Anticancer Ther 2024:1-12. [PMID: 39675923 DOI: 10.1080/14737140.2024.2439558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological cancer often diagnosed at an advanced stage due to a lack of effective biomarkers. Ferritin light chain (FTL) is implicated in the development of various cancers, but its impact on OC remains unknown. RESEARCH DESIGN AND METHODS Bioinformatics methods were utilized to analyze FTL. Quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were employed for expression detection, and cell counting kit- 8, and transwell assays were for cell biological functions assessment. Extracellular acidification rate, oxygen consumption rate, and glycolytic metabolite contents were measured. Dual-luciferase and chromatin immunoprecipitation assay validated binding relationship. Xenografted tumor models in nude mice verified the role of FTL in vivo. RESULTS Cell function experiments revealed that FTL facilitated proliferation, migration, and invasion of OC cells. Rescue experiments unveiled that 2-Deoxy-D-glucose attenuated stimulation on OC cell metastasis and glycolysis by FTL overexpression. Salmonella pathogenicity island 1 (SPI1) up-regulated FTL expression to promote glycolysis and metastasis. FTL knockdown inhibited tumor growth and suppressed glycolysis and cell metastasis in vivo, while SPI1 overexpression attenuated these effects. CONCLUSIONS This study demonstrated pro-metastatic mechanisms of transcription factor SPI1/FTL axis in OC and suggested it as a potential target for treating OC metastasis.
Collapse
Affiliation(s)
- Chunxiang Li
- Department of Integrative Medicine Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Yubin Yang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Yuting Lin
- Department of Integrative Medicine Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Yingbin Lian
- Department of Integrative Medicine Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Dinglong Pan
- Department of Radiation, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Lin Lin
- Department of Oncology, Longyan Traditional Chinese Medicine Hospital, Longyan City, China
| | - Luhong Li
- Department of Gynaecology and Obstetrucs, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| |
Collapse
|
3
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Fan Y, Zhong J. LINC01094: A key long non-coding RNA in the regulation of cancer progression and therapeutic targets. Heliyon 2024; 10:e37527. [PMID: 39309878 PMCID: PMC11415682 DOI: 10.1016/j.heliyon.2024.e37527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
LINC01094 is a long non-coding RNA that plays a crucial role in cancer progression by modulating key signaling pathways, such as PI3K/AKT, Wnt/β-catenin and TGF-β Signaling Pathway Feedback Loop. In this review we summarize the recent research on the functional mechanisms of LINC01094 in various cancers, including its impact on tumor growth, metastasis, and resistance to therapy. We also discuss the therapeutic potential of targeting LINC01094 and highlight the current strategies and challenges in this area. Perspectives on future development of LINC01094-based therapies are also provided.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Yu Fan
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| |
Collapse
|
4
|
Aktar T, Modak S, Majumder D, Maiti D. A detailed insight into macrophages' role in shaping lung carcinogenesis. Life Sci 2024; 352:122896. [PMID: 38972632 DOI: 10.1016/j.lfs.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Despite significant advancements in cancer treatment in recent decades, the high mortality rate associated with lung cancer remains a significant concern. The development and proper execution of new targeted therapies needs more deep knowledge regarding the lung cancer associated tumour microenvironment. One of the key component of that tumour microenvironment is the lung resident macrophages. Although in normal physiological condition the lung resident macrophages are believed to maintain lung homeostasis, but they may also initiate a vicious inflammatory response in abnormal conditions which is linked to lung cancer development. Depending on the activation pathway, the lung resident macrophages are either of M1 or M2 sub-type. The M1 and M2 sub-types differ significantly in various prospectuses, from phenotypic markers to metabolic pathways. In addition to this generalized classification, the recent advancement of the multiomics technology is able to identify some other sub-types of lung resident macrophages. Researchers have also observed that these different sub-types can manipulate the pathogenesis of lung carcinogenesis in a context dependent manner and can either promote or inhibit the development of lung carcinogenesis upon receiving proper activation. As proper knowledge about the role played by the lung resident macrophages' in shaping the lung carcinogenesis is limited, so the main purpose of this review is to bring all the available information under the same roof. We also elaborated the different mechanisms involved in maintenance of the plasticity of M1/M2 sub-type, as this plasticity can be a good target for lung cancer treatment.
Collapse
Affiliation(s)
- Tamanna Aktar
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Snehashish Modak
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Debabrata Majumder
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India; Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
5
|
Zhang Q, Zhu F, Tong Y, Shi D, Zhang J. CHD4 R975H mutant activates tumorigenic pathways and promotes stemness and M2-like macrophage polarization in endometrial cancer. Sci Rep 2024; 14:18617. [PMID: 39127769 PMCID: PMC11316823 DOI: 10.1038/s41598-024-69233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Endometrial cancer (EC), one of the most prevalent carcinomas in females, is associated with increasing mortality. We identified the CHD4 R975H mutation as a high-frequency occurrence in EC patients through a comprehensive survey of EC databases. Computational predictions suggest that this mutation profoundly impacts the structural and functional integrity of CHD4. Functional assays revealed that the CHD4 R975H mutation enhances EC cell invasion, proliferation, and colony formation, promoting a cancer stem cell (CSC)-like phenotype. RNA-seq analysis of cells expressing CHD4 R975H mutant revealed a transcriptomic landscape marked by the activation of several cancer-promoting signaling pathways, including TNF-α signaling via NF-κB, KRAS, P53, mTOR, TGF-β, EGFR, Myc and growth factor signaling. Validation assays confirmed the activation of these pathways, further demonstrating that CHD4 R975H mutation induces stemness in EC cells and M2-like polarization of tumor-associated macrophages (TAMs). Our study elucidated the oncogenic role of CHD4 R975H mutation, highlighting its dual impact on facilitating cancer stemness and transforming TAMs into an immunosuppressive subtype. These findings contribute valuable insights into the molecular mechanisms driving EC progression and open avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Qinglin Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Fengzhi Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yin Tong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Diwen Shi
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Li K, Xie T, Li Y, Huang X. LncRNAs act as modulators of macrophages within the tumor microenvironment. Carcinogenesis 2024; 45:363-377. [PMID: 38459912 DOI: 10.1093/carcin/bgae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been established as pivotal players in various cellular processes, encompassing the regulation of transcription, translation and post-translational modulation of proteins, thereby influencing cellular functions. Notably, lncRNAs exert a regulatory influence on diverse biological processes, particularly in the context of tumor development. Tumor-associated macrophages (TAMs) exhibit the M2 phenotype, exerting significant impact on crucial processes such as tumor initiation, angiogenesis, metastasis and immune evasion. Elevated infiltration of TAMs into the tumor microenvironment (TME) is closely associated with a poor prognosis in various cancers. LncRNAs within TAMs play a direct role in regulating cellular processes. Functioning as integral components of tumor-derived exosomes, lncRNAs prompt the M2-like polarization of macrophages. Concurrently, reports indicate that lncRNAs in tumor cells contribute to the expression and release of molecules that modulate TAMs within the TME. These actions of lncRNAs induce the recruitment, infiltration and M2 polarization of TAMs, thereby providing critical support for tumor development. In this review, we survey recent studies elucidating the impact of lncRNAs on macrophage recruitment, polarization and function across different types of cancers.
Collapse
Affiliation(s)
- Kangning Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Kulus M, Farzaneh M, Bryja A, Zehtabi M, Azizidoost S, Abouali Gale Dari M, Golcar-Narenji A, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Dzięgiel P, Zabel M, Mozdziak P, Bukowska D, Kempisty B, Antosik P. Phenotypic Transitions the Processes Involved in Regulation of Growth and Proangiogenic Properties of Stem Cells, Cancer Stem Cells and Circulating Tumor Cells. Stem Cell Rev Rep 2024; 20:967-979. [PMID: 38372877 PMCID: PMC11087301 DOI: 10.1007/s12015-024-10691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Golcar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Hanna Ziemak
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mikołaj Chwarzyński
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, USA
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, USA.
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
8
|
Zheng P, Tan Y, Liu Q, Wu C, Kang J, Liang S, Zhu L, Yan K, Zeng L, Chen B. Deciphering the molecular and clinical characteristics of TREM2, HCST, and TYROBP in cancer immunity: A comprehensive pan-cancer study. Heliyon 2024; 10:e26993. [PMID: 38468942 PMCID: PMC10926084 DOI: 10.1016/j.heliyon.2024.e26993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Hematopoietic cell signal transducer (HCST) and tyrosine kinase-binding protein (TYROBP) are triggering receptors expressed on myeloid cells 2 (TREM2), which are pivotal in the immune response to disease. Despite growing evidence underscoring the significance of TREM2, HCST, and TYROBP in certain forms of tumorigenesis, a comprehensive pan-cancer analysis of these proteins is lacking. Methods Multiple databases were synthesized to investigate the relationship between TREM2, HCST, TYROBP, and various cancer types. These include prognosis, methylation, regulation by long non-coding RNAs and transcription factors, immune signatures, pathway activity, microsatellite instability (MSI), tumor mutational burden (TMB), single-cell transcriptome profiling, and drug sensitivity. Results TREM2, HCST, and TYROBP displayed extensive somatic changes across numerous tumors, and their mRNA expression and methylation levels influenced patient outcomes across multiple cancer types. long non-coding RNA (lncRNA) -messenger RNA (mRNA) and TF-mRNA regulatory networks involving TREM2, HCST, and TYROBP were identified, with lncRNA MEG3 and the transcription factor SIP1 emerging as potential key regulators. Further immune analyses indicated that TREM2, HCST, and TYROBP play critical roles in immune-related pathways and macrophage differentiation, and may be significantly associated with TGF-β and SMAD9. Furthermore, the expression of TREM2, HCST, and TYROBP correlated with the immunotherapy markers TMB and MSI, and influenced sensitivity to immune-targeted drugs, thereby indicating their potential as predictors of immunotherapy outcomes. Conclusion This study offers valuable insights into the roles of TREM2, HCST, and TYROBP in tumor immunotherapy, suggesting their potential as prognostic markers and therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Piao Zheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yejun Tan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Qing Liu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changwu Wu
- The department of neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Kang
- Department of rheumatology and immunology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Kuipo Yan
- Department of cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Cai W, Chen M. Envoplakin Inhibits Macrophage Polarization by Altering the Inflammatory Tumor Microenvironment of Melanoma Through the RAS / ERK Signaling Pathway. J Inflamm Res 2024; 17:1687-1706. [PMID: 38504693 PMCID: PMC10950027 DOI: 10.2147/jir.s447934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Purpose Tumor growth induces the tumor margin to become a transition zone rich in immune cells. EVPL is a potential prognostic biomarker for melanoma. Melanoma is difficult to cure because of its high metastasis, so it is urgent to find effective genes to inhibit tumor progression and regulate tumor microenvironment. Methods Firstly, differentially expressed genes (DEGs) among normal skin, nevus and melanoma samples in GSE3189 were screened. Bioinformatics was used to further explore the hub genes and enriched pathways closely related to the inflammatory response of DEGs in melanoma. We selected EVPL, which is associated with the Ras/Raf signaling pathway, for in vitro study. CCK-8, colony formation, wound healing, Transwell and flow cytometry assays were respectively used to evaluate the proliferation, migration, invasion, and apoptosis of cancer cells. Enzyme-linked immunosorbent assay was conducted for the monitoring of changes in the tumor microenvironment. To evaluate the effect of EVPL on macrophage recruitment, we established a co-culture system in a Transwell chamber. The polarization of macrophages was examined after treatment of cells with RAS/ERK signaling inhibitors SCH772984 and sh-EVPL. Additionally, changes in the expression of pathway proteins were measured by Western blot. Results Among the screened hub genes, EVPL was associated with the Ras/Raf pathway, a key signaling pathway in melanoma, and may be involved in regulating the inflammatory microenvironment of melanoma. Oe-EVPL was proved to suppress melanoma cell malignant progression. By inhibiting EVPL expression, the inhibitory effects on melanoma progression induced by the addition of SCH772984 were reversed. Furthermore, EVPL was found to inhibit the expression of chemokines, the recruitment of macrophages, and the polarization of macrophages through the Ras/Raf/ERK signaling pathway. Conclusion EVPL can inhibit the progression of melanoma through the RAS/ERK signaling pathway, change the inflammatory tumor microenvironment of melanoma, and inhibit the recruitment of macrophages.
Collapse
Affiliation(s)
- Weilin Cai
- Medical School of Chinese PLA, Beijing, People’s Republic of China
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Minliang Chen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Hori A, Takahashi A, Miharu Y, Yamaguchi S, Sugita M, Mukai T, Nagamura F, Nagamura-Inoue T. Superior migration ability of umbilical cord-derived mesenchymal stromal cells (MSCs) toward activated lymphocytes in comparison with those of bone marrow and adipose-derived MSCs. Front Cell Dev Biol 2024; 12:1329218. [PMID: 38529405 PMCID: PMC10961348 DOI: 10.3389/fcell.2024.1329218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction: Mesenchymal stromal cells (MSCs) are activated upon inflammation and/or tissue damage and migrate to suppress inflammation and repair tissues. Migration is the first important step for MSCs to become functional; however, the migration potency of umbilical cord-derived MSCs (UC-MSCs) remains poorly understood. Thus, we aimed to assess the migration potency of UC-MSCs in comparison with those of bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) and investigate the influence of chemotactic factors on the migration of these cells. Methods: We compared the migration potencies of UC-, BM-, and AD-MSCs toward allogeneic stimulated mononuclear cells (MNCs) in mixed lymphocyte reaction (MLR). The number of MSCs in the upper chamber that migrated toward the MLR in the lower chamber was counted using transwell migration assay. Results and discussion: UC-MSCs showed significantly faster and higher proliferation potencies and higher migration potency toward unstimulated MNCs and MLR than BM- and AD-MSCs, although the migration potencies of the three types of MSCs were comparable when cultured in the presence of fetal bovine serum. The amounts of CCL2, CCL7, and CXCL2 in the supernatants were significantly higher in UC-MSCs co-cultured with MLR than in MLR alone and in BM- and AD-MSCs co-cultured with MLR, although they did not induce the autologous migration of UC-MSCs. The amount of CCL8 was higher in BM- and AD-MSCs than in UC-MSCs, and the amount of IP-10 was higher in AD-MSCs co-cultured with MLR than in UC- and BM-MSCs. The migration of UC-MSCs toward the MLR was partially attenuated by platelet-derived growth factor, insulin-like growth factor 1, and matrix metalloproteinase inhibitors in a dose-dependent manner. Conclusion: UC-MSCs showed faster proliferation and higher migration potency toward activated or non-activated lymphocytes than BM- and AD-MSCs. The functional chemotactic factors may vary among MSCs derived from different tissue sources, although the roles of specific chemokines in the different sources of MSCs remain to be resolved.
Collapse
Affiliation(s)
- Akiko Hori
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Somatic Stem Cell Research, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsuko Takahashi
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Somatic Stem Cell Research, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Miharu
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Somatic Stem Cell Research, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Masatoshi Sugita
- Department of Obstetrics, NTT Medical Center Tokyo Hospital, Tokyo, Japan
| | - Takeo Mukai
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Nagamura
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Somatic Stem Cell Research, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Lu G, Qiu Y. SPI1-mediated CXCL12 expression in bladder cancer affects the recruitment of tumor-associated macrophages. Mol Carcinog 2024; 63:448-460. [PMID: 38037991 DOI: 10.1002/mc.23663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Bladder cancer (BC) originates principally from the epithelial compartment of the bladder. The immune system and its diverse players, chemokines, in particular, have been related to the responses against BC. The goal of the study here was to examine if C-X-C motif chemokine 12 (CXCL12) in BC cells could manipulate protumorigenic properties of tumor-associated macrophages (TAMs) which affects anticancer immunity supporting tumor development in the tumor microenvironment. CXCL12 was found to be overexpressed in BC and predicted poor survival. CXCL12 in BC was associated with multiple immune cell infiltrations, with TAM infiltration playing a key role. CXCL12 elevated chemotaxis of TAMs. CXCL12 downregulation inhibited cellular activity and TAM and suppressed the ability of TAMs to secrete inflammatory factors and MMP9. Furthermore, chromatin immunoprecipitation analysis revealed that SPI1 was localized to the CXCL12 promoter in BC cells, suggesting that CXCL12 serves a direct target of SPI1, which was consistent with the fact that SPI1 reversed the repressive effects of si-CXCL12 on BC cell activity and TAM recruitment in vitro and in vivo. Collectively, these findings suggest that SPI1 is involved in modulating TAM recruitment, representing a new mechanism through which it may influence tumor growth. This may be partly mediated by regulating CXCL12 expression.
Collapse
Affiliation(s)
- Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
12
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
13
|
Liu L, Chen G, Gong S, Huang R, Fan C. Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy. Front Immunol 2023; 14:1274547. [PMID: 38022518 PMCID: PMC10679371 DOI: 10.3389/fimmu.2023.1274547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Fan
- *Correspondence: Chunmei Fan, ; Rongfu Huang,
| |
Collapse
|
14
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNAs in lung cancer: molecular mechanisms and clinical applications. Front Oncol 2023; 13:1256537. [PMID: 37746261 PMCID: PMC10514911 DOI: 10.3389/fonc.2023.1256537] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease with high malignant degree, rapid growth, and early metastasis. The clinical outcomes of LC patients are generally poor due to the insufficient elucidation of pathological mechanisms, low efficiency of detection and assessment methods, and lack of individualized therapeutic strategies. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA), are endogenous regulators that are widely involved in the modulation of almost all aspects of life activities, from organogenesis and aging to immunity and cancer. They commonly play vital roles in various biological processes by regulating gene expression via their interactions with DNA, RNA, or protein. An increasing amount of studies have demonstrated that ncRNAs are closely correlated with the initiation and development of LC. Their dysregulation promotes the progression of LC via distinct mechanisms, such as influencing protein activity, activating oncogenic signaling pathways, or altering specific gene expression. Furthermore, some ncRNAs present certain clinical values as biomarker candidates and therapeutic targets for LC patients. A complete understanding of their mechanisms in LC progression may be highly beneficial to developing ncRNA-based therapeutics for LC patients. This review mainly focuses on the intricate mechanisms of miRNA, lncRNA, and circRNA involved in LC progression and discuss their underlying applications in LC treatment.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Jing Y, Mao Z, Zhu J, Ma X, Liu H, Chen F. TRAIP serves as a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Int Immunopharmacol 2023; 122:110605. [PMID: 37451021 DOI: 10.1016/j.intimp.2023.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the major types of lung cancer with high morbidity and mortality. The TRAF-interacting protein (TRAIP) is a ring-type E3 ubiquitin ligase which has been recently identified to play pivotal roles in various cancers. However, the expression and function of TRAIP in LUAD remain elusive. METHODS In this study, we used bioinformatic tools as well as molecular experiments to explore the exact role of TRAIP and the underlying mechanism. RESULTS Data mining across the UALCAN, GEPIA and GTEx, GEO and HPA databases revealed that TRAIP was significantly overexpressed in LUAD tissues than that in adjacent normal tissues. Kaplan-Meier curve showed that high TRAIP expression was associated with poor overall survival (OS) and relapse-free survival (RFS). Univariate and multivariate cox regression analysis revealed that TRAIP was an independent risk factor in LUAD. And the TRAIP-based nomogram further supported the prognostic role of TRAIP in LUAD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that TRAIP-associated genes were mainly involved in DNA replication, cell cycle and other processes. The immune infiltration analysis indicated that TRAIP expression was tightly correlated with the infiltration of diverse immune cell types, including B cell, CD8 + T cell, neutrophil and dendritic cell. Moreover, TRAIP expression was observed to be significantly associated with tumor infiltrating lymphocytes (TILs) and immune checkpoint molecules. In vitro experiments further confirmed knockdown of TRAIP inhibited cell migration and invasion, as well as decreasing chemokine production and inhibiting M2-like macrophage recruitment. Lastly, CMap analysis identified 10 small molecule compounds that may target TRAIP, providing potential therapies for LUAD. CONCLUSIONS Collectively, our study found that TRAIP is an oncogenic gene in LUAD, which may be a potential prognostic biomarker and promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Zhan DT, Xian HC. Exploring the regulatory role of lncRNA in cancer immunity. Front Oncol 2023; 13:1191913. [PMID: 37637063 PMCID: PMC10448763 DOI: 10.3389/fonc.2023.1191913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Imbalanced immune homeostasis in cancer microenvironment is a hallmark of cancer. Increasing evidence demonstrated that long non-coding RNAs (lncRNAs) have emerged as key regulatory molecules in directly blocking the cancer immunity cycle, apart from activating negative regulatory pathways for restraining tumor immunity. lncRNAs reshape the tumor microenvironment via the recruitment and activation of innate and adaptive lymphoid cells. In this review, we summarized the versatile mechanisms of lncRNAs implicated in cancer immunity cycle, including the inhibition of antitumor T cell activation, blockade of effector T cell recruitment, disruption of T cell homing, recruitment of immunosuppressive cells, and inducing an imbalance between antitumor effector cells (cytotoxic T lymphocytes, M1 macrophages, and T helper type 1 cells) versus immunosuppressive cells (M2 macrophages, T helper type 2 cells, myeloid derived suppressor cells, and regulatory T cells) that infiltrate in the tumor. As such, we would highlight the potential of lncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Dan-ting Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Hong-chun Xian
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
May AM, Batoon L, McCauley LK, Keller ET. The Role of Tumor Epithelial-Mesenchymal Transition and Macrophage Crosstalk in Cancer Progression. Curr Osteoporos Rep 2023; 21:117-127. [PMID: 36848026 PMCID: PMC10106416 DOI: 10.1007/s11914-023-00780-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recently published findings regarding the role of epithelial to mesenchymal transition (EMT) in tumor progression, macrophages in the tumor microenvironment, and crosstalk that exists between tumor cells and macrophages. RECENT FINDINGS EMT is a crucial process in tumor progression. In association with EMT changes, macrophage infiltration of tumors occurs frequently. A large body of evidence demonstrates that various mechanisms of crosstalk exist between macrophages and tumor cells that have undergone EMT resulting in a vicious cycle that promotes tumor invasion and metastasis. Tumor-associated macrophages and tumor cells undergoing EMT provide reciprocal crosstalk which leads to tumor progression. These interactions provide potential targets to exploit for therapy.
Collapse
Affiliation(s)
- Allison M May
- Department of Urology, Medical School, University of Michigan, NCRC, Building 14, Room 116 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA
| | - Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Evan T Keller
- Department of Urology, Medical School, University of Michigan, NCRC, Building 14, Room 116 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA.
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Single Cell Spatial Analysis Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Qiao X, Ding Y, Wu D, Zhang A, Yin Y, Wang Q, Wang W, Kang J. The roles of long noncoding RNA-mediated macrophage polarization in respiratory diseases. Front Immunol 2023; 13:1110774. [PMID: 36685535 PMCID: PMC9849253 DOI: 10.3389/fimmu.2022.1110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Macrophages play an essential role in maintaining the normal function of the innate and adaptive immune responses during host defence. Macrophages acquire diverse functional phenotypes in response to various microenvironmental stimuli, and are mainly classified into classically activated macrophages (M1) and alternatively activated macrophages (M2). Macrophage polarization participates in the inflammatory, fibrotic, and oncogenic processes of diverse respiratory diseases by changing phenotype and function. In recent decades, with the advent of broad-range profiling methods such as microarrays and next-generation sequencing, the discovery of RNA transcripts that do not encode proteins termed "noncoding RNAs (ncRNAs)" has become more easily accessible. As one major member of the regulatory ncRNA family, long noncoding RNAs (lncRNAs, transcripts >200 nucleotides) participate in multiple pathophysiological processes, including cell proliferation, differentiation, and apoptosis, and vary with different stimulants and cell types. Emerging evidence suggests that lncRNAs account for the regulation of macrophage polarization and subsequent effects on respiratory diseases. In this review, we summarize the current published literature from the PubMed database concerning lncRNAs relevant to macrophage polarization and the underlying molecular mechanisms during the occurrence and development of respiratory diseases. These differentially expressed lncRNAs are expected to be biomarkers and targets for the therapeutic regulation of macrophage polarization during disease development.
Collapse
|