1
|
Benitez S, Puig N, Camps-Renom P, Sánchez-Quesada JL. Atherogenic circulating lipoproteins in ischemic stroke. Front Cardiovasc Med 2024; 11:1470364. [PMID: 39713216 PMCID: PMC11659270 DOI: 10.3389/fcvm.2024.1470364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
The fundamental role of qualitative alterations of lipoproteins in the early development of atherosclerosis has been widely demonstrated. Modified low-density lipoproteins (LDL), such as oxidized LDL (oxLDL), small dense LDL (sdLDL), and electronegative LDL [LDL(-)], are capable of triggering the atherogenic process, favoring the subendothelial accumulation of cholesterol and promoting inflammatory, proliferative, and apoptotic processes characteristic of atherosclerotic lesions. In contrast, high-density lipoprotein (HDL) prevents and/or reverses these atherogenic effects. However, LDL's atherogenic and HDL's anti-atherogenic actions may result altered in certain pathological conditions. The molecular mechanisms underlying the impaired effects of altered lipoproteins have been studied in numerous in vitro and in vivo studies, and have been extensively analyzed in coronary atherosclerosis, especially in the context of pathologies such as dyslipidemia, diabetes, obesity, and metabolic syndrome. However, the corresponding studies are scarcer in the field of ischemic stroke, despite carotid arteriosclerosis progression underlies at least 20% of ischemic strokes. The present review relates qualitative alterations of LDL and HDL with the development of carotid arteriosclerosis and the occurrence of ischemic stroke.
Collapse
Affiliation(s)
- Sonia Benitez
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
- CIBER-Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Núria Puig
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de La Santa Creu I Sant Pau, IR Sant Pau, Barcelona, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Institut de Recerca Hospital de Sant Pau (IR Sant Pau), Barcelona, Spain
- CIBER-Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain
| |
Collapse
|
2
|
Hou L, Liu J, Yuan Y, Ding Y. Role of the NOD1/Rip2 Signaling Pathway in Macrophage Inflammatory Activation Induced by ox-LDL. Cardiol Res Pract 2024; 2024:7601261. [PMID: 39640499 PMCID: PMC11620810 DOI: 10.1155/crp/7601261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Aim: This study aimed to investigate the impact of the NOD1/Rip2 signaling pathway on macrophage inflammatory activation and polarity switching in ox-LDL-induced THP-1-derived macrophages. Methods: THP-1-derived macrophages were stimulated with various concentrations (10, 25, or 50 mg/L) of ox-LDL for different durations (8, 16, or 24 h). Quantitative real-time PCR was used to measure the mRNA expression of NOD1, Rip2, IL-10, IL-12, iNOS, and Arg-1. Western blotting was used to determine the protein levels of NOD1 and Rip2. The secretion of TNF-α and MCP-1 in the cell culture supernatants was measured via ELISA. Rip2 siRNA was used to inhibit the NOD1/Rip2 signaling pathway. Oil Red O staining was employed to visualize foam cell formation. CD86, CD80, and CD163 membrane molecules were analyzed via FACS. Results: After exposure to ox-LDL, the expression levels of NOD1 and Rip2 mRNAs and proteins in THP-1-derived macrophages increased in a dose- and time-dependent manner. This upregulation was accompanied by increased concentrations of TNF-α and MCP-1 in the cell culture supernatants. The effects of NOD1 and Rip2 expression upregulation were mitigated by Rip2 siRNA, as evidenced by decreased concentrations of TNF-α and MCP-1. Furthermore, ox-LDL downregulated the expression of M2 macrophage markers CD163, IL-12, and Arg-1 and upregulated the expression of M1 macrophage markers CD86, CD80, IL-10, and iNOS. The inhibition of Rip2 by siRNA reversed these effects and prevented the formation of foam cells. Conclusion: Our data show that the NOD1/RIP2 signaling pathway regulates the inflammatory activation of macrophages induced by ox-LDL and controls the macrophage polarity switch.
Collapse
Affiliation(s)
- Liang Hou
- Department of Cardiology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, China
| | - Jinli Liu
- Second Cardiology Department, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuhui Yuan
- Cancer Center, Dalian Medical University, Dalian, China
| | - Yanchun Ding
- Second Cardiology Department, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Mehraj V, Chen J, Routy JP. Effects of statins beyond lipid-lowering agents in ART-treated HIV infection. Front Immunol 2024; 15:1339338. [PMID: 38655259 PMCID: PMC11035727 DOI: 10.3389/fimmu.2024.1339338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Antiretroviral therapies (ART) have reduced human immunodeficiency virus (HIV) infection-associated morbidity and mortality improving the life of people with HIV (PWH). However, ART lead to residual HIV production, which in conjunction with microbial translocation and immune dysfunction contributes to chronic inflammation and immune activation. PWH on ART remain at an increased risk for cardiovascular diseases (CVDs) including myocardial infarction and stroke; which in part is explained by chronic inflammation and immune activation. Lifestyle factors and certain ART are associated with dyslipidemia characterized by an increase of low-density lipoprotein (LDL), which further contributes in the increased risk for CVDs. Lipid-lowering agents like statins are emerging as immune modulators in decreasing inflammation in a variety of conditions including HIV. The international randomized clinical trial REPRIEVE has shed light on the reduction of CVDs with statin therapy among PWH. Such reports indicate a more than expected benefit of statins beyond their lipid-lowering effects. Bempedoic acid, a first-in-class non-statin LDL-lowering drug with immune modulatory effects, may further aid PWH in combination with statins. Herein, we critically reviewed studies aimed at lipid-lowering and immune-modulating roles of statins that may benefit aging PWH.
Collapse
Affiliation(s)
- Vikram Mehraj
- Research Centre McGill University Health Centre, Montreal, QC, Canada
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jean-Pierre Routy
- Research Centre McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
4
|
Hachuła M, Kosowski M, Ryl S, Basiak M, Okopień B. Impact of Glucagon-Like Peptide 1 Receptor Agonists on Biochemical Markers of the Initiation of Atherosclerotic Process. Int J Mol Sci 2024; 25:1854. [PMID: 38339133 PMCID: PMC10855444 DOI: 10.3390/ijms25031854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis stands out as one of the leading causes of global mortality. The inflammatory response against vascular wall components plays a pivotal role in the atherogenic process. The initiation of this process is notably driven by oxidized low-density lipoprotein (oxLDL) and a range of pro-inflammatory cytokines, with interleukin-1β (Il-1β) and tumor necrosis factor α (TNFα) emerging as particularly significant in the early stages of atherosclerotic plaque formation. In recent years, researchers worldwide have been diligently exploring innovative therapeutic approaches for metabolic diseases, recognizing their impact on the atherogenesis process. Our study aimed to investigate the influence of glucagon-like peptide 1 receptor agonists (GLP-1RA) on cytokine concentrations associated with the initiation of atherosclerotic plaque formation in a group of patients with type 2 diabetes and dyslipidemia. The study encompassed 50 subjects aged 41-81 (mean: 60.7), all diagnosed with type 2 diabetes, dyslipidemia and confirmed atherosclerosis based on B-mode ultrasound. Following a 180-day treatment with dulaglutide or semaglutide, we observed a statistically significant reduction in biochemical markers (oxLDL, TNFα and Il-1β) associated with the initiation of the atherosclerotic process (p < 0.001) within our study group. In addition to the already acknowledged positive effects of GLP-1RA on the metabolic parameters of treated patients, these drugs demonstrated a notable reduction in proinflammatory cytokine concentrations and may constitute an important element of therapy aimed at reducing cardiovascular risk.
Collapse
Affiliation(s)
- Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Sabina Ryl
- Department of Anaesthesiology and Intensive Care, Municipal Hospital in Zabrze-Biskupice, Zamkowa 4, 41-803 Zabrze, Poland;
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.)
| |
Collapse
|
5
|
Longevity OMAC. Retracted: The Effects of Statin Therapy on Oxidized LDL and Its Antibodies: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9849024. [PMID: 38234524 PMCID: PMC10791239 DOI: 10.1155/2024/9849024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/7850659.].
Collapse
|
6
|
Chujan S, Nakareangrit W, Suriyo T, Satayavivad J. Integrated Transcriptomics and Network Analysis of Potential Mechanisms and Health Effects of Convalescent COVID-19 Patients. Bioinform Biol Insights 2023; 17:11779322231206684. [PMID: 37881207 PMCID: PMC10594973 DOI: 10.1177/11779322231206684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Coronaviral disease 2019 (COVID-19) is a recent pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are still cases of COVID-19 around the world that can develop into persistent symptoms after discharge. The constellation of symptoms, termed long COVID, persists for months and can lead to various diseases such as lung inflammation and cardiovascular disease, which may lead to considerable financial burden and possible risk to human health. Moreover, the molecular mechanisms underlying the post-pandemic syndrome of COVID-19 remain unclear. In this study, we aimed to explore the molecular mechanism, disease association, and possible health risks in convalescent COVID-19 patients. Gene expression data from a human convalescent COVID-19 data set was compared with a data set from healthy normal individuals in order to identify differentially expressed genes (DEGs). To determine biological function and potential pathway alterations, the GO and KEGG databases were used to analyze the DEGs. Disease association, tissue, and organ-specific analyses were used to identify possible health effects. A total of 250 DEGs were identified between healthy and convalescent COVID-19 subjects. The biological function alterations identified revealed cytokine interactions and increased inflammation through NF-κB1, RELA, JUN, STAT3, and SP1. Interestingly, the most significant pathways were cytokine-cytokine receptor interaction, altered lipid metabolism, and atherosclerosis that play a crucial role in convalescent COVID-19. In addition, we also found pneumonitis, dermatitis, and autoimmune diseases. Based on our study, convalescent COVID-19 is associated with inflammation in a variety of organs that could lead to autoimmune and inflammatory diseases, as well as atherosclerosis. These findings are a first step toward fully exploring the disease mechanisms in depth to understand the relationship between post-COVID-19 infection and potential health risks. This is necessary for the development of appropriate strategies for the prevention and treatment of long COVID.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | | | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
7
|
Wirestam L, Jönsson F, Enocsson H, Svensson C, Weiner M, Wetterö J, Zachrisson H, Eriksson P, Sjöwall C. Limited Association between Antibodies to Oxidized Low-Density Lipoprotein and Vascular Affection in Patients with Established Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:ijms24108987. [PMID: 37240332 DOI: 10.3390/ijms24108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Patients with systemic lupus erythematosus (SLE) are at an increased risk of cardiovascular disease. We aimed to evaluate whether antibodies to oxidized low-density lipoprotein (anti-oxLDL) were associated with subclinical atherosclerosis in patients with different SLE phenotypes (lupus nephritis, antiphospholipid syndrome, and skin and joint involvement). Anti-oxLDL was measured by enzyme-linked immunosorbent assay in 60 patients with SLE, 60 healthy controls (HCs) and 30 subjects with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). Intima-media thickness (IMT) assessment of vessel walls and plaque occurrence were recorded using high-frequency ultrasound. In the SLE cohort, anti-oxLDL was again assessed in 57 of the 60 individuals approximately 3 years later. The levels of anti-oxLDL in the SLE group (median 5829 U/mL) were not significantly different from those in the HCs group (median 4568 U/mL), while patients with AAV showed significantly higher levels (median 7817 U/mL). The levels did not differ between the SLE subgroups. A significant correlation was found with IMT in the common femoral artery in the SLE cohort, but no association with plaque occurrence was observed. The levels of anti-oxLDL antibodies in the SLE group were significantly higher at inclusion compared to 3 years later (median 5707 versus 1503 U/mL, p < 0.0001). Overall, we found no convincing support for strong associations between vascular affection and anti-oxLDL antibodies in SLE.
Collapse
Affiliation(s)
- Lina Wirestam
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Frida Jönsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Helena Enocsson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Christina Svensson
- Department of Clinical Physiology, University Hospital and Department of Health, Medicine and Caring Sciences, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Maria Weiner
- Department of Nephrology in Linkoping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linkoping, Sweden
| | - Jonas Wetterö
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Helene Zachrisson
- Department of Clinical Physiology, University Hospital and Department of Health, Medicine and Caring Sciences, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Per Eriksson
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linkoping University, SE-581 85 Linkoping, Sweden
| |
Collapse
|
8
|
Pincemail J, Tchana-Sato V, Courtois A, Musumeci L, Cheramy-Bien JP, Munten J, Labropoulos N, Defraigne JO, Sakalihasan N. Alteration of Blood Oxidative Stress Status in Patients with Thoracic Aortic Dissection: A Pilot Study. Antioxidants (Basel) 2023; 12:antiox12051106. [PMID: 37237972 DOI: 10.3390/antiox12051106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Thoracic aortic dissection (TAD) is a life-threatening condition which usually occurs on an aneurysmal aortic wall. Although increasing data have shown that inflammation and oxidative stress play an important role in the patho-physiology of dissection, systemic oxidative stress status (OSS) has not been clearly determined in patients suffering from TAD. METHODS A cohort of 115 patients presenting type A or B TAD were admitted to our center from 2013 to 2017. Out of this cohort, 46 patients were included in a study on dissected aorta (LIege study on DIssected Aorta: LIDIA). In 18 out of the 46 patients, systemic OSS parameters were evaluated after TAD diagnosis by determination of eight different antioxidants, four trace elements, two markers of oxidative lipid damage and two inflammatory markers. RESULTS The 18 TAD patients included 10 men and 8 women (median age: 62 years; interquartile range: 55-68) diagnosed with type A (N = 8) or B (N = 10) TAD. Low plasma levels of vitamin C, β-carotene, γ-tocopherol, thiol proteins, paraoxonase and selenium were observed in these 18 patients. By contrast, the concentration of copper and total hydroperoxides, copper/zinc ratio, as well as inflammatory markers, were higher than the reference intervals. No difference was observed in oxidative stress biomarker concentrations between type A and B TAD patients. CONCLUSIONS This pilot study, limited to 18 TAD patients, revealed a heightened systemic OSS, determined at 15.5 days (median) after the initial diagnosis, in those TAD patients without complications (malperfusion syndrome and aneurysm formation). Larger studies on biological fluids are needed to better characterize the oxidative stress and interpret its consequence in TAD disease.
Collapse
Affiliation(s)
- Joël Pincemail
- Department of Cardiovascular Surgery, CHU Liege, 4000 Liège, Belgium
- Department of Medical Chemistry, CHU Liege, 4000 Liège, Belgium
| | | | | | - Lucia Musumeci
- Department of Cardiovascular Surgery, CHU Liege, 4000 Liège, Belgium
| | | | - Jacobine Munten
- Department of Cardiovascular Surgery, CHU Liege, 4000 Liège, Belgium
| | - Nicos Labropoulos
- Department of Surgery, Stony Brook University Hospital, Stony Brook, NY 11794-8191, USA
| | | | - Natzi Sakalihasan
- Department of Cardiovascular Surgery, CHU Liege, 4000 Liège, Belgium
| |
Collapse
|
9
|
Sotler T, Šebeštjen M. PCSK9 as an Atherothrombotic Risk Factor. Int J Mol Sci 2023; 24:ijms24031966. [PMID: 36768292 PMCID: PMC9916735 DOI: 10.3390/ijms24031966] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Disturbances in lipid metabolism are among the most important risk factors for atherosclerotic cardiovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein in lipid metabolism that is also involved in the production of inflammatory cytokines, endothelial dysfunction and aherosclerotic plaque development. Studies have shown a connection between PCSK9 and various indicators of inflammation. Signalling pathways that include PCSK9 play important role in the initiation and development of atherosclerotic lesions by inducing vascular inflammation. Studies so far have suggested that PCSK9 is associated with procoagulation, enhancing the development of atherosclerosis. Experimentally, it was also found that an increased concentration of PCSK9 significantly accelerated the apoptosis of endothelial cells and reduced endothelial function, which created conditions for the development of atherosclerosis. PCSK9 inhibitors can therefore improve clinical outcomes not only in a lipid-dependent manner, but also through lipid-independent pathways. The aim of our review was to shed light on the impact of PCSK9 on these factors, which are not directly related to low-density lipoprotein (LDL) cholesterol metabolism.
Collapse
Affiliation(s)
- Tadeja Sotler
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Miran Šebeštjen
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
10
|
Gaggini M, Gorini F, Vassalle C. Lipids in Atherosclerosis: Pathophysiology and the Role of Calculated Lipid Indices in Assessing Cardiovascular Risk in Patients with Hyperlipidemia. Int J Mol Sci 2022; 24:ijms24010075. [PMID: 36613514 PMCID: PMC9820080 DOI: 10.3390/ijms24010075] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The role of lipids is essential in any phase of the atherosclerotic process, which is considered a chronic lipid-related and inflammatory condition. The traditional lipid profile (including the evaluation of total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein) is a well-established tool to assess the risk of atherosclerosis and as such has been widely used as a pillar of cardiovascular disease prevention and as a target of pharmacological treatments in clinical practice over the last decades. However, other non-traditional lipids have emerged as possible alternative predictors of cardiometabolic risk in addition to traditional single or panel lipids, as they better reflect the overall interaction between lipid/lipoprotein fractions. Therefore, this review deals with the lipid involvement characterizing the pathophysiology of atherosclerosis, discussing some recently proposed non-traditional lipid indices and, in the light of available knowledge, their actual potential as new additive tools to better stratify cardiovascular risk in patients with hyperlipidemia as well as possible therapeutic targets in the clinical practice.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Gorini
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Cristina Vassalle
- Fondazione CNR—Regione Toscana G Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
- Correspondence:
| |
Collapse
|
11
|
Dziri C, Slim K. What the surgeons need to know about meta-analyses in 2023, beyond the simple Odds ratio. J Visc Surg 2022; 159:480-485. [PMID: 36333183 DOI: 10.1016/j.jviscsurg.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- C Dziri
- Medical School of Tunis, Tunis El Manar University Tunisia, Honoris Medical Simulation Center Tunis, avenue Khaireddine Pacha, 1002 Tunis, Tunisia.
| | - K Slim
- The Francophone Group for Enhanced Recovery after Surgery, GRACE, 63110 Beaumont, France; Service de chirurgie digestive, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|