1
|
Ekinci A, Şahin Ö, Kutluay S, Horoz S, Canpolat G, Çokyaşa M, Baytar O. Designing copper-doped zinc oxide nanoparticle by tobacco stem extract-mediated green synthesis for solar cell efficiency and photocatalytic degradation of methylene blue. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2183-2193. [PMID: 39037035 DOI: 10.1080/15226514.2024.2379605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This study presents the green synthesis of copper-doped zinc oxide (Cu-doped ZnO) nanoparticles using tobacco stem (TS) extract. The environmentally friendly synthesis method ensures distinct features, high efficiency, and applicability in various fields, particularly in solar cell technology and photocatalytic applications. ZnO nanostructures are investigated due to their unique properties, cost-effectiveness, and broad range of applications. The nanoparticles are synthesized with varying Cu concentrations, and their structural, morphological, and compositional characteristics are thoroughly analyzed. The Cu-doped ZnO nanoparticles exhibit improved properties, such as increased surface area and reduced particle size, attributed to the incorporation of Cu dopants. The green synthesis approach using TS extract serves as a stabilizing agent and avoids the toxicity associated with chemical methods. Characterization techniques including SEM, TEM, EDX, FTIR, and XRD confirm the successful synthesis of the nanoparticles. Photocatalytic degradation studies reveal that the 5% Cu-doped ZnO exhibits the highest photocatalytic activity against methylene blue, attributed to synergistic effects between Cu and ZnO, including oxygen vacancy and electron-hole pair recombination rate suppression. The photocatalytic mechanism involves the generation of superoxide and hydroxyl radicals, leading to methylene blue degradation. Furthermore, the Cu-doped ZnO nanoparticles demonstrate promising photovoltaic performance, with the optimal efficiency observed at a 5% Cu concentration. The study suggests that Cu-doped ZnO has the potential to enhance solar cell efficiency and could serve as an alternative material in solar cell applications. Future research should focus on refining Cu-doped ZnO for further improvements in solar energy conversion efficiency.
Collapse
Affiliation(s)
- Arzu Ekinci
- Department of Occupational Health and Safety, Siirt University, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sabit Horoz
- Department of Metallurgical and Materials, Sivas Science and Technology University, Sivas, Turkey
| | | | - Mine Çokyaşa
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| | - Orhan Baytar
- Department of Chemical Engineering, Siirt University, Siirt, Turkey
| |
Collapse
|
2
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Recent advances and challenges of the green ZnO-based composites biosynthesized using plant extracts for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33748-2. [PMID: 38809407 DOI: 10.1007/s11356-024-33748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Recently, there has been a notable rise in the prevalence of persistent pollutants in the environment, posing a significant hazard due to their toxicity and enduring nature. Conventional wastewater treatment methods employed in treatment plants rarely address these persistent pollutants adequately. Meanwhile, the concept of green synthesis has garnered considerable attention, owing to its environmentally friendly approach that utilizes fewer toxic chemicals and solvents. The utilization of materials derived from sustainable sources presents a promising avenue for solving pressing environmental concerns. Among the various sources of biological agents, plants stand out for their accessibility, eco-friendliness, and rich reserves of phytochemicals suitable for material synthesis. The plant extract-mediated synthesis of zinc oxide nanoparticles (ZnONPs) has emerged as a promising solution for applications in wastewater treatment. Thorough investigations into the factors influencing the properties of these green ZnONPs are essential to establish a detailed and reliable synthesis process. Major weaknesses inherent in ZnONPs can be addressed by changing the optical, magnetic, and interface properties through doping with various semiconductor materials. Consequently, research efforts to mitigate water pollution are being driven by both the future prospects and limitations of ZnO-based composites. This review underscores the recent advancements of plant extract-mediated ZnONP composites for water treatment.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.
| |
Collapse
|
3
|
Geldasa FT, Kebede MA, Shura MW, Hone FG. Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC Adv 2023; 13:18404-18442. [PMID: 37342807 PMCID: PMC10278095 DOI: 10.1039/d3ra01505j] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Photocatalysis is a more proficient technique that involves the breakdown or decomposition of different organic contaminants, various dyes, and harmful viruses and fungi using UV or visible light solar spectrum. Metal oxides are considered promising candidate photocatalysts owing to their low cost, efficiency, simple fabricating method, sufficient availability, and environment-friendliness for photocatalytic applications. Among metal oxides, TiO2 is the most studied photocatalyst and is highly applied in wastewater treatment and hydrogen production. However, TiO2 is relatively active only under ultraviolet light due to its wide bandgap, which limits its applicability because the production of ultraviolet is expensive. At present, the discovery of a photocatalyst of suitable bandgap with visible light or modification of the existing photocatalyst is becoming very attractive for photocatalysis technology. However, the major drawbacks of photocatalysts are the high recombination rate of photogenerated electron-hole pairs, the ultraviolet light activity limitations, and low surface coverage. In this review, the most commonly used synthesis method for metal oxide nanoparticles, photocatalytic applications of metal oxides, and applications and toxicity of different dyes are comprehensively highlighted. In addition, the challenges in the photocatalytic applications of metal oxides, strategies to suppress these challenges, and metal oxide studied by density functional theory for photocatalytic applications are described in detail.
Collapse
Affiliation(s)
- Fikadu Takele Geldasa
- Adama Science and Technology University, Department of Applied Physics P. O. Box1888 Adama Ethiopia
- Oda Bultum University, Department of Physics P. O. Box 226, Chiro Ethiopia
| | - Mesfin Abayneh Kebede
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa Florida Science Campus Johannesburg 1710 South Africa
| | - Megersa Wodajo Shura
- Adama Science and Technology University, Department of Applied Physics P. O. Box1888 Adama Ethiopia
| | - Fekadu Gashaw Hone
- Addis Ababa University, Department of Physics P.O. Box: 1176 Addis Ababa Ethiopia
| |
Collapse
|
4
|
Zelekew OA, Haitosa HH, Chen X, Wu YN. Recent progress on plant extract-mediated biosynthesis of ZnO-based nanocatalysts for environmental remediation: Challenges and future outlooks. Adv Colloid Interface Sci 2023; 317:102931. [PMID: 37267679 DOI: 10.1016/j.cis.2023.102931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
The plant extract mediated green synthesis of nanomaterials has attracts enormous interest due to its cost-effectiveness, greener, and environmentally friendly. It is also considered as an alternative and facile method in which the phytochemicals can be used as a natural capping and reducing agents and helped to produce nanomaterials with high surface area, different sizes, and shapes. One of the materials fabricated using green methods is zinc oxide (ZnO) semiconductor due to its enormous applications in different field areas. In this review, an overview of recent progress on green synthesized ZnO-based catalysts and various modification methods for the purpose of enhancing the catalytic activity of ZnO and the corresponding structural-activity and interactions towards the removal of pollutants are highlighted. Particularly, the plant extract mediated ZnO-based photocatalysts application for the removal of pollutants via photocatalytic degradation, reduction reaction, and adsorption mechanism are demonstrated. Besides, the opportunities, challenges, and future outlooks of ZnO-based materials for environmental remediation with green and sustainable methods are also included. We believe that this review is a timely and comprehensive review on the recent progress related to plant extract mediated ZnO-based nanocatalysts synthesis and applications for environmental remediation.
Collapse
Affiliation(s)
- Osman Ahmed Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China; Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Haileyesus Hatano Haitosa
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China.
| |
Collapse
|
5
|
Haitosa HH, Tesfamariam BB, Gultom NS, Kuo DH, Chen X, Wu YN, Zelekew OA. Stephania abyssinica leaf extract mediated (Mn, Ni) co-doped ZnO catalyst synthesis for the degradation of organic dye. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Peng Q, Tang X, Liu K, Zhong W, Zhang Y, Xing J. Synthesis of silica nanofibers-supported BiOCl/TiO2 heterojunction composites with enhanced visible-light photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|