1
|
Ma Y, Hou Y, Han Y, Liu Y, Han N, Yin Y, Wang X, Jin P, He Z, Sun J, Hao Y, Guo J, Wang T, Feng W, Qi H, Jia Z. Ameliorating lipopolysaccharide induced acute lung injury with Lianhua Qingke: focus on pulmonary endothelial barrier protection. J Thorac Dis 2024; 16:6899-6917. [PMID: 39552861 PMCID: PMC11565356 DOI: 10.21037/jtd-24-700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/16/2024] [Indexed: 11/19/2024]
Abstract
Background Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) has long posed challenges in clinical practice, lacking established preventive and therapeutic approaches. Lianhua Qingke (LHQK), a patented traditional Chinese medicine (TCM), has been found to have anti-inflammatory effects for ameliorating ALI/ARDS induced by lipopolysaccharide (LPS). This study aimed to investigate the effects and potential mechanisms of LHQK on endothelial protection in LPS-induced ALI/ARDS in vivo and in LPS-induced human pulmonary microvascular endothelial cells (HPMECs) injury in vitro. Methods In the animal experiment, we induced an ALI/ARDS model by intratracheal injection of LPS (5 mg/mL). LHQK (3.7 g/kg/d for low dose and 7.4 g/kg/d for high dose) or dexamethasone (DEX) (5 mg/kg/d) was administered to mice 3 days prior to LPS treatment. In the in vitro experiments, HPMECs were pretreated with LHQK at concentrations of 125 and 250 µg/mL for 2 hours before being stimulated with LPS (10 µg/mL). We employed lung function test, measurement of lung index, hematoxylin and eosin (H&E) staining, bronchoalveolar lavage fluid (BALF) cell counts, and inflammatory cytokine levels to assess the therapeutic effect of LHQK. Additionally, the extravasation assay of fluorescein isothiocyanate-dextran (FITC-dextran) dye and the transmembrane electrical resistance (TEER) assay were used to evaluate endothelial barrier. Barrier integrity and relevant protein validation were assessed using immunofluorescence (IF) and Western blot analyses. Furthermore, network pharmacology analysis and cellular level screening were employed to predict and screen the active ingredients of LHQK. Results Compared to the LPS group, LHQK significantly improved lung function, mitigated lung pathological injuries, reduced inflammatory cells and inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] levels in BALF, and inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1), attenuated LPS-induced pulmonary oedema and FITC-dextran permeability, and enhanced the expression of vascular endothelial-cadherin (VE-cadherin) and occludin. In vitro, LHQK attenuated LPS-induced HPMECs injury by elevating TEER values and enhancing VE-cadherin and occludin protein levels. Finally, network pharmacology analysis and cellular level validation identified potential active ingredients of LHQK. Conclusions In summary, LHQK can mitigate LPS-induced inflammatory infiltration, pulmonary edema, and pulmonary vascular endothelial barrier dysfunction in the context of ALI/ARDS. This is achieved by decreasing the levels of VCAM-1, and increasing the expression levels of barrier-associated junctions, such as VE-cadherin and occludin. Consequently, LHQK exhibits promising therapeutic potential in preventing the progression of ALI/ARDS.
Collapse
Affiliation(s)
- Yan Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunlong Hou
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yu Han
- Department of Pharmacy, Hebei Children’s Hospital, Shijiazhuang, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Yujie Yin
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Xiaoqi Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhuo He
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuanjie Hao
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tongxing Wang
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Wei Feng
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Department of Respiratory, Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Wang X, Hao Y, Yin Y, Hou Y, Han N, Liu Y, Li Z, Wei Y, Ma K, Gu J, Ma Y, Qi H, Jia Z. Lianhua Qingke Preserves Mucociliary Clearance in Rat with Acute Exacerbation of Chronic Obstructive Pulmonary Disease by Maintaining Ciliated Cells Proportion and Protecting Structural Integrity and Beat Function of Cilia. Int J Chron Obstruct Pulmon Dis 2024; 19:403-418. [PMID: 38343495 PMCID: PMC10859105 DOI: 10.2147/copd.s436323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is a sudden worsening of symptoms in patients with Chronic Obstructive Pulmonary Disease (COPD), such as cough, increased sputum volume, and sputum purulence. COPD and AECOPD are characterized by damage to cilia and increased mucus secretion. Mucociliary clearance (MCC) functions as part of the primary innate system of the lung to remove harmful particles and pathogens together with airway mucus and is therefore crucial for patients with COPD. Methods AECOPD was induced by cigarette smoke exposure (80 cigarettes/day, 5 days/week for 12 weeks) and lipopolysaccharide (LPS) instillation (200 μg, on days 1, 14, and 84). Rats administered Lianhua Qingke (LHQK) (0.367, 0.732, and 1.465 g/kg/d) or Eucalyptol, Limonene, and Pinene Enteric Soft Capsules (ELP, 0.3 g/kg/d) intragastrically. Pulmonary pathology, Muc5ac+ goblet cell and β-tubulin IV+ ciliated cells, and mRNA levels of forkhead box J1 (Foxj1) and multiciliate differentiation and DNA synthesis associated cell cycle protein (MCIDAS) were assessed by hematoxylin and eosin staining, immunofluorescence staining, and RT-qPCR, respectively. Ciliary morphology and ultrastructure were examined through scanning electron microscopy and transmission electron microscopy. Ciliary beat frequency (CBF) was recorded using a high-speed camera. Results Compared to the model group, LHQK treatment groups showed a reduction in inflammatory cell infiltration, significantly reduced goblet cell and increased ciliated cell proportion. LHQK significantly upregulated mRNA levels of MCIDAS and Foxj1, indicating promoted ciliated cell differentiation. LHQK protected ciliary structure and maintained ciliary function via increasing the ciliary length and density, reducing ciliary ultrastructure damage, and ameliorating random ciliary oscillations, consequently enhancing CBF. Conclusion LHQK enhances the MCC capability of ciliated cells in rat with AECOPD by preserving the structural integrity and beating function of cilia, indicating its therapeutic potential on promoting sputum expulsion in patients with AECOPD.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050090, People’s Republic of China
- Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, 050035, People’s Republic of China
| | - Yuanjie Hao
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Yujie Yin
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, 050035, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People’s Republic of China
| | - Yunlong Hou
- Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, 050035, People’s Republic of China
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, 050035, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People’s Republic of China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Zhen Li
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Yaru Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050090, People’s Republic of China
| | - Kun Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050090, People’s Republic of China
| | - Jiaojiao Gu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050090, People’s Republic of China
| | - Yan Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050090, People’s Republic of China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, 050035, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People’s Republic of China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050090, People’s Republic of China
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, Hebei, 050035, People’s Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People’s Republic of China
- Department of Respiratory, Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050091, People’s Republic of China
| |
Collapse
|
3
|
Tong L, Ma Z, Zhou Y, Yang S, Yang Y, Luo J, Huang J, Wang F. Combination of Chinese herbal medicine and conventional western medicine for coronavirus disease 2019: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1175827. [PMID: 37529247 PMCID: PMC10387529 DOI: 10.3389/fmed.2023.1175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Objective This study aimed to assess the efficacy and safety of Chinese herbal medicine (CHM) plus conventional western medicine (CWM) in comparison with CWM against COVID-19. Methods We searched eight electronic databases and three trial registers spanning from January 1, 2020 to May 18, 2023. We included randomized controlled trials (RCTs) comparing the effectiveness and safety of CHM plus CWM and CWM against COVID-19 in our study. The Cochrane Risk of Bias tool 2.0 (RoB2) was applied to evaluate the methodological quality of the included RCTs. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system was employed to assess the certainty of evidence. Statistical analysis was implemented in R version 4.1.2. Results Our study included 50 RCTs involving 11,624 patients. In comparison with sole CWM, CHM plus CWM against COVID-19 significantly enhanced clinical effective rate (RR = 1.18, 95% CI [1.13, 1.22]), improved chest image (RR = 1.19, 95% CI [1.11, 1.28]), inhibited clinical deterioration (RR = 0.45, 95% CI [0.33, 0.60]), lowered mortality (RR = 0.53, 95% CI [0.40, 0.70]), and reduced the total score of TCM syndrome (SMD = -1.24, 95% CI [-1.82, -0.66]). SARS-CoV-2 nucleic acid conversion time (MD = -2.66, 95% CI [-3.88, -1.44]), duration of hospitalization (MD = -2.36, 95% CI [-3.89, -0.82]), and clinical symptom (fever, cough, fatigue, and shortness of breath) recovery times were shorter in CHM plus CWM groups than in CWM groups. Further, CHM plus CWM treatment was more conducive for some laboratory indicators returning to normal levels. No statistical difference was found in the incidence of total adverse reactions between the two groups (RR = 0.97, 95% CI [0.88, 1.07]). We assessed the risk of bias for 246 outcomes, and categorized 55 into "low risk", 151 into "some concerns", and 40 into "high risk". Overall, the certainty of the evidence ranged from moderate to very low. Conclusions Potentially, CHM listed in this study, as an adjunctive therapy, combining with CWM is an effective and safe therapy mode for COVID-19. However, more high-quality RCTs are needed to draw more accurate conclusions. Clinical trial registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=293963.
Collapse
|
4
|
Promoting self‐healing power and balancing immune response: a holistic, effective strategy of traditional Chinese medicine in treating COVID‐19. PHARMACOLOGICAL RESEARCH. MODERN CHINESE MEDICINE 2022; 5:100199. [PMCID: PMC9674391 DOI: 10.1016/j.prmcm.2022.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/24/2023]
Abstract
The COVID-19 pandemic is a serious challenge to human medicines. Modern medicine (MM) has been excellent in identifying the virus, sequencing its mutants, and monitoring the pandemic progress. However, due to lack of effective antivirals in the first two years of the pandemic, MM treated COVID-19 mainly by conventional supportive care with limited efficacy. In China, traditional Chinese medicine (TCM) has been actively participating the control of COVID-19, and the combination of TCM and conventional supportive care has shown better efficacies than the conventional care alone. Purpose: Clinical studies have shown that TCM treats COVID-19 through a holistic action, such as repairing organ injuries, anti-inflammation, immunoregulation and antiviral activities, etc. However, it is not clear how TCM is able to achieve these effects, and the scientific interpretation of TCM theories is lacking. This review aims to elucidate the scientific basis underlying TCM theories in the context of host-pathogen interaction and provide a working model for TCM in treating infectious diseases. Procedure: This review focuses on the essential components of host-pathogen interaction and performs an in-depth analysis of current literatures, including TCM theories and clinical studies as well as the most recent findings of tolerance (self-healing) mechanism in biomedical sciences. Conclusion: TCM treats COVID-19 through a holistic regulation of host responses, particularly by promoting patients’ self-healing power and balancing immune responses. Compared to the pathogen-centered MM, the host-centered TCM doesn't require specific antivirals and has less side-effects and drug resistance. This review provides a scientific insight into the mechanism of TCM and sheds a light on the prospective integration of TCM and MM for future challenges.
Collapse
|
5
|
Zhu H, Li M, Tian C, Lai H, Zhang Y, Shi J, Shi N, Zhao H, Yang K, Shang H, Sun X, Liu J, Ge L, Huang L. Efficacy and safety of chinese herbal medicine for treating mild or moderate COVID-19: A systematic review and meta-analysis of randomized controlled trials and observational studies. Front Pharmacol 2022; 13:988237. [PMID: 36160412 PMCID: PMC9504662 DOI: 10.3389/fphar.2022.988237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) is still a pandemic globally, about 80% of patients infected with COVID-19 were mild and moderate. Chinese herbal medicine (CHM) has played a positive role in the treatment of COVID-19, with a certain number of primary studies focused on CHM in managing COVID-19 published. This study aims to systematically review the currently published randomized controlled trials (RCTs) and observational studies (OBs), and summarize the effectiveness and safety of CHM in the treatment of mild/moderate COVID-19 patients. Methods: We searched 9 databases up to 19 March 2022. Pairs of reviewers independently screened literature, extracted data and assessed risk of bias. For overall effect, we calculated the absolute risk difference (ARD) of weighted averages of different estimates, and certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) system. Results: We included 35 RCTs and 24 OBs enrolling 16,580 mild/moderate patients. The certainty of evidence was very low to low. Compared with usual supportive treatments, most effect estimates of CHM treatments were consistent in direction. CHMs presented significant benefits in reducing rate of conversion to severe cases (ARD = 99 less per 1000 patients in RCTs and 131 less per 1000 patients in OBs, baseline risk: 16.52%) and mortality (ARD = 3 less per 1000 patients in RCTs and OBs, baseline risk: 0.40%); shortening time to symptom resolution (3.35 days in RCTs and 2.94 days in OBs), length of hospital stay (2.36 days in RCTs and 2.12 days in OBs) and time to viral clearance (2.64 days in RCTs and 4.46 days in OBs); increasing rate of nucleic acid conversion (ARD = 73 more per 1000 patients in OBs, baseline risk: 16.30%). No serious adverse reactions were found and the differences between CHM and usual supportive care were insignificant. Conclusion: Encouraging evidence showed that CHMs were beneficial in treating mild or moderate patients. CHMs have been proved to possess a safety profile that is comparable to that of usual supportive treatment alone. More rigorously designed clinical trials and mechanism studies are still warranted to further confirm the present findings.
Collapse
Affiliation(s)
- Hongfei Zhu
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mengting Li
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chen Tian
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Honghao Lai
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yuqing Zhang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- CEBIM (Center for Evidence Based Integrative Medicine)-Clarity Collaboration, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Nottingham Ningbo GRADE Center, The University of Nottingham Ningbo, Ningbo, China
| | - Jiaheng Shi
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Emergency, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Zhao
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- WHO Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Jie Liu
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Oncology, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Long Ge
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
- WHO Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| | - Luqi Huang
- China Center for Evidence Based Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xin Sun, ; Jie Liu, ; Long Ge, ; Luqi Huang,
| |
Collapse
|