1
|
Salehi S, Allahverdy J, Pourjafar H, Sarabandi K, Jafari SM. Gut Microbiota and Polycystic Ovary Syndrome (PCOS): Understanding the Pathogenesis and the Role of Probiotics as a Therapeutic Strategy. Probiotics Antimicrob Proteins 2024; 16:1553-1565. [PMID: 38421576 DOI: 10.1007/s12602-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common disorders among women in modern societies. A variety of factors can contribute to the development of PCOS. These women often exhibit high insulin resistance (IR), hyperandrogenism, irregular periods, and infertility. Dysbiosis of the gut microbiota (GMB) in women with PCOS has attracted the attention of many researchers. Porphyromonas spp., B. coprophilus, and F. prausnitzii are found in higher numbers in the gut of women with PCOS. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota through fermentation, play an essential role in regulating metabolic activities and are helpful in reducing insulin resistance and improving PCOS symptoms. According to studies, the bacteria producing SCFAs in the gut of these women are less abundant than in healthy women. The effectiveness of using probiotic supplements has been proven to improve the condition of women with PCOS. Daily consumption of probiotics improves dysbiosis of the intestinal microbiome and increases the production of SCFAs.
Collapse
Affiliation(s)
- Samaneh Salehi
- Department of Food Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Javad Allahverdy
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Students' Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Khashayar Sarabandi
- Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, PO Box 91895, Mashhad, 157-356, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Zhang H, Wang J, Jing Y. Larimichthys crocea (large yellow croaker): A bibliometric study. Heliyon 2024; 10:e37393. [PMID: 39296167 PMCID: PMC11409083 DOI: 10.1016/j.heliyon.2024.e37393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Larimichthys crocea is an important economic fish of East Asia, and numerous studies have been conducted on its breeding, aquaculture, preservation and processing; however, there is no systematic review of the literature on the research of Larimichthys crocea. Derwent Data Analyzer (DDA) was used to analyze 1192 Larimichthys crocea research papers indexed by SCI-E, CSCD and KCI from 2001 to 2023. The number of research publications on Larimichthys crocea has rapidly increased, and institutions and scholars from China, the United States, South Korea, Japan, and Norway have conducted the majority of Larimichthys crocea research. The immune response, Pseudomonas plecoglossicida, gene expression, lipid immune response, transcriptomics and other areas have attracted the most attention. To increase the immunity and disease resistance of Larimichthys crocea and improve its survival, growth, storage and transport, researchers have carried out a large amount of research, which has promoted not only the culture of Larimichthys crocea but also the restoration of wild Larimichthys crocea and the rehabilitation of the ecological environment.
Collapse
Affiliation(s)
- Hongyan Zhang
- Library, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Jiacan Wang
- School of Economics and Management, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
3
|
Liu Y, Li X, Lin J, Song K, Li X, Wang L, Zhang C, Lu K. Effects of Dietary Supplementation of Bile Acids on Growth, Glucose Metabolism, and Intestinal Health of Spotted Seabass ( Lateolabrax maculatus). Animals (Basel) 2024; 14:1299. [PMID: 38731303 PMCID: PMC11083208 DOI: 10.3390/ani14091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
An 8-week feeding trial was performed to investigate the effects of dietary bile acids on growth, glucose metabolism, and intestinal health in spotted seabass (Lateolabrax maculatus) reared at high temperatures (33 °C). The fish (20.09 ± 1.12 g) were fed diets supplemented with bile acids: 0 (Con), 400 (BA400), 800 (BA800), and 1200 (BA1200) mg/kg, respectively. The results showed that the growth was promoted in fish at the BA800 treatment compared with the control (p < 0.05). Increased enzyme activities and transcripts of gluconeogenesis in the liver were observed, whereas decreased enzyme activities and transcripts of glycolysis, as well as glycogen content, were shown in the BA800 treatment (p < 0.05). The transcripts of bile acid receptors fxr in the liver were up-regulated in the BA800 treatment (p < 0.05). A bile acid supplementation of 800 mg/kg improved the morphological structure in the intestine. Meanwhile, intestinal antioxidant physiology and activities of lipase and trypsin were enhanced in the BA800 treatment. The transcripts of genes and immunofluorescence intensity related to pro-inflammation cytokines (il-1β, il-8, and tnf-α) were inhibited, while those of genes related to anti-inflammation (il-10 and tgf-β) were induced in the BA800 treatment. Furthermore, transcripts of genes related to the NF-κB pathway in the intestine (nfκb, ikkα, ikkβ, and ikbα1) were down-regulated in the BA800 treatment. This study demonstrates that a dietary bile acid supplementation of 800 mg/kg could promote growth, improve glucose metabolism in the liver, and enhance intestinal health by increasing digestive enzyme activity and antioxidant capacity and inhibiting inflammatory response in L. maculatus.
Collapse
Affiliation(s)
- Yongping Liu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Xiao Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China
| | - Jibin Lin
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Kai Song
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Xueshan Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Ling Wang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Kangle Lu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| |
Collapse
|