1
|
Kulkarni P, Basu R, Bonn T, Low B, Mazurek N, Kopchick JJ. Growth Hormone Upregulates Melanoma Drug Resistance and Migration via Melanoma-Derived Exosomes. Cancers (Basel) 2024; 16:2636. [PMID: 39123364 PMCID: PMC11311539 DOI: 10.3390/cancers16152636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Drug resistance in melanoma is a major hindrance in cancer therapy. Growth hormone (GH) plays a pivotal role in contributing to the resistance to chemotherapy. Knocking down or blocking the GH receptor has been shown to sensitize the tumor cells to chemotherapy. Extensive studies have demonstrated that exosomes, a subset of extracellular vesicles, play an important role in drug resistance by transferring key factors to sensitize cancer cells to chemotherapy. In this study, we explore how GH modulates exosomal cargoes from melanoma cells and their role in drug resistance. We treated the melanoma cells with GH, doxorubicin, and the GHR antagonist, pegvisomant, and analyzed the exosomes released. Additionally, we administered these exosomes to the recipient cells. The GH-treated melanoma cells released exosomes with elevated levels of ABC transporters (ABCC1 and ABCB1), N-cadherin, and MMP2, enhancing drug resistance and migration in the recipient cells. GHR antagonism reduced these exosomal levels, restoring drug sensitivity and attenuating migration. Overall, our findings highlight a novel role of GH in modulating exosomal cargoes that drive chemoresistance and metastasis in melanoma. This understanding provides insights into the mechanisms of GH in melanoma chemoresistance and suggests GHR antagonism as a potential therapy to overcome chemoresistance in melanoma treatment.
Collapse
Affiliation(s)
- Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
| | - Taylor Bonn
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Nutrition, Ohio University, Athens, OH 45701, USA
| | - Beckham Low
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Nathaniel Mazurek
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (P.K.); (R.B.); (T.B.); (B.L.); (N.M.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Nath SC, Babaei-Abraki S, Meng G, Heale KA, Hsu CYM, Rancourt DE. A retinoid analogue, TTNPB, promotes clonal expansion of human pluripotent stem cells by upregulating CLDN2 and HoxA1. Commun Biol 2024; 7:190. [PMID: 38365890 PMCID: PMC10873380 DOI: 10.1038/s42003-024-05812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/12/2024] [Indexed: 02/18/2024] Open
Abstract
Enzymatic dissociation of human pluripotent stem cells (hPSCs) into single cells during routine passage leads to massive cell death. Although the Rho-associated protein kinase inhibitor, Y-27632 can enhance hPSC survival and proliferation at high seeding density, dissociated single cells undergo apoptosis at clonal density. This presents a major hurdle when deriving genetically modified hPSC lines since transfection and genome editing efficiencies are not satisfactory. As a result, colonies tend to contain heterogeneous mixtures of both modified and unmodified cells, making it difficult to isolate the desired clone buried within the colony. In this study, we report improved clonal expansion of hPSCs using a retinoic acid analogue, TTNPB. When combined with Y-27632, TTNPB synergistically increased hPSC cloning efficiency by more than 2 orders of magnitude (0.2% to 20%), whereas TTNPB itself increased more than double cell number expansion compared to Y-27632. Furthermore, TTNPB-treated cells showed two times higher aggregate formation and cell proliferation compared to Y-27632 in suspension culture. TTNPB-treated cells displayed a normal karyotype, pluripotency and were able to stochastically differentiate into all three germ layers both in vitro and in vivo. TTNBP acts, in part, by promoting cellular adhesion and self-renewal through the upregulation of Claudin 2 and HoxA1. By promoting clonal expansion, TTNPB provides a new approach for isolating and expanding pure hPSCs for future cell therapy applications.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Shahnaz Babaei-Abraki
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Guoliang Meng
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Kali A Heale
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Charlie Y M Hsu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada.
| |
Collapse
|
3
|
Li J, Wang P, Hou M, Zhu BT. Attenuation of amyloid-β-induced mitochondrial dysfunction by active components of anthocyanins in HT22 neuronal cells. MedComm (Beijing) 2023; 4:e301. [PMID: 37346934 PMCID: PMC10279944 DOI: 10.1002/mco2.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Alzheimer's disease (AD) is a common form of neurodegenerative disease in the elderly. Amyloid-β (Aβ)-associated neurotoxicity is an important component of the neurodegenerative change in AD. Recent studies have revealed a beneficial effect of anthocyanins in improving learning and memory in AD animal models. Using cultured HT22 mouse hippocampal neuronal cells as an in vitro model, we examined in this study the protective effect of ten pure components of anthocyanins against Aβ 42-induced cytotoxicity and also investigated the mechanism of their protective effects. We found that treatment of HT22 cells with the pure components of anthocyanins dose-dependently rescued Aβ 42-induced cytotoxicity, with slightly different potencies. Using petunidin as a representative compound, we found that it enhanced mitochondrial homeostasis and function in Aβ 42-treated HT22 cells. Mechanistically, petunidin facilitated β-catenin nuclear translocation and enhanced the interaction between β-catenin and TCF7, which subsequently upregulated mitochondrial homeostasis-related protein Mfn2, thereby promoting restoration of mitochondrial homeostasis and function in Aβ 42-treated HT22 cells. Together, these results reveal that the pure components of anthocyanins have a strong protective effect in HT22 cells against Aβ 42-induced cytotoxicity by ameliorating mitochondrial homeostasis and function in a β-catenin/TCF-dependent manner.
Collapse
Affiliation(s)
- Jing Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Ming‐Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| |
Collapse
|
4
|
Mukhi D, Kolligundla LP, Maruvada S, Nishad R, Pasupulati AK. Growth hormone induces transforming growth factor-β1 in podocytes: Implications in podocytopathy and proteinuria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119391. [PMID: 36400249 DOI: 10.1016/j.bbamcr.2022.119391] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
Pituitary growth hormone (GH) is essential for growth, metabolism, and renal function. Overactive GH signaling is associated with impaired kidney function. Glomerular podocytes, a key kidney cell type, play an indispensable role in the renal filtration and express GH receptors (GHR), suggesting the direct action of GH on these cells. However, the precise mechanism and the downstream signaling events by which GH leads to diabetic nephropathy remain to be elucidated. Here we performed proteome analysis of the condition media from human podocytes and confirmed that GH-induces TGF-β1. Inhibition of GH/GHR stimulated-JAK2 signaling abrogates GH-induced TGF-β1 secretion. Mice administered with GH showed glomerular manifestations concomitant with proteinuria. Pharmacological inhibition of TGF-βR1 in mice prevented GH-induced TGF-β dependent SMAD signaling and proteinuria. Conditional deletion of GHR in podocytes protected mice from streptozotocin-induced diabetic nephropathy. GH and TGF-β1 signaling components expression was elevated in the kidneys of human diabetic nephropathy patients. Our study identifies that GH induces TGF-β1 in podocytes, contributing to diabetic nephropathy.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lakshmi P Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Saikrishna Maruvada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
5
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
6
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
7
|
Lu M, Flanagan JU, Langley RJ, Hay MP, Perry JK. Targeting growth hormone function: strategies and therapeutic applications. Signal Transduct Target Ther 2019; 4:3. [PMID: 30775002 PMCID: PMC6367471 DOI: 10.1038/s41392-019-0036-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
Human growth hormone (GH) is a classical pituitary endocrine hormone that is essential for normal postnatal growth and has pleiotropic effects across multiple physiological systems. GH is also expressed in extrapituitary tissues and has localized autocrine/paracrine effects at these sites. In adults, hypersecretion of GH causes acromegaly, and strategies that block the release of GH or that inhibit GH receptor (GHR) activation are the primary forms of medical therapy for this disease. Overproduction of GH has also been linked to cancer and the microvascular complications that are associated with diabetes. However, studies to investigate the therapeutic potential of GHR antagonism in these diseases have been limited, most likely due to difficulty in accessing therapeutic tools to study the pharmacology of the receptor in vivo. This review will discuss current and emerging strategies for antagonizing GH function and the potential disease indications. Emerging therapies are offering an expanded toolkit for combatting the effects of human growth hormone overproduction. Human growth hormone (GH) is a major driver of postnatal growth; however, systemic or localized overproduction is implicated in the aberrant growth disease acromegaly, cancer, and diabetes. In this review, researchers led by Jo Perry, from the University of Auckland, New Zealand, discuss strategies that either inhibit GH production, block its systemic receptor, or interrupt its downstream signaling pathways. The only licensed GH receptor blocker is pegvisomant, but therapies are in development that include long-acting protein and antibody-based blockers, and nucleotide complexes that degrade GHR production have also shown promise. Studies investigating GHR antagonism are limited, partly due to difficulty in accessing therapeutic tools which block GHR function, but overcoming these obstacles may yield advances in alleviating chronic disease.
Collapse
Affiliation(s)
- Man Lu
- 1Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jack U Flanagan
- 2Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,3Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Ries J Langley
- 3Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,4Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Michael P Hay
- 2Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,3Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jo K Perry
- 1Liggins Institute, University of Auckland, Auckland, New Zealand.,3Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
8
|
Gadelha MR, Kasuki L, Lim DST, Fleseriu M. Systemic Complications of Acromegaly and the Impact of the Current Treatment Landscape: An Update. Endocr Rev 2019; 40:268-332. [PMID: 30184064 DOI: 10.1210/er.2018-00115] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022]
Abstract
Acromegaly is a chronic systemic disease with many complications and is associated with increased mortality when not adequately treated. Substantial advances in acromegaly treatment, as well as in the treatment of many of its complications, mainly diabetes mellitus, heart failure, and arterial hypertension, were achieved in the last decades. These developments allowed change in both prevalence and severity of some acromegaly complications and furthermore resulted in a reduction of mortality. Currently, mortality seems to be similar to the general population in adequately treated patients with acromegaly. In this review, we update the knowledge in complications of acromegaly and detail the effects of different acromegaly treatment options on these complications. Incidence of mortality, its correlation with GH (cumulative exposure vs last value), and IGF-I levels and the shift in the main cause of mortality in patients with acromegaly are also addressed.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrine Section, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrine Section, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Dawn S T Lim
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Maria Fleseriu
- Department of Endocrinology, Diabetes and Metabolism, Oregon Health and Science University, Portland, Oregon.,Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon.,Northwest Pituitary Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
9
|
Coker-Gurkan A, Bulut D, Genc R, Arisan ED, Obakan-Yerlikaya P, Palavan-Unsal N. Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Mol Biol Rep 2018; 46:355-369. [PMID: 30467667 DOI: 10.1007/s11033-018-4479-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
Autocrine growth hormone (GH) signaling is a promoting factor for breast cancer via triggering abnormal cell growth, proliferation, and metastasis, drug resistance. Curcumin (diferuloylmethane), a polyphenol derived from turmeric (Curcuma longa), has anti-proliferative, anti-carcinogenic, anti-hormonal effect via acting on PI3K/Akt, NF-κB and JAK/STAT signaling. Forced GH expression induced epithelial mesenchymal transition (EMT) through stimulation of miR-182-96-183 cluster expression in breast cancer cells. This study aimed to investigate the role of NF-κB signaling and miR-182-96-183 cluster expression profile on autocrine GH-mediated curcumin resistance, which was prevented by time-dependent curcumin treatment in T47D breast cancer cells. Dose- and time-dependent effect of curcumin on T47D wt and GH+ breast cancer cells were evaluated by MTT cell viability and trypan blue assay. Apoptotic effect of curcumin was determined by PI and Annexin V/PI FACS flow analysis. Immunoblotting performed to investigate the effect of curcumin on PI3K/Akt/MAPK, NF-κB signaling. miR182-96-183 cluster expression profile was observed by qRT-PCR. Overexpression of GH triggered resistant profile against curcumin (20 µM) treatment for 24 h, but this resistance was accomplished following 48 h curcumin exposure. Concomitantly, forced GH induced invasion and metastasis through EMT and NF-κB activation were prevented by long-term curcumin exposure in T47D cells. Moreover, 48 h curcumin treatment prevented the autocrine GH-mediated miR-182-96-183 cluster expression stimulation in T47D cells. In consequence, curcumin treatment for 48 h, prevented autocrine GH-triggered invasion-metastasis, EMT activation through inhibiting NF-κB signaling and miR-182-96-183 cluster expression and induced apoptotic cell death by modulating Bcl-2 family members in T47D breast cancer cells.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Derya Bulut
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Recep Genc
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Elif-Damla Arisan
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Molecular Biology and Genetics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|
10
|
Pandey V, Zhang M, You M, Zhang W, Chen R, Zhang W, Ma L, Wu ZS, Zhu T, Xu XQ, Lobie PE. Expression of two non-mutated genetic elements is sufficient to stimulate oncogenic transformation of human mammary epithelial cells. Cell Death Dis 2018; 9:1147. [PMID: 30451834 PMCID: PMC6242831 DOI: 10.1038/s41419-018-1177-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Trefoil factor 3 (TFF3) expression is positively associated with advanced clinicopathological features of mammary carcinoma (MC). Herein, we provide evidence for a functional role of TFF3 in oncogenic transformation of immortalized, but otherwise normal human mammary epithelial cells (HMECs), namely, HMEC-hTERT, MCF10A, and MCF12A. Forced expression of TFF3 in immortalized-HMECs enhanced cell proliferation, cell survival, anchorage-independent growth, produced highly disorganised three-dimensional (3D) acinar structures and generated tumours in immunocompromised mice. Forced expression of TFF3 in immortalized-HMECs stimulated STAT3 activity that was required for TFF3-stimulated cell proliferation, survival, and anchorage-independent growth. TFF3 specifically utilised STAT3 activity to govern a transcriptional program, which was required for TFF3-stimulated oncogenic transformation of immortalized-HMECs, including transcriptional upregulation of CCND1 and BCL2. siRNA-mediated depletion or functional inhibition of STAT3 significantly inhibited the TFF3-stimulated transcription of CCND1 and BCL2 and oncogenicity in immortalized-HMECs. Furthermore, DOX-inducible expression of TFF3 in HMEC-hTERT cells also permitted anchorage-independent growth and produced disorganized acinar structures in 3D Matrigel culture. Removal of DOX-induced expression of TFF3 in HMEC-hTERT cells, previously grown with DOX, resulted in efficient normalisation of the disorganized acinar architecture and attenuated cell viability in Matrigel culture. Cumulatively, these findings suggest that TFF3 is a potent oncogene and its increased expression along with hTERT in HMECs is sufficient to produce oncogenic transformation.
Collapse
Affiliation(s)
- Vijay Pandey
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, PR China
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Mingliang You
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Weijie Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Rumei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Tianhe District, Guangzhou, Guangdong, PR China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Lan Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, PR China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Fujian, PR China.
| | - Peter E Lobie
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, PR China. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
You ML, Chen YJ, Chong QY, Wu MM, Pandey V, Chen RM, Liu L, Ma L, Wu ZS, Zhu T, Lobie PE. Trefoil factor 3 mediation of oncogenicity and chemoresistance in hepatocellular carcinoma is AKT-BCL-2 dependent. Oncotarget 2018; 8:39323-39344. [PMID: 28445151 PMCID: PMC5503616 DOI: 10.18632/oncotarget.16950] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
The efficacious treatment of hepatocellular carcinoma (HCC) remains a challenge, partially being attributed to intrinsic chemoresistance. Previous reports have observed increased TFF3 expression in HCC. Herein, we investigated the functional role of TFF3 in progression of HCC, and in both intrinsic and acquired chemoresistance. TFF3 expression was observed to be upregulated in HCC and associated with poor clinicopathological features and worse patient survival outcome. Functionally, forced expression of TFF3 in HCC cell lines increased cell proliferation, cell survival, anchorage-independent and 3D matrigel growth, cell invasion and migration, and in vivo tumor growth. In contrast, depleted expression of TFF3 decreased the oncogenicity of HCC cells as indicated by the above parameters. Furthermore, forced expression of TFF3 decreased doxorubicin sensitivity of HCC cells, which was attributed to increased doxorubicin efflux and cancer stem cell-like behavior of Hep3B cells. In contrast, depletion of TFF3 increased doxorubicin sensitivity and decreased cancer stem cell-like behavior of Hep3B cells. Correspondingly, TFF3 expression was markedly increased in Hep3B cells with acquired doxorubicin resistance, while the depletion of TFF3 resulted in re-sensitization of the Hep3B cells to doxorubicin. The increased doxorubicin efflux and enhanced cancer stem cell-like behavior of the doxorubicin-resistant Hep3B cells was observed to be dependent on TFF3 expression. In addition, we determined that TFF3-stimulated oncogenicity and chemoresistance in HCC cells was mediated by AKT-dependent expression of BCL-2. Hence, therapeutic inhibition of TFF3 should be considered to hinder HCC progression and overcome intrinsic and acquired chemoresistance in HCC.
Collapse
Affiliation(s)
- Ming-Liang You
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Yi-Jun Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Ming-Ming Wu
- Hefei National Laboratory for Physical Sciences at Microscale Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Vijay Pandey
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Ru-Mei Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Liang Liu
- Department of Oncology and Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale Hefei, Anhui, China.,The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| |
Collapse
|
12
|
Coker-Gurkan A, Celik M, Ugur M, Arisan ED, Obakan-Yerlikaya P, Durdu ZB, Palavan-Unsal N. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids 2018; 50:1045-1069. [PMID: 29770869 DOI: 10.1007/s00726-018-2581-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/27/2018] [Indexed: 02/05/2023]
Abstract
Curcumin is assumed to be a plant-derived therapeutic drug that triggers apoptotic cell death in vitro and in vivo by affecting different molecular targets such as NF-κB. Phase I/II trial of curcumin alone or with chemotherapeutic drugs has been accomplished in pancreatic, colon, prostate and breast cancer cases. Recently, autocrine growth hormone (GH) signaling-induced cell growth, metastasis and drug resistance have been demonstrated in breast cancer. In this study, our aim was to investigate the potential therapeutic effect of curcumin by evaluating the molecular machinery of curcumin-triggered apoptotic cell death via focusing on NF-κB signaling and polyamine (PA) metabolism in autocrine GH-expressing MCF-7, MDA-MB-453 and MDA-MB-231 breast cancer cells. For this purpose, a pcDNA3.1 (+) vector with a GH gene insert was transfected by a liposomal agent in all breast cancer cells and then selection was conducted in neomycin (G418) included media. Autocrine GH-induced curcumin resistance was overcome in a dose-dependent manner and curcumin inhibited cell proliferation, invasion-metastasis and phosphorylation of p65 (Ser536), and thereby partly prevented its DNA binding activity in breast cancer cells. Moreover, curcumin induced caspase-mediated apoptotic cell death by activating the PA catabolic enzyme expressions, which led to generation of toxic by-products such as H2O2 in MCF-7, MDA-MB-453 and MDA-MB-231 GH+ breast cancer cells. In addition, transient silencing of SSAT prevented curcumin-induced cell viability loss and apoptotic cell death in each breast cancer cells. In conclusion, curcumin could overcome the GH-mediated resistant phenotype via modulating cell survival, death-related signaling routes and activating PA catabolic pathway.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Merve Celik
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Merve Ugur
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Elif-Damla Arisan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pinar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Zeynep Begum Durdu
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|
13
|
Kong X, Wu W, Yuan Y, Pandey V, Wu Z, Lu X, Zhang W, Chen Y, Wu M, Zhang M, Li G, Tan S, Qian P, Perry JK, Lobie PE, Zhu T. Human growth hormone and human prolactin function as autocrine/paracrine promoters of progression of hepatocellular carcinoma. Oncotarget 2017; 7:29465-79. [PMID: 27102295 PMCID: PMC5045410 DOI: 10.18632/oncotarget.8781] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/24/2016] [Indexed: 11/25/2022] Open
Abstract
The death rates of hepatocellular carcinoma (HCC) are extremely high due to the paucity of therapeutic options. Animal models and anecdotal clinical evidence indicate a potential role of hGH and hPRL in HCC. However, the prognostic relevance and the functional role of tumor expression of these hormones in human HCC are not defined. Herein, we analyzed the mRNA and protein expression of hGH and hPRL in histopathological samples of non-neoplastic liver and HCC by in situ hybridization, PCR and immunohistochemistry techniques. Increased mRNA and protein expression of both hormones was observed in HCC compared with non-neoplastic liver tissues. hGH expression was significantly associated with tumor size and tumor grade. No significant association was observed between the expression of hPRL and any histopathological features. Amplification of both hGH and hPRL genes in HCC was observed when compared to non-neoplastic tissue. Expression of both hGH and hPRL was associated with worse relapse-free and overall survival in HCC patients. In vitro and in vivo functional assays performed with HCC cell lines demonstrated that autocrine expression of hGH or hPRL in HCC cells increased STAT3 activation, oncogenicity and tumor growth while functional antagonism with hGH-G120R significantly reduced these parameters. Hence, tumor expression of hGH/hPRL is associated with a worse survival outcome for patients with HCC and hGH/hPRL function as autocrine/paracrine promoters of HCC progression.
Collapse
Affiliation(s)
- Xiangjun Kong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Wenyong Wu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Yuan
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Vijay Pandey
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xuefei Lu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Weijie Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Yijun Chen
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Mingming Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Min Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Gaopeng Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Sheng Tan
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Pengxu Qian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore.,National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Tao Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| |
Collapse
|
14
|
Baskari S, Govatati S, Madhuri V, Nallabelli N, K PM, Naik S, Poornachandar, Balka S, Tamanam RR, Devi VR. Influence of autocrine growth hormone on NF-κB activation leading to epithelial–mesenchymal transition of mammary carcinoma. Tumour Biol 2017; 39:1010428317719121. [DOI: 10.1177/1010428317719121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Srinivas Baskari
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Suresh Govatati
- Department of Biochemistry, Andhra University, Visakhapatnam, India
| | - Vijaya Madhuri
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Nayudu Nallabelli
- Council of Scientific & Industrial Research (CSIR)—Institute of Microbial Technology, Chandigarh, India
| | - Paul Marx K
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Srinivas Naik
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Poornachandar
- Department of Biochemistry, Osmania University, Hyderabad, India
| | - Swarna Balka
- Department of Biochemistry, Osmania University, Hyderabad, India
| | | | | |
Collapse
|
15
|
Autocrine hGH stimulates oncogenicity, epithelial-mesenchymal transition and cancer stem cell-like behavior in human colorectal carcinoma. Oncotarget 2017; 8:103900-103918. [PMID: 29262609 PMCID: PMC5732775 DOI: 10.18632/oncotarget.21812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor derived human growth hormone (hGH) has been implicated in cancer development and progression. However, the specific functional role of autocrine/paracrine hGH in colorectal cancer (CRC) remains largely to be determined. Herein, we demonstrated a crucial oncogenic role of autocrine hGH in CRC progression. Elevated hGH expression was detected in CRC compared to normal colorectal tissue, and hGH expression in CRC was positively associated with tumor size and lymph node metastasis. Forced expression of hGH stimulated cell proliferation, survival, oncogenicity and epithelial to mesenchymal transition (EMT) of CRC cells, and promoted xenograft growth and local invasion in vivo. Autocrine hGH expression in CRC cells stimulated the activation of the ERK1/2 pathway, which in turn resulted in increased transcription of the mesenchymal marker FIBRONECTIN 1 and transcriptional repression of the epithelial marker E-CADHERIN. The autocrine hGH-stimulated increase in CRC cell proliferation, cell survival and EMT was abrogated upon ERK1/2 inhibition. Furthermore, autocrine hGH-stimulated CRC cell migration and invasion was dependent on the ERK1/2-mediated increase in FIBRONECTIN 1 expression and decrease in E-CADHERIN expression. Forced expression of hGH also enhanced CSC-like behavior of CRC cells, as characterized by increased colonosphere formation, ALDH-positive population and CSC marker expression. Autocrine hGH-enhanced cancer stem cell (CSC)-like behavior in CRC cells was also observed to be E-CADHERIN-dependent. Thus, autocrine hGH plays a critical role in CRC progression, and inhibition of hGH could be a promising targeted therapeutic approach to limit disease progression in metastatic CRC patients.
Collapse
|
16
|
Brittain AL, Basu R, Qian Y, Kopchick JJ. Growth Hormone and the Epithelial-to-Mesenchymal Transition. J Clin Endocrinol Metab 2017; 102:3662-3673. [PMID: 28938477 DOI: 10.1210/jc.2017-01000] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Previous studies have implicated growth hormone (GH) in the progression of several cancers, including breast, colorectal, and pancreatic. A mechanism by which GH may play this role in cancer is through the induction of the epithelial-to-mesenchymal transition (EMT). During the EMT process, epithelial cells lose their defining phenotypes, causing loss of cellular adhesion and increased cell migration. This review aims to carefully summarize the previous two decades of research that points to GH as an initiator of EMT, in both cancerous and noncancerous tissues. EVIDENCE ACQUISITION Sources were collected using PubMed and Google Scholar search engines by using specific GH- and/or EMT-related terms. Identified manuscripts were selected for further analysis based on presentation of GH-induced molecular markers of the EMT process in vivo or in vitro. EVIDENCE SYNTHESIS Cellular mechanisms involved in GH-induced EMT are the focus of this review, both in cancerous and noncancerous epithelial cells. CONCLUSIONS Our findings suggest that a myriad of molecular mechanisms are induced by GH that cause EMT and may point to potential therapeutic use of GH antagonists or any downregulator of GH action in EMT-related disease.
Collapse
Affiliation(s)
- Alison L Brittain
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio 45701
| |
Collapse
|
17
|
Abstract
The growth hormone (GH) and insulin-like growth factor-1 (IGF1) axis is the key regulator of longitudinal growth, promoting postnatal bone and muscle growth. The available data suggest that GH expression by tumour cells is associated with the aetiology and progression of various cancers such as endometrial, breast, liver, prostate, and colon cancer. Accordingly there has been increased interest in targeting GH-mediated signal transduction in a therapeutic setting. Because GH has endocrine, autocrine, and paracrine actions, therapeutic strategies will need to take into account systemic and local functions. Activation of related hormone receptors and crosstalk with other signalling pathways are also key considerations.
Collapse
Affiliation(s)
- Jo K Perry
- Liggins Institute, University of Auckland, 1023 Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 1023 Auckland, New Zealand
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, PR China
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1052-Centre National de la Recherche Scientifique (CNRS) 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, 117456 Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School, Shenzhen, PR China.
| |
Collapse
|
18
|
Dalla Pozza E, Forciniti S, Palmieri M, Dando I. Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development. Semin Cell Dev Biol 2017; 78:62-72. [PMID: 28673679 DOI: 10.1016/j.semcdb.2017.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a biologic process that allows a polarized epithelial cell to undergo multiple biochemical changes that enable it to assume a mesenchymal cell phenotype. EMT is involved in embryo development, wound healing, tissue regeneration, organ fibrosis and has also been proposed as the critical mechanism for the acquisition of malignant phenotypes by epithelial cancer cells. These cells have been shown to acquire a mesenchymal phenotype when localized at the invasive front of primary tumours increasing aggressiveness, invasiveness, metastatic potential and resistance to chemotherapy. There is now increasing evidence demonstrating that a crucial role in the development of this process is played by factors secreted by cells of the tumour microenvironment or by the tumour cells themselves. This review summarises the current knowledge of EMT induction in cancer by paracrine or autocrine mechanisms, by exosomes or free proteins and miRNAs.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Stefania Forciniti
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Autocrine Human Growth Hormone Promotes Invasive and Cancer Stem Cell-Like Behavior of Hepatocellular Carcinoma Cells by STAT3 Dependent Inhibition of CLAUDIN-1 Expression. Int J Mol Sci 2017; 18:ijms18061274. [PMID: 28617312 PMCID: PMC5486096 DOI: 10.3390/ijms18061274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/15/2023] Open
Abstract
Despite progress in diagnosis and treatment of hepatocellular carcinoma (HCC), the clinical outcome is still unsatisfactory. Increased expression of human growth hormone (hGH) in HCC has been reported and is associated with poor survival outcome in HCC patients. Herein, we investigated the mechanism of the oncogenic effects of hGH in HCC cell lines. In vitro functional assays demonstrated that forced expression of hGH in these HCC cell lines promoted cell proliferation, cell survival, anchorage-independent growth, cell migration, and invasion, as previously reported. In addition, forced expression of hGH promoted cancer stem cell (CSC)-like properties of HCC cells. The increased invasive and CSC-like properties of HCC cells with forced expression of hGH were mediated by inhibition of the expression of the tight junction component CLAUDIN-1. Consistently, depletion of CLAUDIN-1 expression increased the invasive and CSC-like properties of HCC cell lines. Moreover, forced expression of CLAUDIN-1 abrogated the acquired invasive and CSC-like properties of HCC cell lines with forced expression of hGH. We further demonstrated that forced expression of hGH inhibited CLAUDIN-1 expression in HCC cell lines via signal transducer and activator of transcription 3 (STAT3) mediated inhibition of CLAUDIN-1 transcription. Hence, we have elucidated a novel hGH-STAT3-CLAUDIN-1 axis responsible for invasive and CSC-like properties in HCC. Inhibition of hGH should be considered as a therapeutic option to hinder progression and relapse of HCC.
Collapse
|
20
|
The function of homeobox genes and lncRNAs in cancer. Oncol Lett 2016; 12:1635-1641. [PMID: 27588114 DOI: 10.3892/ol.2016.4901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/24/2016] [Indexed: 02/02/2023] Open
Abstract
Recently, the homeobox (HOX) gene family has been reported as a factor in tumorigenesis. In the human genome, the HOX gene family contains 4 clusters with 39 genes and multiple transcripts. Mutation or abnormal expression of genes is responsible for developmental disorders. In addition, changes in the levels and activation of certain HOX genes has been associated with the development of cancer. Long non-coding RNAs (lncRNAs) have also been identified to serve critical functions in cancer. Although a limited number of lncRNAs have been previously investigated, the list of functional lncRNA genes has recently grown. Two of the most important and well-studied lncRNAs and HOX transcript genes are HOX transcript antisense RNA (HOTAIR) and HOXA distal transcript antisense RNA (HOTTIP). The present study aimed to review not only the function of the HOTAIR and HOTTIP genes in certain forms of cancer, but also to review other HOX genes and protein functions in cancer, particularly HOX family genes associated with lncRNAs.
Collapse
|
21
|
Vouyovitch CM, Perry JK, Liu DX, Bezin L, Vilain E, Diaz JJ, Lobie PE, Mertani HC. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells. Endocr Relat Cancer 2016; 23:571-85. [PMID: 27323961 DOI: 10.1530/erc-15-0528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 12/27/2022]
Abstract
The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype.
Collapse
Affiliation(s)
- Cécile M Vouyovitch
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Jo K Perry
- Liggins InstituteUniversity of Auckland, Auckland, New Zealand
| | - Dong Xu Liu
- Liggins InstituteUniversity of Auckland, Auckland, New Zealand
| | - Laurent Bezin
- Centre de Recherche en Neurosciences de LyonUMR INSERM U1028-CNRS5292, Université de Lyon, Lyon, France
| | - Eric Vilain
- Department of Human GeneticsUniversity of California, Los Angeles, California, USA
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of PharmacologyNational University of Singapore, Singapore, Republic of Singapore
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| |
Collapse
|
22
|
Abstract
Growth hormone (GH) excess in acromegaly is associated with increased precancerous colon polyps and soft tissue adenomas, whereas short-stature humans harboring an inactivating GH receptor mutation do not develop cancer. We show that locally expressed colon GH is abundant in conditions predisposing to colon cancer and in colon adenocarcinoma-associated stromal fibroblasts. Administration of a GH receptor (GHR) blocker in acromegaly patients induced colon p53 and adenomatous polyposis coli (APC), reversing progrowth GH signals. p53 was also induced in skin fibroblasts derived from short-statured humans with mutant GHR. GH-deficient prophet of pituitary-specific positive transcription factor 1 (Prop1)(-/-) mice exhibited induced colon p53 levels, and cross-breeding them with Apc(min+/-) mice that normally develop intestinal and colon tumors resulted in GH-deficient double mutants with markedly decreased tumor number and size. We also demonstrate that GH suppresses p53 and reduces apoptosis in human colon cell lines as well as in induced human pluripotent stem cell-derived intestinal organoids, and confirm in vivo that GH suppresses colon mucosal p53/p21. GH excess leads to decreased colon cell phosphatase and tensin homolog deleted on chromosome 10 (PTEN), increased cell survival with down-regulated APC, nuclear β-catenin accumulation, and increased epithelial-mesenchymal transition factors and colon cell motility. We propose that GH is a molecular component of the "field change" milieu permissive for neoplastic colon growth.
Collapse
|