1
|
Shi J, Cheng Y, Wang L, Xing W, Li Y, Sun X, Lv Y, Zhang Y, Li Y, Zhao W. SR-B1 deficiency suppresses progression in acute myeloid leukemia via ferroptosis and reverses resistance to venetoclax. Free Radic Biol Med 2025; 233:24-38. [PMID: 40122151 DOI: 10.1016/j.freeradbiomed.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Increase of immature myeloid cells in the bone marrow drives the development of acute myeloid leukemia (AML). The study aimed to clarify the biological function and regulatory mechanism of scavenger receptor class B type 1 (SR-B1) in AML, mainly its effect on ferroptosis and the influences on leukemogenesis and resistance to venetoclax. In this study, we found that the SR-B1 deficiency directly reduced the invasion and promoted death of malignant cells in AML. Strikingly, SR-B1 deficiency could up-regulated the expression of ferroptosis-related proteins to facilitate the occurrence of ferroptosis in vivo, and could also down-regulated the expression of apoptosis related protein B-cell lymphoma-2 (BCL-2). And then, we confirmed SR-B1 inhibitor block lipid transport-1 (BLT-1) had a superior efficacy in AML cells and AML model mice. The study found that whether SR-B1 deficiency or BLT-1 treatment could cause iron deposition and the accumulation of lipid peroxides in vivo, thereby suppressing leukemogenesis through ferroptosis. Critically, we found that SR-B1 inhibitor BLT-1 could reverse drug-resistance of venetoclax to promote AML cells death via ferroptosis. Our finding identified that SR-B1 as a critical regulator of the proliferation in AML which could provide a promising therapeutic strategy against malignant myeloid leukemia cells and drug-resistance.
Collapse
Affiliation(s)
- Junfeng Shi
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yifeng Cheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lixue Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wen Xing
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yudi Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiulin Sun
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yunpeng Lv
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yichuan Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenhua Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Eckel O, Mirea MA, Gschwendtner A, Pistek M, Kinslechner K, Röhrl C, Stangl H, Hengstschläger M, Mikula M. Expression of the cholesterol transporter SR-B1 in melanoma cells facilitates inflammatory signaling leading to reduced cholesterol synthesis. Neoplasia 2025; 63:101154. [PMID: 40120430 DOI: 10.1016/j.neo.2025.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Scavenger receptor class B type 1 (SR-B1) is a cholesterol transporter, abundantly expressed in human melanoma, yet its precise role for melanoma progression is not fully understood. This study investigates the involvement of SR-B1 in cholesterol homeostasis of tumor cells and its implications for potential therapy. We found that SR-B1 depletion in melanoma cells does not alter total cholesterol levels, but induces cholesterol biosynthesis. This effect was characterized by an increased expression of HMG-CoA reductase (HMGCR), a rate limiting enzyme of cholesterol biosynthesis. Notably, further analyses indicated that this regulation occurs at the post-translational level, mediated via the hypoxia-inducible factor (HIF) signaling pathway. Importantly, we identified SR-B1 as a transporter of the lipid hormone sphingosine-1-phosphate (S1P) and we found that S1P exposure leads to HIF1A up-regulation. Finally, we used a pluripotent stem cell-derived skin organoid model to show that targeting SR-B1 in combination with targeted melanoma therapy can lead to increased apoptosis and suppressed proliferation of transplanted tumor cells. Our study shows that functional SR-B1 is linked to inflammatory signaling, which reduces cholesterol synthesis, while enabling melanoma cell survival during chemotherapy treatment.
Collapse
Affiliation(s)
- Oliver Eckel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Madalina A Mirea
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Anna Gschwendtner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Martina Pistek
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Katharina Kinslechner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Clemens Röhrl
- University of Applied Sciences Upper Austria, Faculty of Engineering, Stelzhamerstraße 23, 4600, Wels, Austria
| | - Herbert Stangl
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria
| | - Mario Mikula
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Lauridsen AR, Skorda A, Winther NI, Bay ML, Kallunki T. Why make it if you can take it: review on extracellular cholesterol uptake and its importance in breast and ovarian cancers. J Exp Clin Cancer Res 2024; 43:254. [PMID: 39243069 PMCID: PMC11378638 DOI: 10.1186/s13046-024-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Cholesterol homeostasis is essential for healthy mammalian cells and dysregulation of cholesterol metabolism contributes to the pathogenesis of various diseases including cancer. Cancer cells are dependent on cholesterol. Malignant progression is associated with high cellular demand for cholesterol, and extracellular cholesterol uptake is often elevated in cancer cell to meet its metabolic needs. Tumors take up cholesterol from the blood stream through their vasculature. Breast cancer grows in, and ovarian cancer metastasizes into fatty tissue that provides them with an additional source of cholesterol. High levels of extracellular cholesterol are beneficial for tumors whose cancer cells master the uptake of extracellular cholesterol. In this review we concentrate on cholesterol uptake mechanisms, receptor-mediated endocytosis and macropinocytosis, and how these are utilized and manipulated by cancer cells to overcome their possible intrinsic or pharmacological limitations in cholesterol synthesis. We focus especially on the involvement of lysosomes in cholesterol uptake. Identifying the vulnerabilities of cholesterol metabolism and manipulating them could provide novel efficient therapeutic strategies for treatment of cancers that manifest dependency for extracellular cholesterol.
Collapse
Affiliation(s)
- Anna Røssberg Lauridsen
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Aikaterini Skorda
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Nuggi Ingholt Winther
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark
| | - Marie Lund Bay
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark.
| | - Tuula Kallunki
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, 2100, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Izuegbuna OO, Olawumi HO, Agodirin OS, Olatoke SA. Lipid Profile and Atherogenic Risk Assessment in Nigerian Breast Cancer Patients - A Cross-Sectional Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:582-591. [PMID: 38805002 DOI: 10.1080/27697061.2024.2353289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/30/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The lipid profile and atherogenic risk indices in Nigerian breast cancer patients are largely unknown. This study evaluated the lipid profile and atherogenic risk indices of breast cancer patients in Nigeria. METHODS This study involved 45 primarily diagnosed breast cancer patients and 50 normal control subjects. Total cholesterol, triglyceride, and High-density lipoprotein cholesterol (HDL-C) were measured. Low-density lipoprotein cholesterol (LDL-C) was calculated according to Friedewald formula. Atherogenic index of plasma (AIP), Atherogenic coefficient (AC), TC/HDL-C (Castelli I) and LDL-C/HDL-C (Castelli II) risk indices were all calculated. The Framingham risk assessment was calculated and categorized. RESULTS The study group had significantly higher triglycerides (TG), and atherogenic indices than the control group (p < 0.001), while HDL-Cholesterol (HDL-C) was significantly lower in the study group (p < 0.001). Total cholesterol and LDL-Cholesterol (LDL-C) had a significant positive correlation with age (r = 0.283, p < 0.018; r = 0.272, p < 0.023); TG was significantly positively correlated with systolic and diastolic blood pressure (r = 0.320. p < 0.007; r = 0.334, p < 0.005); HDL-C had a significant negative correlation with BMI, systolic and diastolic blood pressure (r = -0.252, p < 0.035; r = -0.29, p < 0.015; r = -0.329, p < 0.005). The lipid ratios (TC/HDL-C, LDL-C/HDL-C) were significantly positively correlated with body mass index (BMI), systolic and diastolic blood pressure. The Framingham Risk Score showed that only 2 subjects in the study group (4.4%) were at a high risk of having a cardiovascular event. CONCLUSION Breast cancer patients have a higher prevalence of dyslipidaemia, and cardiovascular risk than the normal population.
Collapse
Affiliation(s)
- Ogochukwu O Izuegbuna
- Department of Haematology and Blood Transfusion, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Hannah O Olawumi
- Department of Haematology and Blood Transfusion, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Olayide S Agodirin
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Samuel A Olatoke
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| |
Collapse
|
6
|
Wu K, Lin F. Lipid Metabolism as a Potential Target of Liver Cancer. J Hepatocell Carcinoma 2024; 11:327-346. [PMID: 38375401 PMCID: PMC10875169 DOI: 10.2147/jhc.s450423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a severe malignant tumor with a profound impact on overall health, often accompanied by an unfavorable prognosis. Despite some advancements in the diagnosis and treatment of this disease, improving the prognosis of HCC remains a formidable challenge. It is noteworthy that lipid metabolism plays a pivotal role in the onset, development, and progression of tumor cells. Existing research indicates the potential application of targeting lipid metabolism in the treatment of HCC. This review aims to thoroughly explore the alterations in lipid metabolism in HCC, offering a detailed account of the potential advantages associated with innovative therapeutic strategies targeting lipid metabolism. Targeting lipid metabolism holds promise for potentially enhancing the prognosis of HCC.
Collapse
Affiliation(s)
- Kangze Wu
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Feizhuan Lin
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| |
Collapse
|
7
|
Chen W, Bao L, Ren Q, Zhang Z, Yi L, Lei W, Yang Z, Lu Y, You B, You Y, Gu M. SCARB1 in extracellular vesicles promotes NPC metastasis by co-regulating M1 and M2 macrophage function. Cell Death Discov 2023; 9:323. [PMID: 37644041 PMCID: PMC10465564 DOI: 10.1038/s41420-023-01621-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Distant metastasis is currently the main factor affecting the prognosis of nasopharyngeal carcinoma (NPC), and understanding the mechanisms of metastasis and identifying reliable therapeutic targets are critical for improving prognosis and achieving clinical translation. Macrophages, as important immune cells in the tumor microenvironment (TME), have been shown to regulate metastasis. And extracellular vesicles (EVs) secreted by stromal cells and tumor cells play the important role in intercellular communication in the tumor microenvironment. However, the role of NPC-EVs on macrophages and their function in regulating macrophages to affect metastasis has not been fully clarified. In this study, we report that NPC-EVs can be uptake by macrophages and alter macrophage polarization, for the first time, we identified the genes implicated in these regulatory functions: SCARB1, HAAO, and CYP1B1. Moreover, we found that SCARB1 was positively associated with metastasis and poor prognosis of NPC. Interestingly, we found that SCARB1-rich EVs promoted M1 macrophages ferroptosis to decrease M1 macrophages infiltration by upregulating the HAAO level while decreasing phagocytosis of M2 macrophages by upregulating the CYP1B1 level. Finally, we identified the SCARB1-binding gene KLF9, which is involved in the transcription of HAAO and CYP1B1. Our findings showed that SCARB1-EVs promoted metastasis by co-regulating M1 and M2 macrophage function. The related mechanism will provide a new therapeutic strategy to help patients with NPC improve their prognosis.
Collapse
Affiliation(s)
- Wenhui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lili Bao
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qianqian Ren
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zixiang Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lu Yi
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wei Lei
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhiyuan Yang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yingna Lu
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
8
|
Sawada MIBAC, de Fátima Mello Santana M, Reis M, de Assis SIS, Pereira LA, Santos DR, Nunes VS, Correa-Giannella MLC, Gebrim LH, Passarelli M. Increased plasma lipids in triple-negative breast cancer and impairment in HDL functionality in advanced stages of tumors. Sci Rep 2023; 13:8998. [PMID: 37268673 DOI: 10.1038/s41598-023-35764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
The association between plasma lipids and breast cancer (BC) has been extensively explored although results are still conflicting especially regarding the relationship with high-density lipoprotein cholesterol (HDLc) levels. HDL mediates cholesterol and oxysterol removal from cells limiting sterols necessary for tumor growth, inflammation, and metastasis and this may not be reflected by measuring HDLc. We addressed recently diagnosed, treatment-naïve BC women (n = 163), classified according to molecular types of tumors and clinical stages of the disease, in comparison to control women (CTR; n = 150) regarding plasma lipids and lipoproteins, HDL functionality and composition in lipids, oxysterols, and apo A-I. HDL was isolated by plasma discontinuous density gradient ultracentrifugation. Lipids (total cholesterol, TC; triglycerides, TG; and phospholipids, PL) were determined by enzymatic assays, apo A-I by immunoturbidimetry, and oxysterols (27, 25, and 24-hydroxycholesterol), by gas chromatography coupled with mass spectrometry. HDL-mediated cell cholesterol removal was determined in macrophages previously overloaded with cholesterol and 14C-cholesterol. Lipid profile was similar between CTR and BC groups after adjustment per age. In the BC group, lower concentrations of TC (84%), TG (93%), PL (89%), and 27-hydroxicholesterol (61%) were observed in HDL, although the lipoprotein ability in removing cell cholesterol was similar to HDL from CRT. Triple-negative (TN) BC cases presented higher levels of TC, TG, apoB, and non-HDLc when compared to other molecular types. Impaired HDL functionality was observed in more advanced BC cases (stages III and IV), as cholesterol efflux was around 28% lower as compared to stages I and II. The altered lipid profile in TN cases may contribute to channeling lipids to tumor development in a hystotype with a more aggressive clinical history. Moreover, findings reinforce the dissociation between plasma levels of HDLc and HDL functionality in determining BC outcomes.
Collapse
Affiliation(s)
- Maria Isabela Bloise Alves Caldas Sawada
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Centro de Referência da Saúde da Mulher (Hospital Pérola Byington), São Paulo, Brazil
- Hospital da Força Aérea de São Paulo, São Paulo, Brazil
| | - Monique de Fátima Mello Santana
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mozania Reis
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Unidade Básica de Saúde Dra. Ilza Weltman Hutzler, São Paulo, Brazil
| | - Sayonara Ivana Santos de Assis
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Alves Pereira
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Danielle Ribeiro Santos
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Valéria Sutti Nunes
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lucia Cardillo Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio Lípides (LIM18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Henrique Gebrim
- Centro de Referência da Saúde da Mulher (Hospital Pérola Byington), São Paulo, Brazil
| | - Marisa Passarelli
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Campos ADL, Sawada MIBAC, Santana MFDM, Iborra RT, de Assis SIS, Reis M, de Carvalho JX, Gebrim LH, Passarelli M. The increased antioxidant action of HDL is independent of HDL cholesterol plasma levels in triple-negative breast cancer. Front Oncol 2023; 13:1111094. [PMID: 36969000 PMCID: PMC10034011 DOI: 10.3389/fonc.2023.1111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction The association between high-density lipoprotein cholesterol (HDLc) with the incidence and progression of breast cancer (BC) is controversial. HDL removes excess cholesterol from cells and acts as an antioxidant and anti-inflammatory. BC is a heterogeneous disease, and its molecular classification is important in the prediction of clinical and therapeutic evolution. Triple-negative breast cancer (TNBC) presents higher malignancy, lower therapeutic response, and survival rate. In the present investigation, the composition and antioxidant activity of isolated HDL was assessed in women with TNBC compared to controls. Methods Twenty-seven women with a recent diagnosis of TNBC, without prior treatment, and 27 healthy women (control group) paired by age and body mass index (BMI) were included in the study. HDL and low-density lipoprotein (LDL) were isolated from plasma by discontinuous density gradient ultracentrifugation. Plasma lipid profile and HDL composition (total cholesterol, TC; triglycerides, TG; HDLc; phospholipids, PL) were determined by enzymatic colorimetric methods. ApoB and apo A-I were quantified by immunoturbidimetry. The antioxidant activity of HDL was determined by measuring the lag time phase for LDL oxidation and the maximal rate of conjugated dienes formation in LDL incubated with copper sulfate solution. The absorbance (234 nm) was monitored at 37°C, for 4 h, at 3 min intervals. Results The control group was similar to the TNBC concerning menopausal status, concentrations, and ratios of plasma lipids. The composition of the HDL particle in TC, TG, PL, and apo A-I was also similar between the groups. The ability of HDL to retard LDL oxidation was 22% greater in the TNBC group as compared to the control and positively correlated with apoA-I in HDL. Moreover, the antioxidant activity of HDL was greater in the advanced stages of TNBC (stages III and IV) compared to the control group. The maximum rate of formation of conjugated dienes was similar between groups and the clinical stages of the disease. Discussion The results highlight the role of HDL as an antioxidant defense in TNBC independently of HDLc plasma levels. The improved antioxidant activity of HDL, reflected by retardation in LDL oxidation, could contribute to limiting oxidative and inflammatory stress in advanced stages of TNBC.
Collapse
Affiliation(s)
- Amarilis de Lima Campos
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Maria Isabela Bloise Alves Caldas Sawada
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Centro de Referência da Saúde da Mulher (Hospital Pérola Byington), São Paulo, Brazil
- Hospital de Força Aérea de São Paulo, São Paulo, Brazil
| | - Monique Fátima de Mello Santana
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Sayonara Ivana Santos de Assis
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mozania Reis
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Unidade Básica de Saúde Dra. Ilza Weltman Hutzler, São Paulo, Brazil
| | - Jacira Xavier de Carvalho
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Unidade Básica de Saúde Dra. Ilza Weltman Hutzler, São Paulo, Brazil
| | - Luiz Henrique Gebrim
- Centro de Referência da Saúde da Mulher (Hospital Pérola Byington), São Paulo, Brazil
| | - Marisa Passarelli
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Centonze G, Natalini D, Piccolantonio A, Salemme V, Morellato A, Arina P, Riganti C, Defilippi P. Cholesterol and Its Derivatives: Multifaceted Players in Breast Cancer Progression. Front Oncol 2022; 12:906670. [PMID: 35719918 PMCID: PMC9204587 DOI: 10.3389/fonc.2022.906670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol is an essential lipid primarily synthesized in the liver through the mevalonate pathway. Besides being a precursor of steroid hormones, bile acid, and vitamin D, it is an essential structural component of cell membranes, is enriched in membrane lipid rafts, and plays a key role in intracellular signal transduction. The lipid homeostasis is finely regulated end appears to be impaired in several types of tumors, including breast cancer. In this review, we will analyse the multifaceted roles of cholesterol and its derivatives in breast cancer progression. As an example of the bivalent role of cholesterol in the cell membrane of cancer cells, on the one hand, it reduces membrane fluidity, which has been associated with a more aggressive tumor phenotype in terms of cell motility and migration, leading to metastasis formation. On the other hand, it makes the membrane less permeable to small water-soluble molecules that would otherwise freely cross, resulting in a loss of chemotherapeutics permeability. Regarding cholesterol derivatives, a lower vitamin D is associated with an increased risk of breast cancer, while steroid hormones, coupled with the overexpression of their receptors, play a crucial role in breast cancer progression. Despite the role of cholesterol and derivatives molecules in breast cancer development is still controversial, the use of cholesterol targeting drugs like statins and zoledronic acid appears as a challenging promising tool for breast cancer treatment.
Collapse
Affiliation(s)
- Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessio Piccolantonio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| | - Pietro Arina
- University College London (UCL), Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Chiara Riganti
- Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Interdepartmental Center of Research in Molecular Biotechnology, University of Torino, Torino, Italy
| |
Collapse
|
11
|
HDL as Bidirectional Lipid Vectors: Time for New Paradigms. Biomedicines 2022; 10:biomedicines10051180. [PMID: 35625916 PMCID: PMC9138557 DOI: 10.3390/biomedicines10051180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The anti-atherogenic properties of high-density lipoproteins (HDL) have been explained mainly by reverse cholesterol transport (RCT) from peripheral tissues to the liver. The RCT seems to agree with most of the negative epidemiological correlations between HDL cholesterol levels and coronary artery disease. However, therapies designed to increase HDL cholesterol failed to reduce cardiovascular risk, despite their capacity to improve cholesterol efflux, the first stage of RCT. Therefore, the cardioprotective role of HDL may not be explained by RCT, and it is time for new paradigms about the physiological function of these lipoproteins. It should be considered that the main HDL apolipoprotein, apo AI, has been highly conserved throughout evolution. Consequently, these lipoproteins play an essential physiological role beyond their capacity to protect against atherosclerosis. We propose HDL as bidirectional lipid vectors carrying lipids from and to tissues according to their local context. Lipid influx mediated by HDL appears to be particularly important for tissue repair right on site where the damage occurs, including arteries during the first stages of atherosclerosis. In contrast, the HDL-lipid efflux is relevant for secretory cells where the fusion of intracellular vesicles drastically enlarges the cytoplasmic membrane with the potential consequence of impairment of cell function. In such circumstances, HDL could deliver some functional lipids and pick up not only cholesterol but an integral part of the membrane in excess, restoring the viability of the secretory cells. This hypothesis is congruent with the beneficial effects of HDL against atherosclerosis as well as with their capacity to induce insulin secretion and merits experimental exploration.
Collapse
|
12
|
Mazzuferi G, Bacchetti T, Islam MO, Ferretti G. High density lipoproteins and oxidative stress in breast cancer. Lipids Health Dis 2021; 20:143. [PMID: 34696795 PMCID: PMC8543840 DOI: 10.1186/s12944-021-01562-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is one of the main leading causes of women death. In recent years, attention has been focused on the role of lipoproteins, alterations of cholesterol metabolism and oxidative stress in the molecular mechanism of breast cancer. A role for high density lipoproteins (HDL) has been proposed, in fact, in addition to the role of reverse cholesterol transport (RCT), HDL exert antioxidant and anti-inflammatory properties, modulate intracellular cholesterol homeostasis, signal transduction and proliferation. Low levels of HDL-Cholesterol (HDL-C) have been demonstrated in patients affected by breast cancer and it has been suggested that low levels of HDL-C could represent a risk factor of breast cancer. Contrasting results have been observed by other authors. Recent studies have demonstrated alterations of the activity of some enzymes associated to HDL surface such as Paraoxonase (PON1), Lecithin-Cholesterol Acyltransferase (LCAT) and Phospholipase A2 (PLA2). Higher levels of markers of lipid peroxidation in plasma or serum of patients have also been observed and suggest dysfunctional HDL in breast cancer patients. The review summarizes results on levels of markers of oxidative stress of plasma lipids and on alterations of enzymes associated to HDL in patients affected by breast cancer. The effects of normal and dysfunctional HDL on human breast cancer cells and molecular mechanisms potentially involved will be also reviewed.
Collapse
Affiliation(s)
- Gabriele Mazzuferi
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Md Obaidul Islam
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| | - Gianna Ferretti
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
13
|
Ossoli A, Wolska A, Remaley AT, Gomaraschi M. High-density lipoproteins: A promising tool against cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159068. [PMID: 34653581 DOI: 10.1016/j.bbalip.2021.159068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoproteins (HDL) are well known for their protective role against the development and progression of atherosclerosis. Atheroprotection is mainly due to the key role of HDL within the reverse cholesterol transport, and to their ability to exert a series of antioxidant and anti-inflammatory activities. Through the same mechanisms HDL could also affect cancer cell proliferation and tumor progression. Many types of cancers share common alterations of cellular metabolism, including lipid metabolism. In this context, not only fatty acids but also cholesterol and its metabolites play a key role. HDL were shown to reduce cancer cell content of cholesterol, overall rewiring cholesterol homeostasis. In addition, HDL reduce oxidative stress and the levels of pro-inflammatory molecules in cancer cells and in the tumor microenvironment (TME). Here, HDL can also help in reverting tumor immune escape and in inhibiting angiogenesis. Interestingly, HDL are good candidates for drug delivery, targeting antineoplastic agents to the tumor mass mainly through their binding to the scavenger receptor BI. Since they could affect cancer development and progression per se, HDL-based drug delivery systems may render cancer cells more sensitive to antitumor agents and reduce the development of drug resistance.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Gomaraschi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
14
|
Dong T, Sato S, Lyu J, Imachi H, Kobayashi T, Fukunaga K, Saheki T, Iwama H, Zhang G, Murao K. Treatment with 2-methoxyestradiol increases endothelial nitric oxide synthase activity via scavenger receptor class BI in human umbilical vein endothelial cells. Mol Hum Reprod 2021; 26:441-451. [PMID: 32333783 DOI: 10.1093/molehr/gaaa028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022] Open
Abstract
Concentrations of 2-methoxyestradiol (2ME2), a principal metabolite of estradiol, are significantly lower in women with severe preeclampsia. Nitric oxide (NO) released by endothelial nitric oxide synthase (eNOS) plays an important role in regulating cardiovascular homeostasis. Importantly, high-density lipoprotein (HDL) stimulates eNOS activity via endothelial human scavenger receptor class B type I (hSR-BI/CLA-1). Here, we aimed to determine the effect of 2ME2 on hSR-BI/CLA-1 expression in human umbilical vein endothelial cells (HUVECs). hSR-BI/CLA-1 expression was measured by real-time PCR, western blotting and reporter gene assays; eNOS activity was assessed by the measurement of eNOS phosphorylation. Both the mRNA and protein concentrations of hSR-BI/CLA-1 were significantly increased by 2ME2 in HUVECs. 2ME2 also dose-dependently increased the transcriptional activity of the hSR-BI/CLA-1 promoter. The effect of 2ME2 treatment on the promoter activity of hSR-BI/CLA-1 was abrogated by treatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase, as was the increase in HDL-induced eNOS activation. Notably, constitutively active Akt increased the activity of the hSR-BI/CLA-1 promoter, whereas dominant-negative Akt abolished the effect of 2ME2 treatment on hSR-BI/CLA-1 promoter activity. The nuclear Sp1 protein concentration was significantly increased by exposure to 2ME2 and Sp1 overexpression increased the promoter activity of the hSR-BI/CLA gene. Furthermore, knockdown of Sp1 inhibited the effect of 2ME2 treatment on hSR-BI/CLA-1 protein expression. These results indicate that 2ME2 treatment increases HDL-dependent eNOS phosphorylation by upregulating endothelial hSR-BI/CLA-1 expression, suggesting that 2ME2 has a potential therapeutic value in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Tao Dong
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Jingya Lyu
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kagawa 761-0793, Japan
| | - Guoxing Zhang
- Department of Physiology and Neuroscience, Medical College of Soochow University, Suzhou 215123, China
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| |
Collapse
|
15
|
Karimi N, Karami Tehrani FS. Expression of SR-B1 receptor in breast cancer cell lines, MDAMB-468 and MCF-7: Effect on cell proliferation and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1069-1077. [PMID: 34804424 PMCID: PMC8591767 DOI: 10.22038/ijbms.2021.56752.12674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES High-density lipoprotein (HDL) is necessary for proliferation of several cells. The growth of many kinds of cells, such as breast cancer cells (BCC) is motivated by HDL. Cellular uptake of cholesterol from HDL which increases cell growth is facilitated by scavenger receptors of the B class (SR-BI). The proliferative effect of HDL might be mediated by this receptor. It is also believed that HDL has an anti-apoptotic effect on various cell types and promotes cell growth. This study was designed to investigate SR-BI expression, proliferation and apoptotic effect of HDL on human BCC lines, MCF-7 and MDA-MB-468. MATERIALS AND METHODS Real-time-PCR method was used to evaluate expression of SR-BI, and cholesterol concentration was measured using a cholesterol assay kits (Pars AZ moon, Karaj, Iran). Cell viability was assessed using the MTT test. To identify cell apoptosis, the annexin V-FITC staining test and caspase-9 activity assay were applied. RESULTS Treatment of both cell lines (MCF-7, MDA-MB-468) with HDL results in augmentation of SR-BI mRNA expression and also elevation of the intracellular cholesterol (P<0.01). HDL induced cell proliferation, cell cycle progression, and prevented activation of caspase-9 (P<0.05). We also demonstrated that inhibition of SR-B1 by BLT-1 could reduce cell proliferation, and induction of SR-B1 receptor by quercetin increased HDL-induced proliferation in both cell lines (P<0.05). CONCLUSION It can be concluded that alteration in HDL levels by SR-B1 activator (Quercetin) or inhibitor (BLT-1) may affect BCC growth and apoptosis induction.
Collapse
Affiliation(s)
- Neamat Karimi
- Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Soghra Karami Tehrani
- Department of Clinical Biochemistry, Cancer Research Laboratory, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. Int J Mol Sci 2021; 22:ijms22137209. [PMID: 34281263 PMCID: PMC8268178 DOI: 10.3390/ijms22137209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a foundational molecule of biology. There is a long-standing interest in understanding how cholesterol metabolism is intertwined with cancer biology. In this review, we focus on the known connections between lung cancer and molecules mediating cholesterol efflux. A major take-home lesson is that the roles of many cholesterol efflux factors remain underexplored. It is our hope that this article would motivate others to investigate how cholesterol efflux factors contribute to lung cancer biology.
Collapse
|
17
|
Wei Y, Huang Y, Yang W, Huang Q, Chen Y, Zeng K, Chen J, Chen J. The significances and clinical implications of cholesterol components in human breast cancer. Sci Prog 2021; 104:368504211028395. [PMID: 34510991 PMCID: PMC10450717 DOI: 10.1177/00368504211028395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Breast cancer is one the most common malignancies and leading cause of cancer-related mortality in women. Recent studies suggested that hypercholesterolemia may be the potential modifiable risk factors for breast cancer. Cholesterol was well-known for its strong association with cardiovascular disease for long. Moreover, solid evidence has been provided by different studies to illustrate the correlation between lipid and incidence in multiple cancers. Although the conclusion remains controversial or sometimes contrary, which may be due to the multifactorial nature of the disease and the disparity of ethnic population, it is critical to elucidate the relationship between specific cholesterol components in certain population and the exact underlying mechanism of the lipid-associated signaling pathway in breast cancer. The implications of dysregulated lipoproteins as therapeutic targets or options for breast cancer provide novel strategies for us in combating with this malignant disease, which may be achieved by manipulating lipid levels with pharmacological compounds.
Collapse
Affiliation(s)
- Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Huang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese, University of Hong Kong, Hong Kong, China
| | - Qingnan Huang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yong Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kai Zeng
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Juan Chen
- Department of Medicine & Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, China
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
18
|
An D, Yu X, Jiang L, Wang R, He P, Chen N, Guo X, Li X, Feng M. Reversal of Multidrug Resistance by Apolipoprotein A1-Modified Doxorubicin Liposome for Breast Cancer Treatment. Molecules 2021; 26:molecules26051280. [PMID: 33652957 PMCID: PMC7956628 DOI: 10.3390/molecules26051280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance (MDR) remains a major problem in cancer therapy and is characterized by the overexpression of p-glycoprotein (P-gp) efflux pump, upregulation of anti-apoptotic proteins or downregulation of pro-apoptotic proteins. In this study, an Apolipoprotein A1 (ApoA1)-modified cationic liposome containing a synthetic cationic lipid and cholesterol was developed for the delivery of a small-molecule chemotherapeutic drug, doxorubicin (Dox) to treat MDR tumor. The liposome-modified by ApoA1 was found to promote drug uptake and elicit better therapeutic effects than free Dox and liposome in MCF-7/ADR cells. Further, loading Dox into the present ApoA1-liposome systems enabled a burst release at the tumor location, resulting in enhanced anti-tumor effects and reduced off-target effects. More importantly, ApoA1-lip/Dox caused fewer adverse effects on cardiac function and other organs in 4T1 subcutaneous xenograft models. These features indicate that the designed liposomes represent a promising strategy for the reversal of MDR in cancer treatment.
Collapse
Affiliation(s)
- Duopeng An
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xiaochen Yu
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Lijing Jiang
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
| | - Rui Wang
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Peng He
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Nanye Chen
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xiaohan Guo
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xiang Li
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
- Correspondence: (X.L.); (M.F.)
| | - Meiqing Feng
- Minhang Hospital & School of Pharmacy, Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201023, China; (D.A.); (X.Y.); (L.J.); (R.W.); (P.H.); (N.C.); (X.G.)
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
- Correspondence: (X.L.); (M.F.)
| |
Collapse
|
19
|
Ni XC, Yi Y, Fu YP, Cai XY, Liu G, Huang JL, Gan W, Xu J, Qiu SJ. Role of Lipids and Apolipoproteins in Predicting the Prognosis of Hepatocellular Carcinoma After Resection. Onco Targets Ther 2020; 13:12867-12880. [PMID: 33376344 PMCID: PMC7756018 DOI: 10.2147/ott.s279997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose To further clarify the association between abnormal levels of serum lipid components as the main features of dyslipidaemia and hepatocellular carcinoma, which remains unclear. Patients and Methods We examined the serum level of lipids and apolipoproteins pattern in 471 patients undergoing curative resection for HCC, 193 patients with chronic liver disease, and 104 patients with benign liver diseases. We performed uni- and multivariate analyses to evaluate the predictive roles of lipids and apolipoproteins for recurrence and survival of HCC in a training cohort of 242 patients and then validated in a cohort of 229 patients. Results The majority circulating lipid and apolipoprotein levels such as ApoA1, HDL, and LDL in chronic liver disease and HCC were slightly significantly decreased as compared to those in benign lesion. But no significant differential expression patterns of lipids and apolipoproteins were observed between chronic liver hepatitis and HCC. Multivariable analysis identified ApoA1 as a key parameter related to recurrence and survival in both training and validation cohorts. Moreover, we further demonstrated that low ApoA1 was an independent prognostic factor of poor early recurrence in two cohorts. Conclusion Although the alterations of circulating lipids and apolipoproteins were observed in HCC, none of lipids or apolipoproteins could serve as a diagnostic marker. Serum ApoA1 merits consideration as a novel prognostic marker for patients with HCC undergoing surgery since it predicts early recurrence and survival, especially for early stage patients and may improve the prognostic stratification of patients for clinical management and promote HCC clinic outcomes.
Collapse
Affiliation(s)
- Xiao-Chun Ni
- Shanghai Ninth People's Hospital, General Surgery, Shanghai, People's Republic of China
| | - Yong Yi
- Liver Cancer Institute, Hepatic Surgery, Shanghai, People's Republic of China
| | - Yi-Peng Fu
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xiao-Yan Cai
- Shanghai Pudong Gongli Hospital, General Surgery, Shanghai, People's Republic of China
| | - Gao Liu
- Liver Cancer Institute, Hepatic Surgery, Shanghai, People's Republic of China
| | - Jin-Long Huang
- Liver Cancer Institute, Hepatic Surgery, Shanghai, People's Republic of China
| | - Wei Gan
- Liver Cancer Institute, Hepatic Surgery, Shanghai, People's Republic of China
| | - Jie Xu
- Shanghai Ninth People's Hospital, Infection Disease, Shanghai, People's Republic of China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
20
|
Revilla G, Cedó L, Tondo M, Moral A, Pérez JI, Corcoy R, Lerma E, Fuste V, Reddy ST, Blanco-Vaca F, Mato E, Escolà-Gil JC. LDL, HDL and endocrine-related cancer: From pathogenic mechanisms to therapies. Semin Cancer Biol 2020; 73:134-157. [PMID: 33249202 DOI: 10.1016/j.semcancer.2020.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol is essential for a variety of functions in endocrine-related cells, including hormone and steroid production. We have reviewed the progress to date in research on the role of the main cholesterol-containing lipoproteins; low-density lipoprotein (LDL) and high-density lipoprotein (HDL), and their impact on intracellular cholesterol homeostasis and carcinogenic pathways in endocrine-related cancers. Neither LDL-cholesterol (LDL-C) nor HDL-cholesterol (HDL-C) was consistently associated with endocrine-related cancer risk. However, preclinical studies showed that LDL receptor plays a critical role in endocrine-related tumor cells, mainly by enhancing circulating LDL-C uptake and modulating tumorigenic signaling pathways. Although scavenger receptor type BI-mediated uptake of HDL could enhance cell proliferation in breast, prostate, and ovarian cancer, these effects may be counteracted by the antioxidant and anti-inflammatory properties of HDL. Moreover, 27-hydroxycholesterol a metabolite of cholesterol promotes tumorigenic processes in breast and epithelial thyroid cancer. Furthermore, statins have been reported to reduce the incidence of breast, prostate, pancreatic, and ovarian cancer in large clinical trials, in part because of their ability to lower cholesterol synthesis. Overall, cholesterol homeostasis deregulation in endocrine-related cancers offers new therapeutic opportunities, but more mechanistic studies are needed to translate the preclinical findings into clinical therapies.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Lídia Cedó
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Mireia Tondo
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Antonio Moral
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain
| | - José Ignacio Pérez
- Department of General Surgery, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Rosa Corcoy
- Departament de Medicina, Universitat Autònoma de Barcelona, C/ Antoni M. Claret 167, 08025 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Enrique Lerma
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Victoria Fuste
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain
| | - Srivinasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, C/ Sant Quintí 89, 08041 Barcelona, Spain.
| | - Eugènia Mato
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona Spain.
| |
Collapse
|
21
|
Role of cholesterol metabolism in the anticancer pharmacology of selective estrogen receptor modulators. Semin Cancer Biol 2020; 73:101-115. [PMID: 32931953 DOI: 10.1016/j.semcancer.2020.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are a class of compounds that bind to estrogen receptors (ERs) and possess estrogen agonist or antagonist actions in different tissues. As such, they are widely used drugs. For instance, tamoxifen, the most prescribed SERM, is used to treat ERα-positive breast cancer. Aside from their therapeutic targets, SERMs have the capacity to broadly affect cellular cholesterol metabolism and handling, mainly through ER-independent mechanisms. Cholesterol metabolism reprogramming is crucial to meet the needs of cancer cells, and different key processes involved in cholesterol homeostasis have been associated with cancer progression. Therefore, the effects of SERMs on cholesterol homeostasis may be relevant to carcinogenesis, either by contributing to the anticancer efficacy of these compounds or, conversely, by promoting resistance to treatment. Understanding these aspects of SERMs actions could help to design more efficacious therapies. Herein we review the effects of SERMs on cellular cholesterol metabolism and handling and discuss their potential in anticancer pharmacology.
Collapse
|
22
|
Evaluation of LDL receptor and Scavenger Receptor, Class B, Type 1 in the malignant and benign breast tumors: The correlation with the expression of miR-199a-5p, miR-199b-5p and miR-455-5p. Gene 2020; 749:144720. [PMID: 32360840 DOI: 10.1016/j.gene.2020.144720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
AIMS The purpose of present study was to examine the correlations of LDL (LDLR) and HDL (SR-B1) receptors with lipoproteins, miR-199a-5p, miR-199b-5p, miR-455-5p in the malignant and benign breast tumors. METHODS Total cholesterol-rich-lipoproteins and the receptors were determined using enzymatic-homogeneous and ELISA methods. The expression levels of miRNAs were detected by qRT-PCR. RESULTS Receptor expressions and lipoproteins concentration were significantly higher in the malignant tumors (p < 0.05). Positive correlation was found for LDLR with Ki67% and Her2+. HDL-C content of TNBC tumors was higher than those of Non-TNBC (p < 0.05). The expression level of miR-199a-5p was found to be downregulated significantly in the malignant tumors of <2 cm, TNBC, HER2- or stage3. The expression of miR-199b-5p was downregulated in the malignant tumors and was negatively associated with TNBC, stage and Her2+. The expression of miR-455-5p was significantly correlated with Her2- (p < 0.05). A positive correlation was observed for SR-B1 or LDLR with HDL-C or LDL-C and also for SR-B1 with LDLR, although a reverse association was detected for the expression of miR-199b-5p with LDLR in the malignant tumors (p < 0.05). No significant correlations were found for miR-199a-5p or miR-455-5p with LDLR or SR-B1 expressions and also for LDL-C and SR-B1 with clinicopathological features (p ≥ 0.05). CONCLUSIONS Mechanisms potentially involved in the present findings may be due to the lipid internalization and lipoprotein consumption through LDLR and SR-B1 over expression. It is noteworthy that the expression of miR-199b-5p is negatively correlated with LDLR which may suggest it as a suppressor for LDLR expression in the breast cancer.
Collapse
|
23
|
Kluck GEG, Durham KK, Yoo JA, Trigatti BL. High Density Lipoprotein and Its Precursor Protein Apolipoprotein A1 as Potential Therapeutics to Prevent Anthracycline Associated Cardiotoxicity. Front Cardiovasc Med 2020; 7:65. [PMID: 32411725 PMCID: PMC7198830 DOI: 10.3389/fcvm.2020.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease and cancer are the leading causes of death in developed societies. Despite their effectiveness, many cancer therapies exhibit deleterious cardiovascular side effects such as cardiotoxicity and heart failure. The cardiotoxic effects of anthracyclines such as doxorubicin are the most well-characterized of cardiotoxic anti-cancer therapies. While other anti-neoplastic drugs also induce cardiotoxicity, often leading to heart failure, they are beyond the scope of this review. This review first summarizes the mechanisms of doxorubicin-induced cardiotoxicity. It then reviews emerging preclinical evidence that high density lipoprotein and its precursor protein apolipoprotein A1, which are known for their protective effects against ischemic cardiovascular disease, may also protect against doxorubicin-induced cardiotoxicity both directly and indirectly, when used therapeutically.
Collapse
Affiliation(s)
- George E. G. Kluck
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Kristina K. Durham
- Faculty of Health Sciences, Institute of Applied Health Sciences, School of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Jeong-Ah Yoo
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| |
Collapse
|
24
|
Ben Hassen C, Gutierrez-Pajares JL, Guimaraes C, Guibon R, Pinault M, Fromont G, Frank PG. Apolipoprotein-mediated regulation of lipid metabolism induces distinctive effects in different types of breast cancer cells. Breast Cancer Res 2020; 22:38. [PMID: 32321558 PMCID: PMC7178965 DOI: 10.1186/s13058-020-01276-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The highest incidence of breast cancer is in the Western world. Several aspects of the Western lifestyle are known risk factors for breast cancer. In particular, previous studies have shown that cholesterol levels can play an important role in the regulation of tumor progression. METHODS In the present study, we modulated cholesterol metabolism in the human breast cancer cell lines MCF-7 and MDA-MB-231 using a genetic approach. Apolipoprotein A-I (apoA-I) and apolipoprotein E (apoE) were expressed in these cell lines to modulate cholesterol metabolism. The effects of these apolipoproteins on cancer cell properties were examined. RESULTS Our results show that both apolipoproteins can regulate cholesterol metabolism and can control the epithelial-to-mesenchymal transition process. However, these effects were different depending on the cell type. We show that expressing apoA-I or apoE stimulates proliferation, migration, and tumor growth of MCF-7 cells. However, apoA-I or apoE reduces proliferation and migration of MDA-MB-231 cells. CONCLUSIONS These data suggest that modulating sterol metabolism may be most effective at limiting tumor progression in models of triple-negative cancers.
Collapse
Affiliation(s)
| | | | | | - Roseline Guibon
- INSERM N2C UMR1069, University of Tours, 37032, Tours, France
- Department of Pathology, CHRU Tours-University of Tours, Tours, 37032, France
| | | | - Gaëlle Fromont
- INSERM N2C UMR1069, University of Tours, 37032, Tours, France
- Department of Pathology, CHRU Tours-University of Tours, Tours, 37032, France
| | | |
Collapse
|
25
|
Gomaraschi M. Role of Lipoproteins in the Microenvironment of Hormone-Dependent Cancers. Trends Endocrinol Metab 2020; 31:256-268. [PMID: 31837908 DOI: 10.1016/j.tem.2019.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an attractive target to develop novel strategies for hormone-dependent cancers. Several molecules in the TME can favor tumor development and progression, including lipoproteins. Lipoproteins are taken up by cancer cells, providing them with cholesterol and fatty acids. Cholesterol regulates cell signaling and it is converted into a series of bioactive metabolites, including hormones. The conflicting results of epidemiological and interventional studies suggest that the local availability of lipoproteins in the TME is more relevant for cancer biology than their circulating levels. Thus, reducing lipoprotein uptake and stimulating cell cholesterol efflux to high-density lipoproteins (HDLs) can represent a novel adjuvant strategy for cancer management. HDL-like particles can also act as drug delivery systems for tumor targeting.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
26
|
Schcolnik-Cabrera A, Juárez M, Oldak B, Cruz-Rivera M, Flisser A, Dueñas-González A, Buzoianu-Anguiano V, Orozco-Suarez S, Mendlovic F. In Vitro Employment of Recombinant Taenia solium Calreticulin as a Novel Strategy Against Breast and Ovarian Cancer Stem-like Cells. Arch Med Res 2020; 51:65-75. [PMID: 32097797 DOI: 10.1016/j.arcmed.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Calreticulin is a chaperone and master regulator of intracellular calcium homeostasis. Several additional functions have been discovered. Human and parasite calreticulin have been shown to suppress mammary tumor growth in vivo. Here, we explored the capacity of recombinant Taenia solium calreticulin (rTsCRT) to modulate cancer cell growth in vitro. METHODS We used different concentrations of rTsCRT to treat cancer cell lines and analyzed viability and colony formation capacity. We also tested the combination of the IC20 or IC50 doses of rTsCRT and of the chemotherapeutic drug 5-fluorouracil on MCF7 and SKOV3 cell lines. As a control, the non-tumorigenic cell line MCF10-A was employed. The effect of the drug combinations was also assessed in cancer stem-like cells. Additionally, scavenger receptor ligands were employed to identify the role of this receptor in the rTsCRT anti-tumoral effect. RESULTS rTsCRT has a dose-dependent in vitro anti-tumoral effect, being SKOV3 the most sensitive cell line followed by MCF7. When rTsCRT/5-fluorouracil were used, MCF7 and SKOV3 showed a 60% reduction in cell viability; colony formation capacity was also diminished. Treatment of cancer stem-like cells from MCF7 showed a higher reduction in cell viability, while those from SKOV3 were more sensitive to colony disaggregation. Finally, pharmacological inhibition of the scavenger receptor, abrogated the reduction in viability induced by rTsCRT in both the parental and stem-like cells. CONCLUSION Our data suggest that rTsCRT alone or in combination with 5-fluorouracil inhibits the growth of breast and ovarian cancer cell lines through its interaction with scavenger receptors.
Collapse
Affiliation(s)
| | - Mandy Juárez
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Bernardo Oldak
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Mayra Cruz-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfonso Dueñas-González
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Vinnitsa Buzoianu-Anguiano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico.
| |
Collapse
|
27
|
Wang D, Huang J, Gui T, Yang Y, Feng T, Tzvetkov NT, Xu T, Gai Z, Zhou Y, Zhang J, Atanasov AG. SR-BI as a target of natural products and its significance in cancer. Semin Cancer Biol 2020; 80:18-38. [PMID: 31935456 DOI: 10.1016/j.semcancer.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Scavenger receptor class B type I (SR-BI) protein is an integral membrane glycoprotein. SR-BI is emerging as a multifunctional protein, which regulates autophagy, efferocytosis, cell survival and inflammation. It is well known that SR-BI plays a critical role in lipoprotein metabolism by mediating cholesteryl esters selective uptake and the bi-directional flux of free cholesterol. Recently, SR-BI has also been identified as a potential marker for cancer diagnosis, prognosis, or even a treatment target. Natural products are a promising source for the discovery of new drug leads. Multiple natural products were identified to regulate SR-BI protein expression. There are still a number of challenges in modulating SR-BI expression in cancer and in using natural products for modulation of such protein expression. In this review, our purpose is to discuss the relationship between SR-BI protein and cancer, and the molecular mechanisms regulating SR-BI expression, as well as to provide an overview of natural products that regulate SR-BI expression.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, Tennessee, 37232, USA
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaxin Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Tingting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China.
| | - Jingjie Zhang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzębiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
28
|
Sharma B, Agnihotri N. Role of cholesterol homeostasis and its efflux pathways in cancer progression. J Steroid Biochem Mol Biol 2019; 191:105377. [PMID: 31063804 DOI: 10.1016/j.jsbmb.2019.105377] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Tumor cells show high avidity for cholesterol in order to support their inherent nature to divide and proliferate. This results in the rewiring of cholesterol homeostatic pathways by influencing not only de novo synthesis but also uptake or efflux pathways of cholesterol. Recent findings have pointed towards the importance of cholesterol efflux in tumor pathogenesis. Cholesterol efflux is the first and foremost step in reverse cholesterol transport and any perturbation in this pathway may lead to the accumulation of intracellular cholesterol, thereby altering the cellular equilibrium. This review addresses the different mechanisms of cholesterol efflux from the cell and highlights their role and regulation in context to tumor development. There are four different routes by which cholesterol can be effluxed from the cell namely, 1) passive diffusion of cholesterol to mature HDL particles, 2) SR-B1 mediated facilitated diffusion, 3) Active efflux to apo A1 via ABCA1 and 4) ABCG1 mediated efflux to mature HDL. These molecular players facilitating cholesterol efflux are engaged in a complex interplay with different signaling pathways. Thus, an understanding of the efflux pathways, their regulation and cross-talk with signaling molecules may provide novel prognostic markers and therapeutic targets to combat the onset of carcinogenesis.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Navneet Agnihotri
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
29
|
Cedó L, Reddy ST, Mato E, Blanco-Vaca F, Escolà-Gil JC. HDL and LDL: Potential New Players in Breast Cancer Development. J Clin Med 2019; 8:jcm8060853. [PMID: 31208017 PMCID: PMC6616617 DOI: 10.3390/jcm8060853] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most prevalent cancer and primary cause of cancer-related mortality in women. The identification of risk factors can improve prevention of cancer, and obesity and hypercholesterolemia represent potentially modifiable breast cancer risk factors. In the present work, we review the progress to date in research on the potential role of the main cholesterol transporters, low-density and high-density lipoproteins (LDL and HDL), on breast cancer development. Although some studies have failed to find associations between lipoproteins and breast cancer, some large clinical studies have demonstrated a direct association between LDL cholesterol levels and breast cancer risk and an inverse association between HDL cholesterol and breast cancer risk. Research in breast cancer cells and experimental mouse models of breast cancer have demonstrated an important role for cholesterol and its transporters in breast cancer development. Instead of cholesterol, the cholesterol metabolite 27-hydroxycholesterol induces the proliferation of estrogen receptor-positive breast cancer cells and facilitates metastasis. Oxidative modification of the lipoproteins and HDL glycation activate different inflammation-related pathways, thereby enhancing cell proliferation and migration and inhibiting apoptosis. Cholesterol-lowering drugs and apolipoprotein A-I mimetics have emerged as potential therapeutic agents to prevent the deleterious effects of high cholesterol in breast cancer.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Srinivasa T Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
| | - Eugènia Mato
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041 Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Francisco Blanco-Vaca
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029 Madrid, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Av. de Can Domènech 737, 08193 Cerdanyola del Vallès, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029 Madrid, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Av. de Can Domènech 737, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
30
|
Kinslechner K, Schütz B, Pistek M, Rapolter P, Weitzenböck HP, Hundsberger H, Mikulits W, Grillari J, Röhrl C, Hengstschläger M, Stangl H, Mikula M. Loss of SR-BI Down-Regulates MITF and Suppresses Extracellular Vesicle Release in Human Melanoma. Int J Mol Sci 2019; 20:E1063. [PMID: 30823658 PMCID: PMC6429474 DOI: 10.3390/ijms20051063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a skin tumor with a high tendency for metastasis and thus is one of the deadliest cancers worldwide. Here, we investigated the expression of the scavenger receptor class B type 1 (SR-BI), a high-density lipoprotein (HDL) receptor, and tested for its role in melanoma pigmentation as well as extracellular vesicle release. We first analyzed the expression of SR-BI in patient samples and found a strong correlation with MITF expression as well as with the melanin synthesis pathway. Hence, we asked whether SR-BI could also play a role for the secretory pathway in metastatic melanoma cells. Interestingly, gain- and loss-of-function of SR-BI revealed regulation of the proto-oncogene MET. In line, SR-BI knockdown reduced expression of the small GTPase RABB22A, the ESCRT-II protein VPS25, and SNAP25, a member of the SNARE complex. Accordingly, reduced overall extracellular vesicle generation was detected upon loss of SR-BI. In summary, SR-BI expression in human melanoma enhances the formation and transport of extracellular vesicles, thereby contributing to the metastatic phenotype. Therapeutic targeting of SR-BI would not only interfere with cholesterol uptake, but also with the secretory pathway, therefore suppressing a key hallmark of the metastatic program.
Collapse
Affiliation(s)
- Katharina Kinslechner
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| | - Birgit Schütz
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| | - Martina Pistek
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| | - Philipp Rapolter
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| | - Hans P Weitzenböck
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria.
| | - Harald Hundsberger
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria.
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Johannes Grillari
- Department of Biotechnology, BOKU -University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
31
|
Mable CJ, Canton I, Mykhaylyk OO, Ustbas Gul B, Chambon P, Themistou E, Armes SP. Targeting triple-negative breast cancer cells using Dengue virus-mimicking pH-responsive framboidal triblock copolymer vesicles. Chem Sci 2019. [DOI: 10.1039/c8sc05589k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue fever-mimicking pH-responsive framboidal triblock copolymer vesicles enable delivery of a nucleic acid payload to the nuclei of triple-negative breast cancer cells.
Collapse
Affiliation(s)
| | - Irene Canton
- Department of Biomedical Sciences
- University of Sheffield
- Firth Court
- Sheffield
- UK
| | | | - Burcin Ustbas Gul
- Department of Biomedical Sciences
- University of Sheffield
- Firth Court
- Sheffield
- UK
| | - Pierre Chambon
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | | | | |
Collapse
|
32
|
Pirro M, Ricciuti B, Rader DJ, Catapano AL, Sahebkar A, Banach M. High density lipoprotein cholesterol and cancer: Marker or causative? Prog Lipid Res 2018; 71:54-69. [DOI: 10.1016/j.plipres.2018.06.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/15/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022]
|
33
|
Shen N, Yan F, Pang J, Gao Z, Al-Kali A, Haynes CL, Litzow MR, Liu S. HDL-AuNPs-BMS Nanoparticle Conjugates as Molecularly Targeted Therapy for Leukemia. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14454-14462. [PMID: 29668254 DOI: 10.1021/acsami.8b01696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNPs) with adsorbed high-density lipoprotein (HDL) have been utilized to deliver oligonucleotides, yet HDL-AuNPs functionalized with small-molecule inhibitors have not been systematically explored. Here, we report an AuNP-based therapeutic system (HDL-AuNPs-BMS) for acute myeloid leukemia (AML) by delivering BMS309403 (BMS), a small molecule that selectively inhibits AML-promoting factor fatty acid-binding protein 4. To synthesize HDL-AuNPs-BMS, we use AuNP as a template to control conjugate size ensuring a spherical shape to engineer HDL-like nanoparticles containing BMS. The zeta potential and size of the HDL-AuNPs obtained from transmission electron microscopy demonstrate that the HDL-AuNPs-BMS are electrostatically stable and 25 nm in diameter. Functionally, compared to free drug, HDL-AuNPs-BMS conjugates are more readily internalized by AML cells and have more pronounced effects on downregulation of DNA methyltransferase 1 (DNMT1), induction of DNA hypomethylation, and restoration of epigenetically silenced tumor suppressor p15INK4B coupled with AML growth arrest. Importantly, systemic administration of HDL-AuNPs-BMS conjugates into AML-bearing mice inhibits DNMT1-dependent DNA methylation, induces AML cell differentiation, and diminishes AML disease progression without obvious side effects. In summary, these data, for the first time, demonstrate HDL-AuNPs as an effective delivery platform with great potential to attach distinct inhibitors and HDL-AuNPs-BMS conjugates as a promising therapeutic platform to treat leukemia.
Collapse
Affiliation(s)
- Na Shen
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Fei Yan
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Jiuxia Pang
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| | - Zhe Gao
- Department of Chemistry , College of Science and Engineering , Minneapolis , Minnesota 55455 , United States
| | - Aref Al-Kali
- Division of Hematology , Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Christy L Haynes
- Department of Chemistry , College of Science and Engineering , Minneapolis , Minnesota 55455 , United States
| | - Mark R Litzow
- Division of Hematology , Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Shujun Liu
- The Hormel Institute , University of Minnesota , Austin , Minnesota 55912 , United States
| |
Collapse
|
34
|
Delineating the HMGB1 and HMGB2 interactome in prostate and ovary epithelial cells and its relationship with cancer. Oncotarget 2018; 9:19050-19064. [PMID: 29721183 PMCID: PMC5922377 DOI: 10.18632/oncotarget.24887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
High Mobility Group B (HMGB) proteins are involved in cancer progression and in cellular responses to platinum compounds used in the chemotherapy of prostate and ovary cancer. Here we use affinity purification coupled to mass spectrometry (MS) and yeast two-hybrid (Y2H) screening to carry out an exhaustive study of HMGB1 and HMGB2 protein interactions in the context of prostate and ovary epithelia. We present a proteomic study of HMGB1 partners based on immunoprecipitation of HMGB1 from a non-cancerous prostate epithelial cell line. In addition, HMGB1 and HMGB2 were used as baits in yeast two-hybrid screening of libraries from prostate and ovary epithelial cell lines as well as from healthy ovary tissue. HMGB1 interacts with many nuclear proteins that control gene expression, but also with proteins that form part of the cytoskeleton, cell-adhesion structures and others involved in intracellular protein translocation, cellular migration, secretion, apoptosis and cell survival. HMGB2 interacts with proteins involved in apoptosis, cell motility and cellular proliferation. High confidence interactors, based on repeated identification in different cell types or in both MS and Y2H approaches, are discussed in relation to cancer. This study represents a useful resource for detailed investigation of the role of HMGB1 in cancer of epithelial origins, as well as potential alternative avenues of therapeutic intervention.
Collapse
|
35
|
Wang X, Wu C, Yuan B, Wang D, Liu H, Feng H, Sun S. Low scavenger receptor class B type I expression is associated with gastric adenocarcinoma tumor aggressiveness. Oncol Lett 2018. [PMID: 29541232 DOI: 10.3892/ol.2018.7889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI), a well-documented high-density lipoprotein receptor, has been implicated in the development and progression of human cancer. However, little is known regarding the expression profile and clinical value of SR-BI in gastric adenocarcinoma. In the present study immunohistochemistry analysis was performed on a well-annotated gastric adenocarcinoma tissue microarray to investigate the association between SR-BI expression and clinicopathological parameters or patient outcome. The results revealed that SR-BI expression was detected in 69% of the 84 gastric adenocarcinomas. Moreover, a significant association was observed between low SR-BI expression and poor histological grade, higher Tumor-Node-Metastasis T stage, higher N stage and diffuse type carcinoma. Low SR-BI expression was also significantly associated with a shorter overall survival time in patients with gastric adenocarcinoma, although it was not an independent prognostic factor. Overall, the results of the present study demonstrated that SR-BI was possibly involved in gastric carcinogenesis and could be used as a biomarker to predict malignancy of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Xingwen Wang
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Changshun Wu
- Department of Bone and Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Baoying Yuan
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dan Wang
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Huiling Liu
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shui Sun
- Department of Bone and Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
36
|
Wang W, Chen K, Su Y, Zhang J, Li M, Zhou J. Lysosome-Independent Intracellular Drug/Gene Codelivery by Lipoprotein-Derived Nanovector for Synergistic Apoptosis-Inducing Cancer-Targeted Therapy. Biomacromolecules 2018; 19:438-448. [DOI: 10.1021/acs.biomac.7b01549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Kerong Chen
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yujie Su
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jielei Zhang
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Min Li
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural
Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
37
|
Xu GH, Lou N, Shi HC, Xu YC, Ruan HL, Xiao W, Liu L, Li X, Xiao HB, Qiu B, Bao L, Yuan CF, Zhou YL, Hu WJ, Chen K, Yang HM, Zhang XP. Up-regulation of SR-BI promotes progression and serves as a prognostic biomarker in clear cell renal cell carcinoma. BMC Cancer 2018; 18:88. [PMID: 29357836 PMCID: PMC5778766 DOI: 10.1186/s12885-017-3761-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/06/2017] [Indexed: 01/05/2023] Open
Abstract
Background Scavenger receptor class B type I (SR-BI) has been reported to be involved in carcinogenesis of several human cancers. However, it is currently unknown whether SR-BI plays a role in clear cell renal cell carcinoma (ccRCC). Here, we aimed to evaluate a tumor promotive mechanism for SR-BI in ccRCC. Methods The expression of SR-BI was evaluated by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry (IHC) in ccRCC tissues and cell lines. Lipid droplets in ccRCC tissues and normal kidney tissues were examined by Oil Red O (ORO) and hematoxylin-eosin (HE) staining. The correlation between SR-BI mRNA levels and clinicopathological features was analyzed by Pearson’s chi-square test or Fisher’s exact test. Kaplan-Meier analysis and Cox model were used to evaluate the difference in progression-free survival (PFS) associated with expression of SR-BI. Inhibition of SR-BI was conducted by using small interfering RNA (siRNA). In vitro assays were performed to assess the impact of SR-BI knockdown on cell biological behaviors. High density lipoprotein (HDL)-cholesterol content in ccRCC cells and extracellular media was also measured after transfection with siRNA. Results The expression of SR-BI was markedly up-regulated in ccRCC tissues and tumor cell lines. ORO and HE staining revealed huge amounts of lipid droplets accumulation in ccRCC. Clinical analysis showed that over-expression of SR-BI was positively associated with tumor size, grade, distant metastasis and inversely correlated with PFS. Furthermore, SR-BI was proved to be an independent prognostic marker in ccRCC patients. The inhibition of SR-BI attenuated the tumorous behaviors of ccRCC cells, expression of metastasis and AKT pathway related proteins. The content of HDL-cholesterol was reduced in cells while increased in extracellular media after transfection with si-SR-BI. Conclusions Our results demonstrate that SR-BI functions as an oncogene and promotes progression of ccRCC. SR-BI may serve as a potential prognostic biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Guang-Hua Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hang-Chuan Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Yu-Chen Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hai-Long Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Lei Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Xiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hai-Bing Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Bin Qiu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Chang-Fei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Ya-Li Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China
| | - Wen-Jun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China
| | - Hong-Mei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan, Hubei, 430030, China.
| | - Xiao-Ping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, Hubei, 430022, China.
| |
Collapse
|
38
|
Bell JB, Rink JS, Eckerdt F, Clymer J, Goldman S, Thaxton CS, Platanias LC. HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Sci Rep 2018; 8:1211. [PMID: 29352211 PMCID: PMC5775338 DOI: 10.1038/s41598-017-18100-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/05/2017] [Indexed: 01/31/2023] Open
Abstract
Medulloblastoma is the most common paediatric malignant brain cancer and there is a need for new targeted therapeutic approaches to more effectively treat these malignant tumours, which can be divided into four molecular subtypes. Here, we focus on targeting sonic hedgehog (SHH) subtype medulloblastoma, which accounts for approximately 25% of all cases. The SHH subtype relies upon cholesterol signalling for tumour growth and maintenance of tumour-initiating cancer stem cells (CSCs). To target cholesterol signalling, we employed biomimetic high-density lipoprotein nanoparticles (HDL NPs) which bind to the HDL receptor, scavenger receptor type B-1 (SCARB1), depriving cells of natural HDL and their cholesterol cargo. We demonstrate uptake of HDL NPs in SCARB1 expressing medulloblastoma cells and depletion of cholesterol levels in cancer cells. HDL NPs potently blocked proliferation of medulloblastoma cells, as well as hedgehog-driven Ewing sarcoma cells. Furthermore, HDL NPs disrupted colony formation in medulloblastoma and depleted CSC populations in medulloblastoma and Ewing sarcoma. Altogether, our findings provide proof of principle for the development of a novel targeted approach for the treatment of medulloblastoma using HDL NPs. These findings present HDL-mimetic nanoparticles as a promising therapy for sonic hedgehog (SHH) subtype medulloblastoma and possibly other hedgehog-driven cancers.
Collapse
Affiliation(s)
- Jonathan B Bell
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States
| | - Jonathan S Rink
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States.,Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Chicago, IL, 60611, United States.,Simpson Querrey Institute (SQI) for BioNanotechnology, 303 E. Superior St., Chicago, IL, 60611, United States
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Chicago, IL, 60611, United States
| | - Jessica Clymer
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States.,Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, United States
| | - Stewart Goldman
- Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, United States
| | - C Shad Thaxton
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States.,Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E. Superior St., Chicago, IL, 60611, United States.,Simpson Querrey Institute (SQI) for BioNanotechnology, 303 E. Superior St., Chicago, IL, 60611, United States
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Lurie 3-125, 303 E. Superior St., Chicago, IL, 60611, United States. .,Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, 303 E. Superior St., Chicago, IL, 60611, United States. .,Department of Medicine, Jesse Brown VA Medical Center, 820S. Damen Ave., Chicago, IL, 60612, United States.
| |
Collapse
|
39
|
Gonzalez L, Qian AS, Tahir U, Yu P, Trigatti BL. Sphingosine-1-Phosphate Receptor 1, Expressed in Myeloid Cells, Slows Diet-Induced Atherosclerosis and Protects against Macrophage Apoptosis in Ldlr KO Mice. Int J Mol Sci 2017; 18:ijms18122721. [PMID: 29244772 PMCID: PMC5751322 DOI: 10.3390/ijms18122721] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
We generated myeloid specific sphingosine-1-phosphate receptor 1 (S1pr1) deficient mice by crossing mice that had myeloid specific expression of Cre recombinase (lyzMCre) with mice having the S1pr1 gene flanked by loxP recombination sites. We transplanted bone marrow from these mice and control lyzMCre mice with intact macrophage S1pr1 gene expression into low-density lipoprotein (LDL) receptor gene (Ldlr) deficient mice. The resulting chimeras were fed a high fat atherogenic diet for nine or twelve weeks and evaluated for atherosclerosis development in the aortic sinus. Selective S1pr1 deficiency in bone marrow-derived myeloid cells resulted in accelerated development of atherosclerosis, necrotic core formation and the appearance of apoptotic cells within atherosclerotic plaques of Ldlr knockout mice in response to a high fat diet. Examination of macrophages in culture revealed that the sphingosine-1-phosphate receptor 1 selective agonist, SEW2871 or high density lipoprotein (HDL), protected macrophages against apoptosis induced by endoplasmic reticulum (ER) stress or oxidized LDL, through activation of phosphatidylinositol-3-kinase/Akt signaling. Targeted S1pr1-deletion prevented Akt activation and protection against apoptosis by either SEW2871 or HDL. Our data suggests that sphingosine-1-phosphate receptor 1 in macrophages plays an important role in protecting them against apoptosis in vitro and in atherosclerotic plaques in vivo, and delays diet induced atherosclerosis development in Ldlr deficient mice.
Collapse
Affiliation(s)
- Leticia Gonzalez
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| | - Alexander S Qian
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| | - Usama Tahir
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| | - Pei Yu
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| | - Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| |
Collapse
|
40
|
Shen WJ, Azhar S, Kraemer FB. SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annu Rev Physiol 2017; 80:95-116. [PMID: 29125794 DOI: 10.1146/annurev-physiol-021317-121550] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scavenger receptor, class B type 1 (SR-B1), is a multiligand membrane receptor protein that functions as a physiologically relevant high-density lipoprotein (HDL) receptor whose primary role is to mediate selective uptake or influx of HDL-derived cholesteryl esters into cells and tissues. SR-B1 also facilitates the efflux of cholesterol from peripheral tissues, including macrophages, back to liver. As a regulator of plasma membrane cholesterol content, SR-B1 promotes the uptake of lipid soluble vitamins as well as viral entry into host cells. These collective functions of SR-B1 ultimately affect programmed cell death, female fertility, platelet function, vasculature inflammation, and diet-induced atherosclerosis and myocardial infarction. SR-B1 has also been identified as a potential marker for cancer diagnosis and prognosis. Finally, the SR-B1-linked selective HDL-cholesteryl ester uptake pathway is now being evaluated as a gateway for the delivery of therapeutic and diagnostic agents. In this review, we focus on the regulation and functional significance of SR-B1 in mediating cholesterol movement into and out of cells.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California 94305; .,VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
41
|
Rink JS, Yang S, Cen O, Taxter T, McMahon KM, Misener S, Behdad A, Longnecker R, Gordon LI, Thaxton CS. Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin. Mol Pharm 2017; 14:4042-4051. [PMID: 28933554 DOI: 10.1021/acs.molpharmaceut.7b00710] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.
Collapse
Affiliation(s)
- Jonathan S Rink
- Northwestern University, Feinberg School of Medicine , Department of Urology, Chicago, Illinois 60611, United States.,Northwestern University , Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, United States
| | - Shuo Yang
- Northwestern University, Feinberg School of Medicine , Division of Hematology/Oncology, Department of Medicine, Chicago, Illinois 60611, United States
| | - Osman Cen
- Northwestern University, Feinberg School of Medicine , Division of Hematology/Oncology, Department of Medicine, Chicago, Illinois 60611, United States
| | - Tim Taxter
- Northwestern University, Feinberg School of Medicine , Department of Pathology, Chicago, Illinois 60611, United States.,Northwestern University, Feinberg School of Medicine , Developmental Therapeutic Institute, Chicago, Illinois 60611, United States
| | - Kaylin M McMahon
- Northwestern University, Feinberg School of Medicine , Department of Urology, Chicago, Illinois 60611, United States.,Northwestern University , Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, United States.,Northwestern University, Feinberg School of Medicine , Developmental Therapeutic Institute, Chicago, Illinois 60611, United States
| | - Sol Misener
- Northwestern University, Feinberg School of Medicine , Department of Urology, Chicago, Illinois 60611, United States
| | - Amir Behdad
- Northwestern University, Feinberg School of Medicine , Department of Pathology, Chicago, Illinois 60611, United States
| | - Richard Longnecker
- Northwestern University, Feinberg School of Medicine , Department of Microbiology and Immunology, Chicago, Illinois 60611, United States
| | - Leo I Gordon
- Northwestern University, Feinberg School of Medicine , Division of Hematology/Oncology, Department of Medicine, Chicago, Illinois 60611, United States.,Robert H Lurie Comprehensive Cancer Center of Northwestern University , Chicago, Illinois 60611, United States
| | - C Shad Thaxton
- Northwestern University, Feinberg School of Medicine , Department of Urology, Chicago, Illinois 60611, United States.,Northwestern University , Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, United States.,Robert H Lurie Comprehensive Cancer Center of Northwestern University , Chicago, Illinois 60611, United States.,Northwestern University , International Institute for Nanotechnology (IIN), Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Xu G, Lou N, Xu Y, Shi H, Ruan H, Xiao W, Liu L, Xiao H, Qiu B, Bao L, Yuan C, Chen K, Yang H, Zhang X. Diagnostic and prognostic value of scavenger receptor class B type 1 in clear cell renal cell carcinoma. Tumour Biol 2017; 39:1010428317699110. [PMID: 28466781 DOI: 10.1177/1010428317699110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aberrant expression of scavenger receptor class B type 1 has been reported in several human cancers. Nevertheless, the roles of scavenger receptor class B type 1 in clear cell renal cell carcinoma remain unclear. The aim of this study was to evaluate the diagnostic and prognostic value of scavenger receptor class B type 1 in clear cell renal cell carcinoma. The messenger RNA level of scavenger receptor class B type 1 in clear cell renal cell carcinoma tissues was detected by quantitative reverse transcription polymerase chain reaction, while protein level was determined by western blot and immunohistochemistry. The lipid content between clear cell renal cell carcinoma tissues and normal kidney tissues was differentiated by Oil Red O and hematoxylin-eosin staining. The diagnostic value of scavenger receptor class B type 1 was determined by receiver operating characteristic curve. The prognostic significance of scavenger receptor class B type 1 was assessed by Kaplan-Meier analysis and Cox regression analysis. Our results showed that the expression of scavenger receptor class B type 1 in clear cell renal cell carcinoma tissues at both messenger RNA and protein level was much higher than that in normal kidney tissues. Receiver operating characteristic curve analysis exhibited a significant value of area under the curve (0.8486, 95% confidence interval: 0.7926-0.9045) with strong sensitivity (0.75, 95% confidence interval: 0.6535-0.8312) and specificity (0.90, 95% confidence interval: 0.8238-0.9510). Kaplan-Meier analysis revealed that patients with higher scavenger receptor class B type 1 expression had shorter progression-free survival time. Cox analysis indicated that scavenger receptor class B type 1 was an independent prognostic biomarker. In conclusion, our findings implied that scavenger receptor class B type 1 might serve as a diagnostic and independent prognostic biomarker in clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Guanghua Xu
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Lou
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Xu
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangchuan Shi
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailong Ruan
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Liu
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibing Xiao
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Qiu
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Bao
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changfei Yuan
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- 2 Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- 1 Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Rui M, Qu Y, Gao T, Ge Y, Feng C, Xu X. Simultaneous delivery of anti-miR21 with doxorubicin prodrug by mimetic lipoprotein nanoparticles for synergistic effect against drug resistance in cancer cells. Int J Nanomedicine 2016; 12:217-237. [PMID: 28115844 PMCID: PMC5221799 DOI: 10.2147/ijn.s122171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance in cancer cells is one of the major obstacles to achieving effective chemotherapy. We hypothesized that the combination of a doxorubicin (Dox) prodrug and microRNA (miR)21 inhibitor might show synergistic antitumor effects on drug-resistant breast cancer cells. In this study, we aimed to develop new high-density lipoprotein-mimicking nanoparticles (HMNs) for coencapsulation and codelivery of this potential combination. Dox was coupled with a nuclear localization signal (NLS) peptide to construct a prodrug (NLS-Dox), thereby electrostatically condensing miR21 inhibitor (anti-miR21) to form cationic complexes. The HMNs were formulated by shielding these complexes with anionic lipids and Apo AI proteins. We have characterized that the coloaded HMNs had uniformly dispersed distribution, favorable negatively charged surface, and high coencapsulation efficiency. The HMN formulation effectively codelivered NLS-Dox and anti-miR21 into Dox-resistant breast cancer MCF7/ADR cells and wild-type MCF7 cells via a high-density-lipoprotein receptor-mediated pathway, which facilitated the escape of Pgp drug efflux. The coloaded HMNs consisting of NLS-Dox/anti-miR21 demonstrated greater cytotoxicity with enhanced intracellular accumulation in resistant MCF7/ADR cells compared with free Dox solution. The reversal of drug resistance by coloaded HMNs might be attributed to the suppression of miR21 expression and the related antiapoptosis network. Furthermore, the codelivery of anti-miR21 and NLS-Dox by HMNs showed synergistic antiproliferative effects in MCF7/ADR-bearing nude mice, and was more effective in tumor inhibition than other drug formulations. These data suggested that codelivery of anti-miR21 and chemotherapeutic agents by HMNs might be a promising strategy for antitumor therapy, and could restore the drug sensitivity of cancer cells, alter intracellular drug distribution, and ultimately enhance chemotherapeutic effects.
Collapse
Affiliation(s)
- Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yang Qu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Tong Gao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yanru Ge
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
44
|
Mooberry LK, Sabnis NA, Panchoo M, Nagarajan B, Lacko AG. Targeting the SR-B1 Receptor as a Gateway for Cancer Therapy and Imaging. Front Pharmacol 2016; 7:466. [PMID: 28018216 PMCID: PMC5156841 DOI: 10.3389/fphar.2016.00466] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 01/25/2023] Open
Abstract
Malignant tumors display remarkable heterogeneity to the extent that even at the same tissue site different types of cells with varying genetic background may be found. In contrast, a relatively consistent marker the scavenger receptor type B1 (SR-B1) has been found to be consistently overexpressed by most tumor cells. Scavenger Receptor Class B Type I (SR-BI) is a high density lipoprotein (HDL) receptor that facilitates the uptake of cholesterol esters from circulating lipoproteins. Additional findings suggest a critical role for SR-BI in cholesterol metabolism, signaling, motility, and proliferation of cancer cells and thus a potential major impact in carcinogenesis and metastasis. Recent findings indicate that the level of SR-BI expression correlate with aggressiveness and poor survival in breast and prostate cancer. Moreover, genomic data show that depending on the type of cancer, high or low SR-BI expression may promote poor survival. This review discusses the importance of SR-BI as a diagnostic as well as prognostic indicator of cancer to help elucidate the contributions of this protein to cancer development, progression, and survival. In addition, the SR-B1 receptor has been shown to serve as a potential gateway for the delivery of therapeutic agents when reconstituted high density lipoprotein nanoparticles are used for their transport to cancer cells and tumors. Opportunities for the development of new technologies, particularly in the areas of cancer therapy and tumor imaging are discussed.
Collapse
Affiliation(s)
- Linda K. Mooberry
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Nirupama A. Sabnis
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Marlyn Panchoo
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Bhavani Nagarajan
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Andras G. Lacko
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
- Department of Pediatrics, University of North Texas Health Science Center, Fort WorthTX, USA
| |
Collapse
|
45
|
Gutierrez-Pajares JL, Ben Hassen C, Chevalier S, Frank PG. SR-BI: Linking Cholesterol and Lipoprotein Metabolism with Breast and Prostate Cancer. Front Pharmacol 2016; 7:338. [PMID: 27774064 PMCID: PMC5054001 DOI: 10.3389/fphar.2016.00338] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Studies have demonstrated the significant role of cholesterol and lipoprotein metabolism in the progression of cancer. The SCARB1 gene encodes the scavenger receptor class B type I (SR-BI), which is an 82-kDa glycoprotein with two transmembrane domains separated by a large extracellular loop. SR-BI plays an important role in the regulation of cholesterol exchange between cells and high-density lipoproteins. Accordingly, hepatic SR-BI has been shown to play an essential role in the regulation of the reverse cholesterol transport pathway, which promotes the removal and excretion of excess body cholesterol. In the context of atherosclerosis, SR-BI has been implicated in the regulation of intracellular signaling, lipid accumulation, foam cell formation, and cellular apoptosis. Furthermore, since lipid metabolism is a relevant target for cancer treatment, recent studies have focused on examining the role of SR-BI in this pathology. While signaling pathways have initially been explored in non-tumoral cells, studies with cancer cells have now demonstrated SR-BI's function in tumor progression. In this review, we will discuss the role of SR-BI during tumor development and malignant progression. In addition, we will provide insights into the transcriptional and post-transcriptional regulation of the SCARB1 gene. Overall, studying the role of SR-BI in tumor development and progression should allow us to gain useful information for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jorge L Gutierrez-Pajares
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Céline Ben Hassen
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Stéphan Chevalier
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| | - Philippe G Frank
- Université François Rabelais de Tours, Faculté de Médecine-INSERM UMR1069 "Nutrition, Croissance et Cancer" Tours, France
| |
Collapse
|
46
|
Simonsen JB. Evaluation of reconstituted high-density lipoprotein (rHDL) as a drug delivery platform – a detailed survey of rHDL particles ranging from biophysical properties to clinical implications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2161-2179. [DOI: 10.1016/j.nano.2016.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/15/2022]
|
47
|
Rajora MA, Zheng G. Targeting SR-BI for Cancer Diagnostics, Imaging and Therapy. Front Pharmacol 2016; 7:326. [PMID: 27729859 PMCID: PMC5037127 DOI: 10.3389/fphar.2016.00326] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
Scavenger receptor class B type I (SR-BI) plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumors and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents.
Collapse
Affiliation(s)
- Maneesha A Rajora
- Princess Margaret Cancer Centre and Techna Institute, University Health NetworkToronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute, University Health NetworkToronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of TorontoToronto, ON, Canada; Department of Medical Biophysics, University of TorontoToronto, ON, Canada
| |
Collapse
|
48
|
Corbo C, Molinaro R, Taraballi F, Toledano Furman NE, Sherman MB, Parodi A, Salvatore F, Tasciotti E. Effects of the protein corona on liposome-liposome and liposome-cell interactions. Int J Nanomedicine 2016; 11:3049-63. [PMID: 27445473 PMCID: PMC4938145 DOI: 10.2147/ijn.s109059] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes' physical properties and, consequently, liposome-liposome and liposome-cell interactions.
Collapse
Affiliation(s)
- Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Alessandro Parodi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Orthopedics, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
49
|
Zhang F, Wang X, Xu X, Li M, Zhou J, Wang W. Reconstituted high density lipoprotein mediated targeted co-delivery of HZ08 and paclitaxel enhances the efficacy of paclitaxel in multidrug-resistant MCF-7 breast cancer cells. Eur J Pharm Sci 2016; 92:11-21. [PMID: 27343697 DOI: 10.1016/j.ejps.2016.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
In the past decades, reconstituted high density lipoprotein (rHDL) has been successfully developed as a drug carrier since the enhanced HDL-lipids uptake is demonstrated in several human cancers. In this paper, rHDL, for the first time, was utilized to co-encapsulate two hydrophobic drugs: an anticancer drug, paclitaxel (PTX), and a new reversal agent for P-gp (P-glycoprotein)-mediated multidrug resistance (MDR) of cancer, N-cyano-1-[(3,4-dimethoxyphenyl)methyl]-3,4-dihydro-6,7-dimethoxy-N'-octyl-2(1H)-isoquinoline-carboximidamide (HZ08). We proposed this drug co-delivery strategy to reverse PTX resistance. The study aimed to develop a biomimetic nanovector, reconstituted high density lipoprotein (rHDL), mediating targeted PTX-HZ08 delivery for cancer therapy. Using sodium cholate dialysis method, we successfully formulated dual-agent co-delivering rHDL nanoparticles (PTX-HZ08-rHDL NPs) with a typical spherical morphology, well-distributed size (~100nm), high drug encapsulation efficiency (approximately 90%), sustained drug release properties and exceptional stability even after storage for 1month or incubation in 10% fetal bovine serum (FBS) DMEM for up to 2days. Results demonstrated that PTX-HZ08-rHDL NPs significantly enhanced anticancer efficacy in vitro, including higher cytotoxicity and better ability to induce cell apoptosis against both PTX-sensitive and -resistant MCF-7 human breast cancer cell lines (MCF-7 and MCF-7/PTX cells). Mechanism studies demonstrated that these improvements could be correlated with increased cellular uptake of PTX mediated by scavenger receptor class B type I (SR-BI) as well as prolonged intracellular retention of PTX due to the HZ08 mediated drug-efflux inhibition. In addition, in vivo investigation showed that the PTX-HZ08-rHDL NPs were substantially safer, have higher tumor-targeted capacity and have stronger antitumor activity than the corresponding dosage of paclitaxel injection. These findings suggested that rHDL NPs could be an ideal tumor-targeted nanovector for simultaneous transfer of insoluble anticancer drug and drug resistance reversal agents. The PTX-HZ08-rHDL NPs co-delivery system might be a new promising strategy to overcome tumor drug resistance.
Collapse
Affiliation(s)
- Fangrong Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xiaoyi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xiangting Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Min Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
50
|
Li J, Wang J, Li M, Yin L, Li XA, Zhang TG. Up-regulated expression of scavenger receptor class B type 1 (SR-B1) is associated with malignant behaviors and poor prognosis of breast cancer. Pathol Res Pract 2016; 212:555-9. [PMID: 27067809 DOI: 10.1016/j.prp.2016.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
Abstract
Scavenger receptor class B type 1 (SR-B1) is an integral membrane protein that is expressed in numerous cells and tissue types. The primary role of SR-B1 is to facilitate uptake of cholesteryl esters from high-density lipoproteins (HDL) in the liver. Altered SR-B1 expression contributes to human diseases. This study assessed association of SR-B1 expression in breast tissue specimens with breast cancer development and prognosis. Tissue specimens from 30 cases of adjacent normal breast tissues, ductal carcinoma in situ (DCIS) and invasive ductal breast cancer (IDCA) were subjected to Western blot analysis, and 135 cases of DCIS and IDCA were used for quantitative immunohistochemical analysis of SR-B1 expression. The data showed that SR-B1 was significantly overexpressed in IDCA tissues compared to normal breast and DCIS tissues. SR-B1 expression was associated with pre-menopausal status, tumor size, and worse overall survival of patients. The data from this ex vivo study suggests that up-regulated SR-B1 protein expression is associated with malignant behaviors of breast cancer and that SR-B1 is an independent predictor for poor survival in breast cancer patients.
Collapse
Affiliation(s)
- Juan Li
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong 250012, China; Department of Pathology, The Fourth Hospital of Jinan, Jinan, Shandong 250031, China
| | - Jing Wang
- Department of Pathology, The Fourth Hospital of Jinan, Jinan, Shandong 250031, China
| | - Ming Li
- Department of Chest Surgery, The Chest Hospital of Shandong, Jinan, Shandong 250000, China
| | - Linlin Yin
- Department of Oncology, The Fourth Hospital of Jinan, Jinan, Shandong 250031, China
| | - Xiang-An Li
- Department of Pediatrics, Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | - Ting-Guo Zhang
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong 250012, China.
| |
Collapse
|