1
|
Hasegawa H, Wang S, Kast E, Chou HT, Kaur M, Janlaor T, Mostafavi M, Wang YL, Li P. Understanding the biosynthesis of human IgM SAM-6 through a combinatorial expression of mutant subunits that affect product assembly and secretion. PLoS One 2024; 19:e0291568. [PMID: 38848420 PMCID: PMC11161108 DOI: 10.1371/journal.pone.0291568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Polymeric IgMs are secreted from plasma cells abundantly despite their structural complexity and intricate multimerization steps. To gain insights into IgM's assembly mechanics that underwrite such high-level secretion, we characterized the biosynthetic process of a natural human IgM, SAM-6, using a heterologous HEK293(6E) cell platform that allowed the production of IgMs both in hexameric and pentameric forms in a controlled fashion. By creating a series of mutant subunits that differentially disrupt secretion, folding, and specific inter-chain disulfide bond formation, we assessed their effects on various aspects of IgM biosynthesis in 57 different subunit chain combinations, both in hexameric and pentameric formats. The mutations caused a spectrum of changes in steady-state subcellular subunit distribution, ER-associated inclusion body formation, intracellular subunit detergent solubility, covalent assembly, secreted IgM product quality, and secretion output. Some mutations produced differential effects on product quality depending on whether the mutation was introduced to hexameric IgM or pentameric IgM. Through this systematic combinatorial approach, we consolidate diverse overlapping knowledge on IgM biosynthesis for both hexamers and pentamers, while unexpectedly revealing that the loss of certain inter-chain disulfide bonds, including the one between μHC and λLC, is tolerated in polymeric IgM assembly and secretion. The findings highlight the differential roles of underlying non-covalent protein-protein interactions in hexamers and pentamers when orchestrating the initial subunit interactions and maintaining the polymeric IgM product integrity during ER quality control steps, secretory pathway trafficking, and secretion.
Collapse
Affiliation(s)
- Haruki Hasegawa
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Songyu Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Eddie Kast
- Molecular Analytics, Department of Biologic Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Hui-Ting Chou
- Structural Biology, Department of Small Molecule Therapeutic Discovery, Amgen Inc., South San Francisco, CA, United States of America
| | - Mehma Kaur
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Tanakorn Janlaor
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Mina Mostafavi
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Yi-Ling Wang
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| | - Peng Li
- Discovery Protein Science, Department of Large Molecule Discovery and Research Data Science, Amgen Inc., South San Francisco, CA, United States of America
| |
Collapse
|
2
|
Heterogeneity and Functions of Tumor-Infiltrating Antibody Secreting Cells: Lessons from Breast, Ovarian, and Other Solid Cancers. Cancers (Basel) 2022; 14:cancers14194800. [PMID: 36230721 PMCID: PMC9563085 DOI: 10.3390/cancers14194800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary B cells are gaining increasing recognition as important contributors to the tumor microenvironment, influencing, positively or negatively, tumor growth, patient survival, and response to therapies. Antibody secreting cells (ASCs) constitute a variable fraction of tumor-infiltrating B cells in most solid tumors, and they produce tumor-specific antibodies that can drive distinct immune responses depending on their isotypes and specificities. In this review, we discuss the current knowledge of the heterogeneity of ASCs infiltrating solid tumors and how both their canonical and noncanonical functions shape antitumor immunity, with a special emphasis on breast and ovarian cancers. Abstract Neglected for a long time in cancer, B cells and ASCs have recently emerged as critical actors in the tumor microenvironment, with important roles in shaping the antitumor immune response. ASCs indeed exert a major influence on tumor growth, patient survival, and response to therapies. The mechanisms underlying their pro- vs. anti-tumor roles are beginning to be elucidated, revealing the contributions of their secreted antibodies as well as of their emerging noncanonical functions. Here, concentrating mostly on ovarian and breast cancers, we summarize the current knowledge on the heterogeneity of tumor-infiltrating ASCs, we discuss their possible local or systemic origin in relation to their immunoglobulin repertoire, and we review the different mechanisms by which antibody (Ab) subclasses and isoforms differentially impact tumor cells and anti-tumor immunity. We also discuss the emerging roles of cytokines and other immune modulators produced by ASCs in cancer. Finally, we propose strategies to manipulate the tumor ASC compartment to improve cancer therapies.
Collapse
|
3
|
Okuda T, Kitamura M, Kato K. A zirconia-based column chromatography system optimized for the purification of IgM from hybridoma culture supernatants. Anal Biochem 2022; 657:114900. [PMID: 36122604 DOI: 10.1016/j.ab.2022.114900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
By using EDTPA-modified zirconia particles that selectively adsorb immunoglobulins in a column, we developed a chromatography separation system for efficient concentrating and purifying of IgM from hybridoma culture supernatants. Hybridoma culture supernatants containing IgMs were diluted 3-fold with 10 mM phosphate buffer (pH 7.0) and passed through the column. During this process, zirconia particles selectively adsorbed these IgMs, and most of the contaminating proteins flowed out into the flow-through. The adsorbed IgMs were easily eluted with a small volume of 400 mM phosphate buffer (pH 8.0), and high-concentration IgM solutions were prepared. Subsequent simple processing using a Capto™ Core 400 cartridge column provided highly purified IgM. The operation is easy, and the activity of IgM is maintained because the purification process is performed using only neutral ranges of phosphate buffers. Here, we showed that anti-globoside and anti-CDw75 IgM purified by this method can be used to stain cervical cancer and Burkitt lymphoma cells that specifically express these respective tumor-associated carbohydrate antigens.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Japan.
| | - Masahiro Kitamura
- NGK Spark Plug-AIST Healthcare, Materials Cooperative Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Katsuya Kato
- NGK Spark Plug-AIST Healthcare, Materials Cooperative Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| |
Collapse
|
4
|
Cai S, Shu Y, Tian C, Wang C, Fang T, Xiao B, Wu X. Effects of chronic exposure to microcystin-LR on life-history traits, intestinal microbiota and transcriptomic responses in Chironomus pallidivittatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153624. [PMID: 35124034 DOI: 10.1016/j.scitotenv.2022.153624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanobacterial toxins that can exert adverse effects on aquatic organisms, but aside from the study of the harmful effect of cyanobacterial blooms, little is known about the effect of released MCs on the growth and development of chironomid larvae. To assess the harmful effect and the toxic mechanism of MCs on midges, the life-history traits, intestinal microbiota, and transcriptome of Chironomus pallidivittatus were analyzed after chronic exposure to 30 μg/L of MC-LR. Exposure inhibited larvae body length by 35.61% and wet weight by 21.92%, increased emergence time of midges, damaged mitochondria in the intestine, promoted oxidative stress, dysregulated lipid metabolism of chironomid larvae, and increased detoxification enzymes glutathione S-transferase (GST) and superoxide dismutase (SOD) by 32.44% and 17.41%, respectively. Exposure also altered the diversity and abundance of the intestinal microbiota, favoring pathogenic and MC degradation bacteria. RNA sequencing identified 261 differentially expressed genes under MC-LR stress, suggesting that impairment of the peroxisome proliferator-activated receptor signaling pathway upregulated fatty acid biosynthesis and elongation to promote lipid accumulation. In addition, exposure-induced detoxification and antioxidant responses, indicating that the chironomid larvae had the potential ability to resist MC-LR. To our knowledge, this is the first time that lipid accumulation, oxidative stress, and detoxification have been studied in this organism at the environmentally relevant concentration of MC-LR; the information may assist in ecological risk assessment of cyanobacterial toxins and their effects on benthic organisms.
Collapse
Affiliation(s)
- Shenghe Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Chen J, Lynn EG, Yousof TR, Sharma H, MacDonald ME, Byun JH, Shayegan B, Austin RC. Scratching the Surface—An Overview of the Roles of Cell Surface GRP78 in Cancer. Biomedicines 2022; 10:biomedicines10051098. [PMID: 35625836 PMCID: PMC9138746 DOI: 10.3390/biomedicines10051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
The 78 kDa glucose-regulated protein (GRP78) is considered an endoplasmic reticulum (ER)-resident molecular chaperone that plays a crucial role in protein folding homeostasis by regulating the unfolded protein response (UPR) and inducing numerous proapoptotic and autophagic pathways within the eukaryotic cell. However, in cancer cells, GRP78 has also been shown to migrate from the ER lumen to the cell surface, playing a role in several cellular pathways that promote tumor growth and cancer cell progression. There is another insidious consequence elicited by cell surface GRP78 (csGRP78) on cancer cells: the accumulation of csGRP78 represents a novel neoantigen leading to the production of anti-GRP78 autoantibodies that can bind csGRP78 and further amplify these cellular pathways to enhance cell growth and mitigate apoptotic cell death. This review examines the current body of literature that delineates the mechanisms by which ER-resident GRP78 localizes to the cell surface and its consequences, as well as potential therapeutics that target csGRP78 and block its interaction with anti-GRP78 autoantibodies, thereby inhibiting further amplification of cancer cell progression.
Collapse
Affiliation(s)
- Jack Chen
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Edward G. Lynn
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Tamana R. Yousof
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Hitesh Sharma
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Melissa E. MacDonald
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Bobby Shayegan
- Department of Surgery, Division of Urology, The Research Institute of St. Joe′s Hamilton, McMaster University, ON L8N 4A6, Canada;
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
- Correspondence: ; Tel.: +1-905-522-1155 (ext. 35175)
| |
Collapse
|
6
|
Lou X, Zhou X, Li H, Lu X, Bao X, Yang K, Liao X, Chen H, Fang H, Yang Y, Lyu J, Zheng H. Biallelic Mutations in ACACA Cause a Disruption in Lipid Homeostasis That Is Associated With Global Developmental Delay, Microcephaly, and Dysmorphic Facial Features. Front Cell Dev Biol 2021; 9:618492. [PMID: 34552920 PMCID: PMC8450402 DOI: 10.3389/fcell.2021.618492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
Objective We proposed that the deficit of ACC1 is the cause of patient symptoms including global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. We evaluated the possible disease-causing role of the ACACA gene in developmental delay and investigated the pathogenesis of ACC1 deficiency. Methods A patient who presented with global developmental delay with unknown cause was recruited. Detailed medical records were collected and reviewed. Whole exome sequencing found two variants of ACACA with unknown significance. ACC1 mRNA expression level, protein expression level, and enzyme activity level were detected in patient-derived cells. Lipidomic analysis, and in vitro functional studies including cell proliferation, apoptosis, and the migratory ability of patient-derived cells were evaluated to investigate the possible pathogenic mechanism of ACC1 deficiency. RNAi-induced ACC1 deficiency fibroblasts were established to assess the causative role of ACC1 deficit in cell migratory disability in patient-derived cells. Palmitate supplementation assays were performed to assess the effect of palmitic acid on ACC1 deficiency-induced cell motility deficit. Results The patient presented with global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. A decreased level of ACC1 and ACC1 enzyme activity were detected in patient-derived lymphocytes. Lipidomic profiles revealed a disruption in the lipid homeostasis of the patient-derived cell lines. In vitro functional studies revealed a deficit of cell motility in patient-derived cells and the phenotype was further recapitulated in ACC1-knockdown (KD) fibroblasts. The cell motility deficit in both patient-derived cells and ACC1-KD were attenuated by palmitate. Conclusion We report an individual with biallelic mutations in ACACA, presenting global development delay. In vitro studies revealed a disruption of lipid homeostasis in patient-derived lymphocytes, further inducing the deficit of cell motility capacity and that the deficiency could be partly attenuated by palmitate.
Collapse
Affiliation(s)
- Xiaoting Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiyue Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haiyan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangpeng Lu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xinzhu Bao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiqiang Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Liao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hanxiao Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hong Zheng
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Shibad V, Bootwala A, Mao C, Bader H, Vo H, Landesman-Bollag E, Guo C, Rubio A, Near R, Gao W, Challa S, Chukka V, Gao J, Kelly A, Landesman T, VanHelene T, Zhong X. L2pB1 Cells Contribute to Tumor Growth Inhibition. Front Immunol 2021; 12:722451. [PMID: 34630396 PMCID: PMC8495424 DOI: 10.3389/fimmu.2021.722451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Natural IgM (nIgM) antibodies play critical roles in cancer immunosurveillance. However, the role of B-1 B cells, the lymphocytes that produce nIgM, remains to be elucidated. L2pB1 cells, a subpopulation of B-1 B cells, have a unique poly-self-reactive nIgM repertoire and are capable of phagocytosis, potent antigen presentation, and immunomodulation. Using an inducible knock-in and knockout mouse model, we investigated the effect of the loss of L2pB1 cells in a B16F10 melanoma model. Our results show active tumor infiltration of L2pB1 cells in wild type mice, and conversely, depletion of L2pB1 cells results in larger tumor mass and increased angiogenesis. In vitro analysis revealed that L2pB1 cells contribute to the growth inhibition of melanoma cells in both 2D cell culture and 3D tumor spheroids. Similar effects were observed in an MC38 murine colon cancer model. Moreover, our data suggest that one of the ways that L2pB1 cells can induce tumor cell death is via lipoptosis. Lastly, we tested whether L2pB1 cell-derived monoclonal nIgM antibodies can specifically recognize tumor spheroids. Nine of the 28 nIgM-secreting L2pB1 clones demonstrated specific binding to tumor spheroids but did not bind control murine embryonic fibroblasts. Our study provides evidence that L2pB1 cells contribute to cancer immunity through their unique nIgM repertoire, tumor recognition, and lipoptosis. Taken together, because of their ability to recognize common features of tumors that are independent of genetic mutations, L2pB1 cells and their nIgM could be potential candidates for cancer treatment that can overcome tumor heterogeneity-associated drug resistance.
Collapse
Affiliation(s)
- Varuna Shibad
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Ali Bootwala
- Department of Graduate Medical Studies, Boston University School of Medicine, Boston, MA, United States
| | - Changchuin Mao
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | - Hanna Bader
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Hung Vo
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Esther Landesman-Bollag
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Conrad Guo
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Angel Rubio
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Richard Near
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | | | | | - Jeffrey Gao
- Sharon High School, Sharon, MA, United States
| | - Avery Kelly
- Brookline High School, Brookline, MA, United States
| | | | | | - Xuemei Zhong
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
8
|
Gan L, Gan Z, Dan Y, Li Y, Zhang P, Chen S, Ye Z, Pan T, Wan C, Hu X, Yu Y. Tetrazanbigen Derivatives as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Partial Agonists: Design, Synthesis, Structure-Activity Relationship, and Anticancer Activities. J Med Chem 2021; 64:1018-1036. [PMID: 33423463 DOI: 10.1021/acs.jmedchem.0c01512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrazanbigen (TNBG) is a novel sterol isoquinoline derivative with poor water solubility and moderate inhibitory effects on human cancer cell lines via lipoapoptosis induction. Herein, we developed a series of novel TNBG analogues with improved water solubility and antiproliferative activities. The CCK-8 assay enabled us to identify a novel compound, 14g, which strongly inhibited HepG2 and A549 cell growth with IC50 values of 0.54 and 0.47 μM, respectively. The anticancer effects might be explained by the partial activation and upregulation of PPARγ expression, as indicated by the transactivation assay and western blotting evaluation. Furthermore, the in vitro antiproliferative activity was verified in an in vivo xenograft model in which 14g strongly reduced tumor growth at a dose of 10 mg/kg. In line with these positive observations, 14g exhibited an excellent water solubility of 31.4 mg/mL, which was more than 1000-fold higher than that of TNBG (4 μg/mL). Together, these results suggest that 14g is a promising anticancer therapeutic that deserves further investigation.
Collapse
Affiliation(s)
- Linling Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zongjie Gan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yanrong Dan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yaowei Li
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peiming Zhang
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shanwen Chen
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zaijun Ye
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Pan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chunmei Wan
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xuelian Hu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Yu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS. Structure, Function, and Therapeutic Use of IgM Antibodies. Antibodies (Basel) 2020; 9:E53. [PMID: 33066119 PMCID: PMC7709107 DOI: 10.3390/antib9040053] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Natural immunoglobulin M (IgM) antibodies are pentameric or hexameric macro-immunoglobulins and have been highly conserved during evolution. IgMs are initially expressed during B cell ontogeny and are the first antibodies secreted following exposure to foreign antigens. The IgM multimer has either 10 (pentamer) or 12 (hexamer) antigen binding domains consisting of paired µ heavy chains with four constant domains, each with a single variable domain, paired with a corresponding light chain. Although the antigen binding affinities of natural IgM antibodies are typically lower than IgG, their polyvalency allows for high avidity binding and efficient engagement of complement to induce complement-dependent cell lysis. The high avidity of IgM antibodies renders them particularly efficient at binding antigens present at low levels, and non-protein antigens, for example, carbohydrates or lipids present on microbial surfaces. Pentameric IgM antibodies also contain a joining (J) chain that stabilizes the pentameric structure and enables binding to several receptors. One such receptor, the polymeric immunoglobulin receptor (pIgR), is responsible for transcytosis from the vasculature to the mucosal surfaces of the lung and gastrointestinal tract. Several naturally occurring IgM antibodies have been explored as therapeutics in clinical trials, and a new class of molecules, engineered IgM antibodies with enhanced binding and/or additional functional properties are being evaluated in humans. Here, we review the considerable progress that has been made regarding the understanding of biology, structure, function, manufacturing, and therapeutic potential of IgM antibodies since their discovery more than 80 years ago.
Collapse
Affiliation(s)
- Bruce A. Keyt
- IGM Biosciences Inc, 325 East Middlefield Road, Mountain View, CA 94043, USA; (R.B.); (A.M.S.); (S.F.C.); (M.S.P.)
| | | | | | | | | |
Collapse
|
10
|
Membrane-Associated Heat Shock Proteins in Oncology: From Basic Research to New Theranostic Targets. Cells 2020; 9:cells9051263. [PMID: 32443761 PMCID: PMC7290778 DOI: 10.3390/cells9051263] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of conserved proteins acting as molecular chaperones that play a key role in intracellular protein homeostasis, regulation of apoptosis, and protection from various stress factors (including hypoxia, thermal stress, oxidative stress). Apart from their intracellular localization, members of different HSP families such as small HSPs, HSP40, HSP60, HSP70 and HSP90 have been found to be localized on the plasma membrane of malignantly transformed cells. In the current article, the role of membrane-associated molecular chaperones in normal and tumor cells is comprehensively reviewed with implications of these proteins as plausible targets for cancer therapy and diagnostics.
Collapse
|
11
|
Reese H, Bordelon T, Shanahan C, Crapanzano M, Sly J, Menegatti S. Novel peptoid-based adsorbents for purifying IgM and IgG from polyclonal and recombinant sources. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1137:121909. [DOI: 10.1016/j.jchromb.2019.121909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
|
12
|
Chemoenzymatic glycan labelling as a platform for site-specific IgM-antibody drug conjugates. Anal Biochem 2019; 584:113385. [DOI: 10.1016/j.ab.2019.113385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022]
|
13
|
Watzlawik JO, Kahoud RJ, Wootla B, Painter MM, Warrington AE, Carey WA, Rodriguez M. Antibody Binding Specificity for Kappa (Vκ) Light Chain-containing Human (IgM) Antibodies: Polysialic Acid (PSA) Attached to NCAM as a Case Study. J Vis Exp 2016. [PMID: 27404858 PMCID: PMC4993309 DOI: 10.3791/54139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibodies of the IgM isotype are often neglected as potential therapeutics in human trials, animal models of human diseases as well as detecting agents in standard laboratory techniques. In contrast, several human IgMs demonstrated proof of efficacy in cancer models and models of CNS disorders including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Reasons for their lack of consideration include difficulties to express, purify and stabilize IgM antibodies, challenge to identify (non-protein) antigens, low affinity binding and fundamental knowledge gaps in carbohydrate and lipid research. This manuscript uses HIgM12 as an example to provide a detailed protocol to detect antigens by Western blotting, immunoprecipitations and immunocytochemistry. HIgM12 targets polysialic acid (PSA) attached to the neural cell adhesion molecule (NCAM). Early postnatal mouse brain tissue from wild type (WT) and NCAM knockout (KO) mice lacking the three major central nervous system (CNS) splice variants NCAM180, 140 and 120 was used to evaluate the importance of NCAM for binding to HIgM12. Further enzymatic digestion of CNS tissue and cultured CNS cells using endoneuraminidases led us to identify PSA as the specific binding epitope for HIgM12.
Collapse
Affiliation(s)
- Jens O Watzlawik
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic;
| | - Robert J Kahoud
- Department of Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic; Department of Pediatric and Adolescent Medicine, Mayo Clinic
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic
| | - Meghan M Painter
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic
| | - William A Carey
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic; Division of Neonatal Medicine, Mayo Clinic
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic; Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic; Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic;
| |
Collapse
|
14
|
Wang J, Lin K, Zheng W, Ho KY, Teh M, Yeoh KG, Huang Z. Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia. Faraday Discuss 2016; 187:377-392. [DOI: 10.1039/c5fd00151j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
This study aims to assess the clinical utility of a rapid fiber-optic Raman spectroscopy technique developed for enhancingin vivodiagnosis of gastric precancer during endoscopic examination. We have developed a real-time fiber-optic Raman spectroscopy system capable of simultaneously acquiring both fingerprint (FP) (i.e., 800–1800 cm−1) and high-wavenumber (HW) (i.e., 2800–3600 cm−1) Raman spectra from gastric tissuein vivoat endoscopy. A total of 5792 high-qualityin vivoFP/HW Raman spectra (normal (n= 5160); dysplasia (n= 155), and adenocarcinoma (n= 477)) were acquired in real-time from 441 tissue sites (normal (n= 396); dysplasia (n= 11), and adenocarcinoma (n= 34)) of 191 gastric patients (normal (n= 172); dysplasia (n= 6), and adenocarcinoma (n= 13)) undergoing routine endoscopic examinations. Partial least squares discriminant analysis (PLS-DA) together with leave-one-patient-out cross validation (LOPCV) were implemented to develop robust spectral diagnostic models. The FP/HW Raman spectra differ significantly between normal, dysplasia and adenocarcinoma of the stomach, which can be attributed to changes in proteins, lipids, nucleic acids, and the bound water content. PLS-DA and LOPCV show that the fiber-optic FP/HW Raman spectroscopy provides diagnostic sensitivities of 96.0%, 81.8% and 88.2%, and specificities of 86.7%, 95.3% and 95.6%, respectively, for the classification of normal, dysplastic and cancerous gastric tissue, superior to either the FP or HW Raman techniques alone. Further dichotomous PLS-DA analysis yields a sensitivity of 90.9% (10/11) and specificity of 95.9% (380/396) for the detection of gastric dysplasia using FP/HW Raman spectroscopy, substantiating its clinical advantages over white light reflectance endoscopy (sensitivity: 90.9% (10/11), and specificity: 51.0% (202/396)). This work demonstrates that the fiber-optic FP/HW Raman spectroscopy technique has great promise for enhancingin vivodiagnosis of gastric precancer during routine endoscopic examination.
Collapse
Affiliation(s)
- Jianfeng Wang
- Optical Bioimaging Laboratory
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| | - Kan Lin
- Optical Bioimaging Laboratory
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| | - Wei Zheng
- Optical Bioimaging Laboratory
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| | - Khek Yu Ho
- Department of Medicine
- Yong Loo Lin School of Medicine
- National University of Singapore
- National University Health System
- Singapore 119260
| | - Ming Teh
- Department of Pathology
- Yong Loo Lin School of Medicine
- National University of Singapore
- National University Health System
- Singapore 119074
| | - Khay Guan Yeoh
- Department of Medicine
- Yong Loo Lin School of Medicine
- National University of Singapore
- National University Health System
- Singapore 119260
| | - Zhiwei Huang
- Optical Bioimaging Laboratory
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
15
|
Li H, Wang Q, Dong L, Liu C, Sun Z, Gao L, Wang X. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res 2015; 34:137. [PMID: 26538209 PMCID: PMC4634597 DOI: 10.1186/s13046-015-0252-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/05/2023] Open
Abstract
Background Breast cancer is the most fatal malignant cancer among women, the conventional therapeutic modalities of it are limited. Morusin possesses cytotoxicity against some cancer cells in vitro. The purpose of this study is to test the growth inhibition effect of morusin on human breast cancer growth in vitro and in vivo and to explore the potential mechanism of its action. Methods The growth inhibition effect of morusin on human breast cancer cells in vitro and in vivo were tested by cell cytotoxicity, colony formation inhibition, adipogenic differentiation, apoptosis induction, and tumor growth inhibition in vivo assays. The potential molecular mechanisms underlying the growth inhibition effect of morusin on human breast cancer cells in vitro and in vivo were investigated with Western blotting evaluation of expression levels of transcription factors, C/EBPβ and PPARγ, adipogenic and apoptotic proteins in morusin treated breast cancer cells and tumor tissues. Results Morusin inhibited breast cancer cells growth in vitro and in vivo; it induced adipogenic differentiation, apoptosis and lipoapoptosis of cancer cells. Conclusions Morusin has the potential to inhibit human breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis.
Collapse
Affiliation(s)
- Haiyan Li
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Qiaoping Wang
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Lihua Dong
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Chuanlan Liu
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhen Sun
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Ling Gao
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiujie Wang
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Kasuba KC, Vavilala SL, D'Souza JS. Apoptosis-like cell death in unicellular photosynthetic organisms — A review. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Rodriguez-Zhurbenko N, Rabade-Chediak M, Martinez D, Griñan T, Hernandez AM. Anti-NeuGcGM3 reactivity: a possible role of natural antibodies and B-1 cells in tumor immunosurveillance. Ann N Y Acad Sci 2015. [DOI: 10.1111/nyas.12827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nely Rodriguez-Zhurbenko
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Maura Rabade-Chediak
- Chimeric Proteins Group, Immunobiology Division; Center of Molecular Immunology; Havana Cuba
| | - Darel Martinez
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Tania Griñan
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Ana Maria Hernandez
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| |
Collapse
|
18
|
Evasion and interactions of the humoral innate immune response in pathogen invasion, autoimmune disease, and cancer. Clin Immunol 2015; 160:244-54. [PMID: 26145788 DOI: 10.1016/j.clim.2015.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023]
Abstract
The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how Gram positive bacteria, viruses, cancer, and the autoimmune conditions systemic lupus erythematosus and anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that an interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development.
Collapse
|
19
|
Díaz-Zaragoza M, Hernández-Ávila R, Viedma-Rodríguez R, Arenas-Aranda D, Ostoa-Saloma P. Natural and adaptive IgM antibodies in the recognition of tumor-associated antigens of breast cancer (Review). Oncol Rep 2015; 34:1106-14. [PMID: 26133558 PMCID: PMC4530904 DOI: 10.3892/or.2015.4095] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022] Open
Abstract
For early detection of cancer, education and screening are important, but the most critical factor is the development of early diagnostic tools. Methods that recognize the warning signs of cancer and take prompt action lead to an early diagnosis; simple tests can identify individuals in a healthy population who have the disease but have not developed symptoms. Early detection of cancer is significant and is one of the most promising approaches by which to reduce the growing cancer burden and guide curative treatment. The early diagnosis of patients with breast cancer is challenging, since it is the most common cancer in women worldwide. Despite the advent of mammography in screening for breast cancer, low-resource, low-cost alternative tools must be implemented to complement mammography findings. IgM is part of the first line of defense of an organism and is responsible for recognizing and eliminating infectious particles and removing transformed cells. Most studies on breast cancer have focused on the development of IgG-like molecules as biomarkers or as a treatment for the advanced stages of cancer, but autoantibodies (IgM) and tumor-associated antigens (proteins or carbohydrates with aberrant structures) have not been examined as early diagnostic tools for breast cancer. The present review summarizes the function of natural and adaptive IgM in eliminating cancer cells in the early stages of pathology and their value as early diagnostic tools. IgM, as a component of the immune system, is being used to identify tumor-associated antigens and tumor-associated carbohydrate antigens.
Collapse
Affiliation(s)
- Mariana Díaz-Zaragoza
- Departamento de Immunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| | - Ricardo Hernández-Ávila
- Departamento de Immunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| | - Rubí Viedma-Rodríguez
- Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, 06729 México, DF, México
| | - Diego Arenas-Aranda
- Unidad de Investigación Médica en Genética Humana, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, 06729 México, DF, México
| | - Pedro Ostoa-Saloma
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| |
Collapse
|
20
|
Narabayashi K, Ito Y, Eid N, Maemura K, Inoue T, Takeuchi T, Otsuki Y, Higuchi K. Indomethacin suppresses LAMP-2 expression and induces lipophagy and lipoapoptosis in rat enterocytes via the ER stress pathway. J Gastroenterol 2015; 50:541-554. [PMID: 25212253 DOI: 10.1007/s00535-014-0995-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Indomethacin enhances small intestinal epithelial cell apoptosis, which may account for mucosal ulceration. However, the involvement of autophagy in indomethacin-induced enterocyte damage is unreported. METHODS Using light microscopy and electron microscopy techniques, Western blot analysis, and pharmacological inhibition of autophagy, we investigated the autophagic response of cultured rat enterocytes to indomethacin treatment (200 µM) at various time points. Furthermore, autophagy was examined in enterocytes of rats given indomethacin by gavage (10 mg/kg). RESULTS Our data indicate that indomethacin induced accumulation of cytoplasmic lipid droplets (LDs) in cultured enterocytes, which was associated with time-dependent autophagic responses. Initially (0-6 h), mediated by endoplasmic reticulum stress and suppression of mammalian target of rapamycin, a predominant cytoprotective lipophagy was activated in indomethacin-treated enterocytes, as evidenced by induction and colocalization of LC3-II with LDs, excessive formation of autophagosomes sequestering LDs (autolipophagosomes; ALPs), and decreased viability of enterocytes on blocking autophagy with 3-methyladenine. On prolonged exposure to indomethacin (6-24 h), there was a decrease of LAMP-2 expression in enterocytes coupled with accumulation of ALPs and LDs with fewer autolysosomes in addition to an elevation of lipoapoptosis. These time-dependent autophagic and apoptotic responses to indomethacin treatment were detected in enterocytes of indomethacin-treated rats, confirming in vitro results. CONCLUSIONS The findings of this study describe a novel mechanism of enterocyte damage by indomethacin mediated by endoplasmic reticulum stress, accumulation of LDs, and subsequent activation of the early phase of cytoprotective lipophagy. This is followed by a late phase characterized by reduced expression of lysosomal autophagic proteins, accumulation of ALPs, and enhanced lipoapoptosis.
Collapse
Affiliation(s)
- Ken Narabayashi
- Second Department of Internal Medicine, Osaka Medical College, Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rasche L, Duell J, Castro IC, Dubljevic V, Chatterjee M, Knop S, Hensel F, Rosenwald A, Einsele H, Topp MS, Brändlein S. GRP78-directed immunotherapy in relapsed or refractory multiple myeloma - results from a phase 1 trial with the monoclonal immunoglobulin M antibody PAT-SM6. Haematologica 2015; 100:377-84. [PMID: 25637055 DOI: 10.3324/haematol.2014.117945] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The primary objective of this phase 1 study was to evaluate the safety and tolerability of the anti-glucose regulated protein 78 monoclonal immunoglobulin M antibody PAT-SM6 in subjects with relapsed or refractory multiple myeloma. Twelve heavily pretreated patients received four intravenous infusions of PAT-SM6 at doses of 0.3, 1, 3, and 6 mg/kg within 2 weeks. Efficacy, pharmacokinetics and immunogenicity were followed up until the end of the trial (day 36). In addition, immune cell patterns in peripheral blood were assessed by flow cytometry and glucose regulated protein 78 expression status was evaluated in bone marrow specimens by immunohistochemistry and flow cytometry at screening. All doses administered were found to be safe and well tolerated; the maximum tolerated dose was not reached. The most common treatment emergent adverse event was leukopenia (grades 1 and 2) in eight out of the 12 multiple myeloma patients. Pharmacokinetic analysis demonstrated dose-proportional increases in drug serum concentration. The terminal half-life ranged from 5.86 to 8.41 h, the apparent volume of distribution ranged from 101 to 150 mL/kg, and clearance ranged from 8.11 to 16.1 mL/h/kg. All patients showed glucose regulated protein 78 surface expression on multiple myeloma cells. Four out of the 12 patients (33.3 %) had stable disease, according to the International Myeloma Working Group criteria, after PAT-SM6 treatment across the doses 1, 3 and 6 mg/kg. In summary, single-agent PAT-SM6 was well tolerated with modest clinical activity in relapsed or refractory multiple myeloma. Further trials exploring the combination of PAT-SM6 with existing myeloma therapies are planned. TRIAL REGISTRATION clinicaltrials.gov identifier: NCT01727778.
Collapse
Affiliation(s)
- Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | | | | | - Manik Chatterjee
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | - Stefan Knop
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | | | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Germany, and Comprehensive Cancer Center Mainfranken, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | - Max S Topp
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | - Stephanie Brändlein
- Institute of Pathology, University of Würzburg, Germany, and Comprehensive Cancer Center Mainfranken, Germany
| |
Collapse
|
22
|
The glycosphingolipid P₁ is an ovarian cancer-associated carbohydrate antigen involved in migration. Br J Cancer 2014; 111:1634-45. [PMID: 25167227 PMCID: PMC4200095 DOI: 10.1038/bjc.2014.455] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/05/2014] [Accepted: 07/21/2014] [Indexed: 02/07/2023] Open
Abstract
Background: The level of plasma-derived naturally circulating anti-glycan antibodies (AGA) to P1 trisaccharide has previously been shown to significantly discriminate between ovarian cancer patients and healthy women. Here we aim to identify the Ig class that causes this discrimination, to identify on cancer cells the corresponding P1 antigen recognised by circulating anti-P1 antibodies and to shed light into the possible function of this glycosphingolipid. Methods: An independent Australian cohort was assessed for the presence of anti-P1 IgG and IgM class antibodies using suspension array. Monoclonal and human derived anti-glycan antibodies were verified using three independent glycan-based immunoassays and flow cytometry-based inhibition assay. The P1 antigen was detected by LC-MS/MS and flow cytometry. FACS-sorted cell lines were studied on the cellular migration by colorimetric assay and real-time measurement using xCELLigence system. Results: Here we show in a second independent cohort (n=155) that the discrimination of cancer patients is mediated by the IgM class of anti-P1 antibodies (P=0.0002). The presence of corresponding antigen P1 and structurally related epitopes in fresh tissue specimens and cultured cancer cells is demonstrated. We further link the antibody and antigen (P1) by showing that human naturally circulating and affinity-purified anti-P1 IgM isolated from patients ascites can bind to naturally expressed P1 on the cell surface of ovarian cancer cells. Cell-sorted IGROV1 was used to obtain two study subpopulations (P1-high, 66.1% and P1-low, 33.3%) and observed that cells expressing high P1-levels migrate significantly faster than those with low P1-levels. Conclusions: This is the first report showing that P1 antigen, known to be expressed on erythrocytes only, is also present on ovarian cancer cells. This suggests that P1 is a novel tumour-associated carbohydrate antigen recognised by the immune system in patients and may have a role in cell migration. The clinical value of our data may be both diagnostic and prognostic; patients with low anti-P1 IgM antibodies present with a more aggressive phenotype and earlier relapse.
Collapse
|
23
|
Loos A, Gruber C, Altmann F, Mehofer U, Hensel F, Grandits M, Oostenbrink C, Stadlmayr G, Furtmüller PG, Steinkellner H. Expression and glycoengineering of functionally active heteromultimeric IgM in plants. Proc Natl Acad Sci U S A 2014; 111:6263-8. [PMID: 24706782 PMCID: PMC4035941 DOI: 10.1073/pnas.1320544111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IgM antibodies are an important player of the human's innate defense mechanisms and increasingly have gained interest as therapeutics. Although the expression of IgM antibodies in mammalian cell culture is established, this approach remains costly and alternative methods have not been developed yet. Plants have a proven record for the production of therapeutically relevant recombinant proteins. However, whether they are able to express proteins like IgM antibodies, which range among the most complex human proteins, remains unknown so far. Here we report the in planta generation of the functionally active monoclonal antitumor IgM PAT-SM6 (SM6). SM6 efficiently accumulates in plant leaves and assembles correctly into heterooligomers (pentamers and hexamers). Detailed glycosylation analysis exhibited complex and oligomannosidic N-glycans in a site-specific manner on human-serum IgM and on plant- and human-cell-line-produced SM6. Moreover, extensive in planta glycoengineering allowed the generation of SM6 decorated with sialylated human-type oligosaccharides, comparable to plasma-derived IgM. A glycosylated model of pentameric IgM exhibits different accessibility of the glycosylation sites, explaining site-specific glycosylation. Biochemical and biophysical properties and importantly biological activities of plant-derived SM6 glycoforms are comparable to the human-cell-derived counterparts. The in planta generation of one of the most complex human proteins opens new pathways toward the production of difficult-to-express proteins for pharmaceutical applications. Moreover, the generation of IgMs with a controlled glycosylation pattern allows the study of the so far unknown contribution of sugar moieties to the function of IgMs.
Collapse
Affiliation(s)
- Andreas Loos
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Clemens Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Ulrich Mehofer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | - Melanie Grandits
- Institute of Molecular Modelling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modelling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Gerhard Stadlmayr
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Paul G. Furtmüller
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
24
|
Watzlawik JO, Wootla B, Painter MM, Warrington AE, Rodriguez M. Cellular targets and mechanistic strategies of remyelination-promoting IgMs as part of the naturally occurring autoantibody repertoire. Expert Rev Neurother 2014; 13:1017-29. [PMID: 24053345 DOI: 10.1586/14737175.2013.835601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunoglobulins with germline sequences occur in invertebrates and vertebrates and are named naturally occurring autoantibodies (NAbs). NAbs may target foreign antigens, self- or altered self-components and are part of the normal immunoglobulin repertoire. Accumulating evidence indicates that naturally occurring antibodies can act as systemic surveillance molecules, which tag, damaged or stressed cells, invading pathogens and toxic cellular debris for elimination by the immune system. In addition to acting as detecting molecules, certain types of NAbs actively signal in different cell types with a broad range of responses from induction of apoptosis in cancer cells to stimulation of remyelination in glial cells. This review emphasizes functions and characteristics of NAbs with focus on remyelination-promoting mouse and human antibodies. Human remyelination-promoting NAbs are potential therapeutics to combat a wide spectrum of disease processes including demyelinating diseases like multiple sclerosis. We will highlight the identified glycosphingolipid (SL) antigens of polyreactive remyelination-promoting antibodies and their proposed mechanism(s) of action. The nature of the identified antigens suggests a lipid raft-based mechanism for remyelination-promoting antibodies with SLs as most essential raft components. However, accumulating evidence also suggests involvement of other antigens in stimulation of remyelination, which will be discussed in the text.
Collapse
Affiliation(s)
- Jens O Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic, College of Medicine, 200 First Street, S.W., Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Despite the recent development of novel therapies for patients with metastatic melanoma, this disease remains fatal in the majority of those who develop a relapse. Here, we report the preclinical and early clinical development of a novel IgM antibody PAT-SM6 that specifically binds to a cancer-specific isoform of glucose-regulated protein 78 (GRP78) and low-density lipoprotein. Finding a GRP78 cancer-specific form on the surface of cancer cells, but not normal cells in vivo, presents an opportunity for cancer-specific targeting. PAT-SM6 binding to the cell surface induces apoptosis in a variety of tumors, including melanoma. Recent studies show the specificity of PAT-SM6 binding to the surface of melanoma cells and primary tissue but not to normal tissue. They also confirm, for the first time, cell proliferation inhibition and apoptosis through classical apoptotic pathways as well as induction of lipid accumulation in melanoma cells. These in-vitro data are supported by positive in-vivo data using PAT-SM6 in a xenograft C8161 model. Furthermore, PAT-SM6 was well tolerated in pharmacokinetic/toxicology studies in monkeys. On the basis of these preclinical observations, a clinical study of PAT-SM6 was carried out in patients with 'in-transit' melanoma. Even with microdosing, histological analyses of tumor biopsies detected the presence of PAT-SM6 as well as apoptosis. Although there are many small molecules and monoclonal antibodies currently in clinical development for patients with melanoma, PAT-SM6 is the only therapeutic targeting the cancer-specific isoform of GRP78. These PAT-SM6 preclinical data and positive findings from the phase 1 safety study provide strong support for the further development of this novel antibody.
Collapse
|
26
|
Effects on transcriptional regulation and lipid droplet characteristics in the liver of female juvenile pigs after early postnatal feed restriction and refeeding are dependent on birth weight. PLoS One 2013; 8:e76705. [PMID: 24260100 PMCID: PMC3834034 DOI: 10.1371/journal.pone.0076705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/23/2013] [Indexed: 12/22/2022] Open
Abstract
Epidemiological and experimental data indicate that caloric restriction in early postnatal life may improve liver lipid metabolism in low birth weight individuals. The present study investigated transcriptional and metabolic responses to low (U) and normal (N) birth weight (d 75, T1) and postnatal feed restriction (R, 60% of controls, d 98, T2) followed by subsequent refeeding until d 131 of age (T3). Liver tissue studies were performed with a total of 42 female pigs which were born by multiparous German landrace sows. Overall, 194 genes were differentially expressed in the liver of U vs. N (T1) animals with roles in lipid metabolism. The total mean area and number of lipid droplets (LD) was about 4.6- and 3.7 times higher in U compared to N. In U, the mean LD size (µm2) was 24.9% higher. 3-week feed restriction reduced total mean area of LDs by 58.3 and 72.7% in U and N, respectively. A functional role of the affected genes in amino acid metabolism was additionally indicated. This was reflected by a 17.0% higher arginine concentration in the liver of UR animals (vs. NR). To evaluate persistency of effects, analyses were also done after refeeding period at T3. Overall, 4 and 22 genes show persistent regulation in U and N animals after 5 weeks of refeeding, respectively. These genes are involved in e.g. processes of lipid and protein metabolism and glucose homeostasis. Moreover, the recovery of total mean LD area in U and N animals back to the previous T1 level was observed. However, when compared to controls, the mean LD size was still reduced by 23.3% in UR, whereas it was increased in NR (+24.7%). The present results suggest that short-term postnatal feed restriction period programmed juvenile U animals for an increased rate of hepatic lipolysis in later life.
Collapse
|
27
|
Abstract
Small cell lung cancer (SCLC) accounts for nearly 15% of human lung cancers and is one of the most aggressive solid tumors. The SCLC cells are thought to derive from self-renewing pulmonary neuroendocrine cells by oncogenic transformation. However, whether the SCLC cells possess stemness and plasticity for differentiation as normal stem cells has not been well understood thus far. In this study, we investigated the expressions of multilineage stem cell markers in the cancer cells of SCLC cell line (NCI-H446) and analyzed their clonogenicity, tumorigenicity, and plasticity for inducing differentiation. It has been found that most cancer cells of the cell line expressed multilineage stem cell markers under the routine culture conditions and generated single-cell clones in anchorage-dependent or -independent conditions. These cancer cells could form subcutaneous xenograft tumors and orthotopic lung xenograft tumors in BALB/C-nude mice. Most cells in xenograft tumors expressed stem cell markers and proliferation cell nuclear antigen Ki67, suggesting that these cancer cells remained stemness and highly proliferative ability in vivo. Intriguingly, the cancer cells could be induced to differentiate into neurons, adipocytes, and osteocytes, respectively, in vitro. During the processes of cellular phenotype-conversions, autophagy and apoptosis were two main metabolic events. There is cross-talking between autophagy and apoptosis in the differentiated cancer cells. In addition, the effects of the inhibitor and agonist for Sirtuin1/2 on the inducing osteogenic differentiation indicated that Sirtuin1/2 had an important role in this process. Taken together, these results indicate that most cancer cells of NCI-H446 cell line possess stemness and plasticity for multilineage differentiation. These findings have potentially some translational applications in treatments of SCLC with inducing differentiation therapy.
Collapse
|
28
|
Rasche L, Duell J, Morgner C, Chatterjee M, Hensel F, Rosenwald A, Einsele H, Topp MS, Brändlein S. The natural human IgM antibody PAT-SM6 induces apoptosis in primary human multiple myeloma cells by targeting heat shock protein GRP78. PLoS One 2013; 8:e63414. [PMID: 23667612 PMCID: PMC3646784 DOI: 10.1371/journal.pone.0063414] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM) yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM.
Collapse
Affiliation(s)
- Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Duell
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | | | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Max S. Topp
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
29
|
Simultaneous binding of the anti-cancer IgM monoclonal antibody PAT-SM6 to low density lipoproteins and GRP78. PLoS One 2013; 8:e61239. [PMID: 23620733 PMCID: PMC3631193 DOI: 10.1371/journal.pone.0061239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/06/2013] [Indexed: 11/30/2022] Open
Abstract
The tumour-derived monoclonal IgM antibody PAT-SM6 specifically kills malignant cells by an apoptotic mechanism linked to the excessive uptake of plasma lipids. The mechanism is postulated to occur via the multi-point attachment of PAT-SM6 to the unfolded protein response regulator GRP78, located on the surface of tumour cells, coupled to the simultaneous binding of plasma low density lipoprotein (LDL). We prepared and characterised LDL and oxidized LDL using sedimentation velocity and small-angle X-ray scattering (SAXS) analysis. Enzyme-linked immunosorbent (ELISA) techniques indicated apparent dissociation constants of approximately 20 nM for the binding of LDL or oxidized LDL to PAT-SM6. ELISA experiments showed cross competition with LDL inhibiting PAT-SM6 binding to immobilised GRP78, while, in the reverse experiment, GRP78 inhibited PAT-SM6 binding to immobilized LDL. In contrast to the results of the ELISA experiments, sedimentation velocity experiments indicated relatively weak interactions between LDL and PAT-SM6, suggesting immunoabsorbance to the microtiter plate is driven by an avidity-based binding mechanism. The importance of avidity and the multipoint attachment of antigens to PAT-SM6 was further investigated using antigen-coated polystyrene beads. Absorption of GRP78 or LDL to polystyrene microspheres led to an increase in the inhibition of PAT-SM6 binding to microtiter plates coated with GRP78 or LDL, respectively. These results support the hypothesis that the biological action of PAT-SM6 in tumour cell apoptosis depends on the multivalent nature of PAT-SM6 and the ability to interact simultaneously with LDL and multiple GRP78 molecules clustered on the tumour cell surface.
Collapse
|
30
|
Rosenes Z, Mulhern TD, Hatters DM, Ilag LL, Power BE, Hosking C, Hensel F, Howlett GJ, Mok YF. The anti-cancer IgM monoclonal antibody PAT-SM6 binds with high avidity to the unfolded protein response regulator GRP78. PLoS One 2012; 7:e44927. [PMID: 23028685 PMCID: PMC3446985 DOI: 10.1371/journal.pone.0044927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
The monoclonal IgM antibody PAT-SM6 derived from human tumours induces apoptosis in tumour cells and is considered a potential anti-cancer agent. A primary target for PAT-SM6 is the unfolded protein response regulator GRP78, over-expressed externally on the cell surface of tumour cells. Small angle X-ray scattering (SAXS) studies of human GRP78 showed a two-domain dumbbell-shaped monomer, while SAXS analysis of PAT-SM6 revealed a saucer-shaped structure accommodating five-fold symmetry, consistent with previous studies of related proteins. Sedimentation velocity analysis of GRP78 and PAT-SM6 mixtures indicated weak complex formation characterized by dissociation constants in the high micromolar concentration range. In contrast, enzyme-linked immunosorbant assays (ELISAs) showed strong and specific interactions between PAT-SM6 and immobilized GRP78. The apparent binding constant estimated from a PAT-SM6 saturation curve correlated strongly with the concentration of GRP78 used to coat the microtiter tray. Experiments using polyclonal antiGRP78 IgG antibodies or a monoclonal IgG derivative of PAT-SM6 did not show a similar dependence. Competition experiments with soluble GRP78 indicated more effective inhibition of PAT-SM6 binding at low GRP78 coating concentrations. These observations suggest an avidity-based binding mechanism that depends on the multi-point attachment of PAT-SM6 to GRP78 clustered on the surface of the tray. Analysis of ELISA data at high GRP78 coating concentrations yielded an apparent dissociation constant of approximately 4 nM. We propose that the biological action of PAT-SM6 in tumour cell apoptosis may depend on the multivalent nature of PAT-SM6 and the high avidity of its interaction with multiple GRP78 molecules clustered on the tumour cell surface.
Collapse
Affiliation(s)
- Zachary Rosenes
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Terrence D. Mulhern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Leodevico L. Ilag
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Patrys Ltd, Melbourne, Victoria, Australia
| | | | | | | | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Shishido SN, Varahan S, Yuan K, Li X, Fleming SD. Humoral innate immune response and disease. Clin Immunol 2012; 144:142-58. [PMID: 22771788 PMCID: PMC3576926 DOI: 10.1016/j.clim.2012.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/05/2012] [Accepted: 06/09/2012] [Indexed: 12/27/2022]
Abstract
The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Department of Diagnostic Medicine and Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
32
|
Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 2011; 434:181-8. [PMID: 21309747 DOI: 10.1042/bj20101569] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GRP78 (glucose-regulated protein of 78 kDa) is traditionally regarded as a major ER (endoplasmic reticulum) chaperone facilitating protein folding and assembly, protein quality control, Ca(2+) binding and regulating ER stress signalling. It is a potent anti-apoptotic protein and plays a critical role in tumour cell survival, tumour progression and angiogenesis, metastasis and resistance to therapy. Recent evidence shows that GRP78 can also exist outside the ER. The finding that GRP78 is present on the surface of cancer but not normal cells in vivo represents a paradigm shift on how GRP78 controls cell homoeostasis and provides an opportunity for cancer-specific targeting. Cell-surface GRP78 has emerged as an important regulator of tumour cell signalling and viability as it forms complexes with a rapidly expanding repertoire of cell-surface protein partners, regulating proliferation, PI3K (phosphoinositide 3-kinase)/Akt signalling and cell viability. Evidence is also emerging that GRP78 serves as a receptor for viral entry into host cells. Additionally, a novel cytosolic form of GRP78 has been discovered prominently in leukaemia cells. These, coupled with reports of nucleus- and mitochondria-localized forms of GRP78, point to the previously unanticipated role of GRP78 beyond the ER that may be critical for cell viability and therapeutic targeting.
Collapse
|
33
|
Hernández AM, Rodríguez N, González JE, Reyes E, Rondón T, Griñán T, Macías A, Alfonso S, Vázquez AM, Pérez R. Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism. THE JOURNAL OF IMMUNOLOGY 2011; 186:3735-44. [PMID: 21300821 DOI: 10.4049/jimmunol.1000609] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1E10 is a murine anti-idiotypic mAb specific for an idiotypic mAb that reacts with NeuGc-containing gangliosides, sulfatides, and Ags expressed in some human tumors. In melanoma, breast, and lung cancer patients, this anti-idiotypic Ab was able to induce a specific Ab response against N-glycosylated gangliosides, attractive targets for cancer immunotherapy as these glycolipids are not naturally expressed in humans. A clinical study with nonsmall cell lung cancer patients showed encouraging clinical benefits. Immunological studies performed in 20 of these patients suggested a correlation between the induction of Abs against NeuGcGM3 and longer survival times. The induced anti-NeuGcGM3 Abs recognized and directly killed tumor cells expressing the Ag, by a mechanism independent of complement activation. In the present work, we show that this cytotoxicity differs from apoptosis because it is temperature independent, no chromatin condensation or caspase 3 induction are detected, and the DNA fragmentation induced has a different pattern than the one characteristic for apoptosis. It is a very quick process and involves cytosqeleton reorganization. The Abs induce cellular swelling and the formation of big membrane lesions that allow the leakage of cytoplasm and the loss of the cell membrane integrity. All of these characteristics resemble a process of oncotic necrosis. To our knowledge, this is the first report of the active induction in cancer patients of NeuGcGM3-specific Abs able to induce complement independent oncotic necrosis to tumor cells. These results contribute to reinforcing the therapeutic potential of anti-idiotypic vaccines and the importance of NeuGcGM3 ganglioside as antitumor target.
Collapse
Affiliation(s)
- Ana María Hernández
- Department of Antibody Engineering, Center of Molecular Immunology, Havana 11600, Cuba.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The natural or innate immunity is the first-line defense against transformed cells. It guarantees the recognition and removal of malignant cells at an early stage and makes manifest cancers an exceptional event. Natural antibodies, which are predominantly IgM molecules, play a major role in these defense mechanisms and they have some typical features in common. They are coded by specific germline families and equipped mainly with lambda-chains, in contrast to the majority of circulating antibodies. The targets that are recognized by these antibodies are not newly synthesized proteins, but instead post-translationally modified carbohydrate structures on membrane-bound glycoproteins and glycolipids. Another typical feature of these natural IgM antibodies is their ability to induce apoptosis in vitro and in vivo in a death domain-independent manner. These results show that natural IgM antibodies represent a huge reservoir of therapeutic antibodies.
Collapse
Affiliation(s)
- H Peter Vollmers
- Institute of Pathology, University of Würzburg, Josef-Schneider-Street 2, D-97080 Würzburg, Germany.
| | | |
Collapse
|
35
|
Mehta S, Chhetra R, Srinivasan R, Sharma SC, Behera D, Ghosh S. Detection of disease specific sialoglycoconjugate specific antibodies in bronchoalveolar lavage fluid of non-small cell lung cancer patients. Glycoconj J 2010; 27:491-500. [DOI: 10.1007/s10719-010-9294-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/30/2010] [Accepted: 04/28/2010] [Indexed: 01/22/2023]
|
36
|
Asare N, Tekpli X, Rissel M, Solhaug A, Landvik N, Lecureur V, Podechard N, Brunborg G, Lag M, Lagadic-Gossmann D, Holme JA. Signalling pathways involved in 1-nitropyrene (1-NP)-induced and 3-nitrofluoranthene (3-NF)-induced cell death in Hepa1c1c7 cells. Mutagenesis 2009; 24:481-93. [DOI: 10.1093/mutage/gep032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
37
|
Abstract
The innate or natural immunity is the basis and key for all immune processes. Specific receptors on macrophages, dendrites, NK cells and natural antibodies producing B cells act as a first line defense and remove all 'foreign' and potentially harmful substances, that is, bacteria, viruses, cellular waste, modified molecules and, most importantly, cancer cells. Recognition and removal of transformed cells is a lifelong task of immune surveillance processes. Antibodies are hallmark components of this anti-cancer activity. To investigate their nature, specificity, and function, we used the human hybridoma technology for isolating antibodies from cancer patients. These were then tested with a panel of assays against cancer cell lines in vitro and in vivo. Interestingly, all the tumor-specific antibodies we found were germ-line coded and belonged nearly exclusively to the IgM class. Furthermore, they all bound to new carbohydrates on post-translationally modified cell surface receptors on malignant cells. So far no affinity maturated immunoglobulins detecting tumor-specific peptides were found. However, only the presentation of peptide motifs can create an immunological memory. In general malignant cells are detected at very early precursor stages and manifest tumors can be considered as exceptional events. In addition, malignant cells are neither infectious nor hide intracellularly like viruses and some bacteria. Therefore, it makes sense that anti-tumor immunity seems to be solely a part of the natural immunity and a memory is not needed and therefore not induced. This indicates that the tumor immunity seems to be restricted to innate immune mechanisms and the instruments used by nature, like natural antibodies, are obviously excellent therapeutics.
Collapse
|
38
|
Relationship between oxidized LDL antibodies and different stages of esophageal carcinoma. Arch Med Res 2008; 39:760-7. [PMID: 18996289 DOI: 10.1016/j.arcmed.2008.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/12/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND The aim of the study was to evaluate the association of antibodies against oxidized low-density lipoproteins (oxLDL-Ab) with esophageal carcinogenic progression. METHODS All 40- to 69-year-old residents from Feicheng were screened for esophageal lesions by endoscopic staining with 1.2% iodine solution combined with pathological evaluations. In this study there were 33 controls with normal esophageal squamous epithelium cells, 37 patients with basal cell hyperplasia, 47 with esophageal squamous cell dysplasia, and 43 with esophageal squamous cell carcinoma (ESCC). OxLDL-Ab was determined by ELISA. Total cholesterol (TC), high-density lipoproteins (HDL), triglycerides, serum albumin and blood pressure were co-estimated. Analysis of covariance (ANCOVA) was used when comparing oxLDL-Ab among the four groups to control the influence of covariates. Cumulative logistic model was applied to study the influencing factors for the multistage development of esophageal carcinoma. RESULTS The level of oxLDL-Ab decreased gradually along with the different stages of esophageal carcinogenic progression, with the ESCC group being the lowest after controlling for possible covariates. Cumulative logistic model showed that oxLDL-Ab had a negative correlation with the development of esophageal carcinoma. LDL, HDL, and TC were also decreased in patients with ESCC. CONCLUSIONS Antibodies against oxLDL were decreased in patients with esophageal carcinoma. Although the unambiguous role of oxLDL-Ab needs further studies to elucidate, the results may give us some insight in the research of etiological factors for esophagael cancer in the future.
Collapse
|
39
|
Abstract
The chaperone GRP78 is a member of the heat-shock protein 70 (HSP70) family and is responsible for cellular homeostasis by preventing stress-induced apoptosis. GRP78 is expressed in all cells of the body. In malignant cells, which are permanently exposed to environmental stress, GRP78 is overexpressed and increased levels can be found in the cytoplasm and on the cell membrane. Thus, GRP78 promotes tumor proliferation, survival, metastases and resistance to a wide variety of therapies. Like other tumor-specific membrane molecules, GRP78 can also be present on cancer cells in a variant form. This modification qualifies it as a target for immune surveillance and antibody responses. The fully human monoclonal IgM antibody, SAM-6, was isolated from a gastric cancer patient and it binds to a new variant of GRP78 with a molecular weight of 82 kDa. The epitope is an O-linked carbohydrate moiety and is specific for malignant cells. These data show that cancer-specific modifications of cell-surface protection molecules are (a) subject of an immune response and (b) ideal targets for new therapeutical approaches.
Collapse
|
40
|
Vollmers HP, Brändlein S. Tumors: too sweet to remember? Mol Cancer 2007; 6:78. [PMID: 18053197 PMCID: PMC2217531 DOI: 10.1186/1476-4598-6-78] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/04/2007] [Indexed: 01/09/2023] Open
Abstract
Immunity, based on a natural and an educated system, is responsible for recognition and elimination of infectious particles, cellular waste, modified self and transformed cells. This dual system guarantees that dangerous particles are removed immediately after appearance and that a memory with maturated weapons exists, if the organism is re-infected by the same particle. For malignant cells, however, the immune response seems to be restricted to innate immunity, because at least for the humoral response, all so far detected tumor-specific antibodies belong to the natural immunity. In this review we try to explain why malignant cells might be "too sweet" to induce a memory.
Collapse
Affiliation(s)
- H Peter Vollmers
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str, 2, D-97080 Würzburg, Germany.
| | | |
Collapse
|
41
|
Abstract
Immunity is not only responsible for recognition and elimination of infectious particles, but also for removal of cellular waste, modified self structures and transformed cells. Innate or natural immunity acts as a first line defense and is also the link to acquired immunity and memory. A striking phenomenon of immunity against malignant cells is that neither in animals nor in humans affinity-maturated tumor-specific IgG antibodies have been detected so far. All tumor-specific isolated antibodies were germ-line coded natural IgM antibodies. It's also a fact that these IgM's preferentially bind to carbohydrate epitopes on post-transcriptionally modified surface receptors and that they all induce a cancer-specific apoptosis, by triggering the intrinsic apoptotic pathway. From an evolutionary point of view, this makes sense because cancer cells are not infectious, so there is no need for memory. Natural IgMs bind to conservative structures because they are coded by a limited set of genes and they use apoptosis, the "clean" way of killing, to avoid inflammatory processes.
Collapse
Affiliation(s)
- H Peter Vollmers
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.
| | | |
Collapse
|
42
|
Tavian D, Colombo R. Improved cytochemical method for detecting Jordans' bodies in neutral lipid storage diseases. J Clin Pathol 2007; 60:956-8. [PMID: 17293389 PMCID: PMC1994506 DOI: 10.1136/jcp.2006.044917] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Daniela Tavian
- Laboratory of Human Molecular Biology and Genetics, Catholic University of the Sacred Heart, Milan, Italy
| | | |
Collapse
|
43
|
Brändlein S, Rauschert N, Rasche L, Dreykluft A, Hensel F, Conzelmann E, Müller-Hermelink HK, Vollmers HP. The human IgM antibody SAM-6 induces tumor-specific apoptosis with oxidized low-density lipoprotein. Mol Cancer Ther 2007; 6:326-33. [PMID: 17237291 DOI: 10.1158/1535-7163.mct-06-0399] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipids are essential for normal and malignant cells during growth and differentiation. The turnover is strictly regulated because an uncontrolled uptake and accumulation is cytotoxic and can lead to lipoapoptosis: lipoptosis. The human monoclonal antibody SAM-6 binds to a cell surface receptor on malignant cells and to oxidized low-density lipoprotein (LDL). SAM-6 induces an excess of intracellular lipids, by overfeeding malignant cells with oxidized LDL, via a receptor-mediated endocytosis. The treated cells overaccumulate depots of cholesteryl esters and triglycerides. This lipid overaccumulation is tumor specific; nonmalignant cells neither bind the antibody nor harvest lipids after incubation. Because for both forms of apoptosis, the death domain dependent ("extrinsic") and independent ("intrinsic"), the activation of proteases is crucial, we also investigated this pathway in more detail. It was found that shortly after internalization of antibody/oxidized LDL/receptor complex and formation of lipid depots, cytochrome c is released by mitochondria. Followed by this, initiator caspase-8 and caspase-9 and effector caspase-3 and caspase-6 are activated. The mechanism of mitochondrial trigger (e.g., by free fatty acids) is under investigation. However, the present data indicate that the SAM-6 antibody induces an intrinsic-like form of apoptosis by overfeeding malignant cells with lipoproteins.
Collapse
|
44
|
De Geer A, Kiessling R, Levitsky V, Levitskaya J. Cytotoxic T Lymphocytes Induce Caspase-Dependent and -Independent Cell Death in Neuroblastomas in a MHC-Nonrestricted Fashion. THE JOURNAL OF IMMUNOLOGY 2006; 177:7540-50. [PMID: 17114423 DOI: 10.4049/jimmunol.177.11.7540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The MHC class I- restricted processing and presentation pathway is frequently nonfunctional in tumor cells; therefore, the direct targeting of tumor cells by CTLs may be difficult, if at all possible, to achieve. We used neuroblastoma (NB), which represents a striking example of a tumor with an impaired MHC class I pathway, as a model to study bystander effects of activated T lymphocytes on tumor cells. We found that NB cell lines are susceptible to killing by differentiated CD8(+) CTL clones in a MHC class I-nonrestricted manner that involves two programs of cell death distinguished on the basis of different kinetics, sensitivities to caspase inhibitors, and cytokine-blocking reagents. The "early" death exhibited characteristic features of apoptosis, whereas the "delayed" caspase-independent death exhibited features associated with necrosis and was partially inhibited by TNF-alpha-blocking and prevented by overexpression of Bcl-2 or Bcl-x(L). Our data reveal a previously unappreciated complexity of death pathways induced in tumor cells by immune activation and suggest that redirecting nonspecific effector CTLs to even a small proportion of NB cells or activating CTLs in a tumor's proximity may have therapeutic effects in patients with NB.
Collapse
Affiliation(s)
- Anna De Geer
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, S-17176 Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Vollmers HP, Brändlein S. Natural IgM antibodies: the orphaned molecules in immune surveillance. Adv Drug Deliv Rev 2006; 58:755-65. [PMID: 16820243 DOI: 10.1016/j.addr.2005.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 05/06/2006] [Indexed: 12/21/2022]
Abstract
Natural IgM antibodies are typical victims of prejudices which originated in the mid 80 s. Over the years, these molecules were considered as the pariahs among the immune competent molecules and their characteristic properties, like low affinity, cross-reactivity and pentameric structure, were assessed as useless, difficult, nebulous, etc. Today, mainly based on a few scientists' persistent work and the key discoveries on innate immune recognition, natural IgM antibodies are "back on stage". Their role in the immune response against bacteria, viruses, fungi and possibly modified self-components as well as in therapy and diagnosis of malignancies is accepted. All the so far negatively judged features are seen in a different light, e.g. low affinity seems to be good for function and does not exclude specificity, and cross-reactivity is no longer judged as unspecific, but instead as a very economic way of immune recognition. And at last, with the use of natural IgM antibodies, a new field of tumor-specific targets has been encountered, the carbo-neo-epitopes. Therefore, by having learned from nature, the renaissance of natural IgM antibodies opens a new area of cancer therapeutics and diagnostics.
Collapse
Affiliation(s)
- H Peter Vollmers
- Institute for Pathology, University Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.
| | | |
Collapse
|
46
|
Abstract
Cancer patients receiving antibodies as monotherapy have benefited from these treatments. However, significant improvements can be made that should make the therapy more effective. Applying lessons learned from the natural oligoclonal antibody response that cancer patients mount to their own tumours suggests that cocktails of monoclonal antibodies could be formulated, which may be more effective in treating cancers. The next phase of antibody immunotherapy will include cocktails of monoclonal antibodies. Various requirements for human antibody cocktails are discussed, as well as potential limitations of this approach.
Collapse
Affiliation(s)
- Mark C Glassy
- The Rajko Medenica Research Foundation, San Diego, CA 92121, USA.
| | | |
Collapse
|