1
|
Yang T, Chi Y, Wang X, Xu C, Chen X, Liu Y, Huang S, Zhu X, Zhang H, Zhuo H, Wu D. PRL-mediated STAT5B/ARRB2 pathway promotes the progression of prostate cancer through the activation of MAPK signaling. Cell Death Dis 2024; 15:128. [PMID: 38341429 PMCID: PMC10858970 DOI: 10.1038/s41419-023-06362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 02/12/2024]
Abstract
Previous study showed that higher expression of prolactin (PRL) was found in CRPC samples compared with hormone-naive prostate cancer (HNPC) and benign prostatic hyperplasia (BPH) samples. We further investigate the function of PRL in prostate cancer (PCa) and explored its downstream effects. We found heterogeneous expression of the PRLR in clinical prostate samples. The VCaP and 22Rv1 cells exhibited PRLR expression. Among the downstream proteins, STAT5B was the dominant subtype in clinical samples and cell lines. Human recombinant PRL stimulation of PCa cells with PRLR expression resulted in increased phosphorylation of STAT5B(pSTAT5B) and progression of PCa in vitro and in vivo, and STAT5B knockdown can suppress the malignant behavior of PCa. To understand the mechanism further, we performed Bioinformatic analysis, ChIP qPCR, and luciferase reporter gene assay. The results revealed that ARRB2 was the transcription target gene of STAT5B, and higher expression of ARRB2 was related to higher aggression and poorer prognosis of PCa. Additionally, Gene set enrichment analysis indicated that higher expression of ARRB2 was significantly enriched in the MAPK signaling pathway. Immunohistochemistry (IHC) demonstrated elevated pSTAT5B, ARRB2, and pERK1/2 expression levels in CRPC tissues compared to HNPC and BPH. Mechanically, ARRB2 enhanced the activation of the MAPK pathway by binding to ERK1/2, thereby promoting the phosphorylation of ERK1/2 (pERK1/2). In conclusion, our study demonstrated that PRL stimulation can promote the progression of PCa through STAT5B/ARRB2 pathway and activation of MAPK signaling, which can be suppressed by intervention targeting STAT5B. Blockade of the STAT5B can be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Tao Yang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, The Third People's Hospital of Chengdu/The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yongnan Chi
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin'an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoyang Zhang
- Department of Pathology, Baoshan Branch, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhuo
- Department of Urology, The Third People's Hospital of Chengdu/The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Xi Y, Wen R, Zhang R, Dong Q, Hou S, Zhang S. Genetic evidence supporting a causal role of Janus kinase 2 in prostate cancer: a Mendelian randomization study. Aging Male 2023; 26:2257300. [PMID: 37706641 DOI: 10.1080/13685538.2023.2257300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Janus kinase-2 (JAK2) inhibitors are now being tried in basic research and clinical practice in prostate cancer (PCa). However, the causal relationship between JAK2 and PCa has not been uniformly described. Here, we examined the cause-effect relation between JAK2 and PCa. METHODS Two-sample Mendelian randomization (MR) analysis of genetic variation data of JAK2, PCa from IEU OpenGWAS Project was performed by inverse variance weighted, MR-Egger, and weighted median. Cochran's Q heterogeneity test and MR-Egger multiplicity analysis were performed to normalize the MR analysis results to reduce the effect of bias on the results. RESULTS Five instrumental variables were identified for further MR analysis. Specifically, combining the inverse variance-weighted (OR: 1.0009, 95% CI: 1.0001-1.0015, p = 0.02) and weighted median (OR: 1.0009, 95% CI: 1.0000-1.0017, p = 0.03). Sensitivity analysis showed that there was no heterogeneity (p = 0.448) and horizontal multiplicity (p = 0.770) among the instrumental variables. CONCLUSIONS We found JAK2 was associated with the development of PCa and was a risk factor for PCa, which might be instructive for the use of JAK2 inhibitors in PCa patients.
Collapse
Affiliation(s)
- Yujia Xi
- Department of Urology, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Rui Wen
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Ran Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Qirui Dong
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Sijia Hou
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
- Department of Neurology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Maninang C, Li J, Li W. Expression and prognostic role of STAT5a across cancer types. Biosci Rep 2023; 43:BSR20230612. [PMID: 37369132 PMCID: PMC10407157 DOI: 10.1042/bsr20230612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
Studies examining the role of signal transducer and activator of transcription 5 (STAT5) in various cancers have produced controversial results. To address this controversy, we examined the prognostic role of STAT5a in cancer patients across multiple cancers. Transcription levels of STAT5a between tumors and normal tissues, obtained from public databases, were analyzed for statistical differences using Cox regression analysis with the outcome as overall survival and covariate of interest as high STAT5a expression. Meta-analysis was then conducted to summarize the hazard ratio estimate from the Cox regression analyses. We found that STAT5a was significantly under-expressed in breast, lung, and ovarian cancers, while STAT5a was significantly overexpressed in lymphoid neoplasm diffuse large B-cell lymphoma, glioblastoma, and glioma. High STAT5a expression was significantly associated with favorable survival in bladder cancer (lnHR = -0.8689 [-1.4087, -0.3292], P-value = 0.0016), breast cancer (lnHR = -0.7805 [-1.1394, -0.4215], P-value < 0.0001) and lung cancer (lnHR = -0.3255 [-0.6427, -0.0083], P-value = 0.0443). After adjusting for clinicopathological factors, high STAT5a expression remained significantly associated with favorable survival in breast cancer (lnHR = -0.6091 [-1.0810, -0.1372], P-value = 0.0114). These results suggest that higher STAT5a expression is associated with favorable overall survival in breast cancer, and therefore might have protective effects, and that STAT5a expression could be a potential prognostic biomarker, especially in breast cancer. However, the prognostic role of STAT5a is dependent on cancer type.
Collapse
Affiliation(s)
- Christine Maninang
- Department of Medicine, University of California San Diego, La Jolla, CA, U.S.A
| | - Jinghong Li
- Department of Medicine, University of California San Diego, La Jolla, CA, U.S.A
| | - Willis X. Li
- Department of Medicine, University of California San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
4
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
5
|
Novel circular RNA circ_0086722 drives tumor progression by regulating the miR-339-5p/STAT5A axis in prostate cancer. Cancer Lett 2022; 533:215606. [DOI: 10.1016/j.canlet.2022.215606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
|
6
|
Second-Generation Jak2 Inhibitors for Advanced Prostate Cancer: Are We Ready for Clinical Development? Cancers (Basel) 2021; 13:cancers13205204. [PMID: 34680353 PMCID: PMC8533841 DOI: 10.3390/cancers13205204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Prostate Cancer (PC) is currently estimated to affect 1 in 9 men and is the second leading cause of cancer in men in the US. While androgen deprivation therapy, which targets the androgen receptor, is one of the front-line therapies for advanced PC and for recurrence of organ-confined PC treated with surgery, lethal castrate-resistant PC develops consistently in patients. PC is a multi-focal cancer with different grade carcinoma areas presenting simultaneously. Jak2-Stat5 signaling pathway has emerged as a potentially highly effective molecular target in PCs with positive areas for activated Stat5 protein. Activated Jak2-Stat5 signaling can be readily targeted by the second-generation Jak2-inhibitors that have been developed for myeloproliferative and autoimmune disorders and hematological malignancies. In this review, we analyze and summarize the Jak2 inhibitors that are currently in preclinical and clinical development. Abstract Androgen deprivation therapy (ADT) for metastatic and high-risk prostate cancer (PC) inhibits growth pathways driven by the androgen receptor (AR). Over time, ADT leads to the emergence of lethal castrate-resistant PC (CRPC), which is consistently caused by an acquired ability of tumors to re-activate AR. This has led to the development of second-generation anti-androgens that more effectively antagonize AR, such as enzalutamide (ENZ). However, the resistance of CRPC to ENZ develops rapidly. Studies utilizing preclinical models of PC have established that inhibition of the Jak2-Stat5 signaling leads to extensive PC cell apoptosis and decreased tumor growth. In large clinical cohorts, Jak2-Stat5 activity predicts PC progression and recurrence. Recently, Jak2-Stat5 signaling was demonstrated to induce ENZ-resistant PC growth in preclinical PC models, further emphasizing the importance of Jak2-Stat5 for therapeutic targeting for advanced PC. The discovery of the Jak2V617F somatic mutation in myeloproliferative disorders triggered the rapid development of Jak1/2-specific inhibitors for a variety of myeloproliferative and auto-immune disorders as well as hematological malignancies. Here, we review Jak2 inhibitors targeting the mutated Jak2V617F vs. wild type (WT)-Jak2 that are currently in the development pipeline. Among these 35 compounds with documented Jak2 inhibitory activity, those with potency against WT-Jak2 hold strong potential for advanced PC therapy.
Collapse
|
7
|
Ebersbach C, Beier AMK, Thomas C, Erb HHH. Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers (Basel) 2021; 13:4854. [PMID: 34638338 PMCID: PMC8508518 DOI: 10.3390/cancers13194854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in several biological processes such as immune response, cell survival, and cell growth. However, they have also been implicated in the development and progression of several cancers, including prostate cancer (PCa). Although the members of the STAT protein family are structurally similar, they convey different functions in PCa. STAT1, STAT3, and STAT5 are associated with therapy resistance. STAT1 and STAT3 are involved in docetaxel resistance, while STAT3 and STAT5 are involved in antiandrogen resistance. Expression of STAT3 and STAT5 is increased in PCa metastases, and together with STAT6, they play a crucial role in PCa metastasis. Further, expression of STAT3, STAT5, and STAT6 was elevated in advanced and high-grade PCa. STAT2 and STAT4 are currently less researched in PCa. Since STATs are widely involved in PCa, they serve as potential therapeutic targets. Several inhibitors interfering with STATs signaling have been tested unsuccessfully in PCa clinical trials. This review focuses on the respective roles of the STAT family members in PCa, especially in metastatic disease and provides an overview of STAT-inhibitors evaluated in clinical trials.
Collapse
Affiliation(s)
- Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| |
Collapse
|
8
|
Kukkula A, Ojala VK, Mendez LM, Sistonen L, Elenius K, Sundvall M. Therapeutic Potential of Targeting the SUMO Pathway in Cancer. Cancers (Basel) 2021; 13:4402. [PMID: 34503213 PMCID: PMC8431684 DOI: 10.3390/cancers13174402] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a dynamic and reversible post-translational modification, characterized more than 20 years ago, that regulates protein function at multiple levels. Key oncoproteins and tumor suppressors are SUMO substrates. In addition to alterations in SUMO pathway activity due to conditions typically present in cancer, such as hypoxia, the SUMO machinery components are deregulated at the genomic level in cancer. The delicate balance between SUMOylation and deSUMOylation is regulated by SENP enzymes possessing SUMO-deconjugation activity. Dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to the tumorigenesis and drug resistance of various cancers in a context-dependent manner. Many molecular mechanisms relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance of SUMO machinery components as therapeutic targets. Recent advances in the development of inhibitors targeting SUMOylation and deSUMOylation permit evaluation of the therapeutic potential of targeting the SUMO pathway in cancer. Finally, the first drug inhibiting SUMO pathway, TAK-981, is currently also being evaluated in clinical trials in cancer patients. Intriguingly, the inhibition of SUMOylation may also have the potential to activate the anti-tumor immune response. Here, we comprehensively and systematically review the recent developments in understanding the role of SUMOylation in cancer and specifically focus on elaborating the scientific rationale of targeting the SUMO pathway in different cancers.
Collapse
Affiliation(s)
- Antti Kukkula
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
| | - Veera K. Ojala
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, FI-20520 Turku, Finland
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
| | - Lourdes M. Mendez
- Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Cancer Research Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Klaus Elenius
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| |
Collapse
|
9
|
Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers (Basel) 2020; 12:cancers12113412. [PMID: 33217941 PMCID: PMC7724566 DOI: 10.3390/cancers12113412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary There is an unmet medical need for new and potent pharmacological inhibitor drugs for the protein Stat5 that would be orally bioavailable for treatment of several different cancers. Previous work has established a critical role for Stat5 in molecular and clinical progression of prostate cancer to metastatic disease and in the pathogenesis of several leukemias and blood-based disorders. Our group has developed a potent pharmacological inhibitor for Stat5, IST5-002, which targets two critical steps in the activation process of Stat5 in cancer cells. In the present work, we evaluated the characteristics of IST5-002 for further development into a cancer drug. We evaluated whether IST5-002 affects the Stat5 targets genes in prostate cancer, defined more closely its mechanisms of action, and investigated its initial toxicity as the basis for further development in order to enable its entrance into clinical testing in patients. Our study supports optimization of IST5-002 compound for oral bioavailability and for clinical development. Abstract Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98–0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.
Collapse
|
10
|
Holland CT, Hsu J, Walker AM. S179D Prolactin Sensitizes Human PC3 Prostate Cancer Xenografts to Anti-tumor Effects of Well-Tolerated Doses of Calcitriol. ACTA ACUST UNITED AC 2020; 4:442-456. [PMID: 33179012 PMCID: PMC7655011 DOI: 10.26502/jcsct.5079085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Calcitriol has been shown to have multiple anti-prostate cancer effects both in vitro and in xenograft models, and associations between low levels of calcitriol and more aggressive forms of prostate cancer have been observed clinically. However, the concentrations of calcitriol required to have a substantive anti-cancer effect in vivo are toxic. In previous work, we had observed that the selective prolactin receptor modulator, S179D PRL, sensitized prostate cancer cells in vitro to physiological concentrations of calcitriol through an ability to increase expression of the vitamin D receptor. Here, we have investigated whether administration of S179D PRL would likewise sensitize androgen-insensitive human PC3 xenografts in vivo and do so without inducing tissue damage akin to hypervitaminosis D. Using low concentrations of both S179D PRL (250 ng/h) and calcitriol (up to 220 pg/h), we found no effect of each alone or in combination on the growth rate of tumors. However, there was increased central tumor death with their combination that was more than additive at 250 ng S179D PRL and 220 pg calcitriol per hour. Both S179D PRL and calcitriol alone were antiangiogenic, but their antiangiogenic effects were not additive. Also, both S179D PRL and calcitriol alone increased the number of apoptotic cells in tumor sections, but their combination reduced the number, suggesting more effective clearance of apoptotic cells. Histopathology of the livers and kidneys showed no changes consistent with hypervitaminosis D. We conclude that dual therapy holds promise as a means to harness the anti-tumor effects of well-tolerated doses of calcitriol.
Collapse
Affiliation(s)
| | | | - Ameae M. Walker
- Corresponding Author: Dr. Ameae M. Walker, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA, Tel: 1-951-565-1339;
| |
Collapse
|
11
|
Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020; 9:cells9102297. [PMID: 33076315 PMCID: PMC7602614 DOI: 10.3390/cells9102297] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is associated with the regulation of essential cellular mechanisms, such as proliferation, invasion, survival, inflammation, and immunity. Aberrant JAK/STAT signaling contributes to cancer progression and metastatic development. STAT proteins play an essential role in the development of cervical cancer, and the inhibition of the JAK/STAT pathway may be essential for enhancing tumor cell death. Persistent activation of different STATs is present in a variety of cancers, including cervical cancer, and their overactivation may be associated with a poor prognosis and poor overall survival. The oncoproteins E6 and E7 play a critical role in the progression of cervical cancer and may mediate the activation of the JAK/STAT pathway. Inhibition of STAT proteins appears to show promise for establishing new targets in cancer treatment. The present review summarizes the knowledge about the participation of the different components of the JAK/STAT pathway and the participation of the human papillomavirus (HPV) associated with the process of cellular malignancy.
Collapse
|
12
|
Chen X, Kong J, Diao X, Cai J, Zheng J, Xie W, Qin H, Huang J, Lin T. Depression and prostate cancer risk: A Mendelian randomization study. Cancer Med 2020; 9:9160-9167. [PMID: 33027558 PMCID: PMC7724297 DOI: 10.1002/cam4.3493] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
Background The association between depression and prostate carcinogenesis has been reported in observational studies but the causality from depression on prostate cancer (PCa) remained unknown. We aimed to assess the causal effect of depression on PCa using the two‐sample Mendelian randomization (MR) method. Methods Two sets of genetics instruments were used for analysis, derived from publicly available genetic summary data. One was 44 single‐nucleotide polymorphisms (SNPs) robustly associated with major depressive disorder (MDD) and the other was two SNPs related with depressive status as ever depressed for a whole week. Inverse‐variance weighted method, weighted median method, MR‐Egger regression, MR Pleiotropy RESidual Sum, and Outlier test were used for MR analyses. Results No evidence for an effect of MDD on PCa risk was found in inverse‐variance weighted (OR: 1.12, 95% CI: 0.97‐1.30, p = 0.135), MR‐Egger (OR 0.89, 95% CI: 0.29‐2.68, p = 0.833), and weighted median (OR: 1.08, 95% CI: 0.92‐1.27, p = 0.350). Also, no strong evidence for an effect of depressive status on PCa incidence was found using the inverse‐variance weighted method (OR 0.72, 95% CI: 0.35‐1.47, p = 0.364). Conclusions The large MR analysis indicated that depression may not be causally associated with a risk of PCa.
Collapse
Affiliation(s)
- Xiong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiayao Diao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiahao Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Guangzhou, P. R. China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Haide Qin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
13
|
Hall WA, Sabharwal L, Udhane V, Maranto C, Nevalainen MT. Cytokines, JAK-STAT Signaling and Radiation-Induced DNA Repair in Solid Tumors: Novel Opportunities for Radiation Therapy. Int J Biochem Cell Biol 2020; 127:105827. [PMID: 32822847 DOI: 10.1016/j.biocel.2020.105827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
A number of solid tumors are treated with radiation therapy (RT) as a curative modality. At the same time, for certain types of cancers the applicable doses of RT are not high enough to result in a successful eradication of cancer cells. This is often caused by limited pharmacological tools and strategies to selectively sensitize tumors to RT while simultaneously sparing normal tissues from RT. We present an outline of a novel strategy for RT sensitization of solid tumors utilizing Jak inhibitors. Here, recently published pre-clinical data are reviewed which demonstrate the promising role of Jak inhibition in sensitization of tumors to RT. A wide number of currently approved Jak inhibitors for non-malignant conditions are summarized including Jak inhibitors currently in clinical development. Finally, intersection between Jak/Stat and the levels of serum cytokines are presented and discussed as they relate to susceptibility to RT.
Collapse
Affiliation(s)
- William A Hall
- Department of Radiation Oncology and Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lavannya Sabharwal
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Vindhya Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cristina Maranto
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
14
|
Erb HHH, Bodenbender J, Handle F, Diehl T, Donix L, Tsaur I, Gleave M, Haferkamp A, Huber J, Fuessel S, Juengel E, Culig Z, Thomas C. Assessment of STAT5 as a potential therapy target in enzalutamide-resistant prostate cancer. PLoS One 2020; 15:e0237248. [PMID: 32790723 PMCID: PMC7425943 DOI: 10.1371/journal.pone.0237248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Despite enzalutamide's efficacy in delaying the progression of metastatic castration-resistant prostate cancer (CRPC), resistance to this anti-androgen inevitably occurs. Several studies have revealed that the signal transducer and activator of transcription (STAT) 5 plays a role in tumour progression and development of drug resistance such as enzalutamide. Data mining revealed heterogeneous expression of STAT5 in enzalutamide-treated mCRPC patients and enzalutamide-resistant prostate cancer (PCa). Isobologram analysis revealed that the STAT5 inhibitor pimozide combined with enzalutamide has? additive and synergistic inhibitory effects on cell viability in the used models. Functional analysis with siRNA-mediated STAT5 knockdown yielded divergent results. The LNCaP-derived cell line MR49F could be resensitised to enzalutamide by siRNA-mediated STAT5b-knock-down. In contrast, neither STAT5a nor STAT5b knockdown resensitised enzalutamide-resistant LAPC4-EnzaR cells to enzalutamide. In conclusion, our results indicate that STAT5 may be a possible target in a subgroup of enzalutamide-resistant PCa. However, based on the data presented here, a general role of STAT5 in enzalutamide-resistance and its potential as a therapeutic target could not be shown.
Collapse
Affiliation(s)
- Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Julia Bodenbender
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Florian Handle
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tamara Diehl
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Lukas Donix
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Johannes Huber
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Zoran Culig
- Experimental Urology, Department of Urology, University of Innsbruck, Innsbruck, Austria
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Predicting and affecting response to cancer therapy based on pathway-level biomarkers. Nat Commun 2020; 11:3296. [PMID: 32620799 PMCID: PMC7335104 DOI: 10.1038/s41467-020-17090-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Identifying robust, patient-specific, and predictive biomarkers presents a major obstacle in precision oncology. To optimize patient-specific therapeutic strategies, here we couple pathway knowledge with large-scale drug sensitivity, RNAi, and CRISPR-Cas9 screening data from 460 cell lines. Pathway activity levels are found to be strong predictive biomarkers for the essentiality of 15 proteins, including the essentiality of MAD2L1 in breast cancer patients with high BRCA-pathway activity. We also find strong predictive biomarkers for the sensitivity to 31 compounds, including BCL2 and microtubule inhibitors (MTIs). Lastly, we show that Bcl-xL inhibition can modulate the activity of a predictive biomarker pathway and re-sensitize lung cancer cells and tumors to MTI therapy. Overall, our results support the use of pathways in helping to achieve the goal of precision medicine by uncovering dozens of predictive biomarkers.
Collapse
|
16
|
Costanzo-Garvey DL, Keeley T, Case AJ, Watson GF, Alsamraae M, Yu Y, Su K, Heim CE, Kielian T, Morrissey C, Frieling JS, Cook LM. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother 2020; 69:1113-1130. [PMID: 32114681 PMCID: PMC7230043 DOI: 10.1007/s00262-020-02527-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Bone metastatic prostate cancer (BM-PCa) significantly reduces overall patient survival and is currently incurable. Current standard immunotherapy showed promising results for PCa patients with metastatic, but less advanced, disease (i.e., fewer than 20 bone lesions) suggesting that PCa growth in bone contributes to response to immunotherapy. We found that: (1) PCa stimulates recruitment of neutrophils, the most abundant immune cell in bone, and (2) that neutrophils heavily infiltrate regions of prostate tumor in bone of BM-PCa patients. Based on these findings, we examined the impact of direct neutrophil-prostate cancer interactions on prostate cancer growth. Bone marrow neutrophils directly induced apoptosis of PCa in vitro and in vivo, such that neutrophil depletion in bone metastasis models enhanced BM-PCa growth. Neutrophil-mediated PCa killing was found to be mediated by suppression of STAT5, a transcription factor shown to promote PCa progression. However, as the tumor progressed in bone over time, neutrophils from late-stage bone tumors failed to elicit cytotoxic effector responses to PCa. These findings are the first to demonstrate that bone-resident neutrophils inhibit PCa and that BM-PCa are able to progress via evasion of neutrophil-mediated killing. Enhancing neutrophil cytotoxicity in bone may present a novel therapeutic option for bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Diane L Costanzo-Garvey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Tyler Keeley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gabrielle F Watson
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Massar Alsamraae
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
- Department of Medical Education, California University of Science and Medicine, San Bernadino, CA, USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jeremy S Frieling
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA.
| |
Collapse
|
17
|
LncRNA SNHG17 aggravated prostate cancer progression through regulating its homolog SNORA71B via a positive feedback loop. Cell Death Dis 2020; 11:393. [PMID: 32447342 PMCID: PMC7245601 DOI: 10.1038/s41419-020-2569-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/25/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PC) is a prevalent male malignancy with high occurrence rate. Recent studies have showed that small nucleolar host genes (SNHGs) and their homolog small nucleolar RNAs (snoRNAs) elicit regulatory functions in carcinogenesis. Present study aimed to investigate the role of SNHG17 and its homolog SNORA71B in PC. Function of SNHG17 and SNORA71B in PC is detected by CCK-8, colony formation, flow cytometry analysis of apoptosis, and transwell migration assay. The mechanism whereby SNHG17 regulated SNORA71B was detected by RIP, pulldown, ChIP, and luciferase reporter assays. Results depicted that transcript 6 of SNHG17 and SNORA71B were upregulated in PC. Knockdown of SNHG17 or SNORA71B weakened proliferation, invasion, migration, and epithelial-to-mesenchymal transition (EMT) and strengthened apoptosis. Mechanistically, SNHG17 and SNORA71B were transcriptionally activated by signal transducer and activator of transcription 5A (STAT5A). SNHG17 positively regulated SNORA71B in PC cell lines and other cell lines. SNHG17 sponged miR-339-5p to upregulate STAT5A and therefore to cause transactivation of SNORA71B. Rescue experiments delineated that SNORA71B was required for the regulation of SNHG17 on PC. Moreover, SNHG17 silence hindered tumorigenesis of PC in vivo. In conclusion, current study first revealed that lncRNA SNHG17 aggravated prostate cancer progression through regulating its homolog SNORA71B via a positive feedback loop, which might do help to the pursuit of better PC treatment.
Collapse
|
18
|
Mota de Sá P, Richard AJ, Stephens JM. Bromodomain and Extraterminal Inhibition by JQ1 Produces Divergent Transcriptional Regulation of Suppressors of Cytokine Signaling Genes in Adipocytes. Endocrinology 2020; 161:5686880. [PMID: 31875887 PMCID: PMC7007879 DOI: 10.1210/endocr/bqz034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway has cell-specific functions. Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of JAK-STAT signaling. STAT5 plays a significant role in adipocyte development and function, and bromodomain and extraterminal (BET) proteins may be involved in STAT5 transcriptional activity. We treated 3T3-L1 adipocytes with the BET inhibitor JQ1 and observed that growth hormone (GH)-induced expression of 2 STAT5 target genes from the SOCS family, Socs3 and Cish, were inversely regulated (increased and decreased, respectively) by BET inhibition. Chromatin immunoprecipitation analyses revealed that changes in STAT5 binding did not correlate with gene expression changes. GH promoted the recruitment of the BET protein BRD2 to the Cish, but not Socs3, promoter. JQ1 treatment ablated this effect as well as the GH-induced binding of ribonucleic acid polymerase II (RNA Pol II) to the Cish transcription start site. BRD2 knockdown also suppressed GH induction of Cish, further supporting the role of BRD2 in Cish transcriptional activation. In contrast, JQ1 increased the binding of activated Pol II to the Socs3 coding region, suggesting enhanced messenger RNA (mRNA) elongation. Our finding that JQ1 transiently reduced the interaction between the positive transcription elongation factor (P-TEFb) and its inhibitor hexamethylene bis-acetamide inducible 1 (HEXIM1) is consistent with a previously described off-target effect of JQ1, whereby P-TEFb becomes more available to be recruited by genes that do not depend on BET proteins for activating transcription. These results demonstrate substantially different transcriptional regulation of Socs3 and Cish and suggest distinct roles in adipocytes for these 2 closely related proteins.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Allison J Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
- Correspondence: Jacqueline Stephens, Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70803. E-mail:
| |
Collapse
|
19
|
Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits EL, Lardon F, van Dam PA. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020; 60:41-56. [DOI: 10.1016/j.semcancer.2019.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
|
20
|
Hamzeh O, Alkhateeb A, Zheng JZ, Kandalam S, Leung C, Atikukke G, Cavallo-Medved D, Palanisamy N, Rueda L. A Hierarchical Machine Learning Model to Discover Gleason Grade-Specific Biomarkers in Prostate Cancer. Diagnostics (Basel) 2019; 9:diagnostics9040219. [PMID: 31835700 PMCID: PMC6963340 DOI: 10.3390/diagnostics9040219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/31/2022] Open
Abstract
(1) Background:One of the most common cancers that affect North American men and men worldwide is prostate cancer. The Gleason score is a pathological grading system to examine the potential aggressiveness of the disease in the prostate tissue. Advancements in computing and next-generation sequencing technology now allow us to study the genomic profiles of patients in association with their different Gleason scores more accurately and effectively. (2) Methods: In this study, we used a novel machine learning method to analyse gene expression of prostate tumours with different Gleason scores, and identify potential genetic biomarkers for each Gleason group. We obtained a publicly-available RNA-Seq dataset of a cohort of 104 prostate cancer patients from the National Center for Biotechnology Information's (NCBI) Gene Expression Omnibus (GEO) repository, and categorised patients based on their Gleason scores to create a hierarchy of disease progression. A hierarchical model with standard classifiers in different Gleason groups, also known as nodes, was developed to identify and predict nodes based on their mRNA or gene expression. In each node, patient samples were analysed via class imbalance and hybrid feature selection techniques to build the prediction model. The outcome from analysis of each node was a set of genes that could differentiate each Gleason group from the remaining groups. To validate the proposed method, the set of identified genes were used to classify a second dataset of 499 prostate cancer patients collected from cBioportal. (3) Results: The overall accuracy of applying this novel method to the first dataset was 93.3%; the method was further validated to have 87% accuracy using the second dataset. This method also identified genes that were not previously reported as potential biomarkers for specific Gleason groups. In particular, PIAS3 was identified as a potential biomarker for Gleason score 4 + 3 = 7, and UBE2V2 for Gleason score 6. (4) Insight: Previous reports show that the genes predicted by this newly proposed method strongly correlate with prostate cancer development and progression. Furthermore, pathway analysis shows that both PIAS3 and UBE2V2 share similar protein interaction pathways, the JAK/STAT signaling process.
Collapse
Affiliation(s)
- Osama Hamzeh
- School of Computer Science, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada; (O.H.); (J.Z.Z.)
| | - Abedalrhman Alkhateeb
- School of Computer Science, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada; (O.H.); (J.Z.Z.)
- Correspondence: (A.A.); (N.P.); (L.R.); Tel.: +1-519-253-0000 (ext. 3793) (A.A.); +1-313-874-6396 (N.P.); +1-519-253-0000 (ext. 3002) (L.R.)
| | - Julia Zhuoran Zheng
- School of Computer Science, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada; (O.H.); (J.Z.Z.)
| | - Srinath Kandalam
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada; (S.K.); (D.C.-M.)
| | - Crystal Leung
- Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, ON N6A 5C1, Canada;
| | | | - Dora Cavallo-Medved
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada; (S.K.); (D.C.-M.)
| | - Nallasivam Palanisamy
- Department of Urology, Henry Ford Health System, One Ford Place, Detroit, MI 48202, USA
- Correspondence: (A.A.); (N.P.); (L.R.); Tel.: +1-519-253-0000 (ext. 3793) (A.A.); +1-313-874-6396 (N.P.); +1-519-253-0000 (ext. 3002) (L.R.)
| | - Luis Rueda
- School of Computer Science, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada; (O.H.); (J.Z.Z.)
- Correspondence: (A.A.); (N.P.); (L.R.); Tel.: +1-519-253-0000 (ext. 3793) (A.A.); +1-313-874-6396 (N.P.); +1-519-253-0000 (ext. 3002) (L.R.)
| |
Collapse
|
21
|
Haddad BR, Erickson A, Udhane V, LaViolette PS, Rone JD, Kallajoki MA, See WA, Rannikko A, Mirtti T, Nevalainen MT. Positive STAT5 Protein and Locus Amplification Status Predicts Recurrence after Radical Prostatectomy to Assist Clinical Precision Management of Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:1642-1651. [PMID: 31292140 DOI: 10.1158/1055-9965.epi-18-1358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A significant fraction of prostate cancer patients experience post-radical prostatectomy (RP) biochemical recurrence (BCR). New predictive markers are needed for optimizing postoperative prostate cancer management. STAT5 is an oncogene in prostate cancer that undergoes amplification in 30% of prostate cancers during progression. METHODS We evaluated the significance of a positive status for nuclear STAT5 protein expression versus STAT5 locus amplification versus combined positive status for both in predicting BCR after RP in 300 patients. RESULTS Combined positive STAT5 status was associated with a 45% disadvantage in BCR in Kaplan-Meier survival analysis in all Gleason grade patients. Patients with Gleason grade group (GG) 2 and 3 prostate cancers and combined positive status for STAT5 had a more pronounced disadvantage of 55% to 60% at 7 years after RP in univariate analysis. In multivariate analysis, including the Cancer of the Prostate Risk Assessment Postsurgical nomogram (CAPRA-S) variables, combined positive STAT5 status was independently associated with a shorter BCR-free survival in all Gleason GG patients (HR, 2.34; P = 0.014) and in intermediate Gleason GG 2 or 3 patients (HR, 3.62; P = 0.021). The combined positive STAT5 status improved the predictive value of the CAPRA-S nomogram in both ROC-AUC analysis and in decision curve analysis for BCR. CONCLUSIONS Combined positive status for STAT5 was independently associated with shorter disease-free survival in univariate analysis and was an independent predictor for BCR in multivariate analysis using the CAPRA-S variables in prostate cancer. IMPACT Our results highlight potential for a novel precision medicine concept based on a pivotal role of STAT5 status in improving selection of prostate cancer patients who are candidates for early adjuvant interventions to reduce the risk of recurrence.
Collapse
Affiliation(s)
- Bassem R Haddad
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC
| | - Andrew Erickson
- Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Vindhya Udhane
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Peter S LaViolette
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Radiology and Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin
| | - Janice D Rone
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington DC
| | - Markku A Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - William A See
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Urology and Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Antti Rannikko
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.,Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
22
|
STAT5a/b Deficiency Delays, but does not Prevent, Prolactin-Driven Prostate Tumorigenesis in Mice. Cancers (Basel) 2019; 11:cancers11070929. [PMID: 31269779 PMCID: PMC6678910 DOI: 10.3390/cancers11070929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022] Open
Abstract
The canonical prolactin (PRL) Signal Transducer and Activator of Transcription (STAT) 5 pathway has been suggested to contribute to human prostate tumorigenesis via an autocrine/paracrine mechanism. The probasin (Pb)-PRL transgenic mouse models this mechanism by overexpressing PRL specifically in the prostate epithelium leading to strong STAT5 activation in luminal cells. These mice exhibit hypertrophic prostates harboring various pre-neoplastic lesions that aggravate with age and accumulation of castration-resistant stem/progenitor cells. As STAT5 signaling is largely predominant over other classical PRL-triggered pathways in Pb-PRL prostates, we reasoned that Pb-Cre recombinase-driven genetic deletion of a floxed Stat5a/b locus should prevent prostate tumorigenesis in so-called Pb-PRLΔSTAT5 mice. Anterior and dorsal prostate lobes displayed the highest Stat5a/b deletion efficiency with no overt compensatory activation of other PRLR signaling cascade at 6 months of age; hence the development of tumor hallmarks was markedly reduced. Stat5a/b deletion also reversed the accumulation of stem/progenitor cells, indicating that STAT5 signaling regulates prostate epithelial cell hierarchy. Interestingly, ERK1/2 and AKT, but not STAT3 and androgen signaling, emerged as escape mechanisms leading to delayed tumor development in aged Pb-PRLΔSTAT5 mice. Unexpectedly, we found that Pb-PRL prostates spontaneously exhibited age-dependent decline of STAT5 signaling, also to the benefit of AKT and ERK1/2 signaling. As a consequence, both Pb-PRL and Pb-PRLΔSTAT5 mice ultimately displayed similar pathological prostate phenotypes at 18 months of age. This preclinical study provides insight on STAT5-dependent mechanisms of PRL-induced prostate tumorigenesis and alternative pathways bypassing STAT5 signaling down-regulation upon prostate neoplasia progression.
Collapse
|
23
|
Interleukin-7 Contributes to the Invasiveness of Prostate Cancer Cells by Promoting Epithelial-Mesenchymal Transition. Sci Rep 2019; 9:6917. [PMID: 31061414 PMCID: PMC6502845 DOI: 10.1038/s41598-019-43294-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Precise mechanisms underlying interleukin-7 (IL-7)-mediated tumor invasion remain unclear. Thus, we investigated the role of IL-7 in tumor invasiveness using metastatic prostate cancer PC-3 cell line derivatives, and assessed the potential of IL-7 as a clinical target using a Janus kinase (JAK) inhibitor and an IL-7-blocking antibody. We found that IL-7 stimulated wound-healing migration and invasion of PC-3 cells, increased phosphorylation of signal transducer and activator of transcription 5, Akt, and extracellular signal-regulated kinase. On the other hand, a JAK inhibitor and an IL-7-blocking antibody decreased the invasiveness of PC-3 cells. IL-7 increased tumor sphere formation and expression of epithelial–mesenchymal transition (EMT) markers. Importantly, lentiviral delivery of IL-7Rα to PC-3 cells significantly increased bone metastasis in an experimental murine metastasis model compared to controls. The gene expression profile of human prostate cancer cells from The Cancer Genome Atlas revealed that EMT pathways are strongly associated with prostate cancers that highly express both IL-7 and IL-7Rα. Collectively, these data suggest that IL-7 and/or IL-7Rα are promising targets of inhibiting tumor metastasis.
Collapse
|
24
|
Abstract
The documented efficacy of COX-2 inhibitors in cancer chemoprevention and in suppression of metastasis is predominantly attributed to inflammatory responses, whereas their effects on tumor-stromal interaction are poorly understood. Through single-cell transcriptome analyses in an immune-compromised mouse xenograft model and in vitro reconstitution experiments, we uncover a tumor-stromal paracrine pathway in which secretion by tumor cells of the COX-2 product prostaglandin E2 induces prolactin production by stromal cells, which activates signaling in disseminated tumor cells with upregulated prolactin receptor expression. Analysis of multiple human cancers confirms differential tumor and stromal cell expression of COX-2, prolactin, and prolactin receptor. Together, these findings may provide novel biomarkers to inform the selective application of COX-2 inhibitors and point to additional targets for suppressing metastasis recurrence. Tumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single-cell RNA sequencing in an orthotopic mouse prostate cancer model, we find up-regulation of prolactin receptor as cancer cells that have disseminated to the lungs expand into micrometastases. Secretion of the ligand prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E2 (PGE2). PGE2 treatment of fibroblasts activates the orphan nuclear receptor NR4A (Nur77), with prolactin as a major transcriptional target for the NR4A-retinoid X receptor (RXR) heterodimer. Ectopic expression of prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor celecoxib abrogates prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, prolactin, and prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine cross-talk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression.
Collapse
|
25
|
Xie W, Liu H, Liu Q, Gao Q, Gao F, Han Y, Yuan Z, Zhang H, Weng Q. Seasonal expressions of prolactin, prolactin receptor and STAT5 in the scented glands of the male muskrats (Ondatra zibethicus). Eur J Histochem 2019; 63. [PMID: 30652434 PMCID: PMC6340307 DOI: 10.4081/ejh.2019.2991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/19/2018] [Indexed: 01/31/2023] Open
Abstract
Prolactin (PRL) production in mammals has been demonstrated in extrapituitary gland, which can activate autocrine/ paracrine signaling pathways to regulate physiological activity. In the current study, we characterized the gene expression profiles of PRL, prolactin receptor (PRLR) and signal transducers and activators of transcription 5 (STAT5) in the scented glandular tissues of the muskrats, to further elucidate the relationship between PRL and the scented glandular functions of the muskrats. The weight and volume of the scented glands in the breeding season were significantly higher than those of the non-breeding season. Immunohistochemical data showed that PRL, PRLR and STAT5/phospho-STAT5 (pSTAT5) were found in the glandular and epithelial cells of the scented glands in both seasons. Furthermore, we found that PRL, PRLR and STAT5 had higher immunoreactivities in the scented glands during the breeding season when compared to those of the non-breeding season. In parallel, the gene expressions of PRL, PRLR and STAT5 were significantly higher in the scented glands during the breeding season than those of the non-breeding season. The concentrations of PRL in scented glandular tissues and sera were measured by enzymelinked immunosorbent assay (ELISA), and their levels were both notably higher in the breeding season than those of the nonbreeding season. These findings suggested that the scented glands of the muskrats were capable of extrapituitary synthesis of PRL, which might attribute PRL a specific function to an endocrine or autocrine/paracrine mediator.
Collapse
Affiliation(s)
- Wenqian Xie
- Beijing Forestry University, College of Biological Sciences and Technology, Laboratory of Animal Physiology.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Maranto C, Udhane V, Hoang DT, Gu L, Alexeev V, Malas K, Cardenas K, Brody JR, Rodeck U, Bergom C, Iczkowski KA, Jacobsohn K, See W, Schmitt SM, Nevalainen MT. STAT5A/B Blockade Sensitizes Prostate Cancer to Radiation through Inhibition of RAD51 and DNA Repair. Clin Cancer Res 2018; 24:1917-1931. [PMID: 29483142 DOI: 10.1158/1078-0432.ccr-17-2768] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/30/2017] [Accepted: 01/23/2018] [Indexed: 01/20/2023]
Abstract
Purpose: The standard treatment for organ-confined prostate cancer is surgery or radiation, and locally advanced prostate cancer is typically treated with radiotherapy alone or in combination with androgen deprivation therapy. Here, we investigated whether Stat5a/b participates in regulation of double-strand DNA break repair in prostate cancer, and whether Stat5 inhibition may provide a novel strategy to sensitize prostate cancer to radiotherapy.Experimental Design: Stat5a/b regulation of DNA repair in prostate cancer was evaluated by comet and clonogenic survival assays, followed by assays specific to homologous recombination (HR) DNA repair and nonhomologous end joining (NHEJ) DNA repair. For HR DNA repair, Stat5a/b regulation of Rad51 and the mechanisms underlying the regulation were investigated in prostate cancer cells, xenograft tumors, and patient-derived prostate cancers ex vivo in 3D explant cultures. Stat5a/b induction of Rad51 and HR DNA repair and responsiveness to radiation were evaluated in vivo in mice bearing prostate cancer xenograft tumors.Results: Stat5a/b is critical for Rad51 expression in prostate cancer via Jak2-dependent mechanisms by inducing Rad51 mRNA levels. Consistent with this, genetic knockdown of Stat5a/b suppressed HR DNA repair while not affecting NHEJ DNA repair. Pharmacologic Stat5a/b inhibition potently sensitized prostate cancer cell lines and prostate cancer tumors to radiation, while not inducing radiation sensitivity in the neighboring tissues.Conclusions: This work introduces a novel concept of a pivotal role of Jak2-Stat5a/b signaling for Rad51 expression and HR DNA repair in prostate cancer. Inhibition of Jak2-Stat5a/b signaling sensitizes prostate cancer to radiation and, therefore, may provide an adjuvant therapy for radiation to reduce radiation-induced damage to the neighboring tissues. Clin Cancer Res; 24(8); 1917-31. ©2018 AACR.
Collapse
Affiliation(s)
- Cristina Maranto
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vindhya Udhane
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David T Hoang
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vitali Alexeev
- Department of Dermatology, Thomas Jefferson University Medical College, Philadelphia, Pennsylvania
| | - Kareem Malas
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Karmel Cardenas
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jonathan R Brody
- Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ulrich Rodeck
- Department of Dermatology, Thomas Jefferson University Medical College, Philadelphia, Pennsylvania
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ken A Iczkowski
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ken Jacobsohn
- Department of Urology, Prostate Cancer Center of Excellence at Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William See
- Department of Urology, Prostate Cancer Center of Excellence at Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sara M Schmitt
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marja T Nevalainen
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Zhang P, Huang H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 2018; 47:14841-14854. [DOI: 10.1039/c8dt03432j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we summarize recent progress in the design and application of innovative osmium compounds as anticancer agents with diverse modes of action, as organelle-targeted imaging probes and photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
28
|
Xu W, Bi Y, Kong J, Zhang J, Wang B, Li K, Tian M, Pan X, Shi B, Gu J, Jiang H, Kong X, Li Z. Combination of an anti-EGFRvIII antibody CH12 with Rapamycin synergistically inhibits the growth of EGFRvIII+PTEN-glioblastoma in vivo. Oncotarget 2017; 7:24752-65. [PMID: 27029073 PMCID: PMC5029739 DOI: 10.18632/oncotarget.8407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/28/2016] [Indexed: 11/25/2022] Open
Abstract
There are still unmet medical needs for the treatment of glioblastoma (GBM), the most frequent and aggressive brain tumor worldwide. EGFRvIII, overexpressed in approximately 30% of GBM, has been regarded as a potential therapeutic target. In this study, we demonstrated that CH12, an anti-EGFRvIII monoclonal antibody, could significantly suppress the growth of EGFRvIII+ GBM in vivo; however, PTEN deficiency in GBM reduced the efficacy of CH12 by attenuating its effect on PI3K/AKT/mTOR pathway. To overcome this problem, CH12 was combined with the mTOR inhibitor rapamycin, leading to a synergistic inhibitory effect on EGFRvIII+PTEN− GBM in vivo. Mechanistically, the synergistic antitumor effect was achieved via attenuating EGFR and PI3K/AKT/mTOR pathway more effectively and reversing the STAT5 activation caused by rapamycin treatment. Moreover, the combination therapy suppressed angiogenesis and induced cancer cell apoptosis more efficiently. Together, these results indicated that CH12 and rapamycin could synergistically suppress the growth of EGFRvIII+PTEN− GBM, which might have a potential clinical application in the future.
Collapse
Affiliation(s)
- Wen Xu
- Medical School of Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyu Bi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiqin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Biao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kesang Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mi Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaorong Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xianming Kong
- Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 2017; 46:158-181. [PMID: 28823533 DOI: 10.1016/j.semcancer.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), β-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | |
Collapse
|
31
|
Sackmann Sala L, Boutillon F, Menara G, De Goyon-Pélard A, Leprévost M, Codzamanian J, Lister N, Pencik J, Clark A, Cagnard N, Bole-Feysot C, Moriggl R, Risbridger GP, Taylor RA, Kenner L, Guidotti JE, Goffin V. A rare castration-resistant progenitor cell population is highly enriched in Pten-null prostate tumours. J Pathol 2017; 243:51-64. [DOI: 10.1002/path.4924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/27/2017] [Accepted: 05/28/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Lucila Sackmann Sala
- Institut Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Florence Boutillon
- Institut Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Giulia Menara
- Institut Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Andréa De Goyon-Pélard
- Institut Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Mylène Leprévost
- Institut Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Julie Codzamanian
- Institut Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Natalie Lister
- Monash Partners Comprehensive Cancer Consortium and Cancer Program, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Departments of Physiology and Anatomy and Developmental Biology; Monash University; Melbourne Victoria Australia
| | - Jan Pencik
- Clinical Institute of Pathology; Medical University of Vienna; Vienna Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy; Vienna Austria
| | - Ashlee Clark
- Monash Partners Comprehensive Cancer Consortium and Cancer Program, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Departments of Physiology and Anatomy and Developmental Biology; Monash University; Melbourne Victoria Australia
| | - Nicolas Cagnard
- Bioinformatics Core Facility, Inserm US 24-CNRS UMS 3633-SFR Necker; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Christine Bole-Feysot
- Genomics Core Facility, Inserm US 24-CNRS UMS 3633-SFR Necker; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR); Vienna Austria
- Institute of Animal Breeding and Genetics; University of Veterinary Medicine Vienna, Medical University of Vienna; Vienna Austria
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium and Cancer Program, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Departments of Physiology and Anatomy and Developmental Biology; Monash University; Melbourne Victoria Australia
| | - Renea A Taylor
- Monash Partners Comprehensive Cancer Consortium and Cancer Program, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Departments of Physiology and Anatomy and Developmental Biology; Monash University; Melbourne Victoria Australia
| | - Lukas Kenner
- Clinical Institute of Pathology; Medical University of Vienna; Vienna Austria
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR); Vienna Austria
- Department of Pathology of Laboratory Animals; University of Veterinary Medicine Vienna; Vienna Austria
| | - Jacques-Emmanuel Guidotti
- Institut Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| | - Vincent Goffin
- Institut Necker Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253; University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine; Paris France
| |
Collapse
|
32
|
Recouvreux MV, Wu JB, Gao AC, Zonis S, Chesnokova V, Bhowmick N, Chung LW, Melmed S. Androgen Receptor Regulation of Local Growth Hormone in Prostate Cancer Cells. Endocrinology 2017; 158:2255-2268. [PMID: 28444169 PMCID: PMC5505214 DOI: 10.1210/en.2016-1939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) growth is mainly driven by androgen receptor (AR), and tumors that initially respond to androgen deprivation therapy (ADT) or AR inhibition usually relapse into a more aggressive, castration-resistant PCa (CRPC) stage. Circulating growth hormone (GH) has a permissive role in PCa development in animal models and in human PCa xenograft growth. As GH and GH receptor (GHR) are both expressed in PCa cells, we assessed whether prostatic GH production is linked to AR activity and whether GH contributes to the castration-resistant phenotype. Using online datasets, we found that GH is highly expressed in human CRPC. We observed increased GH expression in castration-resistant C4-2 compared with castration-sensitive LNCaP cells as well as in enzalutamide (MDV3100)-resistant (MDVR) C4-2B (C4-2B MDVR) cells compared with parental C4-2B. We describe a negative regulation of locally produced GH by androgens/AR in PCa cells following treatment with AR agonists (R1881) and antagonists (enzalutamide, bicalutamide). We also show that GH enhances invasive behavior of CRPC 22Rv1 cells, as reflected by increased migration, invasion, and anchorage-independent growth, as well as expression of matrix metalloproteases. Moreover, GH induces expression of the AR splice variant 7, which correlates with antiandrogen resistance, and also induces insulinlike growth factor 1, which is implicated in PCa progression and ligand-independent AR activation. In contrast, blockade of GH action with the GHR antagonist pegvisomant reverses these effects both in vitro and in vivo. GH induction following ADT or AR inhibition may contribute to CRPC progression by bypassing androgen growth requirements.
Collapse
Affiliation(s)
| | - J. Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, 99202
| | - Allen C. Gao
- Department of Urology, University of California at Davis, Sacramento, California, 95817
| | - Svetlana Zonis
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Vera Chesnokova
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Neil Bhowmick
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Leland W. Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Shlomo Melmed
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| |
Collapse
|
33
|
Lopez Vicchi F, Becu-Villalobos D. Prolactin: The Bright and the Dark Side. Endocrinology 2017; 158:1556-1559. [PMID: 28575433 DOI: 10.1210/en.2017-00184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Felicitas Lopez Vicchi
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| |
Collapse
|
34
|
Hoang DT, Iczkowski KA, Kilari D, See W, Nevalainen MT. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget 2017; 8:3724-3745. [PMID: 27741508 PMCID: PMC5356914 DOI: 10.18632/oncotarget.12554] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022] Open
Abstract
Despite aggressive treatment for localized cancer, prostate cancer (PC) remains a leading cause of cancer-related death for American men due to a subset of patients progressing to lethal and incurable metastatic castrate-resistant prostate cancer (CRPC). Organ-confined PC is treated by surgery or radiation with or without androgen deprivation therapy (ADT), while options for locally advanced and disseminated PC include radiation combined with ADT, or systemic treatments including chemotherapy. Progression to CRPC results from failure of ADT, which targets the androgen receptor (AR) signaling axis and inhibits AR-driven proliferation and survival pathways. The exact mechanisms underlying the transition from androgen-dependent PC to CRPC remain incompletely understood. Reactivation of AR has been shown to occur in CRPC despite depletion of circulating androgens by ADT. At the same time, the presence of AR-negative cell populations in CRPC has also been identified. While AR signaling has been proposed as the primary driver of CRPC, AR-independent signaling pathways may represent additional mechanisms underlying CRPC progression. Identification of new therapeutic strategies to target both AR-positive and AR-negative PC cell populations and, thereby, AR-driven as well as non-AR-driven PC cell growth and survival mechanisms would provide a two-pronged approach to eliminate CRPC cells with potential for synthetic lethality. In this review, we provide an overview of AR-dependent and AR-independent molecular mechanisms which drive CRPC, with special emphasis on the role of the Jak2-Stat5a/b signaling pathway in promoting castrate-resistant growth of PC through both AR-dependent and AR-independent mechanisms.
Collapse
Affiliation(s)
- David T Hoang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deepak Kilari
- Department of Medicine, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William See
- Department of Urology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology/Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
35
|
Liu LJ, Wang W, Kang TS, Liang JX, Liu C, Kwong DWJ, Wong VKW, Ma DL, Leung CH. Antagonizing STAT5B dimerization with an osmium complex. Sci Rep 2016; 6:36044. [PMID: 27853239 PMCID: PMC5113070 DOI: 10.1038/srep36044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
Targeting STAT5 is an appealing therapeutic strategy for the treatment of hematologic malignancies and inflammation. Here, we present the novel osmium(II) complex 1 as the first metal-based inhibitor of STAT5B dimerization. Complex 1 exhibited superior inhibitory activity against STAT5B DNA binding compared to STAT5A DNA binding. Moreover, 1 repressed STAT5B transcription and blocked STAT5B dimerization via binding to the STAT5B protein, thereby inhibiting STAT5B translocation to the nucleus. Furthermore, 1 was able to selectively inhibit STAT5B phosphorylation without affecting the expression level of STAT5B.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Xin Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenfu Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Daniel W. J. Kwong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
36
|
Chen KHE, Walker AM. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1. Cancer Lett 2016; 375:293-302. [DOI: 10.1016/j.canlet.2016.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
|
37
|
Pleiotropic Effects of IL-2 on Cancer: Its Role in Cervical Cancer. Mediators Inflamm 2016; 2016:2849523. [PMID: 27293315 PMCID: PMC4880719 DOI: 10.1155/2016/2849523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
IL-2 receptor (IL-2R) signalling is critical for normal lymphocyte proliferation, but its role in cervical cancer is not fully understood. The receptor is composed of three chains: IL-2α, IL-2β, and IL-2γ. Intracellular signalling is initiated by ligand-induced heterodimerization of the IL-2β and IL-2γ chains, resulting in the activation of multiple intracellular kinases. Recently, IL-2R was shown to be expressed on nonhaematopoietic cells, especially on several types of tumour cells. However, the function of this receptor on malignant cells has not been clearly defined. The expression of IL-2R and the production of IL-2 in cervical cancer cells have been documented as well as expression of molecules of the JAK-STAT pathway. In the current review we have highlighted the differences in the responses of molecules downstream from the IL-2R in normal lymphocytes and tumour cells that could explain the presence of tumour cells in an environment in which cytotoxic lymphocytes also exist and compete and also the effect of different concentrations of IL-2 that could activate effector cells of the immune system cells, which favour the elimination of tumour cells, or concentrations that may promote a regulatory microenvironment in which tumour cells can easily grow.
Collapse
|
38
|
Talati PG, Gu L, Ellsworth EM, Girondo MA, Trerotola M, Hoang DT, Leiby B, Dagvadorj A, McCue PA, Lallas CD, Trabulsi EJ, Gomella L, Aplin AE, Languino L, Fatatis A, Rui H, Nevalainen MT. Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2505-22. [PMID: 26362718 DOI: 10.1016/j.ajpath.2015.04.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 01/30/2023]
Abstract
Active Stat5a/b predicts early recurrence and disease-specific death in prostate cancer (PC), which both typically are caused by development of metastatic disease. Herein, we demonstrate that Stat5a/b induces epithelial-to-mesenchymal transition (EMT) of PC cells, as shown by Stat5a/b regulation of EMT marker expression (Twist1, E-cadherin, N-cadherin, vimentin, and fibronectin) in PC cell lines, xenograft tumors in vivo, and patient-derived PCs ex vivo using organ explant cultures. Jak2-Stat5a/b signaling induced functional end points of EMT as well, indicated by disruption of epithelial cell monolayers and increased migration and adhesion of PC cells to fibronectin. Knockdown of Twist1 suppressed Jak2-Stat5a/b-induced EMT properties of PC cells, which were rescued by re-introduction of Twist1, indicating that Twist1 mediates Stat5a/b-induced EMT in PC cells. While promoting EMT, Jak2-Stat5a/b signaling induced stem-like properties in PC cells, such as sphere formation and expression of cancer stem cell markers, including BMI1. Mechanistically, both Twist1 and BMI1 were critical for Stat5a/b induction of stem-like features, because genetic knockdown of Twist1 suppressed Stat5a/b-induced BMI1 expression and sphere formation in stem cell culture conditions, which were rescued by re-introduction of BMI1. By using human prolactin knock-in mice, we demonstrate that prolactin-Stat5a/b signaling promoted metastases formation of PC cells in vivo. In conclusion, our data support the concept that Jak2-Stat5a/b signaling promotes metastatic progression of PC by inducing EMT and stem cell properties in PC cells.
Collapse
Affiliation(s)
- Pooja G Talati
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse M Ellsworth
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Melanie A Girondo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marco Trerotola
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David T Hoang
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard J Trabulsi
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard Gomella
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucia Languino
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Prostate Cancer Discovery and Development Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania; Prostate Cancer Discovery and Development Program, Wistar Institute, Philadelphia, Pennsylvania; Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Agarwal N, Machiels JP, Suárez C, Lewis N, Higgins M, Wisinski K, Awada A, Maur M, Stein M, Hwang A, Mosher R, Wasserman E, Wu G, Zhang H, Zieba R, Elmeliegy M. Phase I Study of the Prolactin Receptor Antagonist LFA102 in Metastatic Breast and Castration-Resistant Prostate Cancer. Oncologist 2016; 21:535-6. [PMID: 27091421 PMCID: PMC4861370 DOI: 10.1634/theoncologist.2015-0502] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 11/17/2022] Open
Abstract
LESSONS LEARNED Despite evidence for a role for prolactin signaling in breast and prostate tumorigenesis, a prolactin receptor-binding monoclonal antibody has not produced clinical efficacy.Increased serum prolactin levels may be a biomarker for prolactin receptor inhibition.Results from the pharmacokinetic and pharmacodynamics (PD) studies suggest that inappropriately long dosing intervals and insufficient exposure to LFA102 may have resulted in lack of antitumor efficacy.Based on preclinical data, combination therapy of LFA102 with those novel agents targeting hormonal pathways in metastatic castration-resistant prostate cancer and metastatic breast cancer is promising.Given the PD evidence of prolactin receptor blockade by LFA102, this drug has the potential to be used in conditions such as hyperprolactinemia that are associated with high prolactin levels. BACKGROUND Prolactin receptor (PRLR) signaling is implicated in breast and prostate cancer. LFA102, a humanized monoclonal antibody (mAb) that binds to and inhibits the PRLR, has exhibited promising preclinical antitumor activity. METHODS Patients with PRLR-positive metastatic breast cancer (MBC) or metastatic castration-resistant prostate cancer (mCRPC) received doses of LFA102 at 3-60 mg/kg intravenously once every 4 weeks. Objectives were to determine the maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE) to investigate the safety/tolerability of LFA102 and to assess pharmacokinetics (PK), pharmacodynamics (PD), and antitumor activity. RESULTS A total of 73 patients were enrolled at 5 dose levels. The MTD was not reached because of lack of dose-limiting toxicities. The RDE was established at 60 mg/kg based on PK and PD analysis and safety data. The most common all-cause adverse events (AEs) were fatigue (44%) and nausea (33%) regardless of relationship. Grade 3/4 AEs reported to be related to LFA102 occurred in 4% of patients. LFA102 exposure increased approximately dose proportionally across the doses tested. Serum prolactin levels increased in response to LFA102 administration, suggesting its potential as a biomarker for PRLR inhibition. No antitumor activity was detected. CONCLUSION Treatment with LFA102 was safe and well tolerated, but did not show antitumor activity as monotherapy at the doses tested.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute, Division of Medical Oncology, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Jean-Pascal Machiels
- Roi Albert II Institute, Medical Oncology Service, University Clinic Saint Luc and Institute of Experimental and Clinical Research (Pôle Molecular Imaging, Radiotherapy & Oncology), Catholic University of Louvain, Brussels, Belgium
| | - Cristina Suárez
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Nancy Lewis
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michaela Higgins
- Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kari Wisinski
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | | | - Michela Maur
- Oncology Unit, Department of Oncology, Hematology and Respiratory Disease, University Hospital Policlinico of Modena, Modena, Italy
| | - Mark Stein
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Andy Hwang
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | | | | | - Gang Wu
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Hefei Zhang
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Renata Zieba
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | | |
Collapse
|
40
|
Li H, Liu W, Chen W, Zhu J, Deng CX, Rodgers GP. Olfactomedin 4 deficiency promotes prostate neoplastic progression and is associated with upregulation of the hedgehog-signaling pathway. Sci Rep 2015; 5:16974. [PMID: 26581960 PMCID: PMC4652203 DOI: 10.1038/srep16974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Loss of olfactomedin 4 (OLFM4) gene expression is associated with the progression of human prostate cancer, but its role and the molecular mechanisms involved in this process have not been completely understood. In this study, we found that Olfm4-knockout mice developed prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Importantly, we found that the hedgehog-signaling pathway was significantly upregulated in the Olfm4-knockout mouse model. We also found that restoration of OLFM4 in human prostate-cancer cells that lack OLFM4 expression significantly downregulated hedgehog signaling-pathway component expression. Furthermore, we demonstrated that the OLFM4 protein interacts with sonic hedgehog protein, as well as significantly inhibits GLI-reporter activity. Bioinformatic and immunohistochemistry analyses revealed that decreased OLFM4 and increased SHH expression was significantly associated with advanced human prostate cancer. Thus, olfactomedin 4 appears to play a critical role in regulating progression of prostate cancer, and has potential as a new biomarker for prostate cancer.
Collapse
Affiliation(s)
- Hongzhen Li
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiping Chen
- Genomics Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Thomas LN, Merrimen J, Bell DG, Rendon R, Too CKL. Prolactin- and testosterone-induced carboxypeptidase-D correlates with increased nitrotyrosines and Ki67 in prostate cancer. Prostate 2015. [PMID: 26202060 DOI: 10.1002/pros.23054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Carboxypeptidase-D (CPD) cleaves C-terminal arginine for conversion to nitric oxide (NO) by nitric oxide synthase (NOS). Prolactin (PRL) and androgens stimulate CPD gene transcription and expression, which increases intracellular production of NO to promote viability of prostate cancer (PCa) cells in vitro. The current study evaluated whether hormonal upregulation of CPD and NO promote PCa cell viabilty in vivo, by correlating changes in expression of CPD and nitrotyrosine residues (products of NO action) with proliferation marker Ki67 and associated proteins during PCa development and progression. METHODS Fresh prostate tissues, obtained from 40 men with benign prostatic hyperplasia (BPH) or PCa, were flash-frozen at the time of surgery and used for RT-qPCR analysis of CPD, androgen receptor (AR), PRL receptor (PRLR), eNOS, and Ki67 levels. Archival paraffin-embedded tissues from 113 men with BPH or PCa were used for immunohistochemical (IHC) analysis of CPD, nitrotyrosines, phospho-Stat5 (for activated PRLR), AR, eNOS/iNOS, and Ki67. RESULTS RT-qPCR and IHC analyses showed strong AR and PRLR expression in benign and malignant prostates. CPD mRNA levels increased ∼threefold in PCa compared to BPH, which corresponded to a twofold increase in Ki67 mRNA levels. IHC analysis showed a progressive increase in CPD from 11.4 ± 2.1% in benign to 21.8 ± 3.2% in low-grade (P = 0.007), 40.7 ± 4.0% in high-grade (P < 0.0001) and 50.0 ± 9.5% in castration-recurrent PCa (P < 0.0001). Immunostaining for nitrotyrosines and Ki67 mirrored these increases during PCa progression. CPD, nitrotyrosines, and Ki67 tended to co-localize, as did phospho-Stat5. CONCLUSIONS CPD, nitrotyrosine, and Ki67 levels were higher in PCa than in benign and tended to co-localize, along with phospho-Stat5. The strong correlation in expression of these proteins in benign and malignant prostate tissues, combined with abundant AR and PRLR, supports in vitro evidence that the CPD-Arg-NO pathway is involved in the regulation of PCa cell proliferation. It further highlights a role for PRL in the development and progression of PCa.
Collapse
Affiliation(s)
- Lynn N Thomas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Merrimen
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David G Bell
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ricardo Rendon
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Catherine K L Too
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
42
|
Sackmann-Sala L, Angelergues A, Boutillon F, d'Acremont B, Maidenberg M, Oudard S, Goffin V. Human and murine prostate basal/stem cells are not direct targets of prolactin. Gen Comp Endocrinol 2015; 220:133-42. [PMID: 25888939 DOI: 10.1016/j.ygcen.2015.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
Local overexpression of prolactin (PRL) in the prostate of Pb-PRL transgenic mice induces benign prostate tumors exhibiting marked amplification of the epithelial basal/stem cell compartment. However, PRL-activated intracellular signaling seems to be restricted to luminal cells, suggesting that basal/stem cells may not be direct targets of PRL. Given their described role as prostate cancer-initiating cells, it is important to understand the mechanisms that regulate basal/stem cells. In this study, we evaluated whether PRL can act directly on these cells, by growing them as prostaspheres. For this, primary 3D prostasphere cultures were prepared from unfractionated cells isolated from freshly harvested human and mouse benign prostate tissues and subjected to PRL stimulation in vitro. None of the various concentrations of PRL tested showed any effects on the sizes or numbers of the prostaspheres generated. In addition, neither activation of canonical PRL-induced signaling pathways (Stat5, Stat3 or Erk1/2) nor increased expression of the proliferation marker Ki-67 were detected by immunostaining in PRL-stimulated prostaspheres. Consistent with the absence of response, PRL receptor mRNA levels were generally undetectable in mouse sphere cells. We conclude that human and mouse prostate basal/stem cells are not direct targets of PRL action. The observed amplification of basal/stem cells in Pb-PRL prostates might be due to paracrine mechanisms originating from PRL action on other cell compartments. Our current efforts are aimed at unraveling these mechanisms.
Collapse
Affiliation(s)
- Lucila Sackmann-Sala
- Institut Necker Enfants Malades (INEM), Inserm U1151 - CNRS UMR 8253, Equipe "Physiopathologie des hormones PRL/GH", Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 14 rue Maria Helena Vieira da Silva - CS 61431, Bâtiment Leriche, 75993 Paris Cedex 14, France.
| | - Antoine Angelergues
- Institut Necker Enfants Malades (INEM), Inserm U1151 - CNRS UMR 8253, Equipe "Physiopathologie des hormones PRL/GH", Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 14 rue Maria Helena Vieira da Silva - CS 61431, Bâtiment Leriche, 75993 Paris Cedex 14, France; Service de Cancérologie Médicale, Hôpital Européen Georges Pompidou, Université Paris Descartes, 20 rue Leblanc, 75015 Paris, France.
| | - Florence Boutillon
- Institut Necker Enfants Malades (INEM), Inserm U1151 - CNRS UMR 8253, Equipe "Physiopathologie des hormones PRL/GH", Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 14 rue Maria Helena Vieira da Silva - CS 61431, Bâtiment Leriche, 75993 Paris Cedex 14, France
| | - Bruno d'Acremont
- Service d'Urologie, Fondation Saint Jean de Dieu - Clinique Oudinot, 19 rue Oudinot, 75007 Paris, France.
| | - Marc Maidenberg
- Service d'Urologie, Fondation Saint Jean de Dieu - Clinique Oudinot, 19 rue Oudinot, 75007 Paris, France.
| | - Stéphane Oudard
- Service de Cancérologie Médicale, Hôpital Européen Georges Pompidou, Université Paris Descartes, 20 rue Leblanc, 75015 Paris, France.
| | - Vincent Goffin
- Institut Necker Enfants Malades (INEM), Inserm U1151 - CNRS UMR 8253, Equipe "Physiopathologie des hormones PRL/GH", Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 14 rue Maria Helena Vieira da Silva - CS 61431, Bâtiment Leriche, 75993 Paris Cedex 14, France.
| |
Collapse
|
43
|
Liao Z, Gu L, Vergalli J, Mariani SA, De Dominici M, Lokareddy RK, Dagvadorj A, Purushottamachar P, McCue PA, Trabulsi E, Lallas CD, Gupta S, Ellsworth E, Blackmon S, Ertel A, Fortina P, Leiby B, Xia G, Rui H, Hoang DT, Gomella LG, Cingolani G, Njar V, Pattabiraman N, Calabretta B, Nevalainen MT. Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia. Mol Cancer Ther 2015; 14:1777-93. [PMID: 26026053 DOI: 10.1158/1535-7163.mct-14-0883] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5μmol/L) and Stat5b (IC50 = 3.5 μmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Zhiyong Liao
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenny Vergalli
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samanta A Mariani
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marco De Dominici
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ravi K Lokareddy
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Puranik Purushottamachar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shilpa Gupta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse Ellsworth
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shauna Blackmon
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Guanjun Xia
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David T Hoang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gino Cingolani
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vincent Njar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nagarajan Pattabiraman
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
44
|
Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 2015; 35:939-51. [DOI: 10.1038/onc.2015.150] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
|
45
|
Abstract
Prolactin is a hormone that is mainly secreted by lactotroph cells of the anterior pituitary gland, and is involved in many biological processes including lactation and reproduction. Animal models have provided insights into the biology of prolactin proteins and offer compelling evidence that the different prolactin isoforms each have independent biological functions. The major isoform, 23 kDa prolactin, acts via its membrane receptor, the prolactin receptor (PRL-R), which is a member of the haematopoietic cytokine superfamily and for which the mechanism of activation has been deciphered. The 16 kDa prolactin isoform is a cleavage product derived from native prolactin, which has received particular attention as a result of its newly described inhibitory effects on angiogenesis and tumorigenesis. The discovery of multiple extrapituitary sites of prolactin secretion also increases the range of known functions of this hormone. This Review summarizes current knowledge of the biology of prolactin and its receptor, as well as its physiological and pathological roles. We focus on the role of prolactin in human pathophysiology, particularly the discovery of the mechanism underlying infertility associated with hyperprolactinaemia and the identification of the first mutation in human PRLR.
Collapse
Affiliation(s)
- Valérie Bernard
- Inserm U1185, 63 rue Gabriel Péri, 94276 Le Kremlin-Bicêtre Cedex, France
| | - Jacques Young
- Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, 78 rue du Général Leclerc 94275 Le Kremlin-Bicêtre Cedex, France
| | - Philippe Chanson
- Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, 78 rue du Général Leclerc 94275 Le Kremlin-Bicêtre Cedex, France
| | - Nadine Binart
- Inserm U1185, 63 rue Gabriel Péri, 94276 Le Kremlin-Bicêtre Cedex, France
| |
Collapse
|
46
|
An SH2 domain model of STAT5 in complex with phospho-peptides define "STAT5 Binding Signatures". J Comput Aided Mol Des 2015; 29:451-70. [PMID: 25752764 DOI: 10.1007/s10822-015-9835-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
Abstract
The signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of proteins, implicated in cell growth and differentiation. STAT activation is regulated by phosphorylation of protein monomers at conserved tyrosine residues, followed by binding to phospho-peptide pockets and subsequent dimerization. STAT5 is implicated in the development of severe pathological conditions, including many cancer forms. However, nowadays a few STAT5 inhibitors are known, and only one crystal structure of the inactive STAT5 dimer is publicly available. With a view to enabling structure-based drug design, we have: (1) analyzed phospho-peptide binding pockets on SH2 domains of STAT5, STAT1 and STAT3; (2) generated a model of STAT5 bound to phospho-peptides; (3) assessed our model by docking against a class of known STAT5 inhibitors (Müller et al. in ChemBioChem 9:723-727, 2008); (4) used molecular dynamics simulations to optimize the molecular determinants responsible for binding and (5) proposed unique "Binding Signatures" of STAT5. Our results put in place the foundations to address STAT5 as a target for rational drug design, from sequence, structural and functional perspectives.
Collapse
|
47
|
Prolactin-Induced Prostate Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:221-42. [DOI: 10.1007/978-3-319-12114-7_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Hoang DT, Gu L, Liao Z, Shen F, Talati PG, Koptyra M, Tan SH, Ellsworth E, Gupta S, Montie H, Dagvadorj A, Savolainen S, Leiby B, Mirtti T, Merry DE, Nevalainen MT. Inhibition of Stat5a/b Enhances Proteasomal Degradation of Androgen Receptor Liganded by Antiandrogens in Prostate Cancer. Mol Cancer Ther 2014; 14:713-26. [PMID: 25552366 DOI: 10.1158/1535-7163.mct-14-0819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/07/2014] [Indexed: 11/16/2022]
Abstract
Although poorly understood, androgen receptor (AR) signaling is sustained despite treatment of prostate cancer with antiandrogens and potentially underlies development of incurable castrate-resistant prostate cancer. However, therapies targeting the AR signaling axis eventually fail when prostate cancer progresses to the castrate-resistant stage. Stat5a/b, a candidate therapeutic target protein in prostate cancer, synergizes with AR to reciprocally enhance the signaling of both proteins. In this work, we demonstrate that Stat5a/b sequesters antiandrogen-liganded (MDV3100, bicalutamide, flutamide) AR in prostate cancer cells and protects it against proteasomal degradation in prostate cancer. Active Stat5a/b increased nuclear levels of both unliganded and antiandrogen-liganded AR, as demonstrated in prostate cancer cell lines, xenograft tumors, and clinical patient-derived prostate cancer samples. Physical interaction between Stat5a/b and AR in prostate cancer cells was mediated by the DNA-binding domain of Stat5a/b and the N-terminal domain of AR. Moreover, active Stat5a/b increased AR occupancy of the prostate-specific antigen promoter and AR-regulated gene expression in prostate cancer cells. Mechanistically, both Stat5a/b genetic knockdown and antiandrogen treatment induced proteasomal degradation of AR in prostate cancer cells, with combined inhibition of Stat5a/b and AR leading to maximal loss of AR protein and prostate cancer cell viability. Our results indicate that therapeutic targeting of AR in prostate cancer using antiandrogens may be substantially improved by targeting of Stat5a/b.
Collapse
Affiliation(s)
- David T Hoang
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhiyong Liao
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Feng Shen
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pooja G Talati
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mateusz Koptyra
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shyh-Han Tan
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse Ellsworth
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shilpa Gupta
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, H. Lee Moffit Cancer Center and Research Institute, University of South Florida, Tampa, Florida
| | - Heather Montie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saija Savolainen
- Deparment of Physiology, University of Turku, Turku, Finland. Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tuomas Mirtti
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland. Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Kuo PC, Huang CW, Lee CI, Chang HW, Hsieh SW, Chung YP, Lee MS, Huang CS, Tsao LP, Tsao YP, Chen SL. BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. Br J Cancer 2014; 112:391-402. [PMID: 25461807 PMCID: PMC4453457 DOI: 10.1038/bjc.2014.603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We showed previously that breast carcinoma amplified sequence 2 (BCAS2) functions as a negative regulator of p53. We also found that BCAS2 is a potential AR-associated protein. AR is essential for the growth and survival of prostate carcinoma. Therefore we characterised the correlation between BCAS2 and AR. METHODS Protein interactions were examined by GST pull-down assay and co-immunoprecipitation. Clinical prostate cancer (PCa) specimens were evaluated by immunohistochemical assay. AR transcriptional activity and LNCaP cell growth were assessed by luciferase assay and MTT assay, respectively. RESULTS BCAS2 expression was significantly increased in PCa. BCAS2 stabilised AR protein through both hormone-dependent and -independent manners. There are at least two mechanisms for BCAS2-mediated AR protein upregulation: One is p53-dependent. The p53 is suppressed by BCAS2 that results in increasing AR mRNA and protein expression. The other is via p53-independent inhibition of proteasome degradation. As BCAS2 can form a complex with AR and HSP90, it may function with HSP90 to stabilise AR protein from being degraded by proteasome. CONCLUSIONS In this study, we show that BCAS2 is a novel AR-interacting protein and characterise the correlation between BCAS2 and PCa. Thus we propose that BCAS2 could be a diagnostic marker and therapeutic target for PCa.
Collapse
Affiliation(s)
- P-C Kuo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - C-W Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - C-I Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - H-W Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - S-W Hsieh
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - Y-P Chung
- Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - M-S Lee
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - C-S Huang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwani
| | - L-P Tsao
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Y-P Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - S-L Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
50
|
Sackmann-Sala L, Chiche A, Mosquera-Garrote N, Boutillon F, Cordier C, Pourmir I, Pascual-Mathey L, Kessal K, Pigat N, Camparo P, Goffin V. Prolactin-Induced Prostate Tumorigenesis Links Sustained Stat5 Signaling with the Amplification of Basal/Stem Cells and Emergence of Putative Luminal Progenitors. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3105-19. [DOI: 10.1016/j.ajpath.2014.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 12/28/2022]
|