1
|
Mukhtar TK, Wilcox N, Dennis J, Yang X, Naven M, Mavaddat N, Perry JRB, Gardner E, Easton DF. Protein-truncating and rare missense variants in ATM and CHEK2 and associations with cancer in UK Biobank whole-exome sequence data. J Med Genet 2024; 61:1016-1022. [PMID: 39209703 PMCID: PMC11503094 DOI: 10.1136/jmg-2024-110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Deleterious germline variants in ATM and CHEK2 have been associated with a moderately increased risk of breast cancer. Risks for other cancers remain unclear. METHODS Cancer associations for coding variants in ATM and CHEK2 were evaluated using whole-exome sequence data from UK Biobank linked to cancer registration data (348 488 participants), and analysed both as a retrospective case-control and a prospective cohort study. Odds ratios, hazard ratios, and combined relative risks (RRs) were estimated by cancer type and gene. Separate analyses were performed for protein-truncating variants (PTVs) and rare missense variants (rMSVs; allele frequency <0.1%). RESULTS PTVs in ATM were associated with increased risks of nine cancers at p<0.001 (pancreas, oesophagus, lung, melanoma, breast, ovary, prostate, bladder, lymphoid leukaemia (LL)), and three at p<0.05 (colon, diffuse non-Hodgkin's lymphoma (DNHL), rectosigmoid junction). Carriers of rMSVs had increased risks of four cancers (p<0.05: stomach, pancreas, prostate, Hodgkin's disease (HD)). RRs were highest for breast, prostate, and any cancer where rMSVs lay in the FAT or PIK domains, and had a Combined Annotation Dependent Depletion score in the highest quintile.PTVs in CHEK2 were associated with three cancers at p<0.001 (breast, prostate, HD) and six at p<0.05 (oesophagus, melanoma, ovary, kidney, DNHL, myeloid leukaemia). Carriers of rMSVs had increased risks of five cancers (p<0.001: breast, prostate, LL; p<0.05: melanoma, multiple myeloma). CONCLUSION PTVs in ATM and CHEK2 are associated with a wide range of cancers, with the highest RR for pancreatic cancer in ATM PTV carriers. These findings can inform genetic counselling of carriers.
Collapse
Affiliation(s)
- Toqir K Mukhtar
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Naomi Wilcox
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Marc Naven
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nasim Mavaddat
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene Gardner
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Hinić S, Cybulski C, Van der Post RS, Vos JR, Schuurs-Hoeijmakers J, Brugnoletti F, Koene S, Vreede L, van Zelst-Stams WAG, Kets CM, Haadsma M, Spruijt L, Wevers MR, Evans DG, Wimmer K, Schnaiter S, Volk AE, Möllring A, de Putter R, Soikkonen L, Kahre T, Tooming M, de Jong MM, Vaz F, Mensenkamp AR, Genuardi M, Lubinski J, Ligtenberg M, Hoogerbrugge N, de Voer RM. The heterogeneous cancer phenotype of individuals with biallelic germline pathogenic variants in CHEK2. Genet Med 2024; 26:101101. [PMID: 38362852 DOI: 10.1016/j.gim.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE Females with biallelic CHEK2 germline pathogenic variants (gPVs) more often develop multiple breast cancers than individuals with monoallelic CHEK2 gPVs. This study is aimed at expanding the knowledge on the occurrence of other malignancies. METHODS Exome sequencing of individuals who developed multiple primary malignancies identified 3 individuals with the CHEK2 (NM_007194.4) c.1100del p.(Thr367MetfsTer15) loss-of-function gPV in a biallelic state. We collected the phenotypes of an additional cohort of individuals with CHEK2 biallelic gPVs (n = 291). RESULTS In total, 157 individuals (53.4%; 157/294 individuals) developed ≥1 (pre)malignancy. The most common (pre)malignancies next to breast cancer were colorectal- (n = 19), thyroid- (n = 19), and prostate (pre)malignancies (n = 12). Females with biallelic CHEK2 loss-of-function gPVs more frequently developed ≥2 (pre)malignancies and at an earlier age compared with females biallelic for the CHEK2 c.470T>C p.(Ile157Thr) missense variant. Furthermore, 26 males (31%; 26/84 males) with CHEK2 biallelic gPVs developed ≥1 (pre)malignancies of 15 origins. CONCLUSION Our study suggests that CHEK2 biallelic gPVs likely increase the susceptibility to develop multiple malignancies in various tissues, both in females and males. However, it is possible that a substantial proportion of individuals with CHEK2 biallelic gPVs is missed as diagnostic testing for CHEK2 often is limited to individuals who developed breast cancer.
Collapse
Affiliation(s)
- Snežana Hinić
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Rachel S Van der Post
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Radboud University Medical Center, Research Institute for Medical Innovation, Department of Pathology, Nijmegen, The Netherlands
| | - Janet R Vos
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Janneke Schuurs-Hoeijmakers
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Fulvia Brugnoletti
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Saskia Koene
- Leiden University Medical Center, Department of Clinical Genetics, Leiden, The Netherlands
| | - Lilian Vreede
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Wendy A G van Zelst-Stams
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - C Marleen Kets
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Maaike Haadsma
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Liesbeth Spruijt
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Marijke R Wevers
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - D Gareth Evans
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; The University of Manchester, Genomic Medicine, Division of Evolution, Infection and Genomic Sciences, Manchester, United Kingdom
| | - Katharina Wimmer
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Schnaiter
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander E Volk
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Möllring
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin de Putter
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Leila Soikkonen
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Oulu University Hospital, Department of Clinical Genetics, Oulu, Finland
| | - Tiina Kahre
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genetics and Personalized Medicine Clinic, Department of Laboratory Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mikk Tooming
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genetics and Personalized Medicine Clinic, Department of Laboratory Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mirjam M de Jong
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Fátima Vaz
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Instituto Português Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Arjen R Mensenkamp
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands
| | - Maurizio Genuardi
- European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Marjolijn Ligtenberg
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands; Radboud University Medical Center, Research Institute for Medical Innovation, Department of Pathology, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands
| | - Richarda M de Voer
- Radboud University Medical Center, Research Institute for Medical Innovation, Department of Human Genetics, Nijmegen, The Netherlands; European Reference Network for Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Saunders EJ, Dadaev T, Brook MN, Wakerell S, Govindasami K, Rageevakumar R, Hussain N, Osborne A, Keating D, Lophatananon A, Muir KR, Darst BF, Conti DV, Haiman CA, Antoniou AC, Eeles RA, Kote-Jarai Z. Identification of Genes with Rare Loss of Function Variants Associated with Aggressive Prostate Cancer and Survival. Eur Urol Oncol 2024; 7:248-257. [PMID: 38458890 DOI: 10.1016/j.euo.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Prostate cancer (PrCa) is a substantial cause of mortality among men globally. Rare germline mutations in BRCA2 have been validated robustly as increasing risk of aggressive forms with a poorer prognosis; however, evidence remains less definitive for other genes. OBJECTIVE To detect genes associated with PrCa aggressiveness, through a pooled analysis of rare variant sequencing data from six previously reported studies in the UK Genetic Prostate Cancer Study (UKGPCS). DESIGN, SETTING, AND PARTICIPANTS We accumulated a cohort of 6805 PrCa cases, in which a set of ten candidate genes had been sequenced in all samples. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We examined the association between rare putative loss of function (pLOF) variants in each gene and aggressive classification (defined as any of death from PrCa, metastatic disease, stage T4, or both stage T3 and Gleason score ≥8). Secondary analyses examined staging phenotypes individually. Cox proportional hazards modelling and Kaplan-Meier survival analyses were used to further examine the relationship between mutation status and survival. RESULTS AND LIMITATIONS We observed associations between PrCa aggressiveness and pLOF mutations in ATM, BRCA2, MSH2, and NBN (odds ratio = 2.67-18.9). These four genes and MLH1 were additionally associated with one or more secondary analysis phenotype. Carriers of germline mutations in these genes experienced shorter PrCa-specific survival (hazard ratio = 2.15, 95% confidence interval 1.79-2.59, p = 4 × 10-16) than noncarriers. CONCLUSIONS This study provides further support that rare pLOF variants in specific genes are likely to increase aggressive PrCa risk and may help define the panel of informative genes for screening and treatment considerations. PATIENT SUMMARY By combining data from several previous studies, we have been able to enhance knowledge regarding genes in which inherited mutations would be expected to increase the risk of more aggressive PrCa. This may, in the future, aid in the identification of men at an elevated risk of dying from PrCa.
Collapse
Affiliation(s)
- Edward J Saunders
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Tokhir Dadaev
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Mark N Brook
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Sarah Wakerell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Koveela Govindasami
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Reshma Rageevakumar
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Nafisa Hussain
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Andrea Osborne
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Diana Keating
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Kenneth R Muir
- Division of Population Health, University of Manchester, Manchester, UK
| | - Burcu F Darst
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David V Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
4
|
Black EM, Ramírez Parrado CA, Trier I, Li W, Joo YK, Pichurin J, Liu Y, Kabeche L. Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584115. [PMID: 38559033 PMCID: PMC10979866 DOI: 10.1101/2024.03.08.584115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division. PLK1 activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate PLK1 in mitosis remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis. Chk2 directly phosphorylates PLK1 T210, a residue on its T-loop whose phosphorylation is essential for full PLK1 kinase activity. Loss of Chk2-dependent PLK1 activity causes increased mitotic errors, including chromosome misalignment, chromosome missegregation, and cytokinetic defects. Moreover, Chk2 deficiency increases sensitivity to PLK1 inhibitors, suggesting that Chk2 status may be an informative biomarker for PLK1 inhibitor efficacy. This work demonstrates that Chk2 sustains mitotic PLK1 activity and protects genome stability through discrete functions in interphase DNA damage repair and mitotic chromosome segregation.
Collapse
|
5
|
Hanson H, Astiazaran-Symonds E, Amendola LM, Balmaña J, Foulkes WD, James P, Klugman S, Ngeow J, Schmutzler R, Voian N, Wick MJ, Pal T, Tischkowitz M, Stewart DR. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100870. [PMID: 37490054 PMCID: PMC10623578 DOI: 10.1016/j.gim.2023.100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Although the role of CHEK2 germline pathogenic variants in cancer predisposition is well known, resources for managing CHEK2 heterozygotes in clinical practice are limited. METHODS An international workgroup developed guidance on clinical management of CHEK2 heterozygotes informed by peer-reviewed publications from PubMed. RESULTS Although CHEK2 is considered a moderate penetrance gene, cancer risks may be considered as a continuous variable, which are influenced by family history and other modifiers. Consequently, early cancer detection and prevention for CHEK2 heterozygotes should be guided by personalized risk estimates. Such estimates may result in both downgrading lifetime breast cancer risks to those similar to the general population or upgrading lifetime risk to a level at which CHEK2 heterozygotes are offered high-risk breast surveillance according to country-specific guidelines. Risk-reducing mastectomy should be guided by personalized risk estimates and shared decision making. Colorectal and prostate cancer surveillance should be considered based on assessment of family history. For CHEK2 heterozygotes who develop cancer, no specific targeted medical treatment is recommended at this time. CONCLUSION Systematic prospective data collection is needed to establish the spectrum of CHEK2-associated cancer risks and to determine yet-unanswered questions, such as the outcomes of surveillance, response to cancer treatment, and survival after cancer diagnosis.
Collapse
Affiliation(s)
- Helen Hanson
- Southwest Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Esteban Astiazaran-Symonds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD; Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia; Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Susan Klugman
- Division of Reproductive & Medical Genetics, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rita Schmutzler
- Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany; Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Nicoleta Voian
- Providence Genetic Risk Clinic, Providence Cancer Institute, Portland, OR
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
6
|
Mishra A, Singh V, Khandelwal Y, Smitha AM, Kavali DJP, Barai S. Incidentally Detected Metachronous Malignancy in Patients of Papillary Carcinoma of Thyroid Posthigh-Dose Radioiodine Therapy. Indian J Nucl Med 2023; 38:264-269. [PMID: 38046960 PMCID: PMC10693376 DOI: 10.4103/ijnm.ijnm_188_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 12/05/2023] Open
Abstract
Thyroid cancer is one of the most common endocrine cancers. The most common histological subtypes are papillary and follicular variants; these are "differentiated thyroid cancers" and are associated with an excellent prognosis. The exact mechanism of thyroid cancer is not known. Several genetic alterations and environmental factors are found to be associated with this cancer. Patients with differentiated thyroid cancer are treated with postoperative radioactive iodine (RAI) therapy to ablate residual thyroid tissue and metastatic micro-foci. It is thought that after RAI, there is an increased risk of secondary malignancies such as lung, renal, and stomach cancer and lymphomas. However, the risk of secondary malignancy is not clear. They may be associated with genetic syndromes, environmental factors, and radiation exposure. The secondary malignancy may be detected incidentally during follow-up or present with signs and symptoms of that malignancy. There is no direct association between second malignancy and radiation exposure in I-131 therapies. We present a case series of five patients treated with high doses of I-131 for the remnant. The patients developed metachronous malignancies later in life.
Collapse
Affiliation(s)
- Ayush Mishra
- Department of Nuclear Medicine, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Vijay Singh
- Department of Nuclear Medicine, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Yogita Khandelwal
- Department of Nuclear Medicine, SGPGIMS, Lucknow, Uttar Pradesh, India
| | | | | | - Sukanta Barai
- Department of Nuclear Medicine, SGPGIMS, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Abdelrazek AS, Ghoniem K, Ahmed ME, Joshi V, Mahmoud AM, Saeed N, Khater N, Elsharkawy MS, Gamal A, Kwon E, Kendi AT. Prostate Cancer: Advances in Genetic Testing and Clinical Implications. URO 2023. [DOI: 10.3390/uro3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The demand for genetic testing (GT) for prostate cancer (PCa) is expanding, but there is limited knowledge about the genetic counseling (GC) needs of men. A strong-to-moderate inherited genetic predisposition causes approximately 5–20% of prostate cancer (PCa). In men with prostate cancer, germline testing may benefit the patient by informing treatment options, and if a mutation is noticed, it may also guide screening for other cancers and have family implications for cascade genetic testing (testing of close relatives for the same germline mutation). Relatives with the same germline mutations may be eligible for early cancer detection strategies and preventive measures. Cascade family testing can be favorable for family members, but it is currently unutilized, and strategies to overcome obstacles like knowledge deficiency, family communication, lack of access to genetic services, and testing expenses are needed. In this review, we will look at the genetic factors that have been linked to prostate cancer, as well as the role of genetic counseling and testing in the early detection of advanced prostate cancer.
Collapse
|
8
|
Clinical Impact of Next-Generation Sequencing Multi-Gene Panel Highlighting the Landscape of Germline Alterations in Ovarian Cancer Patients. Int J Mol Sci 2022; 23:ijms232415789. [PMID: 36555431 PMCID: PMC9779064 DOI: 10.3390/ijms232415789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC) crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk of developing OC and permit patients to enter the most appropriate treatment and surveillance program. Next-generation sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely pathogenic variants in BRCA1/2 and 38 in other 21 genes. The patients with pathogenic/likely pathogenic variants in the non-BRCA1/2 genes mainly developed OC alone compared to the other groups that also developed breast cancer or other tumors (p = 0.001). Clinical correlation analysis showed that the low-risk patients were significantly associated with platinum sensitivity (p < 0.001). Regarding PARP inhibitors (PARPi) response, the patients with pathogenic mutations in the non-BRCA1/2 genes had worse PFS and OS. Moreover, a statistically significantly worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.
Collapse
|
9
|
Kirchner K, Gamulin M, Kulis T, Sievers B, Kastelan Z, Lessel D. Comprehensive Clinical and Genetic Analysis of CHEK2 in Croatian Men with Prostate Cancer. Genes (Basel) 2022; 13:1955. [PMID: 36360192 PMCID: PMC9689475 DOI: 10.3390/genes13111955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Germline pathogenic and likely pathogenic (P/LP) variants in CHEK2 have been associated with increased prostate cancer (PrCa) risk. Our objective was to analyze their occurrence in Croatian PrCa men and to evaluate the clinical characteristics of P/LP variant carriers. Therefore, we analyzed CHEK2 in 150 PrCa patients unselected for age of onset, family history of PrCa or clinical outcome, and the frequency of identified variants was compared to findings in 442 cancer-free men, of Croatian ancestry. We identified four PrCa cases harboring a P/LP variant in CHEK2 (4/150, 2.67%), which reached a statistical significance (p = 0.004) as compared to the control group. Patients with P/LP variants in CHEK2 developed PrCa almost 9 years earlier than individuals with CHEK2 wild-type alleles (8.9 years; p = 0.0198) and had an increased risk for lymph node involvement (p = 0.0047). No association was found between CHEK2 status and further clinical characteristics, including the Gleason score, occurrence of aggressive PrCa, the tumor or metastasis stage. However, carriers of the most common P/LP CHEK2 variant, the c.1100delC, p.Thr367Metfs15*, had a significantly higher Gleason score (p = 0.034), risk for lymph node involvement (p = 0.0001), and risk for developing aggressive PrCa (p = 0.027). Thus, in a Croatian population, CHEK2 P/LP variant carriers were associated with increased risk for early onset prostate cancer, and carriers of the c.1100delC, p.Thr367Metfs15* had increased risk for aggressive PrCa.
Collapse
Affiliation(s)
- Kira Kirchner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marija Gamulin
- Department of Oncology, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Tomislav Kulis
- Department of Urology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Bianca Sievers
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Zeljko Kastelan
- Department of Urology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
10
|
Abstract
BACKGROUND An important fraction (>/~10%) of men with high-risk, localized prostate cancer and metastatic prostate cancer carry germline (heritable) pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes. These can represent known or suspected autosomal dominant cancer predisposition syndromes. Growing evidence suggests that pathogenic variants in key genes involved in homologous recombination and mismatch DNA repair are important in prostate cancer initiation and/or the development of metastases. AIMS Here we provide a comprehensive review regarding individual genes and available literature regarding risks for developing prostate cancer, and discuss current national guidelines for germline genetic testing in the prostate cancer population and treatment implications. RESULTS The association with prostate cancer risk and treatment implications is best understood for those with germline mutations of BRCA2, with emerging data supporting associations with ATM, CHEK2, BRCA1, HOXB13, MSH2, MSH6, PALB2, TP53 and NBN. Treatment implications in the metastatic castration resistant prostate cancer setting include rucaparib and olaparib, and pembrolizumab with potential clinical trial opportunities in earlier disease settings. DISCUSSION The data summarized in this review has led to the expansion of national guidelines for germline genetic testing in prostate cancer. We review these guidelines, and discuss the importance of cascade genetic testing of relatives, diverse populations with attention to inclusion, as well as prostate cancer screening updates and clinical trial opportunities for men who carry genetic risk factors for prostate cancer.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Heather H. Cheng
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
11
|
Rajabi S, Alix-Panabières C, Alaei AS, Abooshahab R, Shakib H, Ashrafi MR. Looking at Thyroid Cancer from the Tumor-Suppressor Genes Point of View. Cancers (Basel) 2022; 14:2461. [PMID: 35626065 PMCID: PMC9139614 DOI: 10.3390/cancers14102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer is the most frequent endocrine malignancy and accounts for approximately 1% of all diagnosed cancers. A variety of mechanisms are involved in the transformation of a normal tissue into a malignant one. Loss of tumor-suppressor gene (TSG) function is one of these mechanisms. The normal functions of TSGs include cell proliferation and differentiation control, genomic integrity maintenance, DNA damage repair, and signaling pathway regulation. TSGs are generally classified into three subclasses: (i) gatekeepers that encode proteins involved in cell cycle and apoptosis control; (ii) caretakers that produce proteins implicated in the genomic stability maintenance; and (iii) landscapers that, when mutated, create a suitable environment for malignant cell growth. Several possible mechanisms have been implicated in TSG inactivation. Reviewing the various TSG alteration types detected in thyroid cancers may help researchers to better understand the TSG defects implicated in the development/progression of this cancer type and to find potential targets for prognostic, predictive, diagnostic, and therapeutic purposes. Hence, the main purposes of this review article are to describe the various TSG inactivation mechanisms and alterations in human thyroid cancer, and the current therapeutic options for targeting TSGs in thyroid cancer.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, CEDEX 5, 34093 Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research (CREEC), Unité Mixte de Recherches, Institut de Recherche pour le Développement (IRD) 224–Centre National de Recherche Scientifique (CNRS) 5290–University of Montpellier, 34000 Montpellier, France
| | - Arshia Sharbatdar Alaei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | | | - Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
| | - Mohammad Reza Ashrafi
- Department of Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| |
Collapse
|
12
|
Association of recurrent mutations in BRCA1, BRCA2, RAD51C, PALB2, and CHEK2 with the risk of borderline ovarian tumor. Hered Cancer Clin Pract 2022; 20:11. [PMID: 35313928 PMCID: PMC8935754 DOI: 10.1186/s13053-022-00218-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background There are several genes associated with ovarian cancer risk. Molecular changes in borderline ovarian tumor (BOT) indicate linkage of this disease to type I ovarian tumors (low-grade ovarian carcinomas). This study determined the prevalence and association of mutations in BRCA1, BRCA2, PALB2, RAD51C, and CHEK2 with the risk of BOTs. Methods The study group consisted of 102 patients with histologically confirmed BOT and 1743 healthy controls. In addition, 167 cases with ovarian cancer G1 were analyzed. The analyses included genotyping of 21 founder and recurrent mutations localized in 5 genes (BRCA1, BRCA2, PALB2, RAD51C, and CHEK2). The risk for developing BOT and low-grade ovarian cancer, as well as the association of tested mutations with survival, was estimated. Results The CHEK2 missense mutation (c.470T>C) was associated with 2-times increased risk of BOT (OR=2.05, p=0.03), at an earlier age at diagnosis and about 10% worse rate of a 10-year survival. Mutations in BRCA1 and PALB2 were associated with a high risk of ovarian cancer G1 (OR=8.53, p=0.005 and OR=7.03, p=0.03, respectively) and were related to worse all-cause survival for BRCA1 carriers (HR=4.73, 95%CI 1.45–15.43, p=0.01). Conclusions Results suggest that CHEK2 (c.470T>C) may possibly play a role in the pathogenesis of BOT, but due to the low number of BOT patients, obtained results should be considered as preliminary. Larger more in-depth studies are required.
Collapse
|
13
|
Boonen RA, Wiegant WW, Celosse N, Vroling B, Heijl S, Kote-Jarai Z, Mijuskovic M, Cristea S, Solleveld-Westerink N, van Wezel T, Beerenwinkel N, Eeles R, Devilee P, Vreeswijk MP, Marra G, van Attikum H. Functional Analysis Identifies Damaging CHEK2 Missense Variants Associated with Increased Cancer Risk. Cancer Res 2022; 82:615-631. [PMID: 34903604 PMCID: PMC9359737 DOI: 10.1158/0008-5472.can-21-1845] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023]
Abstract
Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 were found to impair protein function to a similar extent as truncating variants, while 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group [OR 2.23; 95% confidence interval (CI), 1.62-3.07; P < 0.0001] and intermediate variants (OR 1.63; 95% CI, 1.21-2.20; P = 0.0014) were associated with an increased breast cancer risk, while functional variants did not show this association (OR 1.13; 95% CI, 0.87-1.46; P = 0.378). Finally, a damaging VUS in CHEK2, c.486A>G/p.D162G, was also identified, which cosegregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer. SIGNIFICANCE Quantitative assessment of the functional consequences of CHEK2 variants of uncertain significance identifies damaging variants associated with increased cancer risk, which may aid in the clinical management of patients and carriers.
Collapse
Affiliation(s)
- Rick A.C.M. Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W. Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nandi Celosse
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bas Vroling
- Bio-Prodict, Nijmegen, the Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Martina Mijuskovic
- The Institute of Cancer Research, London, United Kingdom
- Illumina Cambridge Ltd., Cambridge, United Kingdom
| | - Simona Cristea
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Rosalind Eeles
- The Institute of Cancer Research, London, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike P.G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
Association of CHEK2 I157T and SULT1A1 R213H genetic variants with risk of sporadic colorectal cancer in a sample of Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Recent research proposed an association between functional defects involving CHEK2 I157T and SULT1A1 R213H variants and increased incidence of several types of cancer. A total of 86 unrelated colorectal cancer patients attending the Surgical Oncology Department were recruited in the study. The second group of 152 healthy age- and sex-matched volunteers were included as controls. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was applied for genotyping. Chi-square test was applied to compare genotype and allele frequencies in the studied groups. The purpose of the present study was to evaluate the association between CHEK2 I157T and SULT1A1 R213H polymorphisms and colorectal cancer.
Results
No significant differences in genotypes were detected between cases and controls in the present study for both CHEK2 I157T and SULT1A1 R213H polymorphisms (χ2 = 1.839; P = 0.399/χ2 = 2.831; P = 0.243), respectively. Likewise, discrepancies in allele frequency for the wild-type or mutant alleles were non-statistically significant in CHEK2 I157T and SULT1A1 R213H (χ2 = 1.231; P = 0.267/χ2 = 0.180; P = 0.671), respectively.
Conclusions
Results of the current study propose that CHEK2 I157T and SULT1A1 R213H polymorphisms are not associated with CRC development in Egyptian population. Further future studies on the functional implications of these polymorphisms are strongly recommended.
Collapse
|
15
|
Iyevleva AG, Aleksakhina SN, Sokolenko AP, Baskina SV, Venina AR, Anisimova EI, Bizin IV, Ivantsov AO, Belysheva YV, Chernyakova AP, Togo AV, Imyanitov EN. Somatic loss of the remaining allele occurs approximately in half of CHEK2-driven breast cancers and is accompanied by a border-line increase of chromosomal instability. Breast Cancer Res Treat 2022; 192:283-291. [PMID: 35020107 DOI: 10.1007/s10549-022-06517-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Germline mutations in CHEK2 gene represent the second most frequent cause of hereditary breast cancer (BC) after BRCA1/2 lesions. This study aimed to identify the molecular characteristics of CHEK2-driven BCs. METHODS Loss of heterozygosity (LOH) for the remaining CHEK2 allele was examined in 50 CHEK2-driven BCs using allele-specific PCR assays for the germline mutations and analysis of surrounding single-nucleotide polymorphisms (SNPs). Paired tumor and normal DNA samples from 25 cases were subjected to next-generation sequencing analysis. RESULTS CHEK2 LOH was detected in 28/50 (56%) BCs. LOH involved the wild-type allele in 24 BCs, mutant CHEK2 copy was deleted in 3 carcinomas, while in one case the origin of the deleted allele could not be identified. Somatic PIK3CA and TP53 mutations were present in 13/25 (52%) and 4/25 (16%) tumors, respectively. Genomic features of homologous recombination deficiency (HRD), including the HRD score ≥ 42, the predominance of BRCA-related mutational signature 3, and the high proportion of long (≥ 5 bp) indels, were observed only in 1/20 (5%) BC analyzed for chromosomal instability. Tumors with the deleted wild-type CHEK2 allele differed from LOH-negative cases by elevated HRD scores (median 23 vs. 7, p = 0.010) and higher numbers of chromosomal segments affected by copy number aberrations (p = 0.008). CONCLUSION Somatic loss of the wild-type CHEK2 allele is observed in approximately half of CHEK2-driven BCs. Tumors without CHEK2 LOH are chromosomally stable. BCs with LOH demonstrate some signs of chromosomal instability; however, its degree is significantly lower as compared to BRCA1/2-associated cancers.
Collapse
Affiliation(s)
- Aglaya G Iyevleva
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758.
| | - Svetlana N Aleksakhina
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Anna P Sokolenko
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Sofia V Baskina
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Aigul R Venina
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | | | - Ilya V Bizin
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Alexandr O Ivantsov
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Yana V Belysheva
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Alexandra P Chernyakova
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Alexandr V Togo
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, Leningradskaya str. 68, Pesochny, Saint Petersburg, Russia, 197758.,St.-Petersburg State Pediatric Medical University, Saint Petersburg, Russia, 194100.,I.I. Mechnikov North-Western Medical University, Saint Petersburg, Russia, 191015
| |
Collapse
|
16
|
Ni Raghallaigh H, Eeles R. Genetic predisposition to prostate cancer: an update. Fam Cancer 2022; 21:101-114. [PMID: 33486571 PMCID: PMC8799539 DOI: 10.1007/s10689-021-00227-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 10/26/2022]
Abstract
Improvements in DNA sequencing technology and discoveries made by large scale genome-wide association studies have led to enormous insight into the role of genetic variation in prostate cancer risk. High-risk prostate cancer risk predisposition genes exist in addition to common germline variants conferring low-moderate risk, which together account for over a third of familial prostate cancer risk. Identifying men with additional risk factors such as genetic variants or a positive family history is of clinical importance, as men with such risk factors have a higher incidence of prostate cancer with some evidence to suggest diagnosis at a younger age and poorer outcomes. The medical community remains in disagreement on the benefits of a population prostate cancer screening programme reliant on PSA testing. A reduction in mortality has been demonstrated in many studies, but at the cost of significant amounts of overdiagnosis and overtreatment. Developing targeted screening strategies for high-risk men is currently the subject of investigation in a number of prospective studies. At present, approximately 38% of the familial risk of PrCa can be explained based on published SNPs, with men in the top 1% of the risk profile having a 5.71-fold increase in risk of developing cancer compared with controls. With approximately 170 prostate cancer susceptibility loci now identified in European populations, there is scope to explore the clinical utility of genetic testing and genetic-risk scores in prostate cancer screening and risk stratification, with such data in non-European populations eagerly awaited. This review will focus on both the rare and common germline genetic variation involved in hereditary and familial prostate cancer, and discuss ongoing research in exploring the role of targeted screening in this high-risk group of men.
Collapse
Affiliation(s)
- Holly Ni Raghallaigh
- Oncogenetics Team, Division of Genetics & Epidemiology, The Institute of Cancer Research, Sir Richard Doll Building, 15 Cotswold road, Sutton, SM2 5NG UK
| | - Rosalind Eeles
- Oncogenetics Team, Division of Genetics & Epidemiology, The Institute of Cancer Research, Sir Richard Doll Building, 15 Cotswold road, Sutton, SM2 5NG UK
| |
Collapse
|
17
|
Heise M, Jarzemski P, Nowak D, Bąk A, Junkiert-Czarnecka A, Pilarska-Deltow M, Borysiak M, Pilarska B, Haus O. Clinical Significance of Gene Mutations and Polymorphic Variants and their Association with Prostate Cancer Risk in Polish Men. Cancer Control 2022; 29:10732748211062342. [PMID: 35638715 PMCID: PMC9160909 DOI: 10.1177/10732748211062342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: We tested the association of germline variants in BRCA1, BRCA2, CHEK2, CDKN2A, CYP1B1, HOXB13, MLH1, NBS1, NOD2 andPALB2 genes, as well as in 8q24 region, with prostate cancer (PC) risk and estimated their impact on disease clinical course, including overall survival time in Polish men with localized PC qualified for radical treatment.Materials and Methods: DNA of 110 patients with localized prostate cancer treated with radical prostatectomy (RP), from each age group and with different stages of the disease. DNA samples of the control group consisted of 111 men, volunteers, without PC (age-matched to study group). Sanger sequencing, AS-PCR, RFLP-PCR, and multiplex-PCR were used for variants detection.Results: The percentage of men with ≥1 germline variant was higher in PC group (52.7%) than in healthy men (37.8%) (P = .03). The presence of ≥2 variants was associated with shorter survival than the presence of one or no variant in the PC group (P = .14, trend). The HOXB13 G84E was detected in 2.9% of PC men and in no healthy men (P = .19, trend, OR = 7.21). A CHEK2 truncating mutation (1100delC or IVS2+1G>A) was detected in 2/110 (1.8%) PC patients and in no healthy men (P = .29, OR=5.14). The NBS1 I171V was detected in 2/110 (1.8%) PC patients and in no men from the control group (OR=5.14, P = .29, NS).Conclusions: We conclude that the presence of more than 2 germline variants was probably associated with shorter survival of patients with localized prostate cancer qualified for radical treatment. The HOXB13 (G84E), CHEK2 (1100delC or IVS2+1G>A) truncating variants and NBS1 (I171V) are associated with PC and hereditary form of the disease. The HOXB13 (G84E) and NOD2 (3020insC) single variants are associated with shorter and CYP1B1 (48CC, 119GG) single genotypes with longer overall survival.
Collapse
Affiliation(s)
- Marta Heise
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Piotr Jarzemski
- Faculty of Health Sciences, Department of Urology, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Jan Biziel University Hospital in Bydgoszcz, Poland
| | - Dagmara Nowak
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Aneta Bąk
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Anna Junkiert-Czarnecka
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Maria Pilarska-Deltow
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Maciej Borysiak
- Faculty of Health Sciences, Department of Urology, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Jan Biziel University Hospital in Bydgoszcz, Poland
| | - Beata Pilarska
- Faculty of Health Sciences, Department of Urology, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Jan Biziel University Hospital in Bydgoszcz, Poland
| | - Olga Haus
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
18
|
Złowocka-Perłowska E, Dębniak T, Słojewski M, van de Wetering T, Tołoczko-Grabarek A, Cybulski C, Scott RJ, Lubiński J. Survival of bladder or renal cancer in patients with CHEK2 mutations. PLoS One 2021; 16:e0257132. [PMID: 34499690 PMCID: PMC8428549 DOI: 10.1371/journal.pone.0257132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The purpose of this study was to compare the clinical characteristics and the survival of CHEK2 mutation positive and CHEK2 mutation negative patients diagnosed with bladder or kidney cancer. Materials and methods 1016 patients with bladder and 402 cases with kidney cancer and 8302 controls were genotyped for four CHEK2 variants: 1100delC, del5395, IVS2+1G>A and I157T. Predictors of survival were determined among CHEK2 pathogenic variant carriers using the Cox proportional hazards model. The median follow-up was 17.5 years. Covariates included age (≤60; >61 years), sex (female; male), clinical characteristics (stage: TNM, grade, histopathological type), smoking status (non-smoking; smoking) and cancer family history (negative; positive). Results We found no impact of CHEK2 mutations on bladder or kidney cancer survival. However, we observed a possible increased survival in the subgroup of patients with stage T1 bladder cancer with CHEK2 mutations but this did not meet statistical significance (HR = 0.14; 95% CI 0.02–1.04; p = 0.055). Moreover, we observed that the missense mutations were more frequent in the low grade invasive bladder cancer patient group (OR = 7.9; 95% CI 1.50–42.1; p = 0.04) and in patients with bladder cancer with stage Ta (OR = 2.4; 95% CI 1.30–4.55; p = 0.006). The different results where missense mutations occurs less often we observed among patients with high grade invasive bladder cancer (OR = 0.12; 95% CI 0.02–0.66; p = 0.04) and those with stage T1 disease (OR = 0.2; 95% CI 0.07–0.76; p = 0.01). Our investigations revealed that any mutation in CHEK2 occurs more often among patients with stage Ta bladder cancer (OR = 2.0; 95% CI 1.19–3.47; p = 0.01) and less often in patients with stage T1 disease (OR = 0.31; 95% CI 0.12–0.78; p = 0.01). In the kidney cancer patients, truncating mutations were present more often in the group with clear cell carcinoma GII (OR = 8.0; 95% CI 0.95–67.7; p = 0.05). The 10-year survival for all CHEK2 mutation carriers with bladder cancer was 33% and for non-carriers 11% (p = 0.15). The 10-year survival for CHEK2 mutation carriers with kidney cancer 34% and for non-carriers 20% (p = 0.5). Conclusion CHEK2 mutations were not associated with any change in bladder or kidney cancer survival regardless of their age, sex, smoking status and family history. We observed a potentially protective effect of CHEK2 mutations on survival for patients with stage T1 bladder cancer. CHEK2 missense mutations were more common among patients with low grade invasive bladder cancer and in patients with stage Ta diease. The frequencies of the I157T CHEK2 pathogenic variant were less in patients with high grade invasive bladder cancer and those with stage T1 disease. Among patients with bladder cancer with stage Ta disease, the OR for any mutation in CHEK2 was 2.0 but for those with stage T1 disease, the OR was 0.3. We observed truncating CHEK2 mutations were associated with kidney cancer patients with GII clear cell carcinoma.
Collapse
Affiliation(s)
- Elżbieta Złowocka-Perłowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- * E-mail:
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Marcin Słojewski
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, Szczecin, Poland
| | - Thierry van de Wetering
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Aleksandra Tołoczko-Grabarek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rodney J. Scott
- School of Biomedical Sciences & Pharmacy, Centre for Information-Based Medicine, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, Newcastle, NSW, Australia
- Division of Molecular Medicine, Pathology North, NSW Pathology, Newcastle, NSW, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
19
|
Sathasivam HP, Kist R, Sloan P, Thomson P, Nugent M, Alexander J, Haider S, Robinson M. Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology. Br J Cancer 2021; 125:413-421. [PMID: 33972745 PMCID: PMC8329212 DOI: 10.1038/s41416-021-01411-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND This study was undertaken to develop and validate a gene expression signature that characterises oral potentially malignant disorders (OPMD) with a high risk of undergoing malignant transformation. METHODS Patients with oral epithelial dysplasia at one hospital were selected as the 'training set' (n = 56) whilst those at another hospital were selected for the 'test set' (n = 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as well as prognostic modelling, were employed to develop and validate the gene signature. RESULTS A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio = 12.65, p = 0.0003]. CONCLUSIONS This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant transformation with promising clinical utility.
Collapse
Affiliation(s)
- Hans Prakash Sathasivam
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK ,Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Ralf Kist
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK ,grid.1006.70000 0001 0462 7212Newcastle University Biosciences Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Philip Sloan
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK ,grid.420004.20000 0004 0444 2244Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Peter Thomson
- grid.194645.b0000000121742757Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Michael Nugent
- grid.416726.00000 0004 0399 9059Oral and Maxillofacial Surgery, Sunderland Royal Hospital, Sunderland, UK
| | - John Alexander
- grid.18886.3f0000 0001 1271 4623The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- grid.18886.3f0000 0001 1271 4623The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Max Robinson
- grid.1006.70000 0001 0462 7212School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK ,grid.420004.20000 0004 0444 2244Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Sokolova AO, Obeid EI, Cheng HH. Genetic Contribution to Metastatic Prostate Cancer. Urol Clin North Am 2021; 48:349-363. [PMID: 34210490 DOI: 10.1016/j.ucl.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies show that the prevalence of germline pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes in metastatic prostate cancer is higher than previously recognized and higher than in unaffected men. Specific gene dysfunction is important in prostate cancer initiation and/or evolution to metastases. This article reviews key literature on individual genes, recognizing BRCA2 as the gene most commonly altered in the metastatic setting. This article discusses the importance of representative and diverse inclusion, and efforts to advance management for at-risk carrier populations to maximize clinical benefit.
Collapse
Affiliation(s)
- Alexandra O Sokolova
- Department of Medicine (Div. Oncology), University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; VA Puget Sound Health Care System, Seattle, WA, USA
| | | | - Heather H Cheng
- Department of Medicine (Div. Oncology), University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
21
|
Liu R, Qian K, Xiao Y, Jiang W. Generation of two induced pluripotent stem cell lines from blood cells of a prostate cancer patient carrying germline mutation in CHEK2. Stem Cell Res 2021; 53:102299. [PMID: 33780728 DOI: 10.1016/j.scr.2021.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022] Open
Abstract
Germline mutations of CHEK2 have been reported in various types of disease including breast cancer, ovarian cancer, colorectal cancer and prostate cancer. We generated two iPSC lines ZNHi001-A and ZNHi001-B from a prostate cancer patient carrying germline mutation in CHEK2 (c.667C>T, also p.R223C) which may increase the risk of prostate cancer. Pluripotency and multi-lineage differentiation capacity of the two iPSC lines were confirmed by gene expression and teratoma assay. The generated iPSC lines carrying specific CHEK2 mutation might be a useful resource to study the pathogenic mechanism and develop potential therapeutic strategy of prostate cancer.
Collapse
Affiliation(s)
- Ran Liu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Recurrent Mutations in BRCA1, BRCA2, RAD51C, PALB2 and CHEK2 in Polish Patients with Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13040849. [PMID: 33670479 PMCID: PMC7921976 DOI: 10.3390/cancers13040849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to analyze the frequency and magnitude of association of 21 recurrent founder germline mutations in BRCA1, BRCA2, PALB2, RAD51C, and CHEK2 genes with ovarian cancer risk among unselected patients in Poland. We genotyped 21 recurrent germline mutations in BRCA1 (9 mutations), BRCA2 (4 mutations), RAD51C (3 mutations), PALB2 (2 mutations), and CHEK2 (3 mutations) among 2270 Polish ovarian cancer patients and 1743 healthy controls, and assessed the odds ratios (OR) for developing ovarian cancer for each gene. Mutations were detected in 369 out of 2095 (17.6%) unselected ovarian cancer cases and 117 out of 1743 (6.7%) unaffected controls. The ovarian cancer risk was associated with mutations in BRCA1 (OR = 40.79, 95% CI: 18.67-114.78; p = 0.29 × 10-15), in BRCA2 (OR = 25.98; 95% CI: 1.55-434.8; p = 0.001), in RAD51C (OR = 6.28; 95% CI 1.77-39.9; p = 0.02), and in PALB2 (OR 3.34; 95% CI: 1.06-14.68; p = 0.06). There was no association found for CHEK2. We found that pathogenic mutations in BRCA1, BRCA2, RAD51C or PALB2 are responsible for 12.5% of unselected cases of ovarian cancer. We recommend that all women with ovarian cancer in Poland and first-degree female relatives should be tested for this panel of 18 mutations.
Collapse
|
23
|
Gąsior-Perczak D, Kowalik A, Gruszczyński K, Walczyk A, Siołek M, Pałyga I, Trepka S, Mikina E, Trybek T, Kopczyński J, Suligowska A, Ślusarczyk R, Gonet A, Jaskulski J, Orłowski P, Chrapek M, Góźdź S, Kowalska A. Incidence of the CHEK2 Germline Mutation and Its Impact on Clinicopathological Features, Treatment Responses, and Disease Course in Patients with Papillary Thyroid Carcinoma. Cancers (Basel) 2021; 13:cancers13030470. [PMID: 33530461 PMCID: PMC7865996 DOI: 10.3390/cancers13030470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/23/2023] Open
Abstract
Simple Summary The aim of our study was to evaluate whether the CHEK2 mutation was a predictor of poorer clinical course in patients with papillary thyroid cancer. The study included 1547 patients from a single center in Poland, in whom the presence and variant of the CHEK2 mutation were determined. Two hundred and forty patients were found to carry this mutation. We found significant association of the CHEK2 truncating variant with vascular invasion and intermediate or high initial risk of recurrence/persistence, whereas this relationship was not found in case of the missense CHEK2 variant. Neither the truncating nor the missense mutations were associated with worse primary treatment response and outcome of the disease. Abstract The CHEK2 gene is involved in the repair of damaged DNA. CHEK2 germline mutations impair this repair mechanism, causing genomic instability and increasing the risk of various cancers, including papillary thyroid carcinoma (PTC). Here, we asked whether CHEK2 germline mutations predict a worse clinical course for PTC. The study included 1547 unselected PTC patients (1358 women and 189 men) treated at a single center. The relationship between mutation status and clinicopathological characteristics, treatment responses, and disease outcome was assessed. CHEK2 mutations were found in 240 (15.5%) of patients. A CHEK2 I157T missense mutation was found in 12.3%, and CHEK2 truncating mutations (IVS2 + 1G > A, del5395, 1100delC) were found in 2.8%. The truncating mutations were more common in women (p = 0.038), and were associated with vascular invasion (OR, 6.91; p < 0.0001) and intermediate or high initial risk (OR, 1.92; p = 0.0481) in multivariate analysis. No significant differences in these parameters were observed in patients with the I157T missense mutation. In conclusion, the CHEK2 truncating mutations were associated with vascular invasion and with intermediate and high initial risk of recurrence/persistence. Neither the truncating nor the missense mutations were associated with worse primary treatment response and outcome of the disease.
Collapse
Affiliation(s)
- Danuta Gąsior-Perczak
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (E.M.); (T.T.); (A.S.)
- Correspondence:
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (A.K.); (K.G.)
- Division of Medical Biology, Institute of Biology Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Krzysztof Gruszczyński
- Department of Molecular Diagnostics, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (A.K.); (K.G.)
| | - Agnieszka Walczyk
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (E.M.); (T.T.); (A.S.)
| | - Monika Siołek
- Genetic Clinic, Holycross Cancer Center, 25-734 Kielce, Poland;
| | - Iwona Pałyga
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (E.M.); (T.T.); (A.S.)
| | - Sławomir Trepka
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
- Department of Surgical Oncology, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland
| | - Estera Mikina
- Endocrinology Clinic, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (E.M.); (T.T.); (A.S.)
| | - Tomasz Trybek
- Endocrinology Clinic, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (E.M.); (T.T.); (A.S.)
| | - Janusz Kopczyński
- Surgical Pathology, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Agnieszka Suligowska
- Endocrinology Clinic, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (E.M.); (T.T.); (A.S.)
| | - Rafał Ślusarczyk
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
| | - Agnieszka Gonet
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
| | - Jarosław Jaskulski
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
| | - Paweł Orłowski
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
| | - Magdalena Chrapek
- Faculty of Natural Sciences, Jan Kochanowski University, 25-406 Kielce, Poland;
| | - Stanisław Góźdź
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
- Clinical Oncology, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (A.W.); (I.P.); (S.T.); (R.Ś.); (A.G.); (J.J.); (P.O.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland; (E.M.); (T.T.); (A.S.)
| |
Collapse
|
24
|
Brandão A, Paulo P, Maia S, Pinheiro M, Peixoto A, Cardoso M, Silva MP, Santos C, Eeles RA, Kote-Jarai Z, Muir K, Schleutker J, Wang Y, Pashayan N, Batra J, Grönberg H, Neal DE, Nordestgaard BG, Tangen CM, Southey MC, Wolk A, Albanes D, Haiman CA, Travis RC, Stanford JL, Mucci LA, West CML, Nielsen SF, Kibel AS, Cussenot O, Berndt SI, Koutros S, Sørensen KD, Cybulski C, Grindedal EM, Park JY, Ingles SA, Maier C, Hamilton RJ, Rosenstein BS, Vega A, Kogevinas M, Wiklund F, Penney KL, Brenner H, John EM, Kaneva R, Logothetis CJ, Neuhausen SL, Ruyck KD, Razack A, Newcomb LF, Lessel D, Usmani N, Claessens F, Gago-Dominguez M, Townsend PA, Roobol MJ, Teixeira MR. The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers (Basel) 2020; 12:E3254. [PMID: 33158149 PMCID: PMC7694218 DOI: 10.3390/cancers12113254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The identification of recurrent founder variants in cancer predisposing genes may have important implications for implementing cost-effective targeted genetic screening strategies. In this study, we evaluated the prevalence and relative risk of the CHEK2 recurrent variant c.349A>G in a series of 462 Portuguese patients with early-onset and/or familial/hereditary prostate cancer (PrCa), as well as in the large multicentre PRACTICAL case-control study comprising 55,162 prostate cancer cases and 36,147 controls. Additionally, we investigated the potential shared ancestry of the carriers by performing identity-by-descent, haplotype and age estimation analyses using high-density SNP data from 70 variant carriers belonging to 11 different populations included in the PRACTICAL consortium. The CHEK2 missense variant c.349A>G was found significantly associated with an increased risk for PrCa (OR 1.9; 95% CI: 1.1-3.2). A shared haplotype flanking the variant in all carriers was identified, strongly suggesting a common founder of European origin. Additionally, using two independent statistical algorithms, implemented by DMLE+2.3 and ESTIAGE, we were able to estimate the age of the variant between 2300 and 3125 years. By extending the haplotype analysis to 14 additional carrier families, a shared core haplotype was revealed among all carriers matching the conserved region previously identified in the high-density SNP analysis. These findings are consistent with CHEK2 c.349A>G being a founder variant associated with increased PrCa risk, suggesting its potential usefulness for cost-effective targeted genetic screening in PrCa families.
Collapse
Affiliation(s)
- Andreia Brandão
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (S.M.); (M.P.); (M.C.); (M.P.S.)
| | - Paula Paulo
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (S.M.); (M.P.); (M.C.); (M.P.S.)
| | - Sofia Maia
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (S.M.); (M.P.); (M.C.); (M.P.S.)
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (S.M.); (M.P.); (M.C.); (M.P.S.)
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.P.); (C.S.)
| | - Marta Cardoso
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (S.M.); (M.P.); (M.C.); (M.P.S.)
| | - Maria P. Silva
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (S.M.); (M.P.); (M.C.); (M.P.S.)
| | - Catarina Santos
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.P.); (C.S.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (R.A.E.); (Z.K.-J.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (R.A.E.); (Z.K.-J.)
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - UKGPCS Collaborators
- The Institute of Cancer Research, London SW7 3RP, UK; (UKGPCS Collaborators); (The IMPACT Study Steering Committee and Collaborators)
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, FI-20014 Turun Yliopisto, 20050 Turku, Finland;
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Ying Wang
- Department of Population Science, American Cancer Society, 250 Williams Street, Atlanta, GA 30303, USA;
| | - Nora Pashayan
- Department of Applied Health Research, University College London, London WC1E 7HB, UK;
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (J.B.); (APCB BioResource)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - APCB BioResource
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia; (J.B.); (APCB BioResource)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm, Sweden; (H.G.); (F.W.)
| | - David E. Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Room 6603, Level 6, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK;
- Department of Oncology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Børge G. Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (B.G.N.); (S.F.N.)
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 2200 Copenhagen, Denmark
| | - Catherine M. Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M3-C102, Seattle, WA 98109-1024, USA;
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia;
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC 3004, Australia
- Department of Clinical Pathology, The Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3004, Australia
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden;
- Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, ML 20892, USA; (D.A.); (S.I.B.); (S.K.)
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90015, USA;
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK;
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, DC 98109-1024, USA; (J.L.S.); (L.F.N.); (Canary PASS Investigators)
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, DC 98195, USA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Catharine M. L. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester M13 9PL, UK;
| | - Sune F. Nielsen
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (B.G.N.); (S.F.N.)
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 2200 Copenhagen, Denmark
| | - Adam S. Kibel
- Division of Urologic Surgery, Brigham and Womens Hospital, 75 Francis Street, Boston, MA 02115, USA;
| | - Olivier Cussenot
- Sorbonne Universite, GRC n 5, AP-HP, Tenon Hospital, 4 rue de la Chine, F-75020 Paris, France;
- CeRePP, Tenon Hospital, F-75020 Paris, France
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, ML 20892, USA; (D.A.); (S.I.B.); (S.K.)
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, ML 20892, USA; (D.A.); (S.I.B.); (S.K.)
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200 Aarhus N, Denmark;
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-115 Szczecin, Poland;
| | - Eli Marie Grindedal
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway;
| | - Jong Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Sue A. Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90015, USA;
| | - Christiane Maier
- Humangenetik Tuebingen, Paul-Ehrlich-Str 23, D-72076 Tuebingen, Germany;
| | - Robert J. Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada;
- Department of Surgery (Urology), University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Barry S. Rosenstein
- Department of Radiation Oncology and Department of Genetics and Genomic Sciences, Box 1236, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA;
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, 15706 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago De Compostela, Spain
- CIBER of Rare Diseases (CIBERER), 28029 Madrid, Spain
| | | | - Manolis Kogevinas
- ISGlobal, 08036 Barcelona, Spain;
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Campus del Mar, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm, Sweden; (H.G.); (F.W.)
| | - Kathryn L. Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02184, USA;
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Esther M. John
- Departments of Epidemiology & Population Health and of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA;
| | - Kim De Ruyck
- Faculty of Medicine and Health Sciences, Basic Medical Sciences, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium;
| | - Azad Razack
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia;
| | - Lisa F. Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, DC 98109-1024, USA; (J.L.S.); (L.F.N.); (Canary PASS Investigators)
- Department of Urology, University of Washington, 1959 NE Pacific Street, Box 356510, Seattle, WA 98195, USA
| | - Canary PASS Investigators
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, DC 98109-1024, USA; (J.L.S.); (L.F.N.); (Canary PASS Investigators)
- Department of Urology, University of Washington, 1959 NE Pacific Street, Box 356510, Seattle, WA 98195, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada;
- Division of Radiation Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, Campus Gasthuisberg, University of Leuven, Herestraat 49, P.O. Box 901, 3000 Leuven, Belgium;
| | - Manuela Gago-Dominguez
- Group of Genomic Medicine, Galician Public Foundation of Genomic Medicine, Health Research Institute of Santiago de Compostela (IDIS), Galician Healthcare Service (SERGAS) University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Moores Cancer Center, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093-0012, USA
| | - Paul A. Townsend
- Division of Cancer Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, Health Innovation Manchester, University of Manchester, Manchester M13 9PL, UK;
| | - Monique J. Roobol
- Department of Urology, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands;
| | | | | | - Manuel R. Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.B.); (P.P.); (S.M.); (M.P.); (M.C.); (M.P.S.)
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (A.P.); (C.S.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Biomedical Sciences Institute Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Tedaldi G, Tebaldi M, Zampiga V, Cangini I, Pirini F, Ferracci E, Danesi R, Arcangeli V, Ravegnani M, Martinelli G, Falcini F, Ulivi P, Calistri D. Male Breast Cancer: Results of the Application of Multigene Panel Testing to an Italian Cohort of Patients. Diagnostics (Basel) 2020; 10:E269. [PMID: 32365798 PMCID: PMC7277207 DOI: 10.3390/diagnostics10050269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Male breast cancer (MBC) is a rare tumor, accounting for less than 1% of all breast cancers. In MBC, genetic predisposition plays an important role; however, only a few studies have investigated in depth the role of genes other than BRCA1 and BRCA2. We performed a Next-Generation Sequencing (NGS) analysis with a panel of 94 cancer predisposition genes on germline DNA from an Italian case series of 70 patients with MBC. Moreover, we searched for large deletions/duplications of BRCA1/2 genes through the Multiplex Ligation-dependent Probe Amplification (MLPA) technique. Through the combination of NGS and MLPA, we identified three pathogenic variants in the BRCA1 gene and six in the BRCA2 gene. Besides these alterations, we found six additional pathogenic/likely-pathogenic variants in PALB2, CHEK2, ATM, RAD51C, BAP1 and EGFR genes. From our study, BRCA1 and BRCA2 emerge as the main genes associated with MBC risk, but also other genes seem to be associated with the disease. Indeed, some of these genes have already been implicated in female breast cancer predisposition, but others are known to be involved in other types of cancer. Consequently, our results suggest that novel genes could be involved in MBC susceptibility, shedding new light on their role in cancer development.
Collapse
Affiliation(s)
- Gianluca Tedaldi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Michela Tebaldi
- Biostatistics and Clinical Trials Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Valentina Zampiga
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Ilaria Cangini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Elisa Ferracci
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Rita Danesi
- Romagna Cancer Registry, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (R.D.); (M.R.); (F.F.)
| | | | - Mila Ravegnani
- Romagna Cancer Registry, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (R.D.); (M.R.); (F.F.)
| | - Giovanni Martinelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Fabio Falcini
- Romagna Cancer Registry, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (R.D.); (M.R.); (F.F.)
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.Z.); (I.C.); (F.P.); (E.F.); (D.C.)
| |
Collapse
|
26
|
Boyle JL, Hahn AW, Kapron AL, Kohlmann W, Greenberg SE, Parnell TJ, Teerlink CC, Maughan BL, Feng BJ, Cannon-Albright L, Agarwal N, Cooney KA. Pathogenic Germline DNA Repair Gene and HOXB13 Mutations in Men With Metastatic Prostate Cancer. JCO Precis Oncol 2020; 4:1900284. [PMID: 32923906 PMCID: PMC7446531 DOI: 10.1200/po.19.00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Germline mutations in DNA repair (DR) genes and susceptibility genes CDKN2A and HOXB13 have previously been associated with prostate cancer (PC) incidence and/or progression. However, the role and prevalence of this class of mutations in metastatic PC (mPC) are not fully understood. PATIENTS AND METHODS To evaluate the frequency of pathogenic/likely pathogenic germline variants (PVs/LPVs) in men with mPC, this study sequenced 38 DR genes, CDKN2A, and HOXB13 in a predominantly white cohort of 317 patients with mPC. A PC registry at the University of Utah was used for patient sample acquisition and retrospective clinical data collection. Deep target sequencing allowed for germline and copy number variant analyses. Validated PVs/LPVs were integrated with clinical and demographic data for statistical correlation analyses. RESULTS All pathogenic variants were found in men self-reported as white, with a carrier frequency of 8.5% (DR genes, 7.3%; CDKN2A/HOXB13, 1.2%). Consistent with previous reports, mutations were most frequently identified in the breast cancer susceptibility gene BRCA2. It was also found that 50% of identified PVs/LPVs were categorized as founder mutations with European origins. Correlation analyses did not support a trend toward more advanced or earlier-onset disease in comparisons between carriers and noncarriers of deleterious DR or HOXB13 G84E mutations. CONCLUSION These findings demonstrate a lower prevalence of germline PVs/LPVs in an unselected, predominantly white mPC cohort than previously reported, which may have implications for the design of clinical trials testing targeted therapies. Larger studies in broad and diverse populations are needed to more accurately define the prevalence of germline mutations in men with mPC.
Collapse
Affiliation(s)
- Julie L Boyle
- Department of Internal Medicine, University of Utah, Salt Lake City, UT.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Andrew W Hahn
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Ashley L Kapron
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Wendy Kohlmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | | | - Craig C Teerlink
- Department of Internal Medicine, University of Utah, Salt Lake City, UT.,Department of Family and Preventative Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Benjamin L Maughan
- Department of Internal Medicine, University of Utah, Salt Lake City, UT.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Bing-Jian Feng
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT.,Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Lisa Cannon-Albright
- Department of Internal Medicine, University of Utah, Salt Lake City, UT.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Neeraj Agarwal
- Department of Internal Medicine, University of Utah, Salt Lake City, UT.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kathleen A Cooney
- Department of Medicine and the Duke Cancer Institute, Duke University School of Medicine, Durham, NC
| |
Collapse
|
27
|
Angeli D, Salvi S, Tedaldi G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? Int J Mol Sci 2020; 21:E1128. [PMID: 32046255 PMCID: PMC7038038 DOI: 10.3390/ijms21031128] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Breast and ovarian cancers are some of the most common tumors in females, and the genetic predisposition is emerging as one of the key risk factors in the development of these two malignancies. BRCA1 and BRCA2 are the best-known genes associated with hereditary breast and ovarian cancer. However, recent advances in molecular techniques, Next-Generation Sequencing in particular, have led to the identification of many new genes involved in the predisposition to breast and/or ovarian cancer, with different penetrance estimates. TP53, PTEN, STK11, and CDH1 have been identified as high penetrance genes for the risk of breast/ovarian cancers. Besides them, PALB2, BRIP1, ATM, CHEK2, BARD1, NBN, NF1, RAD51C, RAD51D and mismatch repair genes have been recognized as moderate and low penetrance genes, along with other genes encoding proteins involved in the same pathways, possibly associated with breast/ovarian cancer risk. In this review, we summarize the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and the associated genetic disorders. Furthermore, we discuss the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Davide Angeli
- Biostatistics and Clinical Trials Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Gianluca Tedaldi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| |
Collapse
|
28
|
Coexisting Germline CHEK2 and Somatic BRAFV600E Mutations in Papillary Thyroid Cancer and Their Association with Clinicopathological Features and Disease Course. Cancers (Basel) 2019; 11:cancers11111744. [PMID: 31703344 PMCID: PMC6896084 DOI: 10.3390/cancers11111744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/26/2023] Open
Abstract
BRAFV600E is the most common somatic mutation in papillary thyroid carcinoma (PTC) and the majority of evidence indicates that it is associated with an aggressive clinical course. Germline mutations of the CHEK2 gene impair the DNA damage repair process and increase the risk of PTC. Coexistence of both mutations is expected to be associated with poorer clinical course. We evaluated the prevalence of concomitant CHEK2 and BRAFV600E mutations and their associations with clinicopathological features, treatment response, and disease course in PTC patients. The study included 427 unselected PTC patients (377 women and 50 men) from one center. Relationships among clinicopathological features, mutation status, treatment response, and disease outcomes were assessed. Mean follow-up was 10 years. CHEK2 mutations were detected in 15.2% and BRAFV600E mutations in 64.2% patients. Neither mutation was present in 31.4% cases and both BRAFV600E and CHEK2 mutations coexisted in 10.8% patients. No significant differences in clinicopathological features, initial risk, treatment response, or disease outcome were detected among these patient groups. CHEK2 mutations were significantly associated with older age, while BRAFV600E was significantly associated with older age and extrathyroidal extension. The coexistence of both mutations was not associated with more aggressive clinicopathological features of PTC, poorer treatment response, or disease outcome.
Collapse
|
29
|
Pilarski R. The Role of BRCA Testing in Hereditary Pancreatic and Prostate Cancer Families. Am Soc Clin Oncol Educ Book 2019; 39:79-86. [PMID: 31099688 DOI: 10.1200/edbk_238977] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beyond breast and ovarian cancers, mutations in the BRCA1 and BRCA2 genes increase risks for pancreatic and prostate cancers and contribute to the prevalence of these cancers. Mutations in a number of other genes have also been shown to increase the risk for these cancers as well. Genetic testing is playing an increasingly important role in the treatment of patients with pancreatic and prostate cancer and is now recommended for all patients with pancreatic or metastatic prostate cancer, as well as patients with high Gleason grade prostate cancer and a remarkable family history. Identification of an inherited mutation can direct evaluation of the patient for other cancer risks as well as identification and management of disease in at-risk relatives. Growing evidence suggests improved responses to PARP inhibitors and other therapies in patients with mutations in the BRCA and other DNA repair genes. Although more work must be done to clarify the prevalence and penetrance of mutations in genes other than BRCA1 and BRCA2 in patients with pancreatic and prostate cancer, in most cases, testing is now being done with a panel of multiple genes. Because of the complexities in panel testing and the increased likelihood of finding variants of uncertain significance, pre- and post-test genetic counseling are essential.
Collapse
Affiliation(s)
- Robert Pilarski
- 1 Division of Human Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| |
Collapse
|
30
|
Białkowska K, Marciniak W, Muszyńska M, Baszuk P, Gupta S, Jaworska-Bieniek K, Sukiennicki G, Durda K, Gromowski T, Prajzendanc K, Cybulski C, Huzarski T, Gronwald J, Dębniak T, Scott RJ, Lubiński J, Jakubowska A. Association of zinc level and polymorphism in MMP-7 gene with prostate cancer in Polish population. PLoS One 2018; 13:e0201065. [PMID: 30036379 PMCID: PMC6056054 DOI: 10.1371/journal.pone.0201065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Prostate cancer is one of the most commonly diagnosed malignancies among men in Western populations. Evidence reported in the literature suggests that zinc may be related to prostate cancer. In this study we evaluated the association of serum zinc levels and polymorphisms in genes encoding zinc-dependent proteins with prostate cancer in Poland. METHODS The study group consisted of 197 men affected with prostate cancer and 197 healthy men. Serum zinc levels were measured and 5 single nucleotide polymorphisms in MMP-1, MMP-2, MMP-7, MMP-13, MT2A genes were genotyped. RESULTS The mean serum zinc level was higher in prostate cancer patients than in healthy controls (898.9±12.01 μg/l vs. 856.6±13.05 μg/l, p<0.01). When compared in quartiles a significant association of higher zinc concentration with the incidence of prostate cancer was observed. The highest OR (OR = 4.41, 95%CI 2.07-9.37, p<0.01) was observed in 3rd quartile (>853.0-973.9 μg/l). Among five analyzed genetic variants, rs11568818 in MMP-7 appeared to be correlated with 2-fold increased prostate cancer risk (OR = 2.39, 95% CI = 1.19-4.82, p = 0.015). CONCLUSION Our results suggest a significant correlation of higher serum zinc levels with the diagnosis of prostate cancer. The polymorphism rs11568818 in MMP-7 gene was also associated with an increased prostate cancer risk in Poland.
Collapse
Affiliation(s)
- Katarzyna Białkowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Satish Gupta
- Strand Life Sciences, Bangalore, Karnataka, India
| | - Katarzyna Jaworska-Bieniek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Grzegorz Sukiennicki
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Durda
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Gromowski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Prajzendanc
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rodney J Scott
- School of Biomedical Sciences, University of Newcastle, Newcastle, Australia.,Division of Molecular Medicine, NSW Health Pathology, Newcastle, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.,Read-Gene S.A., Grzepnica, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.,Independent laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
31
|
Incidence of Second Malignancy in Patients with Papillary Thyroid Cancer from Surveillance, Epidemiology, and End Results 13 Dataset. J Thyroid Res 2018; 2018:8765369. [PMID: 30046434 PMCID: PMC6038658 DOI: 10.1155/2018/8765369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Increased risk of second primary malignancy (SPM) in papillary thyroid cancer (PTC) has been reported. Here, we present the most updated incidence rates of second primary malignancy from original diagnosis of PTC by using the data from the Surveillance, Epidemiology, and End Results. In this cohort, 3,200 patients developed SPM, a substantially higher number than in the reference population of 2,749 with observed to expected ratio (O/E) of 1.16 (95% CI; 1.12–1.21). Bone and joint cancer had the highest O/E ratio of 4.26 (95% confidence interval [CI] 2.33–7.15) followed by salivary gland (O/E 4.15; 95% CI 2.76–6.0) and acute lymphocytic leukemia (O/E 3.98; 95% CI 2.12–6.8). Mean age at the diagnosis of SPM was 64.4 years old. Interestingly, incidence of colorectal cancer was lower in thyroid cancer survivors compared to general population (large intestine O/E 0.3; 95% CI 0.06–0.88, rectum O/E 0.6; 95% CI 0.41–0.85); however, this was not observed in patients who underwent radiation therapy. The incidence of SPM at all sites was higher during 2000–2012 compared to 1992–1999 (O/E 1.24 versus 1.10). Surprisingly, patients with micropapillary cancer had higher incidence of SPM than counterparts with a larger tumor in radiation group (O/E of 1.40 versus 1.15). O/E of all cancers were higher in males compared to females with O/E of 1.41 versus 1.17 during the period of 2000–2012. Diagnosis of PTC before age 50, especially at age 30–34, was associated with higher incidence of overall SPM (age 30–34; O/E 1.43; 95% CI; 1.19–1.71). Efficient monitoring strategies that include age at the time of thyroid cancer diagnosis, exposure to radiation, gender, and genetic susceptibility may successfully detect SPM earlier in the disease course. This is especially important given the excellent prognosis of the initial thyroid cancer itself.
Collapse
|
32
|
Wu Y, Yu H, Zheng SL, Na R, Mamawala M, Landis T, Wiley K, Petkewicz J, Shah S, Shi Z, Novakovic K, McGuire M, Brendler CB, Ding Q, Helfand BT, Carter HB, Cooney KA, Isaacs WB, Xu J. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate 2018. [PMID: 29520813 DOI: 10.1002/pros.23505] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Germline mutations in CHEK2 have been associated with prostate cancer (PCa) risk. Our objective is to examine whether germline pathogenic CHEK2 mutations can differentiate risk of lethal from indolent PCa. METHODS A case-case study of 703 lethal PCa patients and 1455 patients with low-risk localized PCa of European, African, and Chinese origin was performed. Germline DNA samples from these patients were sequenced for CHEK2. Mutation carrier rates and their association with lethal PCa were analyzed using the Fisher exact test and Kaplan-Meier survival analysis. RESULTS In the entire study population, 40 (1.85%) patients were identified as carrying one of 15 different germline CHEK2 pathogenic or likely pathogenic mutations. CHEK2 mutations were detected in 16 (2.28%) of 703 lethal PCa patients compared with 24 (1.65%) of 1455 low-risk PCa patients (P = 0.31). No association was found between CHEK2 mutation status and early-diagnosis or PCa-specific survival time. However, the most common mutation in CHEK2, c.1100delC (p.T367 fs), had a significantly higher carrier rate (1.28%) in lethal PCa patients than low-risk PCa patients of European American origin (0.16%), P = 0.0038. The estimated Odds Ratio of this mutation for lethal PCa was 7.86. The carrier rate in lethal PCa was also significantly higher than that (0.46%) in 32 461 non-Finnish European subjects from the Exome Aggregation Consortium (ExAC) (P = 0.01). CONCLUSIONS While overall CHEK2 mutations were not significantly more common in men with lethal compared to low-risk PCa, the specific CHEK2 mutation, c.1100delC, appears to contribute to an increased risk of lethal PCa in European American men.
Collapse
Affiliation(s)
- Yishuo Wu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Hongjie Yu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Rong Na
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mufaddal Mamawala
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tricia Landis
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Wiley
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Sameep Shah
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Kristian Novakovic
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Michael McGuire
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Charles B Brendler
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Qiang Ding
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - H Ballentine Carter
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen A Cooney
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - William B Isaacs
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jianfeng Xu
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| |
Collapse
|
33
|
Paulo P, Maia S, Pinto C, Pinto P, Monteiro A, Peixoto A, Teixeira MR. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet 2018; 14:e1007355. [PMID: 29659569 PMCID: PMC5919682 DOI: 10.1371/journal.pgen.1007355] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/26/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022] Open
Abstract
Considering that mutations in known prostate cancer (PrCa) predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS) in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.
Collapse
Affiliation(s)
- Paula Paulo
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Maia
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Carla Pinto
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Pedro Pinto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Augusta Monteiro
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Manuel R. Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Biomedical Sciences Institute Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
34
|
Netto GJ, Eich ML, Varambally S. Prostate Cancer: An Update on Molecular Pathology with Clinical Implications. EUR UROL SUPPL 2017. [DOI: 10.1016/j.eursup.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Apostolou P, Papasotiriou I. Current perspectives on CHEK2 mutations in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2017; 9:331-335. [PMID: 28553140 PMCID: PMC5439543 DOI: 10.2147/bctt.s111394] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Checkpoint kinase 2 (CHEK2) is a serine/threonine kinase which is activated upon DNA damage and is implicated in pathways that govern DNA repair, cell cycle arrest or apoptosis in response to the initial damage. Loss of kinase function has been correlated with different types of cancer, mainly breast cancer. CHEK2 functionality is affected by different missense or deleterious mutations. CHEK2*1100delC and I157T are most studied in populations all over the world. Although these variants have been identified in patients with breast cancer, their frequency raises doubts about their importance as risk factors. The present article reviews the recent advances in research on CHEK2 mutations, focusing on breast cancer, based on the latest experimental data.
Collapse
Affiliation(s)
- Panagiotis Apostolou
- Department of Molecular Medicine, Research Genetic Cancer Centre S.A. (R.G.C.C. S.A.), Florina, Greece
| | - Ioannis Papasotiriou
- Department of Molecular Medicine, Research Genetic Cancer Centre S.A. (R.G.C.C. S.A.), Florina, Greece
| |
Collapse
|
36
|
An association study between CHEK2 gene mutations and susceptibility to breast cancer. ACTA ACUST UNITED AC 2017; 26:837-845. [PMID: 28680382 PMCID: PMC5489611 DOI: 10.1007/s00580-017-2455-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/09/2017] [Indexed: 10/31/2022]
Abstract
CHEK2 gene is known as a tumor suppressor gene in breast cancer (BC), which plays a role in DNA repair. The germ line mutations in CEHK2 have been associated with different types of cancer. The present study was aimed at studying the association between CHEK2 mutations and BC. Peripheral blood was collected from patients into a test tube containing EDTA, and DNA was extracted from blood samples. Then, we analyzed mutations including 1100delc, IVS2+1>A, del5395bp, and I157T within CHEK2 gene in patients with BC and 100 normal healthy controls according to PCR-RFLP, allelic specific PCR, and multiplex-PCR. Although IVS2+1G>A mutation within CHEK2 gene was found in two BC patients, other defined mutants were not detected. For the first time, we identified CHEK2 IVS2+1G>A mutation, one out of four different CHEK2 alterations in two Iranian BC patients (2%). Also, our results showed that CHEK2 1100elC, del5395bp, and I157T mutations are not associated with genetic susceptibility for BC among Iranian population.
Collapse
|
37
|
Knappskog S, Leirvaag B, Gansmo LB, Romundstad P, Hveem K, Vatten L, Lønning PE. Prevalence of the CHEK2 R95* germline mutation. Hered Cancer Clin Pract 2016; 14:19. [PMID: 27708748 PMCID: PMC5039915 DOI: 10.1186/s13053-016-0059-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Background While germline CHEK2 mutations have been linked to a moderately elevated cancer risk, to date, a limited number of such mutations have been identified. Recently, we reported a germline nonsense mutation (C283T; R95*), introducing an early stop-codon, in two Norwegian patients diagnosed with locally advanced breast cancer. Both patients were resistant to anthracycline therapy, resembling what has been observed for TP53 mutations. Methods In the present study, we screened a large population based sample, including 3748 non-cancer individuals and 7081 incident cancer cases (breast cancer, n = 1717; prostate cancer n = 2501, lung cancer n = 1331 and colorectal cancer n = 1532), for the distribution of CHEK2 R95*. Results We found that 12 individuals (0.11 %) carried the R95* variant: 4 non-cancer individuals (0.11 %), 4 breast cancer cases (0.23 %), and 4 prostate cancer cases (0.16 %). Although the low number of observations precluded formal statistical assessment, our data may indicate an elevated risk for breast (OR: 2.19, 95 % CI: 0.55–8.75) and prostate cancer (OR: 1.5, 95 % CI: 0.36–6.00) associated with CHEK2 R95*. By mining international databanks, we found no individuals carrying the R95* mutation, indicating it to be restricted to the Norwegian population. Conclusion We provide proof-of-concept that previously unknown CHEK2 germline mutations may be present in certain populations. Notably, germline mutations in tumours are in general missed by contemporary massive parallel sequencing strategies, since tumour mutations are usually filtered against the germline. The fact that the CHEK2 R95* mutation may be associated with resistance to anthracyclines in cancer patients emphasizes its possible clinical importance.
Collapse
Affiliation(s)
- Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway ; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Beryl Leirvaag
- Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway ; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Liv B Gansmo
- Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway ; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Pål Romundstad
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Vatten
- Department of Public Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per E Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway ; Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
38
|
Borun P, Salanowski K, Godlewski D, Walkowiak J, Plawski A. Rapid Detection Method for the Four Most Common CHEK2 Mutations Based on Melting Profile Analysis. Mol Diagn Ther 2016; 19:419-25. [PMID: 26446916 PMCID: PMC4654745 DOI: 10.1007/s40291-015-0171-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Introduction CHEK2 is a tumor suppressor gene, and the mutations affecting the functionality of the protein product increase cancer risk in various organs. The elevated risk, in a significant percentage of cases, is determined by the occurrence of one of the four most common mutations in the CHEK2 gene, including c.470T>C (p.I157T), c.444+1G>A (IVS2+1G>A), c.1100delC, and c.1037+1538_1224+328del5395 (del5395). Methods We have developed and validated a rapid and effective method for their detection based on high-resolution melting analysis and comparative-high-resolution melting, a novel approach enabling simultaneous detection of copy number variations. The analysis is performed in two polymerase chain reactions followed by melting analysis, without any additional reagents or handling other than that used in standard high-resolution melting. Results Validation of the method was conducted in a group of 103 patients with diagnosed breast cancer, a group of 240 unrelated patients with familial history of cancer associated with the CHEK2 gene mutations, and a 100-person control group. The results of the analyses for all three groups were fully consistent with the results from other methods. Conclusion The method we have developed improves the identification of the CHEK2 mutation carriers, reduces the cost of such analyses, as well as facilitates their implementation. Along with the increased efficiency, the method maintains accuracy and reliability comparable to other more labor-consuming techniques. Electronic supplementary material The online version of this article (doi:10.1007/s40291-015-0171-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pawel Borun
- Institute of Human Genetics, Polish Academy of Sciences, Ul. Strzeszyńska 32, 60-479, Poznan, Poland
| | - Kacper Salanowski
- Institute of Human Genetics, Polish Academy of Sciences, Ul. Strzeszyńska 32, 60-479, Poznan, Poland
| | | | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, University of Medical Sciences, Poznan, Poland
| | - Andrzej Plawski
- Institute of Human Genetics, Polish Academy of Sciences, Ul. Strzeszyńska 32, 60-479, Poznan, Poland. .,Genetic Diagnostics Center GENESCREEN, Kobylnica, Poland.
| |
Collapse
|
39
|
Leedom TP, LaDuca H, McFarland R, Li S, Dolinsky JS, Chao EC. Breast cancer risk is similar for CHEK2 founder and non-founder mutation carriers. Cancer Genet 2016; 209:403-407. [DOI: 10.1016/j.cancergen.2016.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/22/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
|
40
|
Abstract
In some families there is an increased risk for colorectal cancer, caused by heritable, but often unidentified genetic mutations predisposing to the disease. We have identified the likely genetic cause for disease predisposition in a large family with high burden of colorectal adenomas and carcinomas, in addition to extra-colonic cancers. This family had previously been tested for known cancer susceptibility genes, with negative results. Exome sequencing was used to identify a novel mutation, c.1373A>T (p.Tyr458Phe), in the gene for DNA polymerase epsilon catalytic subunit (POLE). This mutation is located in the active site of the exonuclease domain of the enzyme, and affects a residue that has previously been shown to be important for exonuclease activity. The first predisposing mutation identified in POLE (c.1270C>G, p.Leu424Val) was associated with colorectal cancer only, but another mutation with a broader tumour spectrum (c.1089C>A, p.Asn363Lys) has recently been reported. In the family described in the present study, carriers generally have multiple colorectal adenomas and cancer of colon, pancreas, ovaries and small intestine which represents an important broadening of the tumour spectrum of POLE mutation carriers. We also observe a large phenotypic variation among the POLE mutation carriers in this family, most likely explained by modifying variants in other genes. One POLE mutation carrier has a novel variant in EXO1 (c.458C>T, p.Ala153Val), which may contribute to a more severe phenotype. The findings in this study will have important implications for risk assessment and surveillance of POLE mutation carriers.
Collapse
|
41
|
Kostovska IM, Jakimovska M, Kubelka-Sabit K, Karadjozov M, Arsovski A, Stojanovska L, Plaseska-Karanfilska D. Clinical relevance of CHEK2 and NBN mutations in the macedonian population. Balkan J Med Genet 2016; 18:47-54. [PMID: 26929905 PMCID: PMC4768825 DOI: 10.1515/bjmg-2015-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Clinical importance of the most common CHEK2 (IVS2+1 G>A, 1100delC, I157T and del5395) and NBN (R215W and 657del5) gene mutations for breast cancer development in Macedonian breast cancer patients is unknown. We performed a case-control study including 300 Macedonian breast cancer patients and 283 Macedonian healthy controls. Genotyping was done using a fast and highly accurate single-nucleotide primer extension method for the detection of five mutations in a single reaction. The detection of the del5395 was performed using an allele-specific duplex polymerase chain reaction (PCR) assay. We have found that mutations were more frequent in breast cancer patients (n = 13, 4.3%) than in controls (n = 5, 1.8%), although without statistical significance. Twelve patients were heterozygous for one of the analyzed mutations, while one patient had two mutations (NBN R215W and CHEK2 I157T). The most frequent variant was I157T, found in 10 patients and four controls (p = 0.176) and was found to be associated with familial breast cancer (p = 0.041). CHEK2 1100delC and NBN 657del5 were each found in one patient and not in the control group. CHEK2 IVS2+1G>A and del5395 were not found in our cohort. Frequencies of the studied mutations are low and they are not likely to represent alleles of clinical importance in the Macedonian population.
Collapse
Affiliation(s)
- I Maleva Kostovska
- Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov,” Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - M Jakimovska
- Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov,” Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | | | - M Karadjozov
- “Adzibadem-Sistina” Hospital, Skopje, Republic of Macedonia
| | - A Arsovski
- “Re-Medika” Hospital, Skopje, Republic of Macedonia
| | | | - D Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov,” Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
- Corresponding Author: Dijana Plaseska-Karanfilska, M.D., Ph.D., Research Centre for Genetic Engineering and Biotechnology “Geogi D. Efremov,” Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia. Tel: +389-2-3235-410. Fax: +389-2-3155-434. E-mail:
| |
Collapse
|
42
|
Ahmed M, Eeles R. Germline genetic profiling in prostate cancer: latest developments and potential clinical applications. Future Sci OA 2016; 2:FSO87. [PMID: 28031937 PMCID: PMC5137984 DOI: 10.4155/fso.15.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022] Open
Abstract
Familial and twin studies have demonstrated a significant inherited component to prostate cancer predisposition. Genome wide association studies have shown that there are 100 single nucleotide polymorphisms which have been associated with the development of prostate cancer. This review aims to discuss the scientific methods used to identify these susceptibility loci. It will also examine the current clinical utility of these loci, which include the development of risk models as well as predicting treatment efficacy and toxicity. In order to refine the clinical utility of the susceptibility loci, international consortia have been developed to combine statistical power as well as skills and knowledge to further develop models that could be used to predict risk and treatment outcomes.
Collapse
Affiliation(s)
- Mahbubl Ahmed
- The Institute of Cancer Research, London SM2 5NG, UK
| | | |
Collapse
|
43
|
Näslund-Koch C, Nordestgaard BG, Bojesen SE. Increased Risk for Other Cancers in Addition to Breast Cancer for CHEK2*1100delC Heterozygotes Estimated From the Copenhagen General Population Study. J Clin Oncol 2016; 34:1208-16. [PMID: 26884562 DOI: 10.1200/jco.2015.63.3594] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE CHEK2 is a cell cycle checkpoint regulator, and the CHEK2*1100delC germline mutation leads to loss of function and increased breast cancer risk. It seems plausible that this mutation could also predispose to other cancers. Therefore, we tested the hypothesis that CHEK2*1100delC heterozygosity is associated with increased risk for other cancers in addition to breast cancer in the general population. PATIENTS AND METHODS We examined 86,975 individuals from the Copenhagen General Population Study, recruited from 2003 through 2010. The participants completed a questionnaire on health and lifestyle, were examined physically, had blood drawn for DNA extraction, were tested for presence of CHEK2*1100delC using Taqman assays and sequencing, and were linked over 1943 through 2011 to the Danish Cancer Registry. Incidences and risks of individual cancer types, including breast cancer, were calculated using Kaplan-Meier estimates, Fine and Gray competing-risks regressions, and stratified analyses with interaction tests. RESULTS Among 86,975 individuals, 670 (0.8%) were CHEK2*1100delC heterozygous, 2,442 developed breast cancer, and 6,635 developed other cancers. The age- and sex-adjusted hazard ratio for CHEK2*1100delC heterozygotes compared with noncarriers was 2.08 (95% CI, 1.51 to 2.85) for breast cancer and 1.45 (95% CI, 1.15 to 1.82) for other cancers. When stratifying for sex, the age-adjusted hazard ratios for other cancers were 1.54 (95% CI, 1.08 to 2.18) for women and 1.37 (95% CI, 1.01 to 1.85) for men (sex difference: P = .63). For CHEK2*1100delC heterozygotes compared with noncarriers, the age- and sex-adjusted hazard ratios were 5.76 (95% CI, 2.12 to 15.6) for stomach cancer, 3.61 (95% CI, 1.33 to 9.79) for kidney cancer, 3.45 (95% CI, 1.09 to 10.9) for sarcoma, and 1.60 (95% CI, 1.00 to 2.56) for prostate cancer. CONCLUSION CHEK2*1100delC heterozygosity is associated with 15% to 82% increased risk for at least some cancers in addition to breast cancer. This information may be useful in clinical counseling of patients with this loss-of-function mutation.
Collapse
Affiliation(s)
- Charlotte Näslund-Koch
- All authors: Herlev and Gentofte Hospital, Copenhagen University Hospital, and University of Copenhagen, Denmark
| | - Børge G Nordestgaard
- All authors: Herlev and Gentofte Hospital, Copenhagen University Hospital, and University of Copenhagen, Denmark
| | - Stig E Bojesen
- All authors: Herlev and Gentofte Hospital, Copenhagen University Hospital, and University of Copenhagen, Denmark.
| |
Collapse
|
44
|
Abstract
Much progress has been made in research for prostate cancer in the past decade. There is now greater understanding for the genetic basis of familial prostate cancer with identification of rare but high-risk mutations (eg, BRCA2, HOXB13) and low-risk but common alleles (77 identified so far by genome-wide association studies) that could lead to targeted screening of patients at risk. This is especially important because screening for prostate cancer based on prostate-specific antigen remains controversial due to the high rate of overdiagnosis and unnecessary prostate biopsies, despite evidence that it reduces mortality. Classification of prostate cancer into distinct molecular subtypes, including mutually exclusive ETS-gene-fusion-positive and SPINK1-overexpressing, CHD1-loss cancers, could allow stratification of patients for different management strategies. Presently, men with localised disease can have very different prognoses and treatment options, ranging from observation alone through to radical surgery, with few good-quality randomised trials to inform on the best approach for an individual patient. The survival of patients with metastatic prostate cancer progressing on androgen-deprivation therapy (castration-resistant prostate cancer) has improved substantially. In addition to docetaxel, which has been used for more than a decade, in the past 4 years five new drugs have shown efficacy with improvements in overall survival leading to licensing for the treatment of metastatic castration-resistant prostate cancer. Because of this rapid change in the therapeutic landscape, no robust data exist to inform on the selection of patients for a specific treatment for castration-resistant prostate cancer or the best sequence of administration. Moreover, the high cost of the newer drugs limits their widespread use in several countries. Data from continuing clinical and translational research are urgently needed to improve, and, crucially, to personalise management.
Collapse
Affiliation(s)
- Gerhardt Attard
- Division of Clinical Studies, The Institute of Cancer Research, London, UK; Prostate Cancer Targeted Therapy Group, Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Chris Parker
- Academic Urology Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - Ros A Eeles
- Clinical Academic Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK; Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Fritz Schröder
- Erasmus University Medical Center, Rotterdam, Netherlands
| | - Scott A Tomlins
- Departments of Pathology Urology, Comprehensive Cancer Center and Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ian Tannock
- Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Charles G Drake
- Division of Medical Oncology, Johns Hopkins Hospital, Baltimore, MA, USA
| | - Johann S de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London, UK; Prostate Cancer Targeted Therapy Group, Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK.
| |
Collapse
|
45
|
Ta HQ, Ivey ML, Frierson HF, Conaway MR, Dziegielewski J, Larner JM, Gioeli D. Checkpoint Kinase 2 Negatively Regulates Androgen Sensitivity and Prostate Cancer Cell Growth. Cancer Res 2015; 75:5093-105. [PMID: 26573794 DOI: 10.1158/0008-5472.can-15-0224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the second leading cause of cancer death in American men, and curing metastatic disease remains a significant challenge. Nearly all patients with disseminated prostate cancer initially respond to androgen deprivation therapy (ADT), but virtually all patients will relapse and develop incurable castration-resistant prostate cancer (CRPC). A high-throughput RNAi screen to identify signaling pathways regulating prostate cancer cell growth led to our discovery that checkpoint kinase 2 (CHK2) knockdown dramatically increased prostate cancer growth and hypersensitized cells to low androgen levels. Mechanistic investigations revealed that the effects of CHK2 were dependent on the downstream signaling proteins CDC25C and CDK1. Moreover, CHK2 depletion increased androgen receptor (AR) transcriptional activity on androgen-regulated genes, substantiating the finding that CHK2 affects prostate cancer proliferation, partly, through the AR. Remarkably, we further show that CHK2 is a novel AR-repressed gene, suggestive of a negative feedback loop between CHK2 and AR. In addition, we provide evidence that CHK2 physically associates with the AR and that cell-cycle inhibition increased this association. Finally, IHC analysis of CHK2 in prostate cancer patient samples demonstrated a decrease in CHK2 expression in high-grade tumors. In conclusion, we propose that CHK2 is a negative regulator of androgen sensitivity and prostate cancer growth, and that CHK2 signaling is lost during prostate cancer progression to castration resistance. Thus, perturbing CHK2 signaling may offer a new therapeutic approach for sensitizing CRPC to ADT and radiation.
Collapse
Affiliation(s)
- Huy Q Ta
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Melissa L Ivey
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia
| | - Henry F Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia. Cancer Center Member, University of Virginia, Charlottesville, Virginia
| | - Mark R Conaway
- Cancer Center Member, University of Virginia, Charlottesville, Virginia. Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Jaroslaw Dziegielewski
- Cancer Center Member, University of Virginia, Charlottesville, Virginia. Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - James M Larner
- Cancer Center Member, University of Virginia, Charlottesville, Virginia. Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Daniel Gioeli
- Departments of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia. Cancer Center Member, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
46
|
Kuo JH, Chabot JA, Lee JA. Breast cancer in thyroid cancer survivors: An analysis of the Surveillance, Epidemiology, and End Results-9 database. Surgery 2015; 159:23-9. [PMID: 26522696 DOI: 10.1016/j.surg.2015.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 09/18/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND We sought to further elucidate the increased risk for breast cancer among survivors of thyroid cancer. METHODS Using the Surveillance, Epidemiology, and End Results-9 database, we conducted a retrospective cohort analysis on women ≥ 18 years of age with breast and thyroid cancer from 1973 to 2011. RESULTS A total of 707,678 breast cancer patients and 53,853 thyroid cancer patients were included; 1,750 patients developed breast cancer after a preceding diagnosis of thyroid cancer (T1B). Age-specific risk for breast cancer was greater among thyroid cancer survivors. Incidence trends showed a significant age-time interaction and suggested a difference in thyroid cancer biology as well as a treatment effect. Compared with patients with thyroid cancer only, T1B patients were older with smaller cancers, had more follicular thyroid cancers, and fewer patients received radioactive iodine. T1B patients developed breast cancer earlier than the general population, had more estrogen receptor/progesterone receptor-positive and mixed invasive tumor histology, but smaller tumors, and there is no significant difference in the number of lymph nodes involved or radiation therapy. CONCLUSION Thyroid cancer survivors are at greater risk for developing breast cancer than the general population. These patients develop breast cancer early, have more estrogen receptor/progesterone receptor-positive tumors, and have a greater incidence of mixed invasive cancer. Recognition of this association between thyroid and breast cancer should prompt vigilant screening in thyroid cancer survivors and further investigation into the relationship of these 2 diseases.
Collapse
Affiliation(s)
- Jennifer H Kuo
- Division of GI/Endocrine Surgery, Columbia University, New York, NY.
| | - John A Chabot
- Division of GI/Endocrine Surgery, Columbia University, New York, NY
| | - James A Lee
- Division of GI/Endocrine Surgery, Columbia University, New York, NY
| |
Collapse
|
47
|
Abstract
A wide array of molecular markers and genomic signatures, reviewed in this article, may soon be used as adjuncts to currently established screening strategies, prognostic parameters, and early detection markers. Markers of genetic susceptibility to PCA, recurrent epigenetic and genetic alterations, including ETS gene fusions, PTEN alterations, and urine-based early detection marker PCA3, are discussed. Impact of recent genome-wide assessment on our understanding of key pathways of PCA development and progression and their potential clinical implications are highlighted.
Collapse
|
48
|
Kaczmarek-Ryś M, Ziemnicka K, Hryhorowicz ST, Górczak K, Hoppe-Gołębiewska J, Skrzypczak-Zielińska M, Tomys M, Gołąb M, Szkudlarek M, Budny B, Siatkowski I, Gut P, Ruchała M, Słomski R, Pławski A. The c.470 T > C CHEK2 missense variant increases the risk of differentiated thyroid carcinoma in the Great Poland population. Hered Cancer Clin Pract 2015; 13:8. [PMID: 25798211 PMCID: PMC4367841 DOI: 10.1186/s13053-015-0030-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differentiated thyroid carcinoma (DTC) originates from thyroid follicular epithelial cells and belongs to a group of slowly progressing tumors with a relatively good prognosis. However, recurrences and metastases are a serious problem in advanced stages. Furthermore, progression from a well differentiated thyroid carcinoma to an aggressive anaplastic one is possible. The majority of differentiated thyroid carcinomas are sporadic but a few alleles increasing the cancer risk are known. One of them is the c.470 T > C (p.I157T, rs17879961) missense substitution in the CHEK2 gene. AIM OF THE STUDY The aim of this study was to investigate whether this specific CHEK2 alteration, c.470 T > C, predisposes the Great Poland (Wielkopolska) population to thyroid cancer. METHODS 602 differentiated thyroid carcinoma patients and 829 controls randomly selected from population were genotyped for the presence of the c.470C allele using pyrosequencing. Hardy-Weinberg Equilibrium (HWE) was tested for both groups by chi-square distribution and Fisher's exact test. The odds ratios (ORs), 95% confidence intervals (CIs), and p-values were calculated using the R software. RESULTS The results of genotyping showed the presence of the c.470C allele in 51 patients with a frequency of 4.49%, while in a controls in 42 patients with a frequency of 2.53%. We demonstrated that in the Great Poland population the c.470C CHEK2 variant increases the risk of developing differentiated thyroid cancer almost twice (OR = 1.81, p = 0.004). The risk of papillary thyroid carcinoma in female patients homozygous for the c.470C allele was shown to increase almost 13-fold (OR = 12.81, p = 0.019). CONCLUSIONS Identification of c.470C CHEK2 gene variant ought to be taken into account by healthcare policymakers. Future well-designed and larger population studies are of great value in confirming these findings. Moreover, a combination of genetic factors together with environmental exposures should also be considered.
Collapse
Affiliation(s)
- Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Ul. Strzeszyńska 32, Poznań, 60-479 Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, University of Medical Sciences, Poznań, Poland
| | - Szymon T Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Ul. Strzeszyńska 32, Poznań, 60-479 Poland.,Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland
| | - Katarzyna Górczak
- Department of Mathematical and Statistical Methods, University of Life Sciences, Poznań, Poland
| | | | | | - Michalina Tomys
- Institute for Applied Human Genetics and Oncogenetics, Zwenkau, Germany
| | - Monika Gołąb
- Department of Endocrinology, Metabolism and Internal Diseases, University of Medical Sciences, Poznań, Poland
| | - Malgorzata Szkudlarek
- Department of Endocrinology, Metabolism and Internal Diseases, University of Medical Sciences, Poznań, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, University of Medical Sciences, Poznań, Poland
| | - Idzi Siatkowski
- Department of Mathematical and Statistical Methods, University of Life Sciences, Poznań, Poland
| | - Paweł Gut
- Department of Endocrinology, Metabolism and Internal Diseases, University of Medical Sciences, Poznań, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, University of Medical Sciences, Poznań, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Ul. Strzeszyńska 32, Poznań, 60-479 Poland.,Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Ul. Strzeszyńska 32, Poznań, 60-479 Poland
| |
Collapse
|
49
|
Siołek M, Cybulski C, Gąsior-Perczak D, Kowalik A, Kozak-Klonowska B, Kowalska A, Chłopek M, Kluźniak W, Wokołorczyk D, Pałyga I, Walczyk A, Lizis-Kolus K, Sun P, Lubiński J, Narod SA, Góźdż S. CHEK2 mutations and the risk of papillary thyroid cancer. Int J Cancer 2015; 137:548-52. [PMID: 25583358 DOI: 10.1002/ijc.29426] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/17/2014] [Indexed: 12/16/2022]
Abstract
Mutations in the cell cycle checkpoint kinase 2 (CHEK2) tumor suppressor gene are associated with multi-organ cancer susceptibility including cancers of the breast and prostate. A genetic association between thyroid and breast cancer has been suggested, however little is known about the determinants of this association. To characterize the association of CHEK2 mutations with thyroid cancer, we genotyped 468 unselected patients with papillary thyroid cancer and 468 (matched) cancer-free controls for four founder mutations of CHEK2 (1100delC, IVS2 + 1G>A, del5395 and I157T). We compared the family histories reported by patients with a CHEK2 mutation to those of non-carriers. A CHEK2 mutation was seen in 73 of 468 (15.6%) unselected patients with papillary thyroid cancer, compared to 28 of 460 (6.0%) age- and sex-matched controls (OR 3.3; p < 0.0001). A truncating mutation (IVS2 + 1G>A, 1100delC or del5395) was associated with a higher risk of thyroid cancer (OR = 5.7; p = 0.006), than was the missense mutation I157T (OR = 2.8; p = 0.0001). CHEK2 mutation carriers reported a family history of breast cancer 2.2 times more commonly than non-carriers (16.4% vs.8.1%; p = 0.05). A CHEK2 mutation was found in seven of 11 women (63%) with multiple primary cancers of the breast and thyroid (OR = 10; p = 0.0004). These results suggest that CHEK2 mutations predispose to thyroid cancer, familial aggregations of breast and thyroid cancer and to double primary cancers of the breast and thyroid.
Collapse
Affiliation(s)
- Monika Siołek
- Department of Genetics, Holycross Cancer Centre, Kielce, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Danuta Gąsior-Perczak
- Department of Endocrinology and Nuclear Medicine, Holycross Cancer Centre, Kielce, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Centre, Kielce, Poland
| | | | - Aldona Kowalska
- Department of Endocrinology and Nuclear Medicine, Holycross Cancer Centre, Kielce, Poland
| | - Małgorzata Chłopek
- Department of Molecular Diagnostics, Holycross Cancer Centre, Kielce, Poland
| | - Wojciech Kluźniak
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Dominika Wokołorczyk
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Iwona Pałyga
- Department of Endocrinology and Nuclear Medicine, Holycross Cancer Centre, Kielce, Poland
| | - Agnieszka Walczyk
- Department of Endocrinology and Nuclear Medicine, Holycross Cancer Centre, Kielce, Poland
| | - Katarzyna Lizis-Kolus
- Department of Endocrinology and Nuclear Medicine, Holycross Cancer Centre, Kielce, Poland
| | - Ping Sun
- Centre for Research on Women's Health, Toronto Ontario, Canada
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Steven A Narod
- Centre for Research on Women's Health, Toronto Ontario, Canada
| | - Stanisław Góźdż
- Department of Genetics, Holycross Cancer Centre, Kielce, Poland.,Faculty of Health Sciences, The Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
50
|
Rakshambikai R, Manoharan M, Gnanavel M, Srinivasan N. Typical and atypical domain combinations in human protein kinases: functions, disease causing mutations and conservation in other primates. RSC Adv 2015. [DOI: 10.1039/c4ra11685b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A twist in the evolution of human kinases resulting in kinases with hybrid and rogue properties.
Collapse
Affiliation(s)
| | - Malini Manoharan
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - Mutharasu Gnanavel
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | | |
Collapse
|