1
|
Deritei D, Anamika WJ, Zhou X, Silverman EK, Regan ER, Glass K. HHIP's Dynamic Role in Epithelial Wound Healing Reveals a Potential Mechanism of COPD Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611545. [PMID: 39416045 PMCID: PMC11482804 DOI: 10.1101/2024.09.05.611545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A genetic variant near HHIP has been consistently identified as associated with increased risk for Chronic Obstructive Pulmonary Disease (COPD), the third leading cause of death worldwide. However HHIP's role in COPD pathogenesis remains elusive. Canonically, HHIP is a negative regulator of the hedgehog pathway and downstream GLI1 and GLI2 activation. The hedgehog pathway plays an important role in wound healing, specifically in activating transcription factors that drive the epithelial mesenchymal transition (EMT), which in its intermediate state (partial EMT) is necessary for the collective movement of cells closing the wound. Herein, we propose a mechanism to explain HHIP's role in faulty epithelial wound healing, which could contribute to the development of emphysema, a key feature of COPD. Using two different Boolean models compiled from the literature, we show dysfunctional HHIP results in a lack of negative feedback on GLI, triggering a full EMT, where cells become mesenchymal and do not properly close the wound. We validate these Boolean models with experimental evidence gathered from published scientific literature. We also experimentally test if low HHIP expression is associated with EMT at the edge of wounds by using a scratch assay in a human lung epithelial cell line. Finally, we show evidence supporting our hypothesis in bulk and single cell RNA-Seq data from different COPD cohorts. Overall, our analyses suggest that aberrant wound healing due to dysfunctional HHIP, combined with chronic epithelial damage through cigarette smoke exposure, may be a primary cause of COPD-associated emphysema.
Collapse
Affiliation(s)
- Dávid Deritei
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Wardatul Jannat Anamika
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Sasai N, Tada S, Ohshiro J, Kogiso C, Shinozuka T. Regulation of progenitor cell survival by a novel chromatin remodeling factor during neural tube development. Dev Growth Differ 2024; 66:89-100. [PMID: 38014908 DOI: 10.1111/dgd.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
During development, progenitor cell survival is essential for proper tissue functions, but the underlying mechanisms are not fully understood. Here we show that ERCC6L2, a member of the Snf2 family of helicase-like proteins, plays an essential role in the survival of developing chick neural cells. ERCC6L2 expression is induced by the Sonic Hedgehog (Shh) signaling molecule by a mechanism similar to that of the known Shh target genes Ptch1 and Gli1. ERCC6L2 blocks programmed cell death induced by Shh inhibition and this inhibition is independent of neural tube patterning. ERCC6L2 knockdown by siRNA resulted in the aberrant appearance of apoptotic cells. Furthermore, ERCC6L2 cooperates with the Shh signal and plays an essential role in the induction of the anti-apoptotic factor Bcl-2. Taken together, ERCC6L2 acts as a key factor in ensuring the survival of neural progenitor cells.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shogo Tada
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Jumi Ohshiro
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Chikara Kogiso
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takuma Shinozuka
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
3
|
Krenn PW, Aberger F. Targeting cancer hallmark vulnerabilities in hematologic malignancies by interfering with Hedgehog/GLI signaling. Blood 2023; 142:1945-1959. [PMID: 37595276 DOI: 10.1182/blood.2021014761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Understanding the genetic alterations, disrupted signaling pathways, and hijacked mechanisms in oncogene-transformed hematologic cells is critical for the development of effective and durable treatment strategies against liquid tumors. In this review, we focus on the specific involvement of the Hedgehog (HH)/GLI pathway in the manifestation and initiation of various cancer features in hematologic malignancies, including multiple myeloma, T- and B-cell lymphomas, and lymphoid and myeloid leukemias. By reviewing canonical and noncanonical, Smoothened-independent HH/GLI signaling and summarizing preclinical in vitro and in vivo studies in hematologic malignancies, we elucidate common molecular mechanisms by which HH/GLI signaling controls key oncogenic processes and cancer hallmarks such as cell proliferation, cancer stem cell fate, genomic instability, microenvironment remodeling, and cell survival. We also summarize current clinical trials with HH inhibitors and discuss successes and challenges, as well as opportunities for future combined therapeutic approaches. By providing a bird's eye view of the role of HH/GLI signaling in liquid tumors, we suggest that a comprehensive understanding of the general oncogenic effects of HH/GLI signaling on the formation of cancer hallmarks is essential to identify critical vulnerabilities within tumor cells and their supporting remodeled microenvironment, paving the way for the development of novel and efficient personalized combination therapies for hematologic malignancies.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Adametz F, Müller A, Stilgenbauer S, Burkhalter MD, Philipp M. Aging Associates with Cilium Elongation and Dysfunction in Kidney and Pancreas. Adv Biol (Weinh) 2023; 7:e2300194. [PMID: 37537358 DOI: 10.1002/adbi.202300194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Indexed: 08/05/2023]
Abstract
Cilia are best known and most studied for their manifold functions enabling proper embryonic development. Loss of cilia or dysfunction thereof results in a great variety of congenital malformations and syndromes. However, there are also cilia-driven conditions, which manifest only later in life, such as polycystic kidney disease. Even degenerative diseases in the central nervous system have recently been linked to alterations in cilia biology. Surprisingly though, there is very little knowledge regarding cilia in normally aged organisms absent any disease. Here, it is provided evidence that cilia in naturally aged mice are considerably elongated in the kidney and pancreas, respectively. Moreover, such altered cilia appear to have become dysfunctional as indicated by changes in cellular signaling.
Collapse
Affiliation(s)
- Fabian Adametz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Annika Müller
- Department of Internal Medicine III, Ulm University, 89081, Ulm, Germany
| | | | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomis, University of Tübingen, 72074, Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomis, University of Tübingen, 72074, Tübingen, Germany
| |
Collapse
|
5
|
Neault M, Lebert-Ghali CÉ, Fournier M, Capdevielle C, Garfinkle EAR, Obermayer A, Cotton A, Boulay K, Sawchyn C, St-Amand S, Nguyen KH, Assaf B, Mercier FE, Delisle JS, Drobetsky EA, Hulea L, Shaw TI, Zuber J, Gruber TA, Melichar HJ, Mallette FA. CBFA2T3-GLIS2-dependent pediatric acute megakaryoblastic leukemia is driven by GLIS2 and sensitive to navitoclax. Cell Rep 2023; 42:113084. [PMID: 37716355 DOI: 10.1016/j.celrep.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.
Collapse
Affiliation(s)
- Mathieu Neault
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Charles-Étienne Lebert-Ghali
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Caroline Capdevielle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth A R Garfinkle
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Karine Boulay
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Christina Sawchyn
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sarah St-Amand
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Kamy H Nguyen
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Béatrice Assaf
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | | | - Jean-Sébastien Delisle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elliot A Drobetsky
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laura Hulea
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Tanja A Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| | - Frédérick A Mallette
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Angot L, Schneider P, Vannier JP, Abdoul-Azize S. Beyond Corticoresistance, A Paradoxical Corticosensitivity Induced by Corticosteroid Therapy in Pediatric Acute Lymphoblastic Leukemias. Cancers (Basel) 2023; 15:2812. [PMID: 37345151 DOI: 10.3390/cancers15102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Known as a key effector in relapse of acute lymphoblastic leukemia (ALL), resistance to drug-induced apoptosis, is tightly considered one of the main prognostic factors for the disease. ALL cells are constantly developing cellular strategies to survive and resist therapeutic drugs. Glucocorticoids (GCs) are one of the most important agents used in the treatment of ALL due to their ability to induce cell death. The mechanisms of GC resistance of ALL cells are largely unknown and intense research is currently focused on this topic. Such resistance can involve different cellular and molecular mechanisms, including the modulation of signaling pathways involved in the regulation of proliferation, apoptosis, autophagy, metabolism, epigenetic modifications and tumor suppressors. Recently, several studies point to the paradoxical role of GCs in many survival processes that may lead to therapy-induced resistance in ALL cells, which we called "paradoxical corticosensitivity". In this review, we aim to summarize all findings on cell survival pathways paradoxically activated by GCs with an emphasis on previous and current knowledge on gene expression and signaling pathways.
Collapse
Affiliation(s)
- Laure Angot
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
| | - Pascale Schneider
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
- Department of Pediatric Immuno-Hemato-Oncology, Rouen University Hospital, 76038 Rouen, France
| | | | | |
Collapse
|
7
|
Manome T, Hara Y, Ishibashi M. A new 1,2-diketone physalin isolated from Physalis minima and TRAIL-resistance overcoming activity of physalins. J Nat Med 2023; 77:370-378. [PMID: 36495388 DOI: 10.1007/s11418-022-01670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
A new 1,2-diketone physalin, physalin XII (1), and 13 known compounds were isolated from the methanol extract of Physalis minima whole plant collected in Thailand. Among them, five physalins (2-6) had tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistance overcoming activity, and physalin F (3) was the most active with an IC50 value of 0.39 µM against human gastric adenocarcinoma cell line AGS in the presence of TRAIL (100 ng/mL). An investigation of the TRAIL-resistance overcoming activity of physalins using western blot analysis showed that 3 promoted TRAIL-induced apoptosis by suppressing anti-apoptotic proteins c-FLIP and Bcl-2.
Collapse
Affiliation(s)
- Teruhisa Manome
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Yasumasa Hara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
| |
Collapse
|
8
|
Tsitsikov EN, Hameed S, Tavakol SA, Stephens TM, Tsytsykova AV, Garman L, Bi WL, Dunn IF. Specific gene expression signatures of low grade meningiomas. Front Oncol 2023; 13:1126550. [PMID: 36937440 PMCID: PMC10016690 DOI: 10.3389/fonc.2023.1126550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Meningiomas are the most common primary central nervous system (CNS) tumors in adults, representing approximately one-third of all primary adult CNS tumors. Although several recent publications have proposed alternative grading systems of meningiomas that incorporate genomic and/or epigenomic data to better predict meningioma recurrence and progression-free survival, our understanding of driving forces of meningioma development is still limited. Objective To define gene expression signatures of the most common subtypes of meningiomas to better understand cellular processes and signaling pathways specific for each tumor genotype. Methods We used RNA sequencing (RNA-seq) to determine whole transcriptome profiles of twenty meningiomas with genomic alterations including NF2 inactivation, loss of chr1p, and missense mutations in TRAF7, AKT1 and KLF4. Results The analysis revealed that meningiomas with NF2 gene inactivation expressed higher levels of BCL2 and GLI1 compared with tumors harboring TRAF7 missense mutations. Moreover, NF2 meningiomas were subdivided into two distinct groups based on additional loss of chr1p. NF2 tumors with intact chr1p were characterized by the high expression of tumor suppressor PTCH2 compared to NF2 tumors with chr1p loss. Taken together with the high expression of BCL2 and GLI1, these results suggest that activation of Sonic Hedgehog pathway may contribute to NF2 meningioma development. In contrast, NF2 tumors with chr1p loss expressed high levels of transcription factor FOXD3 and its antisense RNA FOXD3-AS1. Examination of TRAF7 tumors demonstrated that TRAF7 regulates a number of biomechanically responsive genes (KRT6a, KRT16, IL1RL1, and AQP3 among others). Interestingly, AKT1 and KLF4 meningiomas expressed genes specific for PI3K/AKT signaling pathway, suggesting overlapping gene signatures between the two subtypes. In addition, KLF4 meningiomas had high expression of carcinoembryonic antigen family members CEACAM6 and CEACAM5. Conclusions Each group of meningiomas displayed a unique gene expression signature suggesting signaling pathways potentially implicated in tumorigenesis. These findings will improve our understanding of meningioma tumorigenesis and prognosis.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sherwin A. Tavakol
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tressie M. Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Ian F. Dunn,
| |
Collapse
|
9
|
Agrawal K, Chauhan S, Kumar D. Expression analysis and regulation of GLI and its correlation with stemness and metabolic alteration in human brain tumor. 3 Biotech 2023; 13:10. [PMID: 36532860 PMCID: PMC9755437 DOI: 10.1007/s13205-022-03419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
GLI gene-mediated hedgehog (Hh) signaling pathway plays a substantial role in brain cancer development and growth including glioblastoma multiforme (GBM), lower-grade glioma (LGG), and medulloblastoma (MB). GLI2 and GLI3 gene expression levels are extremely enhanced in these cancers with poor patient survival. Moreover, GLI genes are correlated with stemness-related factors SOX2, SOX9, POU5F1, and NANOG that work as the driving factors for brain cancer stem cells (CSCs) progression. It's critical to find new ways to combat this deadly malignancy and CSCs. Using in silico approaches, our study explored the role of GLI genes (GLI1, GLI2, and GLI3), the primary transcription factors of the sonic hedgehog (SHH) signaling pathway, in GBM, LGG, MB, and glioblastoma stem-like cells (GSCs). Additionally, we found strong association of angiogenic-related gene VEGFA, metabolic genes ENO1, ENO2, and pluripotency-related genes SOX2, SOX9, NANOG, POU5F1 with GLI genes, suggesting their role in brain tumor initiation and progression. We also studied their transcriptional network and functional category enrichment analysis about brain tumor development to find a better therapeutic strategy against brain cancer and their stem cells. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03419-5.
Collapse
Affiliation(s)
- Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007 India
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida, 201303 India
| | - Saumya Chauhan
- Amity Global School, Sector 46, Gurugram, Haryana 122018 India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007 India
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida, 201303 India
| |
Collapse
|
10
|
O-GlcNAcylation promotes cerebellum development and medulloblastoma oncogenesis via SHH signaling. Proc Natl Acad Sci U S A 2022; 119:e2202821119. [PMID: 35969743 PMCID: PMC9407465 DOI: 10.1073/pnas.2202821119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cerebellar development relies on a precise coordination of metabolic signaling, epigenetic signaling, and transcriptional regulation. Here, we reveal that O-GlcNAc transferase (OGT) regulates cerebellar neurogenesis and medulloblastoma growth via a Sonic hedgehog (Shh)-Smo-Gli2 pathway. We identified Gli2 as a substrate of OGT, and unveiled cross-talk between O-GlcNAc and epigenetic signaling as a means to regulate Gli2 transcriptional activity. Moreover, genetic ablation or chemical inhibition of OGT significantly suppresses tumor progression and increases survival in a mouse model of Shh subgroup medulloblastoma. Taken together, the data in our study provide a line of inquiry to decipher the signaling mechanisms underlying cerebellar development, and highlights a potential target to investigate related pathologies, such as medulloblastoma. Sonic hedgehog (Shh) signaling plays a critical role in regulating cerebellum development by maintaining the physiological proliferation of granule neuron precursors (GNPs), and its dysregulation leads to the oncogenesis of medulloblastoma. O-GlcNAcylation (O-GlcNAc) of proteins is an emerging regulator of brain function that maintains normal development and neuronal circuitry. Here, we demonstrate that O-GlcNAc transferase (OGT) in GNPs mediate the cerebellum development, and the progression of the Shh subgroup of medulloblastoma. Specifically, OGT regulates the neurogenesis of GNPs by activating the Shh signaling pathway via O-GlcNAcylation at S355 of GLI family zinc finger 2 (Gli2), which in turn promotes its deacetylation and transcriptional activity via dissociation from p300, a histone acetyltransferases. Inhibition of OGT via genetic ablation or chemical inhibition improves survival in a medulloblastoma mouse model. These data uncover a critical role for O-GlcNAc signaling in cerebellar development, and pinpoint a potential therapeutic target for Shh-associated medulloblastoma.
Collapse
|
11
|
Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, Niu J, Zhao L. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer 2022; 21:115. [PMID: 35581586 PMCID: PMC9112456 DOI: 10.1186/s12943-022-01591-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China
| | - Jumin Niu
- Department of Gynecology, Shenyang Women's and Children's Hospital, Shenyang, 110011, People's Republic of China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
12
|
Nam A, Song WJ, An JH, Rebhun RB, Youn HY, Seo KW. Expression of the hedgehog signaling pathway and the effect of inhibition at the level of Smoothened in canine osteosarcoma cell lines. Vet Comp Oncol 2022; 20:778-787. [PMID: 35521940 DOI: 10.1111/vco.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Osteosarcoma (OSA) is the most common malignant bone cancer in dogs. Canine and human OSA share several features, including tumor environments, response to traditional treatment, and several molecular pathways. Hedgehog (Hh) signaling is known to contribute to tumorigenesis and progression of various cancers, including human OSA. This study aimed to identify the role of the Hh signaling pathway in canine OSA cell lines, including Abrams, D17, and Moresco, focusing on the signal transducer Smoothened (SMO). mRNA and protein levels of Hh pathway components, including SHH, IHH, SMO, and PTCH1, were aberrant in all examined OSA cell lines compared with canine osteoblast cells. The SMO inhibitor cyclopamine significantly decreased cell viability and colony-forming ability in the canine OSA cell lines in a dose-dependent manner. Moresco cells, which expressed the highest level of SMO protein, were the most sensitive to the anticancer effect of cyclopamine among the three canine OSA cell lines tested. Hh downstream target gene and protein expression in canine OSA cell lines were downregulated after cyclopamine treatment. In addition, cyclopamine significantly increased apoptotic cell death in Abrams and Moresco cells. The findings that Hh/SMO is activated in canine OSA cell lines and cyclopamine suppresses OSA cell survival via inhibition of SMO suggest that the Hh/SMO signaling pathway might be a novel therapeutic target for canine OSA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aryung Nam
- Department of Veterinary Internal Medicine, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute of Veterinary Science, Jeju National University, Jeju, South Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, United States of America
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Wang Q, Wei X, Hu L, Zhuang L, Zhang H, Chen Q. Hedgehog-Gli2 Signaling Promotes Chemoresistance in Ovarian Cancer Cells by Regulating MDR1. Front Oncol 2022; 11:794959. [PMID: 35059317 PMCID: PMC8763667 DOI: 10.3389/fonc.2021.794959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cisplatin (DDP) resistance remains a key challenge in improving the clinical outcome of patients with ovarian cancer (OC). Gli2 overexpression can lead to DDP resistance in OC cells, but the specific underlying regulatory mechanism remains unclear. The membrane transporter encoding gene MDR1 positively regulates chemotherapy resistance in various cancer types. We evaluated MDR1 as a potential Gli2 downstream target and the contribution of the Gli2/MDR1 axis in promoting DDP resistance in OC cells. Methods To generate drug-resistant SKOV3/DDP cells, SKOV3 cells were grown for six months under continuous induction wherein the DDP concentration was steadily increased. Gli2 expression in OC cells with varying DDP sensitivities was detected using western blot. Cell counting kit-8 assays were used to assess the DDP sensitivity of SKOV3, SKOV3/DDP, A2780, and A2780/DDP cells and reversal of DDP resistance in SKOV3/DDP and A2780/DDP cells. Cell proliferation was analyzed using 5-ethynyl-2′-deoxyuridine (EdU) incorporation assays. The transcriptional regulation of MDR1 by Gli2 was determined using luciferase reporter assays. Finally, xenograft OC tumors were generated in nude mice, which were then treated with intraperitoneal DDP or phosphate-buffered saline (PBS) injections to investigate if Gli2 affected DDP resistance in OC in vivo. Results DDP-resistant SKOV3/DDP and A2780/DDP cells showed higher expression of Gli2 and MDR1 as compared with that in DDP-sensitive OC cells. Gli2 knockdown in SKOV3/DDP cells significantly reduced MDR1 expression, whereas it increased DNA damage, thereby sensitizing OC cells to DDP. Similar results were obtained after targeting Gli2 expression with the Gli-antagonist 61 inhibitor (GANT61) in SKOV3/DDP and A2780/DDP cells. In cells stably overexpressing Gli2, treatment with gradient concentrations of verapamil, an MDR1 inhibitor, significantly inhibited MDR1 expression. Our findings indicate that downregulation of MDR1 expression may reverse OC cell resistance to DDP. Moreover, dual-luciferase reporter gene assays confirmed that MDR1 is a direct downstream target of Gli2, with Gli2 positively regulating MDR1 expression. Finally, subcutaneous xenotransplantation in nude mice demonstrated that Gli2 plays a key role in regulating OC drug resistance. Conclusions We identified a mechanism by which Hedgehog-Gli signaling regulates OC chemoresistance by modulating MDR1 expression. Hence, Gli2 and MDR1 are potential biomarkers and therapeutic targets in patients with chemoresistant OC.
Collapse
Affiliation(s)
- Qian Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lanyan Hu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhuang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Bikle DD. Ligand-Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR Plus 2021; 5:e10578. [PMID: 34950833 PMCID: PMC8674770 DOI: 10.1002/jbm4.10578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Our predominant understanding of the actions of vitamin D involve binding of its ligand, 1,25(OH)D, to the vitamin D receptor (VDR), which for its genomic actions binds to discrete regions of its target genes called vitamin D response elements. However, chromatin immunoprecipitation‐sequencing (ChIP‐seq) studies have observed that the VDR can bind to many sites in the genome without its ligand. The number of such sites and how much they coincide with sites that also bind the liganded VDR vary from cell to cell, with the keratinocyte from the skin having the greatest overlap and the intestinal epithelial cell having the least. What is the purpose of the unliganded VDR? In this review, I will focus on two clear examples in which the unliganded VDR plays a role. The best example is that of hair follicle cycling. Hair follicle cycling does not need 1,25(OH)2D, and Vdr lacking the ability to bind 1,25(OH)2D can restore hair follicle cycling in mice otherwise lacking Vdr. This is not true for other functions of VDR such as intestinal calcium transport. Tumor formation in the skin after UVB radiation or the application of chemical carcinogens also appears to be at least partially independent of 1,25(OH)2D in that Vdr null mice develop such tumors after these challenges, but mice lacking Cyp27b1, the enzyme producing 1,25(OH)2D, do not. Examples in other tissues emerge when studies comparing Vdr null and Cyp27b1 null mice are compared, demonstrating a more severe phenotype with respect to bone mineral homeostasis in the Cyp27b1 null mouse, suggesting a repressor function for VDR. This review will examine potential mechanisms for these ligand‐independent actions of VDR, but as the title indicates, there are more questions than answers with respect to this role of VDR. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology University of California San Francisco, San Francisco VA Health Center San Francisco CA USA
| |
Collapse
|
15
|
He L, Wick N, Germans SK, Peng Y. The Role of Breast Cancer Stem Cells in Chemoresistance and Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13246209. [PMID: 34944829 PMCID: PMC8699562 DOI: 10.3390/cancers13246209] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Triple negative breast cancer (TNBC) remains an aggressive disease due to the lack of targeted therapies and low rate of response to chemotherapy that is currently the main treatment modality for TNBC. Breast cancer stem cells (BCSCs) are a small subpopulation of breast tumors and recognized as drivers of tumorigenesis. TNBC tumors are characterized as being enriched for BCSCs. Studies have demonstrated the role of BCSCs as the source of metastatic disease and chemoresistance in TNBC. Multiple targets against BCSCs are now under investigation, with the considerations of either selectively targeting BCSCs or co-targeting BCSCs and non-BCSCs (majority of tumor cells). This review article provides a comprehensive overview of recent advances in the role of BCSCs in TNBC and the identification of cancer stem cell biomarkers, paving the way for the development of new targeted therapies. The review also highlights the resultant discovery of cancer stem cell targets in TNBC and the ongoing clinical trials treating chemoresistant breast cancer. We aim to provide insights into better understanding the mutational landscape of BCSCs and exploring potential molecular signaling pathways targeting BCSCs to overcome chemoresistance and prevent metastasis in TNBC, ultimately to improve the overall survival of patients with this devastating disease.
Collapse
Affiliation(s)
- Lin He
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Neda Wick
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Sharon Koorse Germans
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235, USA
- Correspondence:
| |
Collapse
|
16
|
Anusha, Dalal H, Subramanian S, V P S, Gowda DA, H K, Damodar S, Vyas N. Exovesicular-Shh confers Imatinib resistance by upregulating Bcl2 expression in chronic myeloid leukemia with variant chromosomes. Cell Death Dis 2021; 12:259. [PMID: 33707419 PMCID: PMC7952724 DOI: 10.1038/s41419-021-03542-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/29/2023]
Abstract
Chronic myeloid leukemia (CML) patients with complex chromosomal translocations as well as non-compliant CML patients often demonstrate short-lived responses and poor outcomes on the current therapeutic regimes using Imatinib and its variants. It has been derived so far that leukemic stem cells (LSCs) are responsible for Imatinib resistance and CML progression. Sonic hedgehog (Shh) signaling has been implicated in proliferation of this Imatinib-resistant CD34(+) LSCs. Our work here identifies the molecular mechanism of Shh-mediated mutation-independent Imatinib resistance that is most relevant for treating CML-variants and non-compliant patients. Our results elucidate that while Shh can impart stemness, it also upregulates expression of anti-apoptotic protein—Bcl2. It is the upregulation of Bcl2 that is involved in conferring Imatinib resistance to the CD34(+) LSCs. Sub-toxic doses of Bcl2 inhibitor or Shh inhibitor (<<IC50), when used as adjuvants along with Imatinib, can re-sensitize Shh signaling cells to Imatinib. Our work here highlights the need to molecularly stratify CML patients and implement combinatorial therapy to overcome the current limitations and improve outcomes in CML.
Collapse
Affiliation(s)
- Anusha
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Hamza Dalal
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India
| | - Sitalakshmi Subramanian
- St. John's Medical College and Hosptial, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Snijesh V P
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Divya A Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Krishnamurthy H
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Sharat Damodar
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India.
| | - Neha Vyas
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
17
|
GLI1/GLI2 functional interplay is required to control Hedgehog/GLI targets gene expression. Biochem J 2021; 477:3131-3145. [PMID: 32766732 DOI: 10.1042/bcj20200335] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.
Collapse
|
18
|
Keratinocytes from Gorlin Syndrome-induced pluripotent stem cells are resistant against UV radiation. Med Mol Morphol 2020; 54:69-78. [PMID: 32816116 DOI: 10.1007/s00795-020-00264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Gorlin syndrome (GS) is an autosomal dominant genetic disorder involving Patched 1 (PTCH1) mutations. The PTCH1 is a receptor as well as an inhibitor of hedgehog (Hh) to sequester downstream Hh pathway molecules called Smoothened (SMO). PTCH1 mutations causes a variety of GS conditions including falx calcification, odontogenic keratocytes and basal cell carcinomas (BCC). Because PTCH1 is a major driver gene of sporadic BCC, GS patients are characteristically prone to BCC. In order to elucidate the pathological mechanism of BCC-prone GS patients, we investigated keratinocytes derived from GS patient specific iPS cells (G-OFiPSCs) which were generated and reported previously. We found that keratinocytes derived from G-OFiPSCs (GKCs) have increased expression of Hh target molecules. GKCs were irradiated and those cells showed high resistance to UV induced apoptosis. BCL2, known as anti-apoptotic molecule as well as Hh target, significantly increased in GKCs. Several molecules involved in DNA repair, cell cycle control, senescence, and genotoxic stress such as TP53, BRCA1 and GADD45A increased only in GKCs. GKCs are indicated to be resistant to UV irradiation by upregulating molecules which control DNA repair and genotoxic even under DNA damage caused by UV. The anti-apoptotic properties of GKCs may contribute BCC.
Collapse
|
19
|
Xia L, Bouamar H, Gu X, Zeballos C, Qin T, Wang B, Zhou Y, Wang Y, Yang J, Zhu H, Zhang W, Houghton PJ, Sun LZ. Gli2 mediates the development of castration‑resistant prostate cancer. Int J Oncol 2020; 57:100-112. [PMID: 32319599 PMCID: PMC7252461 DOI: 10.3892/ijo.2020.5044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Glioma‑associated oncogene family zinc finger 2 (Gli2), a key component of the hedgehog signaling pathway, has been previously demonstrated to promote the malignant properties of prostate cancer in vitro. However, the role of Gli2 in the development of castration‑resistant prostate cancer (CRPC) has yet to be fully elucidated. In the present study, Gli2 expression was knocked down in androgen‑responsive prostate cancer cells using an inducible Gli2 short hairpin RNA. Suppression of Gli2 expression resulted in significant reduction of cell viability, increased the proportion of cells in the G0/G1 phases of the cell cycle and reduced the expression of genes associated with cell cycle progression. Gli2 knockdown sensitized both androgen‑dependent and ‑independent prostate cancer cells to the antiandrogen drug Casodex and prevented the outgrowth of LNCaP prostate cancer cells. In addition, Gli2 knockdown significantly suppressed the development of CRPC in a LNCaP xenograft mouse model, which was reversed by the re‑expression of Gli2. In conclusion, to the best of our knowledge, the present study was the first occasion in which the essential role of Gli2 in the development of CRPC was demonstrated, providing a potential therapeutic target for the intervention of CRPC.
Collapse
Affiliation(s)
- Lu Xia
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hakim Bouamar
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiang Gu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Carla Zeballos
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Tai Qin
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Bingzhi Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - You Zhou
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yuhui Wang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Junhua Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Haiyan Zhu
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Weishe Zhang
- Department of Gynecology and Obstetrics, Xiangya Hospital and Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Peter J Houghton
- Greehey Children Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
20
|
Inflammation-induced JMJD2D promotes colitis recovery and colon tumorigenesis by activating Hedgehog signaling. Oncogene 2020; 39:3336-3353. [PMID: 32094404 DOI: 10.1038/s41388-020-1219-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Histone demethylase JMJD2D can promote gene expression by specifically demethylating H3K9me2/3. The role of JMJD2D in colitis and colitis-associated colorectal cancer (CRC) progression remains unclear. Here, we show that colonic JMJD2D is induced by TNFα during dextran sulfate sodium-induced colitis. JMJD2D-deficient mice exhibit more severe colon damage and defective colon regeneration due to impaired Hedgehog signaling activation after colitis. JMJD2D knockdown in CRC cells suppresses Hedgehog signaling, resulting in reduced CRC growth and metastasis. Mechanistically, JMJD2D promotes Hedgehog target gene expression through interacting with Gli2 to reduce H3K9me3 levels at the promoter. Clinically, JMJD2D expression is upregulated and positively correlated with Gli2 expression in human inflammatory bowel disease specimens and CRC specimens. The JMJD2D inhibitor 5-c-8HQ or aspirin synergizes with Hedgehog inhibitor vismodegib to inhibit CRC cell proliferation and tumorigenesis. Collectively, our findings unveil an essential role of JMJD2D in activating the processes of colonic protection, regeneration, and tumorigenesis.
Collapse
|
21
|
Bellei B, Caputo S, Carbone A, Silipo V, Papaccio F, Picardo M, Eibenschutz L. The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview. Int J Mol Sci 2020; 21:E720. [PMID: 31979112 PMCID: PMC7037136 DOI: 10.3390/ijms21030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also named Gorlin syndrome, is a rare multisystem genetic disorder characterized by marked predisposition to basal cell carcinomas (BCCs), childhood medulloblastomas, maxillary keratocysts, celebral calcifications, in addition to various skeletal and soft tissue developmental abnormalities. Mutations in the tumor suppressor gene PATCHED1 (PTCH1) have been found to be associated in the majority of NBCCS cases. PATCH1 somatic mutations and loss of heterozygosity are also very frequent in sporadic BCCs. Unlike non-syndromic patients, NBCCS patients develop multiple BCCs in sun-protected skin area starting from early adulthood. Recent studies suggest that dermo/epidermal interaction could be implicated in BCC predisposition. According to this idea, NBCCS fibroblasts, sharing with keratinocytes the same PTCH1 germline mutation and consequent constitutive activation of the Hh pathway, display features of carcinoma-associated fibroblasts (CAF). This phenotypic traits include the overexpression of growth factors, specific microRNAs profile, modification of extracellular matrix and basement membrane composition, increased cytokines and pro-angiogenic factors secretion, and a complex alteration of the Wnt/-catenin pathway. Here, we review studies about the involvement of dermal fibroblasts in BCC predisposition of Gorlin syndrome patients. Further, we matched the emerged NBCCS fibroblast profile to those of CAF to compare the impact of cell autonomous "pre-activated state" due to PTCH1 mutations to those of skin tumor stroma.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Anna Carbone
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Vitaliano Silipo
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| |
Collapse
|
22
|
Bikle DD. The Vitamin D Receptor as Tumor Suppressor in Skin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:285-306. [PMID: 32918224 DOI: 10.1007/978-3-030-46227-7_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cutaneous malignancies including melanomas and keratinocyte carcinomas (KC) are the most common types of cancer, occurring at a rate of over one million per year in the United States. KC, which include both basal cell carcinomas and squamous cell carcinomas, are substantially more common than melanomas and form the subject of this chapter. Ultraviolet radiation (UVR), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. Keratinocytes are the major cell in the epidermis. These cells not only produce vitamin D but contain the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and express the receptor for this metabolite, the vitamin D receptor (VDR). This allows the cell to respond to the 1,25(OH)2D that it produces. Based on our own data and that reported in the literature, we conclude that vitamin D signaling in the skin suppresses UVR-induced epidermal tumor formation. In this chapter we focus on four mechanisms by which vitamin D signaling suppresses tumor formation. They are inhibition of proliferation/stimulation of differentiation with discussion of the roles of hedgehog, Wnt/β-catenin, and hyaluronan/CD44 pathways in mediating vitamin D regulation of proliferation/differentiation, regulation of the balance between oncogenic and tumor suppressor long noncoding RNAs, immune regulation, and promotion of DNA damage repair (DDR).
Collapse
Affiliation(s)
- Daniel D Bikle
- Medicine and Dermatology, VA Medical Center and University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Grabow S, Kueh AJ, Ke F, Vanyai HK, Sheikh BN, Dengler MA, Chiang W, Eccles S, Smyth IM, Jones LK, de Sauvage FJ, Scott M, Whitehead L, Voss AK, Strasser A. Subtle Changes in the Levels of BCL-2 Proteins Cause Severe Craniofacial Abnormalities. Cell Rep 2019; 24:3285-3295.e4. [PMID: 30232009 DOI: 10.1016/j.celrep.2018.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/17/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Apoptotic cell death removes unwanted cells and is regulated by interactions between pro-survival and pro-apoptotic members of the BCL-2 protein family. The regulation of apoptosis is thought to be crucial for normal embryonic development. Accordingly, complete loss of pro-survival MCL-1 or BCL-XL (BCL2L1) causes embryonic lethality. However, it is not known whether minor reductions in pro-survival proteins could cause developmental abnormalities. We explored the rate-limiting roles of MCL-1 and BCL-XL in development and show that combined loss of single alleles of Mcl-1 and Bcl-x causes neonatal lethality. Mcl-1+/-;Bcl-x+/- mice display craniofacial anomalies, but additional loss of a single allele of pro-apoptotic Bim (Bcl2l11) restores normal development. These findings demonstrate that the control of cell survival during embryogenesis is finely balanced and suggest that some human craniofacial defects, for which causes are currently unknown, may be due to subtle imbalances between pro-survival and pro-apoptotic BCL-2 family members.
Collapse
Affiliation(s)
- Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Francine Ke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hannah K Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Bilal N Sheikh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michael A Dengler
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - William Chiang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Samantha Eccles
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Anatomy and Developmental Biology and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Anatomy and Developmental Biology and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | | | - Mark Scott
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
24
|
Scheffold A, Baig AH, Chen Z, von Löhneysen SE, Becker F, Morita Y, Avila AI, Groth M, Lechel A, Schmid F, Kraus JM, Kestler HA, Stilgenbauer S, Philipp M, Burkhalter MD. Elevated Hedgehog activity contributes to attenuated DNA damage responses in aged hematopoietic cells. Leukemia 2019; 34:1125-1134. [PMID: 31728056 PMCID: PMC7214262 DOI: 10.1038/s41375-019-0641-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/04/2019] [Accepted: 11/03/2019] [Indexed: 01/13/2023]
Abstract
Accumulation of DNA damage and myeloid-skewed differentiation characterize aging of the hematopoietic system, yet underlying mechanisms remain incompletely understood. Here, we show that aging hematopoietic progenitor cells particularly of the myeloid branch exhibit enhanced resistance to bulky DNA lesions—a relevant type of DNA damage induced by toxins such as cancer drugs or endogenous aldehydes. We identified aging-associated activation of the Hedgehog (Hh) pathway to be connected to this phenotype. Inhibition of Hh signaling reverts DNA damage tolerance and DNA damage-resistant proliferation in aged hematopoietic progenitors. Vice versa, elevating Hh activity in young hematopoietic progenitors is sufficient to impair DNA damage responses. Altogether, these findings provide experimental evidence for aging-associated increases in Hh activity driving DNA damage tolerance in myeloid progenitors and myeloid-skewed differentiation. Modulation of Hh activity could thus be explored as a therapeutic strategy to prevent DNA damage tolerance, myeloid skewing, and disease development in the aging hematopoietic system.
Collapse
Affiliation(s)
- Annika Scheffold
- Department of Internal Medicine III, University Hospital Ulm, 89081, Ulm, Germany
| | - Ali H Baig
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Zhiyang Chen
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | | | - Friedrich Becker
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Yohei Morita
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Alush I Avila
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, 89081, Ulm, Germany
| | - Florian Schmid
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Johann M Kraus
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University Hospital Ulm, 89081, Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany.,Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, 72074, Tübingen, Germany
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany. .,Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, 72074, Tübingen, Germany.
| |
Collapse
|
25
|
Kowolik CM, Lin M, Xie J, Overman LE, Horne DA. Attenuation of hedgehog/GLI signaling by NT1721 extends survival in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:431. [PMID: 31661013 PMCID: PMC6819529 DOI: 10.1186/s13046-019-1445-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies due to frequent late diagnosis, aggressive tumor growth and metastasis formation. Continuously raising incidence rates of pancreatic cancer and a lack of significant improvement in survival rates over the past 30 years highlight the need for new therapeutic agents. Thus, new therapeutic agents and strategies are urgently needed to improve the outcome for patients with pancreatic cancer. Here, we evaluated the anti-tumor activity of a new natural product-based epidithiodiketopiperazine, NT1721, against pancreatic cancer. METHODS We characterized the anticancer efficacy of NT1721 in multiple pancreatic cancer cell lines in vitro and in two orthotopic models. We also compared the effects of NT1721 to clinically used hedgehog inhibitors and the standard-of-care drug, gemcitabine. The effect of NT1721 on hedgehog/GLI signaling was assessed by determining the expression of GLI and GLI target genes both in vitro and in vivo. RESULTS NT1721 displayed IC50 values in the submicromolar range in multiple pancreatic cancer cell lines, while largely sparing normal pancreatic epithelial cells. NT1721 attenuated hedgehog/GLI signaling through downregulation of GLI1/2 transcription factors and their downstream target genes, which reduced cell proliferation and invasion in vitro and significantly decreased tumor growth and liver metastasis in two preclinical orthotopic mouse models of pancreatic cancer. Importantly, treatment with NT1721 significantly improved survival times of mice with pancreatic cancer compared to the standard-of-care drug, gemcitabine. CONCLUSIONS Favorable therapeutics properties, i.e. 10-fold lower IC50 values than clinically used hedgehog inhibitors (vismodegib, erismodegib), a 90% reduction in liver metastasis and significantly better survival times compared to the standard-of-care drug, gemcitabine, provide a rational for testing NT1721 in the clinic either as a single agent or possibly in combination with gemcitabine or other therapeutic agents in PDAC patients overexpressing GLI1/2. This could potentially result in promising new treatment options for patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Claudia M Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Min Lin
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Larry E Overman
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, CA, 92697-2025, USA
| | - David A Horne
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
26
|
Immunohistochemical Characterization of Reactive Epithelial Changes in Odontogenic Keratocysts. Pathol Oncol Res 2019; 26:1717-1724. [PMID: 31628579 PMCID: PMC7297854 DOI: 10.1007/s12253-019-00749-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 11/04/2022]
Abstract
Odontogenic keratocysts (OKCs) have a diagnostic thin epithelial lining characterised by a linear epithelial connective tissue interface generally lacking inflammatory changes, basal palisading of the nuclei and a wavy parakeratotic layer on the surface. This typical epithelium may convert to a thicker non-keratinizing one with rete pegs and a relatively flat surface after operative decompression. The aim was to characterize this type of epithelial change by immunohistochemistry for bcl2, keratin17, 10 and 19. Eleven out of 33 archived OKCs demonstrated an altered epithelium related to previous biopsy, decompressing drainage or inflammation. The typical basal bcl2 staining was lost in 10/11 cases; transepithelial CK17 was lost or markedly reduced in 9/11 cases. CK10 displayed a segmental upper layer staining in OKCs, and its loss or partial loss in the altered epithelium did not differ from negative areas of OKCs. CK19 displayed various staining patterns in the altered epithelium from lost to maintained in a patchy transepithelial distribution, the latter of which did not differ from the typical OKC staining pattern. Three of four non-keratinizing epithelial linings with basal palisading displayed immunostaining reminiscent of typical OKC epithelium. The lack of a typical epithelium is not sufficient to exclude the diagnosis of OKC if the sampling is not generous (e.g. biopsy), and the presence of non-keratinizing epithelium with basal palisading and an immunophenotype characteristic of OKC (basal bcl2, patchy or diffuse CK17 and upper layer CK10 positivity) may be consistent with the OKC diagnosis even in the absence of typical epithelial lining.
Collapse
|
27
|
Bhateja P, Cherian M, Majumder S, Ramaswamy B. The Hedgehog Signaling Pathway: A Viable Target in Breast Cancer? Cancers (Basel) 2019; 11:cancers11081126. [PMID: 31394751 PMCID: PMC6721501 DOI: 10.3390/cancers11081126] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
The hedgehog (Hh) pathway plays a key role in embryonic development and stem cell programs. Deregulation of the Hh pathway is a key driver of basal cell carcinoma, and therapeutic targeting led to approval of Hh inhibitor, vismodegib, in the management of this cancer. The Hh pathway is implicated in other malignancies including hormone receptor (HR+) positive and triple negative breast cancer (TNBC). Hh signaling, which is activated in human mammary stem cells, results in activation of glioma-associated oncogene (GLI) transcription factors. High GLI1 expression correlates with worse outcomes in breast cancer. Non-canonical GLI1 activation is one mechanism by which estrogen exposure promotes breast cancer stem cell proliferation and epithelial–mesenchymal transition. Tamoxifen resistant cell lines show aberrant activation of Hh signaling, and knockdown of Hh pathway inhibited growth of tamoxifen resistant cells. As in other cancers Hh signaling is activated by the PI3K/AKT pathway in these endocrine resistant cell lines. Hh pathway activation has also been reported to mediate chemotherapy resistance in TNBC via various mechanisms including paracrine signaling to tumor micro-environment and selective proliferation of cancer stem cells. Co-activation of Hh and Wnt signaling pathways is a poor prognostic marker in TNBC. Early phase clinical trials are evaluating the combination of smoothened (SMO) inhibitors and chemotherapy in TNBC. In addition to SMO inhibitors like vismodegib and sonidegib, which are in clinical use for basal cell carcinoma, GLI1 inhibitors like GANT58 and GANT61 are in preclinical drug development and might be an effective mechanism to overcome drug resistance in breast cancer. Gene signatures predictive of Hh pathway activation could enrich for patients likely to respond to these agents.
Collapse
Affiliation(s)
- Priyanka Bhateja
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mathew Cherian
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Pietrobono S, Gagliardi S, Stecca B. Non-canonical Hedgehog Signaling Pathway in Cancer: Activation of GLI Transcription Factors Beyond Smoothened. Front Genet 2019; 10:556. [PMID: 31244888 PMCID: PMC6581679 DOI: 10.3389/fgene.2019.00556] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog-GLI (HH-GLI) pathway is a highly conserved signaling that plays a critical role in controlling cell specification, cell–cell interaction and tissue patterning during embryonic development. Canonical activation of HH-GLI signaling occurs through binding of HH ligands to the twelve-pass transmembrane receptor Patched 1 (PTCH1), which derepresses the seven-pass transmembrane G protein-coupled receptor Smoothened (SMO). Thus, active SMO initiates a complex intracellular cascade that leads to the activation of the three GLI transcription factors, the final effectors of the HH-GLI pathway. Aberrant activation of this signaling has been implicated in a wide variety of tumors, such as those of the brain, skin, breast, gastrointestinal, lung, pancreas, prostate and ovary. In several of these cases, activation of HH-GLI signaling is mediated by overproduction of HH ligands (e.g., prostate cancer), loss-of-function mutations in PTCH1 or gain-of-function mutations in SMO, which occur in the majority of basal cell carcinoma (BCC), SHH-subtype medulloblastoma and rhabdomyosarcoma. Besides the classical canonical ligand-PTCH1-SMO route, mounting evidence points toward additional, non-canonical ways of GLI activation in cancer. By non-canonical we refer to all those mechanisms of activation of the GLI transcription factors occurring independently of SMO. Often, in a given cancer type canonical and non-canonical activation of HH-GLI signaling co-exist, and in some cancer types, more than one mechanism of non-canonical activation may occur. Tumors harboring non-canonical HH-GLI signaling are less sensitive to SMO inhibition, posing a threat for therapeutic efficacy of these antagonists. Here we will review the most recent findings on the involvement of alternative signaling pathways in inducing GLI activity in cancer and stem cells. We will also discuss the rationale of targeting these oncogenic pathways in combination with HH-GLI inhibitors as a promising anti-cancer therapies.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sinforosa Gagliardi
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Barbara Stecca
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| |
Collapse
|
29
|
Adams CR, Htwe HH, Marsh T, Wang AL, Montoya ML, Subbaraj L, Tward AD, Bardeesy N, Perera RM. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. eLife 2019; 8:45313. [PMID: 31134896 PMCID: PMC6538376 DOI: 10.7554/elife.45313] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a heterogeneous disease comprised of a basal-like subtype with mesenchymal gene signatures, undifferentiated histopathology and worse prognosis compared to the classical subtype. Despite their prognostic and therapeutic value, the key drivers that establish and control subtype identity remain unknown. Here, we demonstrate that PDA subtypes are not permanently encoded, and identify the GLI2 transcription factor as a master regulator of subtype inter-conversion. GLI2 is elevated in basal-like PDA lines and patient specimens, and forced GLI2 activation is sufficient to convert classical PDA cells to basal-like. Mechanistically, GLI2 upregulates expression of the pro-tumorigenic secreted protein, Osteopontin (OPN), which is especially critical for metastatic growth in vivo and adaptation to oncogenic KRAS ablation. Accordingly, elevated GLI2 and OPN levels predict shortened overall survival of PDA patients. Thus, the GLI2-OPN circuit is a driver of PDA cell plasticity that establishes and maintains an aggressive variant of this disease.
Collapse
Affiliation(s)
- Christina R Adams
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Htet Htwe Htwe
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Timothy Marsh
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Aprilgate L Wang
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Megan L Montoya
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Lakshmipriya Subbaraj
- Department of Otolaryngology, University of California, San Francisco, San Francisco, United States
| | - Aaron D Tward
- Department of Otolaryngology, University of California, San Francisco, San Francisco, United States.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, United States
| | - Rushika M Perera
- Department of Anatomy, University of California, San Francisco, San Francisco, United States.,Department of Pathology, University of California, San Francisco, San Francisco, United States.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
30
|
Zhang YY, Wang K, Liu YE, Wang W, Liu AF, Zhou J, Li C, Zhang YQ, Zhang AP, Lv J, Jiang WJ. Identification of key transcription factors associated with cerebral ischemia‑reperfusion injury based on gene‑set enrichment analysis. Int J Mol Med 2019; 43:2429-2439. [PMID: 31017267 PMCID: PMC6488172 DOI: 10.3892/ijmm.2019.4159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/29/2019] [Indexed: 11/05/2022] Open
Abstract
Cerebral ischemia‑reperfusion injury (CIRI) usually causes detrimental complications following reperfusion therapy in stroke patients. The present study systematically investigated the regulatory mechanism involved in the pathogenesis of CIRI using gene set enrichment analysis of the transient middle cerebral artery occlusion mouse stroke model. The results revealed a total of 13 CIRI‑related transcription factors (TFs), including CCAAT enhancer binding protein b (Cebpb), Cebpa, early growth response‑1, Fos, Rela, Jund, signal transduction and activator of transcription 5a/b, transformation related protein 53, GLI family zinc finger 2 (Gli2), Sp3, TF AP‑2 α (Tfap2a) and spleen focus forming virus proviral integration oncogene (Spi1). To the best of our knowledge, five TFs (Cebpa, Gli2, Sp3, Tfap2a and Spi1) were the first to be reported associated with CIRI in the present study. The five novel CIRI‑related TFs were mainly associated with pathways of inflammation and responses to reperfusion, including the tumor necrosis factor signaling pathway (Gli2, Spi1 and Tfap2a, P=0.0035, 0.0035 and 0.048, respectively), interleuking‑17 signaling pathway (Cebpa, Gli2, Sp3, Spi1 and Tfap2a, P=0.019, 0.047, 0.019, 0.035 and 0.005, respectively) and fluid shear stress and atherosclerosis (Gli2, Sp3, Spi1 and Tfap2a, P=0.047, 0.046, 0.013 and 0.003, respectively). These results may improve understanding of the potential molecular mechanism underlying the pathogenesis of CIRI at the genome‑wide level.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Kai Wang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Yun-E Liu
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Wei Wang
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Ao-Fei Liu
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Ji Zhou
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Chen Li
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Yi-Qun Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Ai-Ping Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Jin Lv
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Wei-Jian Jiang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| |
Collapse
|
31
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
32
|
Tang KS, Tan JS. The protective mechanisms of polydatin in cerebral ischemia. Eur J Pharmacol 2019; 842:133-138. [DOI: 10.1016/j.ejphar.2018.10.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
|
33
|
Yunoki T, Tabuchi Y, Hirano T, Miwa S, Imura J, Hayashi A. Gene networks in basal cell carcinoma of the eyelid, analyzed using gene expression profiling. Oncol Lett 2018; 16:6729-6734. [PMID: 30405815 DOI: 10.3892/ol.2018.9484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most frequent malignant tumor of the eyelid; it progresses slowly and rarely metastasizes. However, BCC of the eyelid is partially invasive and can extend to the surrounding ocular adnexa even if appropriate treatment is performed. To understand the molecular mechanism underlying its pathogenesis, global gene expression analysis of surgical tissue samples of BCC of the eyelid (n=2) and normal human epidermal keratinocytes was performed using a GeneChip® system. The histopathological examination of surgically removed eyelid tissues showed the tumor nest composed with small basaloid. In the samples from patients 1 and 2, 687 and 713 genes were identified, respectively, demonstrating ≥5.0-fold higher expression than that noted in normal human epidermal keratinocytes. For the 640 genes with upregulated expression in both patient samples, Ingenuity® pathway analysis showed that the gene network in BCC of the eyelid included many BCC-associated genes, such as the following: BCL2 apoptosis regulator; Patched-1; and SRY-box 9. In addition, unique gene networks related to cancer cell growth, tumorigenesis, and cell survival were identified. These results of integrating microarray analyses provide further insights into the molecular mechanisms involved in BCC of the eyelid and may provide a therapeutic approach for this disease.
Collapse
Affiliation(s)
- Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Shigeharu Miwa
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
34
|
Chen SD, Yang JL, Hwang WC, Yang DI. Emerging Roles of Sonic Hedgehog in Adult Neurological Diseases: Neurogenesis and Beyond. Int J Mol Sci 2018; 19:ijms19082423. [PMID: 30115884 PMCID: PMC6121355 DOI: 10.3390/ijms19082423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as a morphogen possessing critical characters for neural development during embryogenesis. Recently, however, Shh has emerged as an important modulator in adult neural tissues through different mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore, Shh may potentially have clinical application in neurodegenerative diseases and brain injuries. In this article, we present some examples, including ours, to show different aspects of Shh signaling and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models, both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a rationale to design innovative therapeutic regimens for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
| | - Wei-Chao Hwang
- Department of Neurology, Taipei City Hospital, Taipei 11556, Taiwan.
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
35
|
Han L, Tang L, Jiang Z, Jiang Y. Enhanced radiosensitization of human glioblastoma multiforme cells with phosphorylated peptides derived from Gli2. Neuropeptides 2018; 70:87-92. [PMID: 29880393 DOI: 10.1016/j.npep.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
Glioma-Associated Oncogene Family Zinc Finger 2 (Gli2) seems to be the major nuclear effector of Sonic Hedgehog (SHH) signaling to regulate self-renewal and tumorigenic potential of Glioblastoma multiforme (GBM) cells. Three phosphorylated peptides derived from Gli2 were synthesized and combined with cell-penetrating peptide Tat-(47-57) (AYGRKKRRQRRR). Western Blot was applied to detect the phosphorylation level of Gli2 and cell division protein kinase 6 (CDK6) luciferase reporter was utilized to detect the transcriptional activator function of Gli2. Clonogenic survival assay and apoptosis assay were used to testify the radiosensitization effect. The mixed three phosphorylated peptides derived from Gli2 increased the phosphorylation level of Gli2 and decreased Gli2 transcriptional activator activity significantly than the individually used peptide. The mixed three phosphorylated peptides showed greater radiation-sensitizing effects in GBM cells in clonogenic and survival assay compared with control peptide. We present here a novel rational strategy for developing phosphorylated peptides derived from Gli2 to decrease Gli2 transcriptional activator activity and such administration could radiosensitize GBM.
Collapse
Affiliation(s)
- Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ling Tang
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, PR China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, PR China.
| | - Yuquan Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, PR China.
| |
Collapse
|
36
|
Shi C, Huang D, Lu N, Chen D, Zhang M, Yan Y, Deng L, Lu Q, Lu H, Luo S. Aberrantly activated Gli2-KIF20A axis is crucial for growth of hepatocellular carcinoma and predicts poor prognosis. Oncotarget 2018; 7:26206-19. [PMID: 27036048 PMCID: PMC5041975 DOI: 10.18632/oncotarget.8441] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/14/2016] [Indexed: 01/16/2023] Open
Abstract
Glioma-associated oncogene 2 (Gli2), a primary transcriptional regulator of Hedgehog (Hh) signaling, is essential for hepatocellular carcinoma (HCC) growth and survival. However, the underlying molecular mechanism and crucial downstream targets of Gli2 in human HCC are not fully understood. Here, we report the identification of kinesin family member 20A (KIF20A) as a novel downstream target of Gli2, which is important for HCC proliferation and tumor growth. Inhibition of Hh signaling leads to a remarkable decrease of KIF20A expression in HCC cells, whereas overexpression of Gli2 elevates KIF20A expression by activating Forkhead Box M1 (FoxM1)-MMB complex-mediated transcription of this kinesin gene. Gli2-induced HCC cell growth requires enhanced expression of KIF20A, and knockdown of Gli2 or KIF20A represses the proliferation of HCC cells in vitro and in vivo. Correlated with these results, analyses of clinical HCC samples show that Gli2, FoxM1 and KIF20A are highly elevated in primary HCC samples and represent significant risk factors for HCC recurrence and survival. Conclusion: KIF20A is an important downstream target gene of Hh signaling. And, the Gli2-KIF20A axis is essential for the proliferation and growth of human HCC cells. Our study also suggests Gli2-KIF20A axis as a potential target for future therapeutic intervention and as an independent prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Chao Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dengliang Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dan Chen
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Minhong Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Quqin Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
Zhang R, Wu J, Ferrandon S, Glowacki KJ, Houghton JA. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing. Oncotarget 2018; 7:80190-80207. [PMID: 27863397 PMCID: PMC5348313 DOI: 10.18632/oncotarget.13376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.
Collapse
Affiliation(s)
- Ruowen Zhang
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Jiahui Wu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katie J Glowacki
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| | - Janet A Houghton
- Department of Oncology, Division of Drug Discovery, Southern Research, Birmingham, AL, USA
| |
Collapse
|
38
|
Tong W, Qiu L, Qi M, Liu J, Hu K, Lin W, Huang Y, Fu J. GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism. J Cell Biochem 2018; 119:3641-3652. [PMID: 29231999 DOI: 10.1002/jcb.26572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023]
Abstract
Aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway promotes prostate cancer (PC) growth and progression by regulating cancer-related genes through its downstream effectors GLI1 and GLI2. Therefore, targeting the SHH-GLI pathway provides an alternative approach to avoid cancer progression. The aim of this study was to delineate the underlying molecular mechanisms by which GDC-0449 (a SMO receptor inhibitor) and GANT-61 (a GLI transcription factor inhibitor) regulate cellular proliferation and self-renewal in human PC stem cells (ProCSCs). Inhibition of the SHH signaling pathway by GANT-61 induced apoptosis with more efficacy than by GDC-0449 in ProCSCs and PC cell lines. GLI1 and GLI2 expression, promoter-binding activity and GLI-responsive luciferase reporter activity were all decreased with either GDC-0449 or GANT-61 treatment. Expression of Fas, DR4, DR5, and cleavage of caspase-3 and PARP were increased, whereas levels of PDGFR-α and Bcl-2 were reduced. Double knockout of GLI1 and GLI2 using shRNA abolished the effects observed with either GDC-0449 or GANT-61 treatment. Collectively, our results showed that GANT-61 and GDC-0449 induced ProCSC apoptosis by directly or indirectly inhibiting the activities of the GLI family transcription factors, may enhance the efficacy of PC treatment.
Collapse
Affiliation(s)
- Wangxia Tong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, P.R. China
| | - Lei Qiu
- Division of Abdominal Cancer, West China Hospital, Sichuan University and National Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Meng Qi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Jianbing Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Institute of Modern Seed Industrial Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Yan Huang
- Center for Nuclear Medicine, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Institute of Modern Seed Industrial Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| |
Collapse
|
39
|
Bao C, Kramata P, Lee HJ, Suh N. Regulation of Hedgehog Signaling in Cancer by Natural and Dietary Compounds. Mol Nutr Food Res 2017; 62. [PMID: 29164817 DOI: 10.1002/mnfr.201700621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/14/2017] [Indexed: 12/12/2022]
Abstract
The aberrant Hedgehog (Hh) signaling induced by mutations or overexpression of the signaling mediators has been implicated in cancer, associated with processes including inflammation, tumor cell growth, invasion, and metastasis, as well as cancer stemness. Small molecules targeting the regulatory components of the Hh signaling pathway, especially Smoothened (Smo), have been developed for the treatment of cancer. However, acquired resistance to a Smo inhibitor vismodegib observed in clinical trials suggests that other Hh signaling components need to be explored as potential anticancer targets. Natural and dietary compounds provide a resource for the development of potent agents affecting intracellular signaling cascades, and numerous studies have been conducted to evaluate the efficacy of natural products in targeting the Hh signaling pathway. In this review, we summarize the role of Hh signaling in tumorigenesis, discuss results from recent studies investigating the effect of natural products and dietary components on Hh signaling in cancer, and provide insight on novel small molecules as potential Hh signaling inhibitors.
Collapse
Affiliation(s)
- Cheng Bao
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Pavel Kramata
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
40
|
Ji W, Yu Y, Li Z, Wang G, Li F, Xia W, Lu S. FGFR1 promotes the stem cell-like phenotype of FGFR1-amplified non-small cell lung cancer cells through the Hedgehog pathway. Oncotarget 2017; 7:15118-34. [PMID: 26936993 PMCID: PMC4924774 DOI: 10.18632/oncotarget.7701] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cell-like phenotype is critical for tumor formation and treatment resistance. FGFR1 is found to be amplified in non-small cell lung cancer, particularly in the lung squamous cell cancer (LSCC). Whether FGFR1 contributes to the maintenance of stem cell-like phenotype of FGFR1-amplified lung cancer cells remains elusive. In this study, treatment with FGFR1 inhibitor AZD4547 suppressed the growth of tumor spheres and reduced ALDH positive proportion in FGFR1-amplified lung cancer cells in vitro, as well as inhibited the growth of oncospheres and parental cells in xenograft models. Knockdown of FGFR1 recaptured the similar effect as AZD4547 in vitro. Furthermore, activation of FGFR1 and subsequently its downstream ERK signaling enhanced the expression and transcriptional activity of GLI2, which could be blocked by FGFR1 inhibitor/silencing or ERK inhibitor. Knockdown of GLI2 directly inhibited the stem-like phenotype of FGFR1-amilified cells, whereas overexpression of GLI2 sufficiently rescued the phenotype caused by FGFR1 knockdown. Notably we also identified a correlation between FGFR1 and GLI2 expressions from clinical data, as well as an inverse relationship with progression free survival (PFS). Together our study suggests that the FGFR1/GLI2 axis promotes the lung cancer stem cell-like phenotype. These results support a rational strategy of combination of FGFR1 and GLI inhibitors for treatment of FGFR1-amplified lung cancers, especially LSCC.
Collapse
Affiliation(s)
- Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.,State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guan Wang
- Genomics Center, WuXiAppTec Co., Ltd., Shanghai 200131, China
| | - Fan Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
41
|
Qu W, Wang Y, Wu Q, Hao D, Li D. Emodin Impairs Radioresistance of Human Osteosarcoma Cells by Suppressing Sonic Hedgehog Signaling. Med Sci Monit 2017; 23:5767-5773. [PMID: 29203762 PMCID: PMC5719725 DOI: 10.12659/msm.907453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Material/Methods Results Conclusions
Collapse
Affiliation(s)
- Wei Qu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland).,Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yufei Wang
- Department of Bone Microsurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Qining Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Dichen Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland).,State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
42
|
Roles of the Hedgehog Signaling Pathway in Epidermal and Hair Follicle Development, Homeostasis, and Cancer. J Dev Biol 2017; 5:jdb5040012. [PMID: 29615568 PMCID: PMC5831796 DOI: 10.3390/jdb5040012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022] Open
Abstract
The epidermis is the outermost layer of the skin and provides a protective barrier against environmental insults. It is a rapidly-renewing tissue undergoing constant regeneration, maintained by several types of stem cells. The Hedgehog (HH) signaling pathway is one of the fundamental signaling pathways that contributes to epidermal development, homeostasis, and repair, as well as to hair follicle development and follicle bulge stem cell maintenance. The HH pathway interacts with other signal transduction pathways, including those activated by Wnt, bone morphogenetic protein, platelet-derived growth factor, Notch, and ectodysplasin. Furthermore, aberrant activation of HH signaling is associated with various tumors, including basal cell carcinoma. Therefore, an understanding of the regulatory mechanisms of the HH signaling pathway is important for elucidating fundamental mechanisms underlying both organogenesis and carcinogenesis. In this review, we discuss the role of the HH signaling pathway in the development and homeostasis epidermis and hair follicles, and in basal cell carcinoma formation, providing an update of current knowledge in this field.
Collapse
|
43
|
Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFU tumour suppressor. Nat Cell Biol 2017; 19:1226-1236. [PMID: 28945232 PMCID: PMC5657599 DOI: 10.1038/ncb3616] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Direct interactions between pro- and anti-apoptotic BCL-2 family members form the basis of cell death decision-making at the outer mitochondrial membrane (OMM). Here we report that three antiapoptotic BCL-2 proteins (MCL-1, BCL-2, and BCL-XL) found untethered from the OMM function as transcriptional regulators of a prosurvival and growth program. Antiapoptotic BCL-2 proteins engage a BCL-2 homology (BH) domain sequence found in Suppressor of Fused (SUFU), a tumor suppressor and antagonist of the GLI DNA binding proteins. BCL-2 proteins directly promote SUFU turnover, inhibit SUFU-GLI interaction, and induce the expression of the GLI target genes BCL-2, MCL-1, and BCL-XL. Antiapoptotic BCL-2 protein/SUFU feedforward signaling promotes cancer cell survival and growth and can be disabled with BH3 mimetics – small molecules that target antiapoptotic BCL-2 proteins. Our findings delineate a chemical strategy for countering drug resistance in GLI-associated tumors and reveal unanticipated functions for BCL-2 proteins as transcriptional regulators.
Collapse
|
44
|
Diniz MG, Gomes CC, de Sousa SF, Xavier GM, Gomez RS. Oncogenic signalling pathways in benign odontogenic cysts and tumours. Oral Oncol 2017; 72:165-173. [DOI: 10.1016/j.oraloncology.2017.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/24/2023]
|
45
|
Pantazi E, Gemenetzidis E, Teh MT, Reddy SV, Warnes G, Evagora C, Trigiante G, Philpott MP. GLI2 Is a Regulator of β-Catenin and Is Associated with Loss of E-Cadherin, Cell Invasiveness, and Long-Term Epidermal Regeneration. J Invest Dermatol 2017; 137:1719-1730. [PMID: 28300597 DOI: 10.1016/j.jid.2016.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/31/2016] [Accepted: 11/26/2016] [Indexed: 12/31/2022]
Abstract
Uncontrolled hedgehog (HH)/glioma-associated oncogene (GLI) and WNT/β-catenin signaling are important events in the genesis of many cancers including skin cancer and are often implicated in tumor progression, invasion, and metastasis. However, because of the complexity and context dependency of both pathways, little is known about HH and WNT interactions in human carcinogenesis. In the current study, we provide evidence of HH/glioma-associated oncogene family zinc finger 2 (GLI2)-WNT/β-catenin signaling crosstalk in human keratinocytes. Overexpression of GLI2ΔN in human keratinocytes resulted in cytoplasmic accumulation and nuclear relocalization of β-catenin in vitro and in 3D organotypic cultures, accompanied by upregulation of WNT genes. Induction of GLI2ΔN enhanced the β-catenin-dependent transcriptional activation and the subsequent activation of β-catenin target genes including cyclin-D1. Additionally, GLI2 overexpression was associated with decreased E-cadherin protein levels; increased expression of SNAIL, matrix metalloproteinase 2, and integrin β1; and increased cell invasion in 3D organotypic cultures. Invasion was reduced by WNT inhibition, thus unveiling the direct role of GLI2/WNT crosstalk in cell invasion. We show that GLI2 overexpression supported long-term epidermal regeneration in 3D organotypic cultures, and resulted in the manifestation of an undifferentiated basal/stem cell-associated phenotype in human keratinocytes. Both these observations are consistent with the role of β-catenin and SNAIL in epidermal stem cell maintenance. This work suggests that GLI2 is a regulator of β-catenin and provides insights into its role in tumorigenesis.
Collapse
Affiliation(s)
- Eleni Pantazi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emilios Gemenetzidis
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Muy-Teck Teh
- Department of Diagnostic and Oral Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sreekanth Vootukuri Reddy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gary Warnes
- Imaging and Flow Cytometry Core facilities, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chris Evagora
- Pathology Core facilities, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giuseppe Trigiante
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael P Philpott
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
46
|
Huang J, Wu G, Zeng R, Wang J, Cai R, Ho JCM, Zhang J, Zheng Y. Chromium contributes to human bronchial epithelial cell carcinogenesis by activating Gli2 and inhibiting autophagy. Toxicol Res (Camb) 2017; 6:324-332. [PMID: 30090501 DOI: 10.1039/c6tx00372a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023] Open
Abstract
Occupational and environmental inhalation exposure to hexavalent chromium [Cr(vi)] compounds has been confirmed to cause respiratory system injury and cancer. The molecular mechanisms of chromium carcinogenesis still require further study. We established Cr(vi)-transformed cells (BEAS-2B-Cr) after chronic exposure of immortalized normal human bronchial epithelial BEAS-2B cells to low doses of Cr(vi), which obtained the ability of anchorage-independent growth. BEAS-2B-Cr cells not only exhibited stronger proliferation, migration, invasion and tumorigenesis capabilities but also acquired an altered and distinct Gli2 gene expression pattern compared with untreated parental BEAS-2B cells (P-NC) and the control BEAS-2B cells (NC). Interestingly, we found that activation of Gli2 by Cr(vi) treatment prevented the induction of autophagy. Using a gene silencing approach, we showed that Gli2 plays an important role in the malignant properties of BEAS-2B-Cr cells. Downregulation of Gli2 induced autophagy and inhibited cell proliferation and colony forming abilities, which are both upregulated in BEAS-2B-Cr cells compared to NC cells. In addition, inhibition of autophagy by 3-methyladenine (3-MA) partially suppressed the cytotoxicity induced by GANT61-induced inhibition of Gli2. These results demonstrate that hexavalent chromium Cr(vi) activates Gli2 to promote the proliferation of BEAS-2B-Cr cells by inhibition of autophagy, which contributes to human bronchial epithelial cell carcinogenesis. Gli2 may not only play an important role in lung cancer pathogenesis, but also be a promising early indicator in monitoring exposure to chromium.
Collapse
Affiliation(s)
- Junpeng Huang
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - Gang Wu
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - Rong Zeng
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - Jinting Wang
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - Rui Cai
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - James Chung-Man Ho
- Division of Respiratory Medicine , Department of Medicine , The University of Hong Kong , Queen Mary Hospital , Hong Kong , SAR
| | - Jiren Zhang
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China . .,Guangdong Institute of Tumor Target Intervention and Prevention , Qingyuan , 511500 , China
| | - Yanfang Zheng
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| |
Collapse
|
47
|
Kangwan N, Kim YJ, Han YM, Jeong M, Park JM, Go EJ, Hahm KB. Sonic hedgehog inhibitors prevent colitis-associated cancer via orchestrated mechanisms of IL-6/gp130 inhibition, 15-PGDH induction, Bcl-2 abrogation, and tumorsphere inhibition. Oncotarget 2016; 7:7667-82. [PMID: 26716648 PMCID: PMC4884946 DOI: 10.18632/oncotarget.6765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (SHH) signaling is essential in normal development of the gastrointestinal (GI) tract, whereas aberrantly activated SHH is implicated in GI cancers because it facilitates carcinogenesis by redirecting stem cells. Since colitis-associated cancer (CAC) is associated with inflammatory bowel diseases, in which SHH and IL-6 signaling, inflammation propagation, and cancer stem cell (CSC) activation have been implicated, we hypothesized that SHH inhibitors may prevent CAC by blocking the above SHH-related carcinogenic pathways. In the intestinal epithelial cells IEC-6 and colon cancer cells HCT-116, IL-6 expression and its signaling were assessed with SHH inhibitors and levels of other inflammatory mediators, proliferation, apoptosis, tumorsphere formation, and tumorigenesis were also measured. CAC was induced in C57BL/6 mice by administration of azoxymethane followed by dextran sodium sulfate administration. SHH inhibitors were administered by oral gavage and the mice were sacrificed at 16 weeks. TNF-α–stimulated IEC-6 cells exhibited increased levels of proinflammatory cytokines and enzymes, whereas SHH inhibitors suppressed TNF-α–induced inflammatory signaling, especially IL-6/IL-6R/gp130 signaling. SHH inhibitors significantly induced apoptosis, inhibited cell proliferation, suppressed tumorsphere formation, and reduced stemness factors. In the mouse model, SHH inhibitors significantly reduced tumor incidence and multiplicity, decreased the expression of IL-6, TNF-α, COX-2, STAT3, and NF-κB, and significantly induced apoptosis. In colosphere xenografts, SHH inhibitor significantly suppressed tumorigenesis by inhibiting tumorsphere formation. Taken together, our data suggest that administration of SHH inhibitors could be an effective strategy to prevent colitis-induced colorectal carcinogenesis, mainly by targeting IL-6 signaling, ablating CSCs, and suppressing oncogenic inflammation, achieving chemoquiescence ultimately.
Collapse
Affiliation(s)
- Napapan Kangwan
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea
| | - Yoon-Jae Kim
- Department of Gastroenterology, Gachon University Gil Medical Center, Incheon, Korea
| | - Young Min Han
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea
| | - Migyeong Jeong
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea
| | - Eun-Jin Go
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea
| | - Ki-Baik Hahm
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea.,Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
48
|
Bikle DD, Jiang Y, Nguyen T, Oda Y, Tu CL. Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer. Front Physiol 2016; 7:296. [PMID: 27462278 PMCID: PMC4940389 DOI: 10.3389/fphys.2016.00296] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022] Open
Abstract
1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis (epidVdr−∕− and epidCasr−∕−). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β–catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr−∕− mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the epidVdr−∕− or epidCasr−∕−. But in mice with epidermal specific deletion of both Vdr and Casr (epidVdr−∕−/epidCasr−∕− [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β–catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| | - Yan Jiang
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| | - Thai Nguyen
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| | - Yuko Oda
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| | - Chia-Ling Tu
- Departments of Medicine and Dermatology, VA Medical Center and University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
49
|
Song L, Wang W, Liu D, Zhao Y, He J, Wang X, Dai Z, Zhang H, Li X. Targeting of sonic hedgehog-Gli signaling: A potential therapeutic target for patients with breast cancer. Oncol Lett 2016; 12:1027-1033. [PMID: 27446389 DOI: 10.3892/ol.2016.4722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/05/2016] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the most common malignant cancer among women. The Hedgehog (Hh) signaling pathway serves a key role in malignant cancer cell growth and migration. However, little is known with regard to the specific function of the Hh signaling pathway in human breast cancer. The current study investigated the specific role of Hh signaling in the human breast cancer cell line MDA-MB-231. Expression of components of Shh-Gli signaling, as well as the Gli-responsive genes B-cell lymphoma 2 (Bcl-2) and cyclin D1, were investigated in MDA-MB-231 cells using western blotting. The effects of Shh-Gli signaling on MDA-MB-231 proliferation were analyzed by MTT assay. The role of E-cadherin in the epithelial-mesenchymal transition process was determined by western blot while matrix metalloproteinase (MMP)-9/MMP-2 secretion was studied by enzyme-linked immunosorbent assay. The results indicated that Shh-Gli signaling was activated in MDA-MB-231 cells, significantly enhancing cell viability. Overexpression of Gli positively regulated the transcription of Bcl-2 and cyclin D1 thereby regulating MDA-MB-231 cell proliferation and survival. Treatment of MDA-MB-231 cells with human sonic hedgehog, n-terminus for 72 h significantly reduced E-cadherin protein levels and enhanced secretion of MMP-9 and MMP-2. These findings suggest that Shh-Gli signaling is significantly activated in human breast cancer cells, and is accompanied by enhanced cell viability, proliferation and migration capacities.
Collapse
Affiliation(s)
- Lingqin Song
- Department of Tumor Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Weifeng Wang
- Department of Tumor Surgery, The First People's Hospital of Xianyang, Xianyang, Shaanxi 712000, P.R. China
| | - Di Liu
- Department of Tumor Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yang Zhao
- Department of Tumor Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianjun He
- Department of Tumor Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xijing Wang
- Department of Tumor Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhijun Dai
- Department of Tumor Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Huimin Zhang
- Department of Tumor Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao Li
- Department of Tumor Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
50
|
Chiarenza A, Manetti F, Petricci E, Ruat M, Naldini A, Taddei M, Carraro F. Novel Acylguanidine Derivatives Targeting Smoothened Induce Antiproliferative and Pro-Apoptotic Effects in Chronic Myeloid Leukemia Cells. PLoS One 2016; 11:e0149919. [PMID: 26934052 PMCID: PMC4774938 DOI: 10.1371/journal.pone.0149919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
The most relevant therapeutic approaches to treat CML rely on the administration of tyrosine kinase inhibitors (TKIs) like Imatinib, which are able to counteract the activity of Bcr-Abl protein increasing patient's life expectancy and survival. Unfortunately, there are some issues TKIs are not able to address; first of all TKIs are not so effective in increasing survival of patients in blast crisis, second they are not able to eradicate leukemic stem cells (LSC) which represent the major cause of disease relapse, and third patients often develop resistance to TKIs due to mutations in the drug binding site. For all these reasons it's of primary interest to find alternative strategies to treat CML. Literature shows that Hedgehog signaling pathway is involved in LSC maintenance, and pharmacological inhibition of Smoothened (SMO), one of the key molecules of the pathway, has been demonstrated to reduce Bcr-Abl positive bone marrow cells and LSC. Consequently, targeting SMO could be a promising way to develop a new treatment strategy for CML overcoming the limitations of current therapies. In our work we have tested some compounds able to inhibit SMO, and among them MRT92 appears to be a very potent SMO antagonist. We found that almost all our compounds were able to reduce Gli1 protein levels in K-562 and in KU-812 CML cell lines. Furthermore, they were also able to increase Gli1 and SMO RNA levels, and to reduce cell proliferation and induce apoptosis/autophagy in both the tested cell lines. Finally, we demonstrated that our compounds were able to modulate the expression of some miRNAs related to Hedgehog pathway such as miR-324-5p and miR-326. Being Hedgehog pathway deeply implicated in the mechanisms of CML we may conclude that it could be a good therapeutic target for CML and our compounds seem to be promising antagonists of such pathway.
Collapse
MESH Headings
- Apoptosis/drug effects
- Autophagy/drug effects
- Blast Crisis/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/metabolism
- Hedgehog Proteins/metabolism
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MicroRNAs/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Smoothened Receptor
Collapse
Affiliation(s)
- Alessandra Chiarenza
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Elena Petricci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Martial Ruat
- CNRS, UMR-9197, Neuroscience Paris- Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France
| | - Antonella Naldini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maurizio Taddei
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabio Carraro
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Istituto Toscano Tumori, Siena, Italy
- * E-mail:
| |
Collapse
|