1
|
Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. NANOMATERIALS 2020; 10:nano10071403. [PMID: 32707641 PMCID: PMC7408012 DOI: 10.3390/nano10071403] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The complexity of some diseases—as well as the inherent toxicity of certain drugs—has led to an increasing interest in the development and optimization of drug-delivery systems. Polymeric nanoparticles stand out as a key tool to improve drug bioavailability or specific delivery at the site of action. The versatility of polymers makes them potentially ideal for fulfilling the requirements of each particular drug-delivery system. In this review, a summary of the state-of-the-art panorama of polymeric nanoparticles as drug-delivery systems has been conducted, focusing mainly on those applications in which the corresponding disease involves an important morbidity, a considerable reduction in the life quality of patients—or even a high mortality. A revision of the use of polymeric nanoparticles for ocular drug delivery, for cancer diagnosis and treatment, as well as nutraceutical delivery, was carried out, and a short discussion about future prospects of these systems is included.
Collapse
|
2
|
Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release 2018; 269:374-392. [DOI: 10.1016/j.jconrel.2017.11.036] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
|
3
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
4
|
Wu L, Leng D, Cun D, Foged C, Yang M. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens. J Control Release 2017; 260:78-91. [PMID: 28527735 DOI: 10.1016/j.jconrel.2017.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Abstract
Lung cancer is a complex disease caused by a multitude of genetic and environmental factors. The progression of lung cancer involves dynamic changes in the genome and a complex network of interactions between cancer cells with multiple, distinct cell types that form tumors. Combination therapy using different pharmaceuticals has been proven highly effective due to the ability to affect multiple cellular pathways involved in the disease progression. However, the currently used drug combination designs are primarily based on empirical clinical studies, and little attention has been given to dosage regimens, i.e. how administration routes, onsets, and durations of the combinations influence the therapeutic outcome. This is partly because combination therapy is challenged by distinct physicochemical properties and in vivo pharmacokinetics/pharmacodynamics of the individual pharmaceuticals, including small molecule drugs and biopharmaceuticals, which make the optimization of dosing and administration schedule challenging. This article reviews the recent advances in the design and development of combinations of pharmaceuticals for the treatment of lung cancer. Focus is primarily on rationales for the selection of specific combination therapies for lung cancer treatment, and state of the art of delivery technologies and dosage regimens for the combinations, tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Donglei Leng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Gankhuyag N, Yu KN, Davaadamdin O, Lee S, Cho WY, Park C, Jiang HL, Singh B, Chae CH, Cho MH, Cho CS. Suppression of Tobacco Carcinogen-Induced Lung Tumorigenesis by Aerosol-Delivered Glycerol Propoxylate Triacrylate-Spermine Copolymer/Short Hairpin Rab25 RNA Complexes in Female A/J Mice. J Aerosol Med Pulm Drug Deliv 2017; 30:81-90. [PMID: 27792477 DOI: 10.1089/jamp.2016.1301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Rab25, a member of Rab family of small guanosine triphosphatase, is associated with progression of various types of human cancers, including lung cancer, the leading cause of cancer-associated deaths around the globe. METHODS In this study, we report the gene therapeutic effect of short hairpin Rab25 RNA (shRab25) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Initially, mice (6 weeks old) were injected with single dose of NNK (2 mg/0.1 mL saline/mouse) by intraperitoneal injection to induce the tumor. Eight weeks later, shRab25 was complexed with glycerol propoxylate triacrylate-spermine (GPT-SPE) copolymer and delivered into tobacco-induced lung cancer models through a nose-only inhalation system twice a week for 2 months. RESULTS GPT-SPE/shRab25 largely decreased the tobacco-induced tumor numbers and tumor volume in the lungs compared to GPT-SPE- or GPT-SPE/shScr-delivered groups. Remarkably, aerosol-delivered GPT-SPE/shRab25 significantly decreased the expression level of Rab25 and other prominent apoptosis-related proteins in female A/J mice. The apoptosis in these mice was determined by detecting the expression level of Bcl-2, proliferating cell nuclear antigen, Bax, and further confirmed by TUNEL assay. CONCLUSIONS Our results strongly confirm the tumorigenic role of Rab25 in tobacco carcinogen-induced lung cancer and hence demonstrate aerosol delivery of shRab25 as a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Nomundelger Gankhuyag
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Kyeong Nam Yu
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Orkhonselenge Davaadamdin
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Somin Lee
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Won Young Cho
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Changhoon Park
- 2 Laboratory of Pathology, College of Veterinary Medicine, Seoul National University , Seoul, Korea
| | - Hu-Lin Jiang
- 3 State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, China
| | - Bijay Singh
- 4 Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Chan-Hee Chae
- 2 Laboratory of Pathology, College of Veterinary Medicine, Seoul National University , Seoul, Korea
| | - Myung-Haing Cho
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Chong-Su Cho
- 4 Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| |
Collapse
|
6
|
Hohenforst-Schmidt W, Zarogoulidis P, Stopek J, Vogl T, Hübner F, Turner JF, Browning R, Zarogoulidis K, Drevelegas A, Drevelegas K, Darwiche K, Freitag L, Rittger H. DDMC-p53 gene therapy with or without cisplatin and microwave ablation. Onco Targets Ther 2015; 8:1165-73. [PMID: 26056480 PMCID: PMC4446017 DOI: 10.2147/ott.s83794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of death in cancer patients. Severe treatment side effects and late stage of disease at diagnosis continue to be an issue. We investigated whether local treatment using 2-diethylaminoethyl-dextran methyl methacrylate copolymer with p53 (DDMC-p53) with or without cisplatin and/or microwave ablation enhances disease control in BALBC mice. We used a Lewis lung carcinoma cell line to inoculate 140 BALBC mice, which were divided into the following seven groups; control, cisplatin, microwave ablation, DDMC-p53, DDMC-p53 plus cisplatin, DDMC-p53 plus microwave, and DDMC-p53 plus cisplatin plus microwave. Microwave ablation energy was administered at 20 W for 10 minutes. Cisplatin was administered as 1 mL/mg and the DDMC-p53 complex delivered was 0.5 mL. Increased toxicity was observed in the group receiving DDMC-p53 plus cisplatin plus microwave followed by the group receiving DDMC-p53 plus cisplatin. Infection after repeated treatment administration was a major issue. We conclude that a combination of gene therapy using DDMC-p53 with or without cisplatin and microwave is an alternative method for local disease control. However, more experiments are required in a larger model to identify the appropriate dosage profile.
Collapse
Affiliation(s)
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Thomas Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University of Frankfurt, Frankfurt, Germany
| | - Frank Hübner
- II Medical Clinic, Coburg Hospital, University of Wuerzburg, Coburg, Germany
| | - J Francis Turner
- Division of Interventional Pulmonology, Western Regional Medical Center, Goodyear, AZ ; Medical Oncology, Cancer Treatment Centers of America, Western Regional Medical Center, Goodyear, AZ
| | - Robert Browning
- Pulmonary and Critical Care Medicine, Interventional Pulmonology, National Naval Medical Center, Walter Reed Army Medical Center, Bethesda, MD, USA
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Drevelegas
- Radiology Department, Interbalkan European Medical Center, Thessaloniki, Greece
| | | | - Kaid Darwiche
- Department of interventional Pneumology, Ruhrlandklinik, University Hospital Essen, University of Essen-Duisburg, Essen, Germany
| | - Lutz Freitag
- Department of interventional Pneumology, Ruhrlandklinik, University Hospital Essen, University of Essen-Duisburg, Essen, Germany
| | - Harald Rittger
- Medical Clinic I, 'Fuerth Hospital, University of Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Hong SH, Park SJ, Lee S, Cho CS, Cho MH. Aerosol gene delivery using viral vectors and cationic carriers forin vivolung cancer therapy. Expert Opin Drug Deliv 2014; 12:977-91. [DOI: 10.1517/17425247.2015.986454] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Correction: Aerosol Delivery of Glucosylated Polyethylenimine/Phosphatase and Tensin Homologue Deleted on Chromosome 10 Complex Suppresses Akt Downstream Pathways in the Lung of K-ras Null Mice. Cancer Res 2014. [DOI: 10.1158/0008-5472.can-13-3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53. Gene Ther 2013; 21:158-67. [PMID: 24285215 DOI: 10.1038/gt.2013.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/06/2013] [Accepted: 10/17/2013] [Indexed: 12/18/2022]
Abstract
Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer.
Collapse
|
10
|
Islam MA, Shin JY, Yun CH, Cho CS, Seo HW, Chae C, Cho MH. The effect of RNAi silencing of p62 using an osmotic polysorbitol transporter on autophagy and tumorigenesis in lungs of K-rasLA1 mice. Biomaterials 2013; 35:1584-96. [PMID: 24269155 DOI: 10.1016/j.biomaterials.2013.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023]
Abstract
Treating cancer patients by conventional chemotherapy to achieve prolonged survival still remains complicated. Autophagy is a topic of considerable interest in recent times, as it may contribute greatly to tumor suppression. Recent studies indicate that autophagy-deficient cells accumulate high levels of p62, an ubiquitin-binding scaffold protein, involved greatly in tumorigenesis. Here, we synthesized an osmotically active polysorbitol-mediated transporter (PSMT) to downregulate p62 using an RNAi strategy and described the mechanism of how p62 silencing using PSMT/siRNA p62 system activates autophagy and contributes to tumor suppression in the lungs of K-ras(LA1) mice. Downregulation of p62 by PSMT/siRNA p62 activated autophagy confirmed by the formation of autophagosomes and swelling of Golgi apparatus with a decreasing level of GM130, a cis-Golgi matrix protein. Activation of osmotic PSMT-mediated autophagy remarkably reduced the size and number of tumors by suppressing proliferative cell nuclear antigen, cluster of differentiation 31, and vascular endothelial growth factor levels. Furthermore, an increase in apoptosis was observed in the lungs of PSMT/siRNA p62-delivered K-ras(LA1) mice.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-742, South Korea
| | - Ji-Young Shin
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-742, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| | - Hwi Won Seo
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Chanhee Chae
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Graduate School of Convergence Science and Technology, Suwon 443-270, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea.
| |
Collapse
|
11
|
Zarogoulidis P, Darwiche K, Hohenforst-Schmidt W, Huang H, Li Q, Freitag L, Zarogoulidis K. Inhaled gene therapy in lung cancer: proof-of-concept for nano-oncology and nanobiotechnology in the management of lung cancer. Future Oncol 2013; 9:1171-94. [PMID: 23902248 DOI: 10.2217/fon.13.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lung cancer still remains one of the leading causes of death among cancer patients. Although novel targeted therapies have been established in everyday treatment practice, and conventional platinum-based doublets have demonstrated effective results regarding overall and progression-free survival, we have still failed to achieve long-term survival. Therefore, several strategies of applying locoregional therapy are under investigation. Aerosol chemotherapy is already under investigation and, taking this a step further, aerosol gene therapies with multiple delivery systems are being developed. Several efforts have demonstrated its efficiency and effectiveness, but there are still multiple factors that have to be considered and combined to achieve an overall more effective multifunctional treatment. In the current review, we present data regarding aerosol delivery systems, transporters, carriers, vectors, genes, toxicity, efficiency, specificity, lung microenvironment and delivery gene therapy systems. Finally, we present current studies and future perspectives.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
12
|
Zarogoulidis P, Hohenforst-Schmidt W, Darwiche K, Krauss L, Sparopoulou D, Sakkas L, Gschwendtner A, Huang H, Turner FJ, Freitag L, Zarogoulidis K. 2-diethylaminoethyl-dextran methyl methacrylate copolymer nonviral vector: still a long way toward the safety of aerosol gene therapy. Gene Ther 2013; 20:1022-8. [PMID: 23719068 DOI: 10.1038/gt.2013.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/15/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
Revealing the lung tumor genome has directed the current treatment strategies toward targeted therapy. First line treatments targeting the genome of lung tumor cells have been approved and are on the market. However, they are limited by the small number of patients with the current investigated genetic mutations. Novel treatment administration modalities have been also investigated in an effort to increase the local drug deposition and disease control. In the current study, we investigated the safety of the new nonviral vector 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC; Ryujyu Science), which belongs to the 2-diethylaminoethyl-dextran family by aerosol administration. Thirty male BALBC mice, 2 month old, were included and divided into three groups. However, pathological findings indicated severe emphysema within three aerosol sessions. In addition, the CytoViva technique was applied for the first time to display the nonviral particles within the pulmonary tissue and emphysema lesions, and a spectral library of the nonviral vector was also established. Although our results in BALBC mice prevented us from further investigation of the DDMC nonviral vector as a vehicle for gene therapy, further investigation in animals with larger airways is warranted to properly evaluate the safety of the vector.
Collapse
Affiliation(s)
- P Zarogoulidis
- 1] Pulmonary Department-Oncology Unit, 'G. Papanikolaou' General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece [2] Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sfondrini L, Sommariva M, Tortoreto M, Meini A, Piconese S, Calvaruso M, Van Rooijen N, Bonecchi R, Zaffaroni N, Colombo MP, Tagliabue E, Balsari A. Anti-tumor activity of CpG-ODN aerosol in mouse lung metastases. Int J Cancer 2013; 133:383-93. [PMID: 23319306 DOI: 10.1002/ijc.28028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 01/16/2023]
Abstract
Studies in preclinical models have demonstrated the superior anti-tumor effect of CpG oligodeoxynucleotides (CpG-ODN) when administered at the tumor site rather than systemically. We evaluated the effect of aerosolized CpG-ODN on lung metastases in mice injected with immunogenic N202.1A mammary carcinoma cells or weakly immunogenic B16 melanoma cells. Upon reaching the bronchoalveolar space, aerosolized CpG-ODN activated a local immune response, as indicated by production of IL-12p40, IFN-γ and IL-1β and by recruitment and maturation of DC cells in bronchoalveolar lavage fluid of mice. Treatment with aerosolized CpG-ODN induced an expansion of CD4+ cells in lung and was more efficacious than systemic i.p. administration against experimental lung metastases of immunogenic N202.1A mammary carcinoma cells, whereas only i.p. delivery of CpG-ODN provided anti-tumor activity, which correlated with NK cell expansion in the lung, against lung metastases of the poorly immunogenic B16 melanoma. The inefficacy of aerosol therapy to induce NK expansion was related to the presence of immunosuppressive macrophages in B16 tumor-bearing lungs, as mice depleted of these cells by clodronate treatment responded to aerosol CpG-ODN through expansion of the NK cell population and significantly reduced numbers of lung metastases. Our results indicate that tumor immunogenicity and the tumor-induced immunosuppressive environment are critical factors to the success of CpG therapy in the lung, and point to the value of routine sampling of the lung immune environment in defining an optimal immunotherapeutic strategy.
Collapse
Affiliation(s)
- Lucia Sfondrini
- Dipartimento di Scienze Biomediche per Salute, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv 2012; 10:215-28. [PMID: 23252504 DOI: 10.1517/17425247.2013.744964] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Branched and linear polyethylenimines (PEIs) are cationic polymers that have been used to deliver nucleic acids both in vitro and in vivo. Owing to the high cationic charge, the branched polymers exhibit high transfection efficiency, and particularly PEI of molecular weight 25 kDa is considered as a gold standard in gene delivery. These polymers have been extensively studied and modified with different ligands so as to achieve the targeted delivery. AREAS COVERED The application of PEI in vivo promises to take the polymer-based vector to the next level wherein it can undergo clinical trials and subsequently could be used for delivery of therapeutics in humans. This review focuses on the various recent developments that have been made in the field of PEI-based delivery vectors for delivery of therapeutics in vivo. EXPERT OPINION The efficacy of PEI-based delivery vectors in vivo is significantly high and animal studies demonstrate that such systems have a potential in humans. However, we feel that though PEI is a promising vector, further studies involving PEI in animal models are needed so as to get a detailed toxicity profile of these vectors. Also, it is imperative that the vector reaches the specific organ causing little or no undesirable effects to other organs.
Collapse
Affiliation(s)
- Soma Patnaik
- CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow, 226 001, India
| | | |
Collapse
|
15
|
Inhaled gene therapy in lung cancer: "as for the future, our task is not to foresee it, but to enable it". Ther Deliv 2012; 3:919-21. [PMID: 22946426 DOI: 10.4155/tde.12.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Zarogouldis P, Karamanos NK, Porpodis K, Domvri K, Huang H, Hohenforst-Schimdt W, Goldberg EP, Zarogoulidis K. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012; 13:10828-10862. [PMID: 23109824 PMCID: PMC3472716 DOI: 10.3390/ijms130910828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022] Open
Abstract
Novel aerosol therapeutic modalities have been investigated for lung cancer. Inhaled gene therapy has presented safety and effectiveness previously in cystic fibrosis. However, safety concerns have been raised regarding the safety of non-viral vectors for inhaled gene therapy in lung cancer, and therefore small steps have been made towards this multifunctional treatment modality. During the last decade, numerous new nanocomplexes have been created and investigated as a safe gene delivery nano-vehicle. These formulations are multifunctional; they can be used as either local therapy or carrier for an effective inhaled gene therapy for lung cancer. Herein, we present current and future perspectives of nanocomplexes for inhaled gene therapy treatment in lung cancer.
Collapse
Affiliation(s)
- Paul Zarogouldis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
- Pulmonary Department-Interventional Unit, “Ruhrland Klinik”, University of Essen, Essen 45239, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-697-727-1974; Fax: +30-231-099-2433
| | - Nikos K. Karamanos
- Laboratory of Biochemistry, University of Patras, Patras 25200, Greece; E-Mail:
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Haidong Huang
- Department of Respiratory diseases, Changhai hospital, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | | | - Eugene P. Goldberg
- Biomaterials Science & Engineering, Department of Materials Science & Engineering, University of Florida, FL 32611, USA; E-Mail:
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| |
Collapse
|
17
|
Minai-Tehrani A, Park YC, Hwang SK, Kwon JT, Chang SH, Park SJ, Yu KN, Kim JE, Shin JY, Kim JH, Kang B, Hong SH, Cho MH. Aerosol delivery of kinase-deficient Akt1 attenuates Clara cell injury induced by naphthalene in the lungs of dual luciferase mice. J Vet Sci 2012; 12:309-17. [PMID: 22122896 PMCID: PMC3232389 DOI: 10.4142/jvs.2011.12.4.309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Conventional lung cancer therapies are associated with poor survival rates; therefore, new approaches such as gene therapy are required for treating cancer. Gene therapies for treating lung cancer patients can involve several approaches. Among these, aerosol gene delivery is a potentially more effective approach. In this study, Akt1 kinase-deficient (KD) and wild-type (WT) Akt1 were delivered to the lungs of CMV-LucR-cMyc-IRES-LucF dual reporter mice through a nose only inhalation system using glucosylated polyethylenimine and naphthalene was administrated to the mice via intraperitoneal injection. Aerosol delivery of Akt1 WT and naphthalene treatment increased protein levels of downstream substrates of Akt signaling pathway while aerosol delivery of Akt1 KD did not. Our results showed that naphthalene affected extracellular signal-regulated kinase (ERK) protein levels, ERK-related signaling, and induced Clara cell injury. However, Clara cell injury induced by naphthalene was considerably attenuated in mice exposed to Akt1 KD. Furthermore, a dual luciferase activity assay showed that aerosol delivery of Akt1 WT and naphthalene treatment enhanced cap-dependent protein translation, while reduced cap-dependent protein translation was observed after delivering Akt1 KD. These studies demonstrated that our aerosol delivery is compatible for in vivo gene delivery.
Collapse
Affiliation(s)
- Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kwon JT, Minai-Tehrani A, Hwang SK, Kim JE, Shin JY, Yu KN, Chang SH, Kim DS, Kwon YT, Choi IJ, Cheong YH, Kim JS, Cho MH. Acute pulmonary toxicity and body distribution of inhaled metallic silver nanoparticles. Toxicol Res 2012; 28:25-31. [PMID: 24278586 PMCID: PMC3834404 DOI: 10.5487/tr.2012.28.1.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the acute pulmonary toxicity of metallic silver nanoparticles (MSNPs, 20.30 nm in diameter). Acute pulmonary toxicity and body distribution of inhaled MSNPs in mice were evaluated using a nose-only exposure chamber (NOEC) system. Bronchoalveolar lavage (BAL) fluid analysis, Western blotting, histopathological changes, and silver burdens in various organs were determined in mice. Mice were exposed to MSNPs for 6 hrs. The mean concentration, total surface area, volume and mass concentrations in the NOEC were maintained at 1.93 × 10(7) particles/cm(3), 1.09 × 10(10) nm(2)/cm(3), 2.72 × 10(11) nm(3)/cm(3), and 2854.62 μg/m(3), respectively. Inhalation of MSPNs caused mild pulmonary toxicity with distribution of silver in various organs but the silver burdens decreased rapidly at 24-hrs post-exposure in the lung. Furthermore, inhaled MSNPs induced activation of mitogen-activated protein kinase (MAPK) signaling in the lung. In summary, single inhaled MSNPs caused mild pulmonary toxicity, which was associated with activated MAPK signaling. Taken together, our results suggest that the inhalation toxicity of MSNPs should be carefully considered at the molecular level.
Collapse
Affiliation(s)
- Jung-Taek Kwon
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
- Current address: Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Korea
| | - Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Soon-Kyung Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
- Current address: Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
- Department of Nanofusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Korea
| | - Ji-Young Shin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Kyeong-Nam Yu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | - Dae-Seong Kim
- Center for Materials Measurement, Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Korea
| | | | - In-Ja Choi
- Wonjin Institute of Occupational and Environmental Health, Seoul 131-831, Korea
| | - Yun-Hee Cheong
- Wonjin Institute of Occupational and Environmental Health, Seoul 131-831, Korea
| | - Jun Sung Kim
- R&D Center, Biterials Co., Ltd., Seoul 140-200, Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
- Department of Nanofusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Korea
| |
Collapse
|
19
|
Merkel OM, Zheng M, Debus H, Kissel T. Pulmonary gene delivery using polymeric nonviral vectors. Bioconjug Chem 2011; 23:3-20. [PMID: 21999216 DOI: 10.1021/bc200296q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pulmonary delivery provides an easy and well tolerated means of access for the administration of biomacromolecules to the pulmonary epithelium and could therefore be an attractive approach for local and systemic therapies. A growing number of reports, which are summarized in this review, mirror the viability of pulmonary gene delivery. Special attention has been paid to the biological barriers in the lung that must be overcome for successful delivery, and which can be divided into anatomic, physical, immunologic, and metabolic barriers. In light of these barriers, successful nonviral polymer-based formulations of therapeutic genes are presented depending on the chemical nature of the polymer. In addition to polyethyleneimine-based nonviral vectors, which have been most intensively studied for pulmonary gene delivery in the past, other polymeric, dendritic, and targeted materials are also described here, including novel and biodegradable polymers. As new materials need in vitro or ex vivo testing before in vivo application, sophisticated models for all three approaches have been illustrated. Although pulmonary siRNA delivery enjoys popularity in clinical trials, pulmonary gene delivery has so far not been translated into clinical applications. With this review, potential hurdles are demonstrated, but novel approaches that may lead to optimized systems are described as well.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität Marburg, Ketzerbach 63, Marburg, Germany
| | | | | | | |
Collapse
|
20
|
Gill KK, Nazzal S, Kaddoumi A. Paclitaxel loaded PEG(5000)-DSPE micelles as pulmonary delivery platform: formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur J Pharm Biopharm 2011; 79:276-84. [PMID: 21575719 DOI: 10.1016/j.ejpb.2011.04.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/30/2022]
Abstract
The objective of the present study was to evaluate the potential of paclitaxel loaded micelles fabricated from PEG(5000)-DSPE as a sustained release system following pulmonary delivery. PEG(5000)-DSPE micelles containing paclitaxel were prepared by solvent evaporation technique followed by investigation of in vitro release of paclitaxel in lung simulated fluid. Tissue distribution and plasma pharmacokinetics of the PEG-lipid micelles after intratracheal and intravenous administrations were investigated in addition to intratracheally administered taxol. Finally, toxicological profile of PEG(5000)-DSPE was investigated. Paclitaxel was successfully formulated in PEG-lipid micelles with encapsulation efficiency of 95%. The PEG-lipid micelles exhibited a sustained release behavior in the simulated lung fluid. Intratracheally administered polymeric micellar paclitaxel showed highest accumulation of paclitaxel in the lungs with AUC(0-12) in lungs being 45-fold higher than intravenously administered formulation and 3-fold higher than intratracheally delivered taxol. Paclitaxel concentration in other non-targeted tissues and plasma were significantly lower as compared to other groups. Furthermore, toxicity studies showed no significant increase in levels of lung injury markers in PEG(5000)-DSPE treated group as compared to saline-treated group. PEG(5000)-DSPE micelles delivered intratracheally were able to sustain highest paclitaxel concentrations in lungs for long periods of time, thus apprehending their suitability as pulmonary drug carriers.
Collapse
Affiliation(s)
- Kanwaldeep K Gill
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, United States
| | | | | |
Collapse
|
21
|
Choi JW, Kim DG, Lee AE, Kim HR, Lee JY, Kwon NH, Shin YK, Hwang SK, Chang SH, Cho MH, Choi YL, Kim J, Oh SH, Kim B, Kim SY, Jeon HS, Park JY, Kang HP, Park BJ, Han JM, Kim S. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet 2011; 7:e1001351. [PMID: 21483803 PMCID: PMC3069106 DOI: 10.1371/journal.pgen.1001351] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/23/2011] [Indexed: 11/26/2022] Open
Abstract
Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38) was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2) is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target. Lung cancer is one of the most common cancers and a leading cause of death resulting from cancer. Despite intensive investigation, effective therapeutic targets and reliable biomarkers are still limited. Here we found that a tumor suppressor, AIMP2 (MSC p38), produces a variant lacking a part of its structure in cancer tissues. We designated it AIMP2-DX2. This smaller version of AIMP2 compromises the normal tumor suppressive activity of AIMP2 and induces tumor formation. We also found that the expression of AIMP2-DX2 was increased according to cancer progression. In addition, the patients with higher expression of AIMP2-DX2 showed lower survival than those with lower levels of this variant. Suppression of AIMP2-DX2 slowed tumor growth, suggesting it as a new therapeutic target. In summary, this work newly identified a tumor-inducing factor, AIMP2-DX2, that can be used as a therapeutic target and biomarker associated with lung cancer.
Collapse
Affiliation(s)
- Jin Woo Choi
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Al-Eum Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Hye Rim Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Jin Young Lee
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Soon-Kyung Hwang
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seung-Hee Chang
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Myung-Haing Cho
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Hyun Oh
- National Cancer Center, Research Institute, Goyang, Korea
| | - Bora Kim
- National Cancer Center, Research Institute, Goyang, Korea
| | - Soo-Youl Kim
- National Cancer Center, Research Institute, Goyang, Korea
| | - Hyo-Sung Jeon
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyunseok Peter Kang
- Department of Pathology and Laboratory Medicine, Roswell Cancer Park Institute, Buffalo, New York, United States of America
| | - Bum Joon Park
- Department of Molecular Biology, Pusan National University, Pusan, Korea
| | - Jung Min Han
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Suwon, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Suwon, Korea
- * E-mail:
| |
Collapse
|
22
|
Yu KN, Minai-Tehrani A, Chang SH, Hwang SK, Hong SH, Kim JE, Shin JY, Park SJ, Kim JH, Kwon JT, Jiang HL, Kang B, Kim D, Chae CH, Lee KH, Yoon TJ, Beck GR, Cho MH. Aerosol delivery of small hairpin osteopontin blocks pulmonary metastasis of breast cancer in mice. PLoS One 2010; 5:e15623. [PMID: 21203518 PMCID: PMC3008732 DOI: 10.1371/journal.pone.0015623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background Metastasis to the lung may be the final step in the breast cancer-related morbidity. Conventional therapies such as chemotherapy and surgery are somewhat successful, however, metastasis-related breast cancer morbidity remains high. Thus, a novel approach to prevent breast tumor metastasis is needed. Methodology/Principal Finding Aerosol of lentivirus-based small hairpin osteopontin was delivered into mice with breast cancer twice a week for 1 or 2 months using a nose-only inhalation system. The effects of small hairpin osteopontin on breast cancer metastasis to the lung were evaluated using near infrared imaging as well as diverse molecular techniques. Aerosol-delivered small hairpin osteopontin significantly decreased the expression level of osteopontin and altered the expression of several important metastasis-related proteins in our murine breast cancer model. Conclusion/Significance Aerosol-delivered small hairpin osteopontin blocked breast cancer metastasis. Our results showed that noninvasive targeting of pulmonary osteopontin or other specific genes responsible for cancer metastasis could be used as an effective therapeutic regimen for the treatment of metastatic epithelial tumors.
Collapse
Affiliation(s)
- Kyeong-Nam Yu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soon-Kyung Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Nano Fusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Shin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung-Jin Park
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hye Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Nano Fusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jung-Taek Kwon
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hu-Lin Jiang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bitna Kang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Duyeol Kim
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chan-Hee Chae
- Laboratory of Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kee-Ho Lee
- Laboratory of Molecular Oncology, Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Tae-Jong Yoon
- Department of Applied BioScience, CHA University, Seoul, Republic of Korea
| | - George R. Beck
- Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Nano Fusion Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Hwang SK, Piao L, Lim HT, Minai-Tehrani A, Yu KN, Ha YC, Chae CH, Lee KH, Beck GR, Park J, Cho MH. Suppression of lung tumorigenesis by leucine zipper/EF hand-containing transmembrane-1. PLoS One 2010; 5. [PMID: 20824095 PMCID: PMC2932724 DOI: 10.1371/journal.pone.0012535] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 08/10/2010] [Indexed: 11/23/2022] Open
Abstract
Background Leucine zipper/EF hand-containing transmembrane-1 (LETM1) encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. However, a previous study demonstrated that LETM1 served as an anchor protein for complex formation between mitochondria and ribosome, and regulated mitochondrial biogenesis. Methodology/Principal Findings Therefore, we examine the possibility that LETM1 may function to regulate mitochondria and lung tumor growth. In this study, we addressed this question by studying in the effect of adenovirus-mediated LETM1 in the lung cancer cell and lung cancer model mice. To investigate the effects of adenovirus-LETM1 in vitro, we infected with adenovirus-LETM1 in A549 cells. Additionally, in vivo effects of LETM1 were evaluated on K-rasLA1 mice, human non-small cell lung cancer model mice, by delivering the LETM1 via aerosol through nose-only inhalation system. The effects of LETM1 on lung cancer growth and AMPK related signals were evaluated. Adenovirus-mediated overexpression of LETM1 could induce destruction of mitochondria of lung cancer cells through depleting ATP and AMPK activation. Furthermore, adenoviral-LETM1 also altered Akt signaling and inhibited the cell cycle while facilitating apoptosis. Theses results demonstrated that adenovirus-LETM1 suppressed lung cancer cell growth in vitro and in vivo. Conclusions/Significance Adenovirus-mediated LETM1 may provide a useful target for designing lung tumor prevention and treatment.
Collapse
Affiliation(s)
- Soon-Kyung Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Longzhen Piao
- Department of Oncology, Affiliated Hospital of Yanbian University, Jilin, China
| | - Hwang-Tae Lim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Nano Systems Institute-National Core Research Center, Seoul National University, Seoul, Korea
| | - Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyeong-Nam Yu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Youn-Cheol Ha
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Chan-Hee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kee-Ho Lee
- Laboratory of Radiation Molecular Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - George R. Beck
- Division of Endocrinology, Metabolism and Lipids, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Daejeon Regional Cancer Center, Cancer Research Institute, Research Institute for Medical Sciences, Chungnam National University, Daejeon, Korea
- * E-mail: (M-HC); (JP)
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Nano Systems Institute-National Core Research Center, Seoul National University, Seoul, Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, Korea
- * E-mail: (M-HC); (JP)
| |
Collapse
|
24
|
CpG-free plasmid DNA prevents deterioration of pulmonary function in mice. Eur J Pharm Biopharm 2009; 74:427-34. [PMID: 19961934 DOI: 10.1016/j.ejpb.2009.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/26/2009] [Accepted: 11/27/2009] [Indexed: 11/23/2022]
Abstract
Nonviral gene vectors have been shown to be therapeutically effective in various animal models of inherited and acquired lung diseases. Although an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response has been previously observed for first-generation plasmids, its effect on pulmonary function has not been investigated to date. Here, we present data on lung functional parameters together with histopathology, cellular and inflammatory events in response to pulmonary administration of DNA-containing particles. We show that aerosol delivery of polyethylenimine gene vectors containing a first-generation CpG-rich plasmid induced an inflammatory response which was associated with a decrease in lung compliance. In contrast to these observations, aerosol application of CpG-free plasmid DNA prevented immune response and impairment of pulmonary function. These results demonstrate that aerosol delivery of CpG-free plasmid DNA is critical to avoid alteration of pulmonary function. Therefore, we suggest to use CpG-free pDNA for gene delivery to the lungs in future.
Collapse
|
25
|
Jiang HL, Xu CX, Kim YK, Arote R, Jere D, Lim HT, Cho MH, Cho CS. The suppression of lung tumorigenesis by aerosol-delivered folate–chitosan-graft-polyethylenimine/Akt1 shRNA complexes through the Akt signaling pathway. Biomaterials 2009; 30:5844-52. [DOI: 10.1016/j.biomaterials.2009.07.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
26
|
Cho HS, Chang SH, Chung YS, Shin JY, Park SJ, Lee ES, Hwang SK, Kwon JT, Tehrani AM, Woo M, Noh MS, Hanifah H, Jin H, Xu CX, Cho MH. Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J Vet Sci 2009; 10:23-8. [PMID: 19255520 PMCID: PMC2801106 DOI: 10.4142/jvs.2009.10.1.23] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tetrandrine (TET), a bis-benzylisoquinoline alkaloid from the root of Stephania tetrandra, is known to have anti-tumor activity in various malignant neoplasms. However, the precise mechanism by which TET inhibits tumor cell growth remains to be elucidated. The present studies were performed to characterize the potential effects of TET on phosphoinositide 3-kinase/Akt and extracellular signal-regulated kinase (ERK) pathways since these signaling pathways are known to be responsible for cell growth and survival. TET suppressed cell proliferation and induced apoptosis in A549 human lung carcinoma cells. TET treatment resulted in a down-regulation of Akt and ERK phosphorylation in both time-/concentration-dependent manners. The inhibition of ERK using PD98059 synergistically enhanced the TET-induced apoptosis of A549 cells whereas the inhibition of Akt using LY294002 had a less significant effect. Taken together, our results suggest that TET: i) selectively inhibits the proliferation of lung cancer cells by blocking Akt activation and ii) increases apoptosis by inhibiting ERK. The treatment of lung cancers with TET may enhance the efficacy of chemotherapy and radiotherapy and increase the apoptotic potential of lung cancer cells.
Collapse
Affiliation(s)
- Hyun Sun Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Xu CX, Jin H, Chung YS, Shin JY, Lee KH, Beck GR, Palmos GN, Choi BD, Cho MH. Chondroitin sulfate extracted from ascidian tunic inhibits phorbol ester-induced expression of Inflammatory factors VCAM-1 and COX-2 by blocking NF-kappaB activation in mouse skin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9667-9675. [PMID: 18800802 DOI: 10.1021/jf801578x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Inflammatory factors are known to play a key role in promoting tumorigenesis; therefore, it is a promising strategy to inhibit the inflammation for cancer prevention. The current study was performed to investigate the potential effects of chondroitin sulfate (CS) extracted from ascidian tunic on the expression of inflammatory factors induced by treatment with 12- O-tetradecanoylphorbol-13-acetate (TPA) and to elucidate the underlying molecular mechanism of CS action in mouse skin inflammation. TPA was topically applied to the shaven backs of ICR mice with or without CS (1 or 2 mg) for 4 h. The results demonstrated that CS suppressed TPA-induced edema and reduced the expression of cyclooxygenase-2, vascular cell adhesion molecule-1, and Akt signaling in mouse skin. These studies suggest that CS from ascidian tunic may be developed as an effective natural anti-inflammatory agent.
Collapse
Affiliation(s)
- Cheng-Xiong Xu
- Laboratory of Toxicology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials 2008; 29:3014-22. [DOI: 10.1016/j.biomaterials.2008.03.033] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/11/2008] [Indexed: 11/24/2022]
|
29
|
Xu CX, Jere D, Jin H, Chang SH, Chung YS, Shin JY, Kim JE, Park SJ, Lee YH, Chae CH, Lee KH, Beck GR, Cho CS, Cho MH. Poly(ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am J Respir Crit Care Med 2008; 178:60-73. [PMID: 18310482 DOI: 10.1164/rccm.200707-1022oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE The low efficiency of conventional therapies in achieving long-term survival of patients with lung cancer calls for the development of novel therapeutic options. Recent advances in aerosol-mediated gene delivery have provided the possibility of an alternative for the safe and effective treatment of lung cancer. OBJECTIVES To demonstrate the feasibility and emphasize the importance of noninvasive aerosol delivery of Akt1 small interfering RNA (siRNA) as an effective and selective option for lung cancer treatment. METHODS Nanosized poly(ester amine) polymer was synthesized and used as a gene carrier. An aerosol of poly(ester amine)/Akt1 siRNA complex was delivered into K-ras(LA1) and urethane-induced lung cancer models through a nose-only inhalation system. The effects of Akt1 siRNA on lung cancer progression and Akt-related signals were evaluated. MEASUREMENTS AND MAIN RESULTS The aerosol-delivered Akt1 siRNA suppressed lung tumor progression significantly through inhibiting Akt-related signals and cell cycle. CONCLUSIONS The use of poly(ester amine) serves as an effective carrier, and aerosol delivery of Akt1 siRNA may be a promising approach for lung cancer treatment and prevention.
Collapse
Affiliation(s)
- Cheng-Xiong Xu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Urocanic acid-modified chitosan-mediated PTEN delivery via aerosol suppressed lung tumorigenesis in K-ras(LA1) mice. Cancer Gene Ther 2008; 15:275-83. [PMID: 18292798 DOI: 10.1038/sj.cgt.7701116] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The low efficiency of conventional therapies in achieving long-term survival of lung cancer patients calls for development of novel options. Revisiting of aerosol gene delivery may provide an alternative for safe and effective treatment for lung cancer. In this study, imidazole ring-containing urocanic acid-modified chitosan (UAC) designed in the previous study was used as a gene carrier. The potential effects of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) on Akt-related signals and cell cycle regulation were evaluated. Aerosols of UAC-PTEN were delivered into K-ras(LA1) lung cancer model mice through the nose-only inhalation system twice a week for total 4 weeks. Delivered PTEN suppressed lung tumor development significantly through nuclear complex formation between PTEN and p53, suppressing Akt-related signals as well as cell cycle regulation. Together, our results suggest that aerosol delivery of UAC-PTEN may be compatible with noninvasive in vivo gene therapy.
Collapse
|
31
|
Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008; 5:105-16. [PMID: 18171013 DOI: 10.1021/mp700086j] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Therapeutic benefit in glial tumors is often limited due to low permeability of delivery systems across the blood-brain barrier (BBB), drug resistance, and poor penetration into the tumor tissue. In an attempt to overcome these hurdles, polyether-copolyester (PEPE) dendrimers were evaluated as drug carriers for the treatment of gliomas. Dendrimers were conjugated to d-glucosamine as the ligand for enhancing BBB permeability and tumor targeting. The efficacy of methotrexate (MTX)-loaded dendrimers was established against U87 MG and U 343 MGa cells. Permeability of rhodamine-labeled dendrimers and MTX-loaded dendrimers across the in vitro BBB model and their distribution into avascular human glioma tumor spheroids was also studied. Glucosylated dendrimers were found to be endocytosed in significantly higher amounts than nonglucosylated dendrimers by both the cell lines. IC 50 of MTX after loading in dendrimers was lower than that of the free MTX, suggesting that loading MTX in PEPE dendrimers increased its potency. Similar higher activity of MTX-loaded glucosylated and nonglucosylated dendrimers was found in the reduction of tumor spheroid size. These MTX-loaded dendrimers were able to kill even MTX-resistant cells highlighting their ability to overcome MTX resistance. In addition, the amount of MTX-transported across BBB was three to five times more after loading in the dendrimers. Glucosylation further increased the cumulative permeation of dendrimers across BBB and hence increased the amount of MTX available across it. Glucosylated dendrimers distributed through out the avascular tumor spheroids within 6 h, while nonglucosylated dendrimers could do so in 12 h. The results show that glucosamine can be used as an effective ligand not only for targeting glial tumors but also for enhanced permeability across BBB. Thus, glucosylated PEPE dendrimers can serve as potential delivery system for the treatment of gliomas.
Collapse
Affiliation(s)
- Renu Singh Dhanikula
- Faculty of Pharmacy, Pavillon Jean-Coutu, Succursale Centre-ville, Montreal, Quebec, Canada H3C 3J7
| | | | | | | |
Collapse
|
32
|
Park MR, Kim HW, Hwang CS, Han KO, Choi YJ, Song SC, Cho MH, Cho CS. Highly efficient gene transfer with degradable poly(ester amine) based on poly(ethylene glycol) diacrylate and polyethyleniminein vitro andin vivo. J Gene Med 2008; 10:198-207. [DOI: 10.1002/jgm.1139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Hwang SK, Kwon JT, Park SJ, Chang SH, Lee ES, Chung YS, Beck GR, Lee KH, Piao L, Park J, Cho MH. Lentivirus-mediated carboxyl-terminal modulator protein gene transfection via aerosol in lungs of K-ras null mice. Gene Ther 2007; 14:1721-30. [PMID: 17960162 DOI: 10.1038/sj.gt.3303042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The low efficiency of conventional therapies in achieving long-term survival of lung cancer patients calls for development of novel options. Aerosol gene delivery may provide the alternative for safe and effective treatment for lung cancer. Therefore, current study was performed to elucidate the potential effects of C-terminal modulator protein (CTMP) via aerosol on lung tumorigenesis. Lentiviral vector-CTMP was delivered into K-ras null lung cancer mice through the nose-only inhalation system for 30 min. After 48 h, the potential effects of CTMP on Akt1-related signals and cell cycle regulation in the lungs were evaluated by western blot, immunohistochemistry and zymography. Lentivirus-based CTMP delivery inhibited the Akt1 activity through selective suppression of Akt1 phosphorylation at Ser473. Aerosol delivery of CTMP inhibited proteins important for Akt1 signals, cell cycle and tumor metastasis in lungs of K-ras null mice. Together, our results suggest that lentivirus-mediated aerosol delivery of CTMP may be compatible with noninvasive in vivo gene therapy. Our results emphasize the importance of noninvasive-targeted delivery of CTMP for lung cancer therapy in the future. While the studies are conducted in mice, it is envisioned that noninvasive targeting the specific genes responsible for cancer progression is an attractive strategy for effective anticancer therapeutics.
Collapse
Affiliation(s)
- S-K Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zou Y, Tornos C, Qiu X, Lia M, Perez-Soler R. p53 Aerosol Formulation with Low Toxicity and High Efficiency for Early Lung Cancer Treatment. Clin Cancer Res 2007; 13:4900-8. [PMID: 17699870 DOI: 10.1158/1078-0432.ccr-07-0395] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To develop an optimal nonviral aerosol formulation for locoregional treatment of early lung cancer. EXPERIMENTAL DESIGN The formulation was made of polylysine/protamine combination (AND) as the carrier and p53 gene (p53sm) as therapeutic agent. To estimate the aerosol deposition, the aerodynamic size of the AND-p53sm was measured with extrusion-precipitation method. To accurately determine the dose, the aerosol efficiency in mice was measured with a fluorescent dye. The transfection efficiency and DNA protection function of the aerosolized formulation in cultured cells and mouse lungs were detected with reporter gene assays and/or reverse transcription-PCR. The preclinical safety and efficacy of AND-p53sm were studied in healthy mice and mice bearing orthotopic human non-small-cell lung cancer (NSCLC) xenograft. RESULTS After aerosolization, AND is 3- to 17-fold more effective than commonly used PEI or cationic lipid formulations in transfecting the NSCLC cells (relative light units, 1,494 versus 534 and 86; P < 0.003). Aerodynamic size of AND-p53sm ranged 0.2 to 3 mum is the optimal aerosol droplets for deposition in the entire human respiratory tract. Significant gene expression was detected in the lungs of mice given aerosolized AND-p53sm and AND-luciferase. Aerosolized AND-p53sm significantly prolonged the life of mice bearing orthotopic human NSCLC xenografts, and it was more effective than an optimal i.v. cisplatin chemotherapy (increased life span, 93% versus 25%; P = 0.014). Inhalation of AND produced low and reversible pulmonary toxicity and no systemic toxicity. CONCLUSIONS This optimal formulation is suitable for delivering biological materials to human lung with aerosol administration. This therapeutic strategy is an option for patients with early lung cancer and bronchoalveolar carcinoma.
Collapse
Affiliation(s)
- Yiyu Zou
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
35
|
Lopiccolo J, Ballas MS, Dennis PA. PTEN hamartomatous tumor syndromes (PHTS): rare syndromes with great relevance to common cancers and targeted drug development. Crit Rev Oncol Hematol 2007; 63:203-14. [PMID: 17643312 DOI: 10.1016/j.critrevonc.2007.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 06/07/2007] [Indexed: 12/22/2022] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene located on chromosome 10q22-23 that negatively regulates the pro-survival PI3K/Akt/mTOR pathway by functioning as a lipid phosphatase. Signaling through this pathway promotes cellular transformation and survival as well as resistance to chemotherapy and radiation. Loss of PTEN function is commonly observed in human cancers through somatic mutation, hypermethylation, and/or enhanced degradation. PTEN hamartomatous tumor syndromes (PHTS) are a collection of rare clinical syndromes marked by germline PTEN loss. Compared to the general population, PHTS patients have an increased risk of developing certain cancers and can develop benign tumors in virtually any organ. These patients provide a unique opportunity to examine the role of PTEN in human tumorigenesis, as well as study genotype-phenotype relationships. Because these patients are at higher risk of developing malignancies and have no established medical therapies, early screening, surveillance, and preventive care are important issues. Inhibitors of the PI3K/Akt/mTOR pathway that are being developed as cancer therapeutics could provide new therapeutic options for these rare patients, and could be credentialed as pathway inhibitors prior to testing in the general oncology population.
Collapse
Affiliation(s)
- Jaclyn Lopiccolo
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889, United States
| | | | | |
Collapse
|
36
|
Hwang SK, Jin H, Kwon JT, Chang SH, Kim TH, Cho CS, Lee KH, Young MR, Colburn NH, Beck GR, Yang HS, Cho MH. Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice. Gene Ther 2007; 14:1353-61. [PMID: 17611588 DOI: 10.1038/sj.gt.3302983] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The long-term survival of lung cancer patients treated with conventional therapies remains poor and therefore the need for novel approaches remains high. This has led to the re-emergence of aerosol delivery as a therapeutic intervention. In this study, glucosylated polyethylenimine (GPEI) was used as carrier to investigate programmed cell death 4 (PDCD4) and PDCD4 mutant (D418A), an eIF4A-binding mutant, on PDCD4-related signaling and activator protein-1 (AP-1) activity in the lungs of AP-1 luciferase reporter mice. After confirming the efficiency of GPEI as a carrier in lungs, the effects of aerosol-delivered PDCD4 were investigated in AP-1 luciferase reporter mice. Aerosol delivery of GPEI/PDCD4 through a nose-only inhalation facilitated the apoptosis of lungs whereas aerosol PDCD4 mutant did not. Also, such aerosol delivery regulated proteins relevant to cell-cycle control and suppressed AP-1 activity. Results obtained by western blot analysis, immunohistochemistry, luciferase assay and deoxynucleotidyl-transferase-mediated nick end labeling study suggest that combined actions such as facilitating apoptosis, controlling cell cycle and suppression of AP-1 activity by PDCD4 may provide useful tool for designing lung tumor prevention and treatment by which PDCD4 functions as a transformation suppressor in the future.
Collapse
Affiliation(s)
- S-K Hwang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yan Y, Cook J, McQuillan J, Zhang G, Hitzman CJ, Wang Y, Wiedmann TS, You M. Chemopreventive effect of aerosolized polyphenon E on lung tumorigenesis in A/J mice. Neoplasia 2007; 9:401-5. [PMID: 17534445 PMCID: PMC1877981 DOI: 10.1593/neo.07160] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/08/2007] [Accepted: 03/12/2007] [Indexed: 11/18/2022] Open
Abstract
Effective chemoprevention of lung cancer in high-risk patients through the administration of pharmacologic or nutritional agents is urgently needed. Aerosol inhalation can deliver chemopreventive agents directly to the respiratory tract to inhibit the tumorigenic process. In this study, polyphenon E (PolyE) and (-)-epigallocatechin-3-gallate (EGCG) were administered by aerosol delivery to A/J mice beginning 2 weeks after carcinogen treatment and continuing daily by inhalation throughout the remainder of the study (20 weeks). PolyE decreased tumor load by approximately 59%. However, EGCG, both at the same dose and at a higher dose, failed to inhibit lung carcinogenesis. These results indicate that aerosol delivery of PolyE, but not EGCG, may be a useful chemopreventive protocol in subjects at high risk for lung cancer.
Collapse
Affiliation(s)
- Ying Yan
- Department of Surgery, The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Campus Box 8109, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Julie Cook
- Department of Surgery, The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Campus Box 8109, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jay McQuillan
- Department of Surgery, The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Campus Box 8109, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Guifang Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cory J Hitzman
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yian Wang
- Department of Surgery, The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Campus Box 8109, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Timothy S Wiedmann
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ming You
- Department of Surgery, The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Campus Box 8109, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
38
|
Jin H, Hwang SK, Kwon JT, Lee YS, An GH, Lee KH, Prats AC, Morello D, Beck GR, Cho MH. Low dietary inorganic phosphate affects the brain by controlling apoptosis, cell cycle and protein translation. J Nutr Biochem 2007; 19:16-25. [PMID: 17509857 DOI: 10.1016/j.jnutbio.2006.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 12/14/2006] [Accepted: 12/20/2006] [Indexed: 01/01/2023]
Abstract
Inorganic phosphate (Pi) plays a key role in diverse physiologic functions. In a previous study, we showed that high dietary Pi perturbs brain growth through Akt/ERK signaling in developing mice. However, no study has investigated the response of the brain to low dietary Pi. In this study, we addressed this question by studying the effects of low dietary Pi on the cerebrum of developing mice. Two-week-old weaned mice were fed with a low phosphate diet for 4 weeks. At the end of the study, their cerebrum was dissected and signals important for protein translation, apoptosis and cell cycle were examined. The low phosphate diet did not cause physiologically significant changes; it increased the protein expression of phosphatase and tensin homolog deleted on chromosome 10 but decreased Akt activity. In addition, expression of eukaryotic translation initiation factor binding protein coupled with increased complex formation of eukaryotic translation initiation factor 4E/eukaryotic translation initiation factor binding protein 1 was induced in the cerebrum by low phosphate, leading to reduced cap-dependent protein translation. Finally, low phosphate facilitated apoptosis and suppressed signals important for the cell cycle in the cerebrum of dual-luciferase reporter mice. In summary, our results showed that a low phosphate diet affects the brain by controlling protein translation, apoptosis and cell cycle in developing mice. Our results support the hypothesis that Pi works as a stimulus capable of increasing or decreasing several pivotal genes for normal development and suggest that regulation of Pi consumption is important in maintaining a healthy life.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Lung cancer patients suffer a 15% overall survival despite advances in chemotherapy, radiation therapy, and surgery due to the usual finding of advanced disease at diagnosis. Attempts to improve survival in advanced disease using various combinations of chemotherapy have demonstrated that no regimen is superior, suggesting a therapeutic plateau and the need for novel, more specific, and less toxic therapeutic strategies. Techniques have been developed that allow transfer of functional genes into mammalian cells, such as those that block activated tumor-promoting oncogenes and/or those that replace inactivated tumor-suppressing or apoptosis-promoting genes. This article will discuss the therapeutic implications of these molecular changes associated with bronchogenic carcinomas, and will then review the status of gene therapies for treatment of lung cancer.
Collapse
Affiliation(s)
- Eric M Toloza
- Duke Thoracic Oncology Program, Duke University Medical Center, Box 3048, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Jin H, Kim HW, Xu CX, Kwon JT, Hwang SK, Lee ES, Chang SH, Park SJ, Noh MS, Woo MA, Yu KN, Lee HJ, Choi JW, Choi DH, Cho MH. Effects of 7-hydroxy-3-methoxycadalene on cell cycle, apoptosis and protein translation in A549 lung cancer cells. Biofactors 2007; 29:67-75. [PMID: 17673824 DOI: 10.1002/biof.552029206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previously we reported that cadalene extracted from Zelkova serrata inhibited lung tumorigenesis in mice. However, the precise mechanism has not yet investigated. Here, we examined the effects of cadalene on signal pathways important for apoptosis, cell cycle, and protein translation in lung cancer cells. Our results showed that cadalene suppressed the expression of Akt and its phosphor-forms through controlling PI3K and PTEN. Cadalene also induced apoptosis through facilitating pro-apoptotic protein expression. In addition, cadalene caused cell cycle arrest and decreased mTOR-mediated protein translation. Taken together, cadalene may be developed as a lung cancer therapeutic agent in the future.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dames P, Ortiz A, Schillinger U, Lesina E, Plank C, Rosenecker J, Rudolph C. Aerosol gene delivery to the murine lung is mouse strain dependent. J Mol Med (Berl) 2006; 85:371-8. [PMID: 17160403 DOI: 10.1007/s00109-006-0130-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 08/18/2006] [Accepted: 09/05/2006] [Indexed: 10/23/2022]
Abstract
The cationic polymer polyethylenimine (PEI) has been previously demonstrated to efficiently deliver genes to the lungs of mice in vivo via nebulization. Although within these studies various mouse strains were used in individual experiments, no direct comparison of gene delivery to different mouse strains via aerosol application has been published to date. With respect to the widespread use of mice as animal models of inherited and acquired diseases, such data could be of relevance to select the most appropriate mouse genetic background for preclinical mouse models. We investigated PEI-based aerosol gene delivery in two commonly used mouse strains, BALB/c and NMRI, and mixed 129/Sv x C57BL/6 mice. Gene expression in BALB/c mice was significantly 3.2- and 3.8-fold higher than in NMRI and 129/Sv x C57BL/6 mice, respectively. Lung deposition rates of radioactively labeled plasmid DNA (I(123)) complexed with PEI were not significantly different between each of the mouse strains. The kinetics of pDNA clearance from the lungs of BALB/c mice was slightly faster than from NMRI mice. Whereas gene expression increased until day 3 after treatment, the levels of pDNA decreased over the same period of time. Repeated aerosol application in a 3-day time interval could maintain gene expression at high levels compared with a single application. Furthermore, PEI-pDNA aerosol application led to reproducible gene expression in independent experiments. These data suggest that the genetic background of mice could be important for nonviral aerosol gene delivery which should be considered in transgenic animal mouse models of inherited and acquired diseases for aerosol gene delivery studies.
Collapse
Affiliation(s)
- Petra Dames
- Department of Pediatrics, Ludwig-Maximilians University, 80337, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Lung cancer patients suffer a 15% overall survival despite advances in chemotherapy, radiation therapy, and surgery. This unacceptably low survival rate is due to the usual finding of advanced disease at diagnosis. However, multimodality strategies using conventional therapies only minimally improve survival rates even in early stages of lung cancer. Attempts to improve survival in advanced disease using various combinations of platinum-based chemotherapy have demonstrated that no regimen is superior, suggesting a therapeutic plateau and the need for novel, more specific, and less toxic therapeutic strategies. Over the past three decades, the genetic etiology of cancer has been gradually delineated, albeit not yet completely. Understanding the molecular events that occur during the multistep process of bronchogenic carcinogenesis may make these tasks more surmountable. During these same three decades, techniques have been developed which allow transfer of functional genes into mammalian cells. For example, blockade of activated tumor-promoting oncogenes or replacement of inactivated tumor-suppressing or apoptosis-promoting genes can be achieved by gene therapy. This article will discuss the therapeutic implications of these molecular changes associated with bronchogenic carcinomas and will then review the status of gene therapies for treatment of lung cancer.
Collapse
Affiliation(s)
- Eric M Toloza
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
43
|
Tehrani AM, Hwang SK, Kim TH, Cho CS, Hua J, Nah WS, Kwon JT, Kim JS, Chang SH, Yu KN, Park SJ, Bhandari DR, Lee KH, An GH, Beck GR, Cho MH. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice. Gene Ther 2006; 14:451-8. [PMID: 17051249 DOI: 10.1038/sj.gt.3302879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lung cancer has emerged as a leading cause of cancer death in the world; however, most of the current conventional therapies are not sufficiently effective in altering the progression of disease. Therefore, development of novel treatment approaches is needed. Although several genes and methods have been used for cancer gene therapy, a number of problems such as specificity, efficacy and toxicity reduce their application. This has led to re-emergence of aerosol gene delivery as a noninvasive method for lung cancer treatment. In this study, nano-sized glucosylated polyethyleneimine (GPEI) was used as a gene delivery carrier to investigate the effects of Akt wild type (WT) and kinase deficient (KD) on Akt-related signaling pathways and protein translation in the lungs of CMV- LucR-cMyc-IRES-LucF dual reporter mice. These mice are a powerful tool for the discrimination between cap-dependent/-independent protein translation. Aerosols containing self-assembled nano-sized GPEI/Akt WT or GPEI/Akt KD were delivered into the lungs of reporter mice through nose-only-inhalation-chamber with the aid of nebulizer. Aerosol delivery of Akt WT caused the increase of protein expression levels of Akt-related signals, whereas aerosol delivery of Akt KD did not. Furthermore, dual luciferase activity assay showed that aerosol delivery of Akt WT enhanced cap-dependent protein translation, whereas a reduction in cap-dependent protein translation by Akt KD was observed. Our results clearly showed that targeting Akt may be a good strategy for prevention as well as treatment of lung cancer. These studies suggest that our aerosol delivery is compatible for in vivo gene delivery which could be used as a noninvasive gene therapy in the future.
Collapse
Affiliation(s)
- A M Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jin H, Kim TH, Hwang SK, Chang SH, Kim HW, Anderson HK, Lee HW, Lee KH, Colburn NH, Yang HS, Cho MH, Cho CS. Aerosol delivery of urocanic acid–modified chitosan/programmed cell death 4 complex regulated apoptosis, cell cycle, and angiogenesis in lungs of K-ras null mice. Mol Cancer Ther 2006; 5:1041-9. [PMID: 16648576 DOI: 10.1158/1535-7163.mct-05-0433] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The low efficiency of conventional therapies in achieving long-term survival of patients with lung cancer calls for development of novel treatment options. Although several genes have been investigated for their antitumor activities through gene delivery, problems surrounding the methods used, such as efficiency, specificity, and toxicity, hinder application of such therapies in clinical settings. Aerosol gene delivery as nonviral and noninvasive method for gene therapy may provide an alternative for a safer and more effective treatment for lung cancer. In this study, imidazole ring-containing urocanic acid-modified chitosan (UAC) designed in previous study was used as a gene carrier. The efficiency of UAC carrier in lungs was confirmed, and the potential effects of the programmed cell death protein 4 (PDCD4) tumor suppressor gene on three major pathways (apoptosis, cell cycle, and angiogenesis) were evaluated. Aerosol containing UAC/PDCD4 complexes was delivered into K-ras null lung cancer model mice through the nose-only inhalation system developed by our group. Delivered UAC/PDCD4 complex facilitated apoptosis, inhibited pathways important for cell proliferation, and efficiently suppressed pathways important for tumor angiogenesis. In summary, results obtained by Western blot analysis, immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated nick end labeling assay suggest that our aerosol gene delivery technique is compatible with in vivo gene delivery and can be applied as a noninvasive gene therapy.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Han S, Khuri FR, Roman J. Fibronectin Stimulates Non–Small Cell Lung Carcinoma Cell Growth through Activation of Akt/Mammalian Target of Rapamycin/S6 Kinase and Inactivation of LKB1/AMP-Activated Protein Kinase Signal Pathways. Cancer Res 2006; 66:315-23. [PMID: 16397245 DOI: 10.1158/0008-5472.can-05-2367] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Akt/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (p70S6K) pathway is considered a central regulator of protein synthesis and of cell proliferation, differentiation, and survival. However, the role of the Akt/mTOR/p70S6K pathway in lung carcinoma remains unknown. We previously showed that fibronectin, a matrix glycoprotein highly expressed in tobacco-related lung disease, stimulates non-small cell lung carcinoma (NSCLC) cell growth and survival. Herein, we explore the role of the Akt/mTOR/p70S6K pathway in fibronectin-induced NSCLC cell growth. We found that fibronectin stimulated the phosphorylation of Akt, an upstream inducer of mTOR, and induced the phosphorylation of p70S6K1 and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), two downstream targets of mTOR in NSCLC cells (H1792 and H1838), whereas it inhibited the phosphatase and tensin homologue deleted on chromosome 10, a tumor suppressor protein that antagonizes the phosphatidylinositol 3-kinase/Akt signal. In addition, treatment with fibronectin inhibited the mRNA and protein expression of LKB1 as well as the phosphorylation of AMP-activated protein kinase (AMPKalpha), both known to down-regulate mTOR. Rapamycin, an inhibitor of mTOR, blocked the fibronectin-induced phosphorylation of p70S6K and 4E-BP1. Akt small interfering RNA (siRNA) and an antibody against the fibronectin-binding integrin alpha5beta1 also blocked the p70S6K phosphorylation in response to fibronectin. In contrast, an inhibitor of extracellular signal-regulated kinase 1/2 (PD98095) had no effect on fibronectin-induced phosphorylation of p70S6K. Moreover, the combination of rapamycin and siRNA for Akt blocked fibronectin-induced cell proliferation. Taken together, these observations suggest that fibronectin-induced stimulation of NSCLC cell proliferation requires activation of the Akt/mTOR/p70S6K pathway and is associated with inhibition of LKB1/AMPK signaling.
Collapse
Affiliation(s)
- ShouWei Han
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
46
|
Jin H, Hwang SK, Yu K, Anderson HK, Lee YS, Lee KH, Prats AC, Morello D, Beck GR, Cho MH. A high inorganic phosphate diet perturbs brain growth, alters Akt-ERK signaling, and results in changes in cap-dependent translation. Toxicol Sci 2005; 90:221-9. [PMID: 16338957 DOI: 10.1093/toxsci/kfj066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inorganic phosphate (Pi) plays a key role in diverse physiological functions. Recently, considerable progress has been made in our understanding of the function and regulation of the brain-specific sodium-dependent inorganic phosphate transporter 1 (NPT1), which is found to exist principally in cerebrum and cerebellum. The potential importance of Pi as a novel signaling molecule and the poor prognosis of diverse neurodegenerative diseases that involve brain-specific NPT1 have prompted us to define the pathways by which Pi affects mouse brain growth. A high phosphate diet caused an increase in serum Pi accompanied by a decrease in calcium, and a decrease in body weight coupled with a decreased relative weight of cerebellum. A high phosphate diet caused a significant increase in protein expression of NPT1, both in cerebrum and cerebellum. Additionally, the high phosphate diet increased Homo sapiens v-akt murine thymoma viral oncogene homolog 1 (Akt) phosphorylation at Ser473 in cerebrum and cerebellum, whereas suppression of Akt phosphorylation at Thr308 was observed only in cerebellum. Selective suppression of eukaryotic translation initiation factor-binding protein (eIF4E-BP1) in cerebrum was induced by high levels of Pi, which induced cap-dependent and cap-independent protein translation in cerebrum and cerebellum, respectively. Phosphorylation of extracellular regulated kinase 1 (ERK1) in comparison with that of ERK2 was significantly reduced in both cerebrum and cerebellum. High levels of Pi reduced protein expressions of proliferating cell nuclear antigen (PCNA) and cyclin D1 in cerebrum and cerebellum. In conclusion, the results indicate that high dietary Pi can perturb normal brain growth, possibly through Akt-ERK signaling in developing mice.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|