1
|
Zhao Z, Shen X, Zhao S, Wang J, Tian Y, Wang X, Tang B. A novel telomere-related genes model for predicting prognosis and treatment responsiveness in diffuse large B-cell lymphoma. Aging (Albany NY) 2023; 15:12927-12951. [PMID: 37976136 DOI: 10.18632/aging.205211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous disease with diverse clinical and molecular features. Telomere maintenance is widely present in tumors, but there is a lack of relevant reports on the role of telomere-related genes (TRGs) in DLBCL. In this study, we used consensus clustering based on TRGs expression to identify two molecular clusters with distinct prognoses and immune cell infiltration. We developed a TRGs scoring model using univariate Cox regression and LASSO regression in the GSE10846 training cohort. DLBCL patients in the high-risk group had a worse prognosis than those in the low-risk group, as revealed by Kaplan-Meier curves. The scoring model was validated in the GSE10846 testing cohort and GSE87371 cohort, respectively. The high-risk group was characterized by elevated infiltration of activated DCs, CD56 dim natural killer cells, myeloid-derived suppressor cells, monocytes, and plasmacytoid DCs, along with reduced infiltration of activated CD4 T cells, Type 2 T helper cells, γδ T cells, NK cells, and neutrophils. Overexpression of immune checkpoints, such as PDCD1, CD274, and LAG3, was observed in the high-risk group. Furthermore, high-risk DLBCL patients exhibited increased sensitivity to bortezomib, rapamycin, AZD6244, and BMS.536924, while low-risk DLBCL patients showed sensitivity to cisplatin and ABT.263. Using RT-qPCR, we found that three protective model genes, namely TCEAL7, EPHA4, and ELOVL4, were down-regulated in DLBCL tissues compared with control tissues. In conclusion, our novel TRGs-based model has great predictive value for the prognosis of DLBCL patients and provides a promising direction for treatment optimization.
Collapse
Affiliation(s)
- Zhijia Zhao
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Xiaochen Shen
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Siqi Zhao
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Jinhua Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People’s Republic of China
| |
Collapse
|
2
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
3
|
Strathmann EA, Hölker I, Tschernoster N, Hosseinibarkooie S, Come J, Martinat C, Altmüller J, Wirth B. Epigenetic regulation of plastin 3 expression by the macrosatellite DXZ4 and the transcriptional regulator CHD4. Am J Hum Genet 2023; 110:442-459. [PMID: 36812914 PMCID: PMC10027515 DOI: 10.1016/j.ajhg.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Dysregulated Plastin 3 (PLS3) levels associate with a wide range of skeletal and neuromuscular disorders and the most common types of solid and hematopoietic cancer. Most importantly, PLS3 overexpression protects against spinal muscular atrophy. Despite its crucial role in F-actin dynamics in healthy cells and its involvement in many diseases, the mechanisms that regulate PLS3 expression are unknown. Interestingly, PLS3 is an X-linked gene and all asymptomatic SMN1-deleted individuals in SMA-discordant families who exhibit PLS3 upregulation are female, suggesting that PLS3 may escape X chromosome inactivation. To elucidate mechanisms contributing to PLS3 regulation, we performed a multi-omics analysis in two SMA-discordant families using lymphoblastoid cell lines and iPSC-derived spinal motor neurons originated from fibroblasts. We show that PLS3 tissue-specifically escapes X-inactivation. PLS3 is located ∼500 kb proximal to the DXZ4 macrosatellite, which is essential for X chromosome inactivation. By applying molecular combing in a total of 25 lymphoblastoid cell lines (asymptomatic individuals, individuals with SMA, control subjects) with variable PLS3 expression, we found a significant correlation between the copy number of DXZ4 monomers and PLS3 levels. Additionally, we identified chromodomain helicase DNA binding protein 4 (CHD4) as an epigenetic transcriptional regulator of PLS3 and validated co-regulation of the two genes by siRNA-mediated knock-down and overexpression of CHD4. We show that CHD4 binds the PLS3 promoter by performing chromatin immunoprecipitation and that CHD4/NuRD activates the transcription of PLS3 by dual-luciferase promoter assays. Thus, we provide evidence for a multilevel epigenetic regulation of PLS3 that may help to understand the protective or disease-associated PLS3 dysregulation.
Collapse
Affiliation(s)
- Eike A Strathmann
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Cologne Center for Genomics and West German Genome Center, University of Cologne, 50931 Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Julien Come
- INSERM/ UEVE UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Cecile Martinat
- INSERM/ UEVE UMR 861, Université Paris Saclay, I-STEM, 91100 Corbeil-Essonnes, France
| | - Janine Altmüller
- Cologne Center for Genomics and West German Genome Center, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University Cologne, Kerpener Str. 34, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
4
|
The Transcription Factor Twist1 Has a Significant Role in Mycosis Fungoides (MF) Cell Biology: An RNA Sequencing Study of 40 MF Cases. Cancers (Basel) 2023; 15:cancers15051527. [PMID: 36900319 PMCID: PMC10000433 DOI: 10.3390/cancers15051527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The purpose of this RNA sequencing study was to investigate the biological mechanism underlying how the transcription factors (TFs) Twist1 and Zeb1 influence the prognosis of mycosis fungoides (MF). We used laser-captured microdissection to dissect malignant T-cells obtained from 40 skin biopsies from 40 MF patients with stage I-IV disease. Immunohistochemistry (IHC) was used to determinate the protein expression levels of Twist1 and Zeb1. Based on RNA sequencing, principal component analysis (PCA), differential expression (DE) analysis, ingenuity pathway analysis (IPA), and hub gene analysis were performed between the high and low Twist1 IHC expression cases. The DNA from 28 samples was used to analyze the TWIST1 promoter methylation level. In the PCA, Twist1 IHC expression seemed to classify cases into different groups. The DE analysis yielded 321 significant genes. In the IPA, 228 significant upstream regulators and 177 significant master regulators/causal networks were identified. In the hub gene analysis, 28 hub genes were found. The methylation level of TWIST1 promoter regions did not correlate with Twist1 protein expression. Zeb1 protein expression did not show any major correlation with global RNA expression in the PCA. Many of the observed genes and pathways associated with high Twist1 expression are known to be involved in immunoregulation, lymphocyte differentiation, and aggressive tumor biology. In conclusion, Twist1 might be an important regulator in the disease progression of MF.
Collapse
|
5
|
Micellar Curcumin Substantially Increases the Antineoplastic Activity of the Alkylphosphocholine Erufosine against TWIST1 Positive Cutaneous T Cell Lymphoma Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14122688. [PMID: 36559182 PMCID: PMC9781439 DOI: 10.3390/pharmaceutics14122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare form of cancer with local as well as systemic manifestations. Concomitant bacterial infections increase morbidity and mortality rates due to impaired skin barrier and immune deficiency. In the current study, we demonstrated that the in vitro anti-lymphoma potential of erufosine is diminished by TWIST1 expression and micellar curcumin substantially increases its antineoplastic activity. Pharmacokinetic analysis showed that the micellar curcumin (MCRM) used in our study was characterized by low zeta potential, slow release of curcumin, and fast cell membrane penetration. The combination ratio 1:4 [erufosine:MCRM] achieved strong synergism by inhibiting cell proliferation and clonogenicity. The combined antiproliferative effects were calculated using the symbolic mathematical software MAPLE 15. The synergistic combination strongly decreased the expression of TWIST1 and protein kinase B/Akt as proven by western blotting. Significant reductions in NF-κB activation, induction of apoptosis, and altered glutathione levels were demonstrated by corresponding assays. In addition, the synergistic combination enhanced the anti-staphylococcal activity and prevented biofilm formation, as shown by crystal violet staining. Taken together, the above results show that the development of nanotechnological treatment modalities for CTCL, based on rational drug combinations exhibiting parallel antineoplastic and antibacterial effects, may prove efficacious.
Collapse
|
6
|
Kumar S, Dhamija B, Attrish D, Sawant V, Sengar M, Thorat J, Shet T, Jain H, Purwar R. Genetic alterations and oxidative stress in T cell lymphomas. Pharmacol Ther 2022; 236:108109. [PMID: 35007658 DOI: 10.1016/j.pharmthera.2022.108109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
T cell lymphomas encompass a diverse group of Non-Hodgkin lymphomas with a wide spectrum of clinical, immunological and pathological manifestations. In the last two decades there has been a progress in our understanding of the cell of origin, genetic abnormalities and their impact on behaviour in T cell lymphomas. Genetic alterations are one of the critical drivers of the pathogenesis of T cell lymphoma. Disease progression has been correlated with multiple genetic abnormalities where malignant clones arise primarily out of the host immune surveillance arsenal. There are many cellular processes involved in disease development, and some of them are T cell signaling, differentiation, epigenetic modifications, and immune regulation. Modulation of these crucial pathways via genetic mutations and chromosomal abnormalities possessing either point or copy number mutations helps tumor cells to develop a niche favourable for their growth via metabolic alterations. Several metabolic pathways especially regulation of redox homeostasis is critical in pathogenesis of lymphoma. Disruption of redox potential and induction of oxidative stress renders malignant cells vulnerable to mitochondrial damage and triggers apoptotic pathways causing cell death. Targeting genetic abnormalities and oxidative stress along with current treatment regime have the potential for improved therapeutics and presents new combination approaches towards selective treatment of T cell lymphomas.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Bhavuk Dhamija
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Diksha Attrish
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Vinanti Sawant
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Manju Sengar
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Jayashree Thorat
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Tanuja Shet
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Hasmukh Jain
- Medical Oncology, Tata memorial Hospital, Mumbai, Maharashtra 400012, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
7
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
8
|
Flieswasser T, Van den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, de Haard H, Smits E, Pauwels P, Jacobs J. The CD70-CD27 axis in oncology: the new kids on the block. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:12. [PMID: 34991665 PMCID: PMC8734249 DOI: 10.1186/s13046-021-02215-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The immune checkpoint molecule CD70 and its receptor CD27 are aberrantly expressed in many hematological and solid malignancies. Dysregulation of the CD70-CD27 axis within the tumor and its microenvironment is associated with tumor progression and immunosuppression. This is in contrast to physiological conditions, where tightly controlled expression of CD70 and CD27 plays a role in co-stimulation in immune responses. In hematological malignancies, cancer cells co-express CD70 and CD27 promoting stemness, proliferation and survival of malignancy. In solid tumors, only expression of CD70 is present on the tumor cells which can facilitate immune evasion through CD27 expression in the tumor microenvironment. The discovery of these tumor promoting and immunosuppressive effects of the CD70-CD27 axis has unfolded a novel target in the field of oncology, CD70. In this review, we thoroughly discuss current insights into expression patterns and the role of the CD70-CD27 axis in hematological and solid malignancies, its effect on the tumor microenvironment and (pre)clinical therapeutic strategies.
Collapse
Affiliation(s)
- Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium. .,Department of Pathology, Antwerp University Hospital, Edegem, Belgium.
| | - Astrid Van den Eynde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Julie Jacobs
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Argenx, Zwijnaarde, Ghent, Belgium
| |
Collapse
|
9
|
Liaño-Pons J, Arsenian-Henriksson M, León J. The Multiple Faces of MNT and Its Role as a MYC Modulator. Cancers (Basel) 2021; 13:4682. [PMID: 34572909 PMCID: PMC8465425 DOI: 10.3390/cancers13184682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
MNT is a crucial modulator of MYC, controls several cellular functions, and is activated in most human cancers. It is the largest, most divergent, and most ubiquitously expressed protein of the MXD family. MNT was first described as a MYC antagonist and tumor suppressor. Indeed, 10% of human tumors present deletions of one MNT allele. However, some reports show that MNT functions in cooperation with MYC by maintaining cell proliferation, promoting tumor cell survival, and supporting MYC-driven tumorigenesis in cellular and animal models. Although MAX was originally considered MNT's obligate partner, our recent findings demonstrate that MNT also works independently. MNT forms homodimers and interacts with proteins both outside and inside of the proximal MYC network. These complexes are involved in a wide array of cellular processes, from transcriptional repression via SIN3 to the modulation of metabolism through MLX as well as immunity and apoptosis via REL. In this review, we discuss the present knowledge of MNT with a special focus on its interactome, which sheds light on the complex and essential role of MNT in cell biology.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Javier León
- Departmento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain;
| |
Collapse
|
10
|
Improved Sézary cell detection and novel insights into immunophenotypic and molecular heterogeneity in Sézary syndrome. Blood 2021; 138:2539-2554. [PMID: 34314480 DOI: 10.1182/blood.2021012286] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
Sézary syndrome (SS) is an aggressive leukemic form of Cutaneous T-cell Lymphoma with neoplastic CD4+ T cells present in skin, lymph nodes, and blood. Despite advances in therapy, prognosis remains poor with a 5-year overall survival of 30%. The immunophenotype of Sézary cells is diverse, which hampers efficient diagnosis, sensitive disease monitoring, and accurate assessment of treatment response. Comprehensive immunophenotypic profiling of Sézary cells with an in-depth analysis of maturation and functional subsets has not been performed thus far. We immunophenotypically profiled 24 SS patients employing standardized and sensitive EuroFlow-based multiparameter flow cytometry (MFC). We accurately identified and quantified Sézary cells in blood and performed an in-depth assessment of their phenotypic characteristics in comparison with their normal counterparts in the blood CD4+ T-cell compartment. We observed inter-and intra-patient heterogeneity and phenotypic changes over time. Sézary cells exhibited phenotypes corresponding with classical and non-classical T helper subsets with different maturation phenotypes. We combined MFC analyses with FACS cell sorting and performed RNA-sequencing studies on purified subsets of malignant Sézary cells and normal CD4+ T cells of the same patients. We confirmed pure mono-clonality in Sézary subsets, we compared transcriptomes of phenotypically distinct Sézary subsets and identified novel down-regulated genes, most remarkable THEMIS and LAIR1 which discriminate Sézary cells from normal residual CD4+ T cells. Together, these findings further unravel the heterogeneity of Sézary cell subpopulations within and between patients. These new data will support improved blood staging and more accurate disease monitoring.
Collapse
|
11
|
Ortiz-Romero PL. The time for new biomarkers in mycosis fungoides/Sézary syndrome is here. Br J Dermatol 2021; 185:250-251. [PMID: 34096050 DOI: 10.1111/bjd.20491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Affiliation(s)
- P L Ortiz-Romero
- Service of Dermatology, Hospital 12 de Octubre. Institute i+12, CIBERONC, Medical School, University Complutense, Madrid, Spain
| |
Collapse
|
12
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
13
|
Mehdi SJ, Moerman-Herzog A, Wong HK. Normal and cancer fibroblasts differentially regulate TWIST1, TOX and cytokine gene expression in cutaneous T-cell lymphoma. BMC Cancer 2021; 21:492. [PMID: 33941102 PMCID: PMC8091512 DOI: 10.1186/s12885-021-08142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mycosis fungoides (MF) is a primary cutaneous T-cell lymphoma (CTCL) that transforms from mature, skin-homing T cells and progresses during the early stages in the skin. The role of the skin microenvironment in MF development is unclear, but recent findings in a variety of cancers have highlighted the role of stromal fibroblasts in promoting or inhibiting tumorigenesis. Stromal fibroblasts are an important part of the cutaneous tumor microenvironment (TME) in MF. Here we describe studies into the interaction of TME-fibroblasts and malignant T cells to gain insight into their role in CTCL. METHODS Skin from normal (n = 3) and MF patients (n = 3) were analyzed for FAPα by immunohistochemistry. MyLa is a CTCL cell line that retains expression of biomarkers TWIST1 and TOX that are frequently detected in CTCL patients. MyLa cells were cultured in the presence or absence of normal or MF skin derived fibroblasts for 5 days, trypsinized to detached MyL a cells, and gene expression analyzed by RT-PCR for MF biomarkers (TWIST1 and TOX), Th1 markers (IFNG, TBX21), Th2 markers (GATA3, IL16), and proliferation marker (MKI67). Purified fibroblasts were assayed for VIM and ACTA2 gene expression. Cellular senescence assay was performed to assess senescence. RESULTS MF skin fibroblast showed increased expression of FAP-α with increasing stage compared to normal. Normal fibroblasts co-cultured with MyLa cells suppressed expression of TWIST1 (p < 0.0006), and TOX (p < 0.03), GATA3 (p < 0.02) and IL16 (p < 0.03), and increased expression of IFNG (p < 0.03) and TBX21 (p < 0.03) in MyLa cells. In contrast, MyLa cells cultured with MF fibroblasts retained high expression of TWIST1, TOX and GATA3. MF fibroblasts co-culture with MyLa cells increased expression of IL16 (p < 0.01) and IL4 (p < 0.02), and suppressed IFNG and TBX21 in MyLa cells. Furthermore, expression of MKI67 in MyLa cells was suppressed by normal fibroblasts compared to MF fibroblasts. CONCLUSION Skin fibroblasts represent important components of the TME in MF. In co-culture model, normal and MF fibroblasts have differential influence on T-cell phenotype in modulating expression of Th1 cytokine and CTCL biomarker genes to reveal distinct roles with implications in MF progression.
Collapse
Affiliation(s)
- Syed Jafar Mehdi
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA
| | - Andrea Moerman-Herzog
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA
| | - Henry K Wong
- Department of Dermatology, University of Arkansas for Medical Sciences, 4301 West Markham St, #576, Little Rock, AR, 72205, USA.
| |
Collapse
|
14
|
Twist activates miR-22 to suppress estrogen receptor alpha in breast cancer. Mol Cell Biochem 2021; 476:2295-2306. [PMID: 33582945 DOI: 10.1007/s11010-021-04065-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
TWIST1 (Twist) is a basic helix-loop-helix transcription factor that is overexpressed in many cancers and promotes tumor cell invasion, metastasis, and recurrence. In this study, we demonstrate that Twist upregulates expression of microRNA 22 (miR-22) which, in turn, downregulates estrogen receptor alpha (ER) expression in breast cancer. Initial analysis of miR-22 and Twist expression in a panel of breast cancer cell lines showed a direct correlation between Twist and miR-22 levels with miR-22 being highly expressed in ER negative cell lines. Overexpressing Twist caused increased miR-22 levels while downregulating it led to decreased miR-22 expression. To characterize the upstream promoter region of miR-22, we utilized rapid amplification of cDNA ends and identified the transcription start site and the putative promoter region of miR-22. Mechanistically, we determined that Twist, in combination with HDAC1 and DNMT3B, transcriptionally upregulates miR-22 expression by binding to E-boxes in the proximal miR-22 promoter. We also established that miR-22 causes an increase in growth in 3D but not 2D cultures. Importantly, we observed a direct correlation between increased breast cancer grade and Twist and miR-22 expression. We also identified two potential miR-22 binding sites in the 3'-UTR region of ER and confirmed by promoter assays that miR-22 regulates ER expression by binding to both target sites. These results reveal a novel pathway of ER suppression by Twist through miR-22 activation that could potentially promote the ER negative phenotype in breast cancers.
Collapse
|
15
|
King RL, Tan B, Craig FE, George TI, Horny HP, Kelemen K, Orazi A, Reichard KK, Rimsza LM, Wang SA, Zamo A, Quintanilla-Martinez L. Reactive Eosinophil Proliferations in Tissue and the Lymphocytic Variant of Hypereosinophilic Syndrome. Am J Clin Pathol 2021; 155:211-238. [PMID: 33367482 DOI: 10.1093/ajcp/aqaa227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The 2019 Society for Hematopathology and European Association for Haematopathology Workshop reviewed the spectrum of neoplastic, nonneoplastic, and borderline entities associated with reactive eosinophilia in tissue. METHODS The workshop panel reviewed 46 cases covered in 2 workshop sessions. RESULTS The 46 cases were presented with their consensus diagnoses during the workshop. Reactive eosinophilia in lymph nodes and other tissues may be accompanied by or be distinct from peripheral blood eosinophilia. Reactive etiologies included inflammatory disorders such as Kimura disease and IgG4-related disease, which may show overlapping pathologic features and reactions to infectious agents and hypersensitivity (covered in a separate review). Hodgkin, T-cell, and B-cell lymphomas and histiocytic neoplasms can result in reactive eosinophilia. The spectrum of these diseases is discussed and illustrated through representative cases. CONCLUSIONS Reactive eosinophilia in lymph nodes and tissues may be related to both nonneoplastic and neoplastic lymphoid proliferations and histiocytic and nonhematolymphoid processes. Understanding the differential diagnosis of reactive eosinophilia and the potential for overlapping clinical and pathologic findings is critical in reaching the correct diagnosis so that patients can be treated appropriately.
Collapse
Affiliation(s)
| | - Brent Tan
- Division of Hematopathology, Stanford University, Stanford, CA
| | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | - Hans-Peter Horny
- Institute of Pathology, University of Munich (LMU), Munich, Germany
| | | | - Attilio Orazi
- Department of Pathology, TexasTech University Health Sciences Center, P.L. Foster School of Medicine, El Paso
| | | | - Lisa M Rimsza
- Division of Hematopathology, Mayo Clinic, Phoenix, AZ
| | - Sa A Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Alberto Zamo
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
16
|
Zhang J, Guo JR, Wu XL, Wang X, Zhu ZM, Wang Y, Gu X, Fan Y. TWIST1 induces phenotypic switching of vascular smooth muscle cells by downregulating p68 and microRNA-143/145. FEBS Open Bio 2021; 11:932-943. [PMID: 33470057 PMCID: PMC7931233 DOI: 10.1002/2211-5463.13092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
TWIST1 is an important basic helix‐loop‐helix protein linked to multiple physiological and pathological processes. Although TWIST1 is believed to be involved in vascular pathogenesis, its effects on homeostasis of smooth muscle cells (SMCs) remain poorly understood. Here, we show that TWIST1 protein levels were significantly elevated during SMC phenotypic switching in vivo and in vitro. TWIST1 overexpression promoted phenotypic switching of SMCs, while siRNA targeting of TWIST1 prevented cell transition. Mechanistically, TWIST1 decreased the level of microRNA‐143/145, which governs smooth muscle marker gene transcription. In addition, TWIST1 repressed p68 mRNA and protein expression, a crucial modulator of SMC behavior and microRNA biogenesis. Our co‐immunoprecipitation assay demonstrated a previously unrecognized molecular interaction between TWIST1 and p68 protein. Finally, we found that TWIST1 triggered SMC phenotypic switching and suppressed microRNA‐143/145 expression by promoting the proteasomal degradation of p68. These data suggest a novel role of TWIST1 in the regulation of SMC homeostasis by modulating p68/microRNA‐143/145 axis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jie-Ru Guo
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xian-Li Wu
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Wang
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Ming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yong Wang
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Gu
- Department of Pathology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ye Fan
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
17
|
Dobos G, De Cevins C, Ly Ka So S, Jean-Louis F, Mathieu S, Ram-Wolff C, Resche-Rigon M, Bensussan A, Bagot M, Michel L. The value of five blood markers in differentiating mycosis fungoides and Sézary syndrome: a validation cohort. Br J Dermatol 2020; 185:405-411. [PMID: 33314029 DOI: 10.1111/bjd.19719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Clinical and histological diagnosis of Sézary syndrome (SS) and mycosis fungoides (MF) is challenging in clinical routine. OBJECTIVES We investigated five blood markers previously described for SS (T-plastin, Twist, KIR3DL2, NKp46 and Tox) in a prospective validation cohort of patients. METHODS We included 447 patients in this study and 107 patients were followed up for prognosis. The markers were analysed by reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) on peripheral blood leucocytes and CD4+ T cells in a cohort of consecutive patients with early MF, erythrodermic MF and SS and compared with patients presenting with benign inflammatory dermatoses (BID) and erythrodermic BID. The markers were assessed in parallel to gold standard values such as CD4/CD8 ratio, loss of CD7 and CD26 membrane expression and CD4 absolute values. Sensitivity and specificity were analysed by receiver operator characteristic curves. The prognostic value of selected markers was analysed on a subset of patients. This study was conducted in one centre. RESULTS We defined cut-off values for each marker. T-plastin, Twist and KIR3DL2 had the best validity. SS may be overrepresented. The combination of T-plastin and Twist was able to differentiate between erythrodermic MF or BID and SS. The additional analysis of KIR3DL2 may be useful to predict the prognosis. CONCLUSIONS We propose T-plastin, Twist and KIR3DL2 measured by RT-qPCR as new diagnostic markers for Sézary syndrome.
Collapse
Affiliation(s)
- G Dobos
- INSERM U976, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - C De Cevins
- INSERM U976, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - S Ly Ka So
- INSERM U976, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - F Jean-Louis
- INSERM U976, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - S Mathieu
- Department of Dermatology, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - C Ram-Wolff
- Department of Dermatology, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - M Resche-Rigon
- SBIM, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - A Bensussan
- INSERM U976, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - M Bagot
- INSERM U976, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France.,Department of Dermatology, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| | - L Michel
- INSERM U976, Hôpital Saint Louis, APHP, 1 Avenue Claude Vellefaux, Paris, 75010, France
| |
Collapse
|
18
|
Gene Expression Comparison between Sézary Syndrome and Lymphocytic-Variant Hypereosinophilic Syndrome Refines Biomarkers for Sézary Syndrome. Cells 2020; 9:cells9091992. [PMID: 32872487 PMCID: PMC7563155 DOI: 10.3390/cells9091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Sézary syndrome (SS), an aggressive cutaneous T-cell lymphoma (CTCL) with poor prognosis, is characterized by the clinical hallmarks of circulating malignant T cells, erythroderma and lymphadenopathy. However, highly variable clinical skin manifestations and similarities with benign mimickers can lead to significant diagnostic delay and inappropriate therapy that can lead to disease progression and mortality. SS has been the focus of numerous transcriptomic-profiling studies to identify sensitive and specific diagnostic and prognostic biomarkers. Benign inflammatory disease controls (e.g., psoriasis, atopic dermatitis) have served to identify chronic inflammatory phenotypes in gene expression profiles, but provide limited insight into the lymphoproliferative and oncogenic roles of abnormal gene expression in SS. This perspective was recently clarified by a transcriptome meta-analysis comparing SS and lymphocytic-variant hypereosinophilic syndrome, a benign yet often clonal T-cell lymphoproliferation, with clinical features similar to SS. Here we review the rationale for selecting lymphocytic-variant hypereosinophilic syndrome (L-HES) as a disease control for SS, and discuss differentially expressed genes that may distinguish benign from malignant lymphoproliferative phenotypes, including additional context from prior gene expression studies to improve understanding of genes important in SS.
Collapse
|
19
|
Mirza AS, Horna P, Teer JK, Song J, Akabari R, Hussaini M, Sokol L. New Insights Into the Complex Mutational Landscape of Sézary Syndrome. Front Oncol 2020; 10:514. [PMID: 32373524 PMCID: PMC7186303 DOI: 10.3389/fonc.2020.00514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Sézary syndrome (SS) is a genetically and clinically distinct entity among cutaneous T-cell lymphomas (CTCL). SS is characterized by more aggressive disease compared to the most common indolent type of CTCL, mycosis fungoides. However, there are limited available genomic data regarding SS. To characterize and expand current mappings of the genomic landscape of CTCL, whole exome sequencing (WES) was performed on peripheral blood samples from seven patients with SS. We detected 21,784 variants, of which 21,140 were novel and 644 were previously described. Filtering revealed 551 nonsynonymous variants among 525 mutated genes−25 recurrent mutations and 1 recurrent variant. Several recurrently mutated genes crucial to pathogenesis pathways, including Janus kinase (JAK)/signal transducers and activators of transcription (STAT), peroxisome proliferator-activated receptors (PPAR), PI3K-serine/threonine protein kinases (AKT), and fibroblast growth factor receptors (FGFR), were identified. Furthermore, genetic mutations spanned both known and novel genes, supporting the idea of a long-tail distribution of mutations in lymphoma. Acknowledging these genetic variants and their affected pathways may inspire future targeted therapies. WES of a limited number of SS patients revealed both novel findings and corroborated complexities of the “long-tail” distribution of previously reported mutations.
Collapse
Affiliation(s)
- Abu-Sayeef Mirza
- Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, MN, United States
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ratilal Akabari
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mohammad Hussaini
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
20
|
Khatiwada P, Kannan A, Malla M, Dreier M, Shemshedini L. Androgen up-regulation of Twist1 gene expression is mediated by ETV1. PeerJ 2020; 8:e8921. [PMID: 32296610 PMCID: PMC7151753 DOI: 10.7717/peerj.8921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Twist1, a basic helix-loop-helix transcription factor that regulates a number of genes involved in epithelial-to-mesenchymal transition (EMT), is upregulated in prostate cancer. Androgen regulation of Twist1 has been reported in a previous study. However, the mechanism of androgen regulation of the Twist1 gene is not understood because the Twist1 promoter lacks androgen receptor (AR)-responsive elements. Previous studies have shown that the Twist1 promoter has putative binding sites for PEA3 subfamily of ETS transcription factors. Our lab has previously identified Ets Variant 1 (ETV1), a member of the PEA3 subfamily, as a novel androgen-regulated gene that is involved in prostate cancer cell invasion through unknown mechanism. In view of these data, we hypothesized that androgen-activated AR upregulates Twist1 gene expression via ETV1. Our data confirmed the published work that androgen positively regulates Twist1 gene expression and further showed that this positive effect was directed at the Twist1 promoter. The positive effect of androgen on Twist1 gene expression was abrogated upon disruption of AR expression by siRNA or of AR activity by Casodex. More importantly, our data show that disruption of ETV1 leads to significant decrease in both androgen-mediated upregulation as well as basal level of Twist1, which we are able to rescue upon re-expression of ETV1. Indeed, we are able to show that ETV1 mediates the androgen upregulation of Twist1 by acting on the proximal region of Twist1 promoter. Additionally, our data show that Twist1 regulates prostate cancer cell invasion and EMT, providing a possible mechanism by which ETV1 mediates prostate cancer cell invasion. In conclusion, in this study we report Twist1 as an indirect target of AR and androgen regulation through ETV1.
Collapse
Affiliation(s)
- Prabesh Khatiwada
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Archana Kannan
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Mamata Malla
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Megan Dreier
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
21
|
Cheong CM, Mrozik KM, Hewett DR, Bell E, Panagopoulos V, Noll JE, Licht JD, Gronthos S, Zannettino ACW, Vandyke K. Twist-1 is upregulated by NSD2 and contributes to tumour dissemination and an epithelial-mesenchymal transition-like gene expression signature in t(4;14)-positive multiple myeloma. Cancer Lett 2020; 475:99-108. [PMID: 32014459 DOI: 10.1016/j.canlet.2020.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Approximately 15% of patients with multiple myeloma (MM) harbour the t(4;14) chromosomal translocation, leading to the overexpression of the histone methyltransferase NSD2. Patients with this translocation display increased tumour dissemination, accelerated disease progression and rapid relapse. Using publicly available gene expression profile data from NSD2high (n = 135) and NSD2low (n = 878) MM patients, we identified 39 epithelial-mesenchymal transition (EMT)-associated genes which are overexpressed in NSD2high MM plasma cells. In addition, our analyses identified Twist-1 as a key transcription factor upregulated in NSD2high MM patients and t(4;14)-positive cell lines. Overexpression and knockdown studies confirmed that Twist-1 is involved in driving the expression of EMT-associated genes in the human MM cell line KMS11 and promoted the migration of myeloma cell lines in vitro. Notably, Twist-1 overexpression in the mouse MM cell line 5TGM1 significantly increased tumour dissemination in an intratibial tumour model. These findings demonstrate that Twist-1, downstream of NSD2, contributes to the induction of an EMT-like signature in t(4;14)-positive MM and enhances the dissemination of MM plasma cells in vivo, which may, in part, explain the aggressive disease features associated with t(4;14)-positive MM.
Collapse
Affiliation(s)
- Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Krzysztof M Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Duncan R Hewett
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Elyse Bell
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Jonathan D Licht
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, FL, USA
| | - Stan Gronthos
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia.
| |
Collapse
|
22
|
Moerman-Herzog AM, Acheampong DA, Brooks AG, Blair SM, Hsu PC, Wong HK. Transcriptome analysis of Sézary syndrome and lymphocytic-variant hypereosinophilic syndrome T cells reveals common and divergent genes. Oncotarget 2019; 10:5052-5069. [PMID: 31489115 PMCID: PMC6707948 DOI: 10.18632/oncotarget.27120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
Sézary syndrome (SS) is an aggressive cutaneous T cell lymphoma with pruritic skin inflammation and immune dysfunction, driven by neoplastic, clonal memory T cells in both peripheral blood and skin. To gain insight into abnormal gene expression promoting T cell dysfunction, lymphoproliferation and transformation in SS, we first compared functional transcriptomic profiles of both resting and activated CD4+CD45RO+ T cells from SS patients and normal donors to identified differential expressed genes. Next, a meta-analysis was performed to compare our SS data to public microarray data from a novel benign disease control, lymphocytic-variant hypereosinophilic syndrome (L-HES). L-HES is a rare, clonal lymphoproliferation of abnormal memory T cells that produces similar clinical symptoms as SS, including severe pruritus and eosinophilia. Comparison revealed gene sets specific for either SS (370 genes) or L-HES (519 genes), and a subset of 163 genes that were dysregulated in both SS and L-HES T cells compared to normal donor T cells. Genes confirmed by RT-qPCR included elevated expression of PLS3, TWIST1 and TOX only in SS, while IL17RB mRNA was increased only in L-HES. CDCA7 was increased in both diseases. In an L-HES patient who progressed to peripheral T cell lymphoma, the malignant transformation identified increases in the expression of CDCA7, TIGIT, and TOX, which are highly expressed in SS, suggesting that these genes contribute to neoplastic transformation. In summary, we have identified gene expression biomarkers that implicate a common transformative mechanism and others that are unique to differentiate SS from L-HES.
Collapse
Affiliation(s)
- Andrea M Moerman-Herzog
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Daniel A Acheampong
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amanda G Brooks
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Suzan M Blair
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ping-Ching Hsu
- Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Henry K Wong
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
23
|
Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget 2019; 10:3104-3113. [PMID: 31139323 PMCID: PMC6517103 DOI: 10.18632/oncotarget.5742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/18/2015] [Indexed: 12/31/2022] Open
Abstract
Studies have examined gene expression changes in Sézary syndrome (SS), but disease pathogenesis remains largely unknown, and diagnosis and treatment are difficult. TOX is a transcription factor involved in CD4+ T-cell development with downstream effects on RUNX3, a known tumor suppressor gene. We sought to identify genes involved in SS disease pathogenesis with the potential to enable diagnosis and treatment. We utilized previously reported transcriptome sequencing data to construct a list of candidate genes, which was narrowed using pathway analysis. qRT-PCR confirmed TOX upregulation (>7 fold increase) in SS (n = 5), as well as two established markers, PLS3 and KIRD3DL2. We also evaluated expression of members of the TOX-RUNX3 pathway and confirmed downregulation of RUNX3 (0.59 fold decrease) and upregulation of GATA3 (2 fold increase). Moreover, TOX and RUNX3 expression were significantly inversely proportional. Using siRNA to suppress TOX, we demonstrated that TOX knockdown rescues RUNX3 expression and reduces cell viability. We evaluated TOX protein expression in paraffin-embedded skin biopsies with immunohistochemistry, showing nuclear staining of CTCL infiltrates, suggesting it is a candidate diagnostic biomarker. Further studies validating our findings and evaluating the TOX-RUNX3 pathway and the role of TOX as a disease marker and therapeutic target are warranted.
Collapse
|
24
|
Yu X, Zheng Y, Zhu X, Gao X, Wang C, Sheng Y, Cheng W, Qin L, Ren N, Jia H, Dong Q. Osteopontin promotes hepatocellular carcinoma progression via the PI3K/AKT/Twist signaling pathway. Oncol Lett 2018; 16:5299-5308. [PMID: 30250599 DOI: 10.3892/ol.2018.9281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) serves critical roles in the migration, invasion and metastasis of human cancer cells. This process is initiated by regulation of E-cadherin expression by the major inducers of EMT. Previous studies reported that osteopontin (OPN) is essential for hepatocellular carcinoma (HCC) metastasis as it facilitates the EMT in HCC. However, the role and clinical significance of OPN as an EMT regulator in HCC remains unknown. The present study revealed that OPN regulated the expression of Twist by activating RAC serine/threonine-protein kinase (Akt), a critical EMT regulator. Interfering with the phosphoinositide 3-kinase (PI3K)/Akt pathway may suppress the expression of Twist enhanced by OPN. Increased Twist levels in HCC were associated with poor survival and tumor recurrence in patients with HCC following surgery. A significant association was observed between OPN expression and Twist levels in HCC, and a combination of these two parameters was revealed to be a more powerful predictor of poor patient prognosis. The findings of the present study indicate that Twist serves an notable role in OPN-mediated metastasis of HCC through activation of the PI3K/Akt pathway. Twist may be a potential therapeutic target for the prevention of HCC metastasis in patients exhibiting high OPN expression.
Collapse
Affiliation(s)
- Xinxin Yu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Yan Zheng
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China.,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cancer Metastasis Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xuchao Zhu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Xiaomei Gao
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Chaoqun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cancer Metastasis Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yuanyuan Sheng
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China.,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cancer Metastasis Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wei Cheng
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cancer Metastasis Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ning Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cancer Metastasis Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qiongzhu Dong
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China.,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cancer Metastasis Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Chen SC, Liao TT, Yang MH. Emerging roles of epithelial-mesenchymal transition in hematological malignancies. J Biomed Sci 2018; 25:37. [PMID: 29685144 PMCID: PMC5913878 DOI: 10.1186/s12929-018-0440-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background Epithelial-mesenchymal transition is an important process in embryonic development, fibrosis, and cancer metastasis. During the progression of epithelial cancer, activation of epithelial-mesenchymal transition is tightly associated with metastasis, stemness and drug resistance. However, the role of epithelial-mesenchymal transition in non-epithelial cancer is relatively unclear. Main body Epithelial-mesenchymal transition transcription factors are critical in both myeloid and lymphoid development. Growing evidence indicates their roles in cancer cells to promote leukemia and lymphoma progression. The expression of epithelial-mesenchymal transition transcription factors can cause the differentiation of indolent type to the aggressive type of lymphoma. Their up-regulation confers cancer cells resistant to chemotherapy, tyrosine kinase inhibitors, and radiotherapy. Conversely, the down-regulation of epithelial-mesenchymal transition transcription factors, monoclonal antibodies, induce lymphoma cells apoptosis. Conclusions Epithelial-mesenchymal transition transcription factors are potentially important prognostic or predictive factors and treatment targets for leukemia and lymphoma.
Collapse
Affiliation(s)
- San-Chi Chen
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsai-Tsen Liao
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan.,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 11221, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
26
|
Rasti A, Madjd Z, Abolhasani M, Mehrazma M, Janani L, Saeednejad Zanjani L, Asgari M. Cytoplasmic expression of Twist1, an EMT-related transcription factor, is associated with higher grades renal cell carcinomas and worse progression-free survival in clear cell renal cell carcinoma. Clin Exp Med 2017; 18:177-190. [PMID: 29204790 DOI: 10.1007/s10238-017-0481-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/19/2017] [Indexed: 12/17/2022]
Abstract
Twist1 is a key transcription factor, which confers tumor cells with cancer stem cell (CSC)-like characteristics and enhances epithelial-mesenchymal transition in pathological conditions including tumor malignancy and metastasis. This study aimed to evaluate the expression patterns and clinical significance of Twist1 in renal cell carcinoma (RCC). The cytoplasmic and nuclear expression of Twist1 were examined in 252 well-defined renal tumor tissues, including 173 (68.7%) clear cell renal cell carcinomas (ccRCC), 45 (17.9%) papillary renal cell carcinomas (pRCC) and 34 (13.5%) chromophobe renal cell carcinoma, by immunohistochemistry on a tissue microarray. The association between expression of this marker and clinicopathologic parameters and survival outcomes were then analyzed. Twist1 was mainly localized to the cytoplasm of tumor cells (98.8%). Increased cytoplasmic expression of Twist1 was associated with higher grade tumors (P = 0.045), renal vein invasion (P = 0.031) and microvascular invasion (P = 0.044) in RCC. It was positively correlated with higher grade tumors (P = 0.026), shorter progression-free survival time (P = 0.027) in patients with ccRCC, and also with higher stage in pRCC patients (P = 0.036). Significantly higher cytoplasmic expression levels of Twist1 were found in ccRCC and pRCC subtypes, due to their more aggressive tumor behavior. Increased cytoplasmic expression of Twist1 had a critical role in worse prognosis in ccRCC. These findings suggest that cytoplasmic, rather than nuclear expression of Twist1 can be considered as a prognostic and therapeutic marker for targeted therapy of RCC, especially for ccRCC patients.
Collapse
Affiliation(s)
- Arezoo Rasti
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran. .,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran.
| | - Mitra Mehrazma
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran
| | - Mojgan Asgari
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next TO Milad Tower, Tehran, 14496-14530, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| |
Collapse
|
27
|
Qiao W, Jia Z, Liu H, Liu Q, Zhang T, Guo W, Li P, Deng M, Li S. Prognostic and clinicopathological value of Twist expression in breast cancer: A meta-analysis. PLoS One 2017; 12:e0186191. [PMID: 29016671 PMCID: PMC5633195 DOI: 10.1371/journal.pone.0186191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023] Open
Abstract
Background Despite initial indications that the transcription factor Twist could be used as a breast cancer prognostic marker, there still exists some controversy about its reliability. Thus, the aim of the present study was to assess the relationship between Twist expression and prognosis in breast carcinoma. Materials and methods We identified eligible studies that reported an association between Twist expression and breast cancer prognosis by searching the literature in PubMed, Embase, the Cochrane Library, and Web of Science databases, through June 5, 2017. Studies investigating Twist protein or mRNA expression as well as reporting survival data in breast cancer were included. The pooled hazard ratio (HR) and odds radio (OR) with a 95% confidence interval (95% CI) were used to estimate associations. Results A total of 2,671 patients from seven included studies were assessed, and the data indicated that increased Twist expression significantly correlated with poor overall survival (OS) (HR, 1.15; 95% CI, 1.00–1.33; P = 0.04) in breast cancer. In addition, we also observed a significant correlation of elevated Twist expression with larger tumor size (OR, 1.92; 95% CI, 1.31–2.81; P = 0.0009), lymph node involvement (OR, 3.81; 95% CI, 1.16–12.54; P = 0.03), higher nuclear grade (OR, 1.45; 95% CI, 1.06–2.00; P = 0.02), and positive human epidermal growth factor receptor 2 (HER2) status (OR, 1.49; 95% CI, 1.06–2.09; P = 0.02). However, no correlation between Twist expression and disease-free survival (DFS), age, estrogen receptor (ER) status, and progesterone receptor (PR) status was observed. Conclusions Our results demonstrate that Twist over-expression is a statistically significant indicator of OS in breast cancer. In addition, our meta-analysis shows that increased Twist expression is significantly associated with larger tumor size, lymph node involvement, higher nuclear grade, and positive HER2 status.
Collapse
Affiliation(s)
- Weiqiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhiqiang Jia
- Department of Spinal Surgery, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Heyang Liu
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qipeng Liu
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Wanying Guo
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Peng Li
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Miao Deng
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- * E-mail: (MD); (SL)
| | - Sanqiang Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, China
- * E-mail: (MD); (SL)
| |
Collapse
|
28
|
Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients. Blood 2017; 130:2073-2083. [PMID: 28972015 DOI: 10.1182/blood-2017-06-792150] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
The presence and degree of peripheral blood involvement in patients with cutaneous T-cell lymphoma (CTCL) portend a worse clinical outcome. Available systemic therapies for CTCL may variably decrease tumor burden and improve quality of life, but offer limited effects on survival; thus, novel approaches to the treatment of advanced stages of this non-Hodgkin lymphoma are clearly warranted. Mutational analyses of CTCL patient peripheral blood malignant cell samples suggested the antiapoptotic mediator B-cell lymphoma 2 (BCL2) as a potential therapeutic target. To test this, we developed a screening assay for evaluating the sensitivity of CTCL cells to targeted molecular agents, and compared a novel BCL2 inhibitor, venetoclax, alone and in combination with a histone deacetylase (HDAC) inhibitor, vorinostat or romidepsin. Peripheral blood CTCL malignant cells were isolated from 25 patients and exposed ex vivo to the 3 drugs alone and in combination, and comparisons were made to 4 CTCL cell lines (Hut78, Sez4, HH, MyLa). The majority of CTCL patient samples were sensitive to venetoclax, and BCL2 expression levels were negatively correlated (r = -0.52; P =018) to 50% inhibitory concentration values. Furthermore, this anti-BCL2 effect was markedly potentiated by concurrent HDAC inhibition with 93% of samples treated with venetoclax and vorinostat and 73% of samples treated with venetoclax and romidepsin showing synergistic effects. These data strongly suggest that concurrent BCL2 and HDAC inhibition may offer synergy in the treatment of patients with advanced CTCL. By using combination therapies and correlating response to gene expression in this way, we hope to achieve more effective and personalized treatments for CTCL.
Collapse
|
29
|
Pan Y, Liu X, Huang Y. Small interfering RNA-mediated knockdown of Twist attenuates the aggressive phenotypes of human endometrial carcinoma Ishikawa cells. Exp Ther Med 2017; 14:5647-5651. [PMID: 29285105 DOI: 10.3892/etm.2017.5214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to determine the effect of Twist downregulation on the proliferation, apoptosis and migration of human endometrial carcinoma Ishikawa cells. Endogenous expression of the Twist transcription factor was knocked down by delivery of Twist-targeting small interfering RNA (siRNA). Changes in the expression of epithelial-mesenchymal transition biomarkers, namely epithelial (E)-cadherin, neural (N)-cadherin and Twist, were determined by western blot analysis. Cell cycle distribution and apoptosis were evaluated by flow cytometry. Cell proliferation and migration were analyzed using cell-counting and wound-healing assays, respectively. Transfection with Twist siRNA led to a significant reduction in the expression of Twist and N-cadherin (P<0.05), while significantly increasing the expression of E-cadherin, relative to negative control transfectants (all P<0.05). Proliferation was also significantly decreased in Ishikawa cells transfected with Twist siRNA (P<0.05), which was accompanied by an increased rate of apoptosis and cell cycle arrest at S-phase. In addition, Twist downregulation led to a significant reduction in cell migration (P<0.05). These data suggest that Twist serves a role in the regulation of cell proliferation and migration in Ishikawa cells and may represent a potential target for the treatment of human endometrial carcinoma.
Collapse
Affiliation(s)
- Yilian Pan
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, Shanghai 200030, P.R. China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, Shanghai 200030, P.R. China
| | - Yong Huang
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, Shanghai 200030, P.R. China
| |
Collapse
|
30
|
Dulmage B, Geskin L, Guitart J, Akilov OE. The biomarker landscape in mycosis fungoides and Sézary syndrome. Exp Dermatol 2017; 26:668-676. [PMID: 27897325 PMCID: PMC5489366 DOI: 10.1111/exd.13261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
The practice of pre-emptive individualized medicine is predicated on the discovery, development and application of biomarkers in specific clinical settings. Mycosis fungoides and Sézary syndrome are the two most common type of cutaneous T-cell lymphoma, yet diagnosis, prognosis and disease monitoring remain a challenge. In this review, we discuss the current state of biomarker discovery in mycosis fungoides and Sézary syndrome, highlighting the most promising molecules in different compartments. Further, we emphasize the need for continued multicentre efforts to validate available and new biomarkers and to develop prospective combinatorial panels of already discovered molecules.
Collapse
Affiliation(s)
- Brittany Dulmage
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Larisa Geskin
- Department of Dermatology, Columbia University, New York, NY, USA
| | - Joan Guitart
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Oleg E Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Kahlert UD, Joseph JV, Kruyt FAE. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol 2017; 11:860-877. [PMID: 28556516 PMCID: PMC5496495 DOI: 10.1002/1878-0261.12085] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to mesenchymal (EMT) process is increasingly recognized for playing a key role in the progression, dissemination, and therapy resistance of epithelial tumors. Accumulating evidence suggests that EMT inducers also lead to a gain in mesenchymal properties and promote malignancy of nonepithelial tumors. In this review, we present and discuss current findings, illustrating the importance of EMT inducers in tumors originating from nonepithelial/mesenchymal tissues, including brain tumors, hematopoietic malignancies, and sarcomas. Among these tumors, the involvement of mesenchymal transition has been most extensively investigated in glioblastoma, providing proof for cell autonomous and microenvironment-derived stimuli that provoke EMT-like processes that regulate stem cell, invasive, and immunogenic properties as well as therapy resistance. The involvement of prominent EMT transcription factor families, such as TWIST, SNAI, and ZEB, in promoting therapy resistance and tumor aggressiveness has also been reported in lymphomas, leukemias, and sarcomas. A reverse process, resembling mesenchymal-to-epithelial transition (MET), seems particularly relevant for sarcomas, where (partial) epithelial differentiation is linked to less aggressive tumors and a better patient prognosis. Overall, a hybrid model in which more stable epithelial and mesenchymal intermediates exist likely extends to the biology of tumors originating from sources other than the epithelium. Deeper investigation and understanding of the EMT/MET machinery in nonepithelial tumors will shed light on the pathogenesis of these tumors, potentially paving the way toward the identification of clinically relevant biomarkers for prognosis and future therapeutic targets.
Collapse
Affiliation(s)
- Ulf D Kahlert
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
32
|
Benoit BM, Jariwala N, O'Connor G, Oetjen LK, Whelan TM, Werth A, Troxel AB, Sicard H, Zhu L, Miller C, Takeshita J, McVicar DW, Kim BS, Rook AH, Wysocka M. CD164 identifies CD4 + T cells highly expressing genes associated with malignancy in Sézary syndrome: the Sézary signature genes, FCRL3, Tox, and miR-214. Arch Dermatol Res 2017; 309:11-19. [PMID: 27766406 PMCID: PMC5357118 DOI: 10.1007/s00403-016-1698-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023]
Abstract
Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), is associated with a significantly shorter life expectancy compared to skin-restricted mycosis fungoides. Early diagnosis of SS is, therefore, key to achieving enhanced therapeutic responses. However, the lack of a biomarker(s) highly specific for malignant CD4+ T cells in SS patients has been a serious obstacle in making an early diagnosis. We recently demonstrated the high expression of CD164 on CD4+ T cells from Sézary syndrome patients with a wide range of circulating tumor burdens. To further characterize CD164 as a potential biomarker for malignant CD4+ T cells, CD164+ and CD164-CD4+ T cells isolated from patients with high-circulating tumor burden, B2 stage, and medium/low tumor burden, B1-B0 stage, were assessed for the expression of genes reported to differentiate SS from normal controls, and associated with malignancy and poor prognosis. The expression of Sézary signature genes: T plastin, GATA-3, along with FCRL3, Tox, and miR-214, was significantly higher, whereas STAT-4 was lower, in CD164+ compared with CD164-CD4+ T cells. While Tox was highly expressed in both B2 and B1-B0 patients, the expression of Sézary signature genes, FCRL3, and miR-214 was associated predominantly with advanced B2 disease. High expression of CD164 mRNA and protein was also detected in skin from CTCL patients. CD164 was co-expressed with KIR3DL2 on circulating CD4+ T cells from high tumor burden SS patients, further providing strong support for CD164 as a disease relevant surface biomarker.
Collapse
Affiliation(s)
- Bernice M Benoit
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 1049 BRB, Philadelphia, PA, 19104, USA
| | - Neha Jariwala
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 1049 BRB, Philadelphia, PA, 19104, USA
| | - Geraldine O'Connor
- National Cancer Institute, Cancer and Inflammation Program, Frederick, MD, USA
| | - Landon K Oetjen
- Division of Dermatology, Department of Medicine, Washington University, St. Louis, MO, USA
- The Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO, USA
| | - Timothy M Whelan
- Division of Dermatology, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Adrienne Werth
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 1049 BRB, Philadelphia, PA, 19104, USA
| | - Andrea B Troxel
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène Sicard
- Innate Pharma, Research and Drug Development, Marseille, France
| | - Lisa Zhu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 1049 BRB, Philadelphia, PA, 19104, USA
| | - Christopher Miller
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 1049 BRB, Philadelphia, PA, 19104, USA
| | - Junko Takeshita
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 1049 BRB, Philadelphia, PA, 19104, USA
| | - Daniel W McVicar
- National Cancer Institute, Cancer and Inflammation Program, Frederick, MD, USA
| | - Brian S Kim
- Division of Dermatology, Department of Medicine, Washington University, St. Louis, MO, USA
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
- The Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 1049 BRB, Philadelphia, PA, 19104, USA
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, 1049 BRB, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Malignant inflammation in cutaneous T-cell lymphoma-a hostile takeover. Semin Immunopathol 2016; 39:269-282. [PMID: 27717961 PMCID: PMC5368200 DOI: 10.1007/s00281-016-0594-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early indolent to progressive and advanced disease is accompanied by a significant shift in the nature of the tumor-associated inflammation. This shift does not appear to be an epiphenomenon but rather a critical step in disease progression. Emerging evidence supports that the malignant T cells take control of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We further define the term "malignant inflammation" as a pro-tumorigenic inflammatory environment orchestrated by the tumor cells and discuss some of the mechanisms driving the development of malignant inflammation in CTCL.
Collapse
|
34
|
Sibbesen NA, Kopp KL, Litvinov IV, Jønson L, Willerslev-Olsen A, Fredholm S, Petersen DL, Nastasi C, Krejsgaard T, Lindahl LM, Gniadecki R, Mongan NP, Sasseville D, Wasik MA, Iversen L, Bonefeld CM, Geisler C, Woetmann A, Odum N. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget 2016; 6:20555-69. [PMID: 26244872 PMCID: PMC4653025 DOI: 10.18632/oncotarget.4111] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of Janus kinase-3 (Jak3) and its key down-stream effectors, Signal Transducer and Activator of Transcription-3 (STAT3) and STAT5, is a key feature of malignant transformation in cutaneous T-cell lymphoma (CTCL). However, it remains only partially understood how Jak3/STAT activation promotes lymphomagenesis. Recently, non-coding microRNAs (miRNAs) have been implicated in the pathogenesis of this malignancy. Here, we show that (i) malignant T cells display a decreased expression of a tumor suppressor miRNA, miR-22, when compared to non-malignant T cells, (ii) STAT5 binds the promoter of the miR-22 host gene, and (iii) inhibition of Jak3, STAT3, and STAT5 triggers increased expression of pri-miR-22 and miR-22. Curcumin, a nutrient with anti-Jak3 activity and histone deacetylase inhibitors (HDACi) also trigger increased expression of pri-miR-22 and miR-22. Transfection of malignant T cells with recombinant miR-22 inhibits the expression of validated miR-22 targets including NCoA1, a transcriptional co-activator in others cancers, as well as HDAC6, MAX, MYCBP, PTEN, and CDK2, which have all been implicated in CTCL pathogenesis. In conclusion, we provide the first evidence that de-regulated Jak3/STAT3/STAT5 signalling in CTCL cells represses the expression of the gene encoding miR-22, a novel tumor suppressor miRNA.
Collapse
Affiliation(s)
- Nina A Sibbesen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Katharina L Kopp
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Lars Jønson
- Departmen of Molecular Medicine, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Simon Fredholm
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David L Petersen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise M Lindahl
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Robert Gniadecki
- Departmen of Dermatology, Copenhagen University Hospital, Bispebjerg, Copenhagen, Denmark
| | - Nigel P Mongan
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Denis Sasseville
- Division of Dermatology, McGill University Health Centre, Montréal, Quebec, Canada
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Odum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Haider A, Steininger A, Ullmann R, Hummel M, Dimitrova L, Beyer M, Vandersee S, Lenze D, Sterry W, Assaf C, Möbs M. Inactivation of RUNX3/p46 Promotes Cutaneous T-Cell Lymphoma. J Invest Dermatol 2016; 136:2287-2296. [PMID: 27377697 DOI: 10.1016/j.jid.2016.05.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
Abstract
The key role of RUNX3 in physiological T-cell differentiation has been extensively documented. However, information on its relevance for the development of human T-cell lymphomas or leukemias is scarce. Here, we show that alterations of RUNX3 by either heterozygous deletion or methylation of its distal promoter can be observed in the tumor cells of 15 of 21 (71%) patients suffering from Sézary syndrome, an aggressive variant of cutaneous T-cell lymphoma. As a consequence, mRNA levels of RUNX3/p46, the isoform controlled by the distal promoter, are significantly lower in Sézary syndrome tumor cells. Re-expression of RUNX3/p46 reduces cell viability and promotes apoptosis in a RUNX3/p46low cell line of cutaneous T-cell lymphoma. Based on this, we present evidence that RUNX3 can act as a tumor suppressor in a human T-cell malignancy and suggest that this effect is predominantly mediated through transcripts from its distal promoter, in particular RUNX3/p46.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Anne Steininger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Reinhard Ullmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, Munich, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Lora Dimitrova
- Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Marc Beyer
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Staffan Vandersee
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany; Central German Armed Forces hospital, Department of Dermatology and Allergy, Koblenz, Germany
| | - Dido Lenze
- Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Chalid Assaf
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany; Department of Dermatology, HELIOS Klinikum Krefeld, Krefeld, Germany.
| | - Markus Möbs
- Department of Dermatology, Charité - Universitaetsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité - Universitaetsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Boonk SE, Zoutman WH, Marie-Cardine A, van der Fits L, Out-Luiting JJ, Mitchell TJ, Tosi I, Morris SL, Moriarty B, Booken N, Felcht M, Quaglino P, Ponti R, Barberio E, Ram-Wolff C, Jäntti K, Ranki A, Bernengo MG, Klemke CD, Bensussan A, Michel L, Whittaker S, Bagot M, Tensen CP, Willemze R, Vermeer MH. Evaluation of Immunophenotypic and Molecular Biomarkers for Sézary Syndrome Using Standard Operating Procedures: A Multicenter Study of 59 Patients. J Invest Dermatol 2016; 136:1364-1372. [DOI: 10.1016/j.jid.2016.01.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
37
|
Wong HK. STAT Assays with a TWIST: Differentiating Sézary Syndrome from Erythrodermic Inflammatory Dermatitis. J Invest Dermatol 2016; 136:1313-1315. [PMID: 27342033 DOI: 10.1016/j.jid.2016.05.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
Abstract
Sézary syndrome can be challenging to differentiate from erythrodermic inflammatory dermatitis. Biomarkers have been identified in Sézary syndrome, but have not been validated in multicenter studies in a cohort that allows comparisons. Boonk et al. now describe results that confirm the value of immunophenotype, and they report higher sensitivity and specificity for a set of genes used to distinguish Sézary syndrome from erythrodermic inflammatory dermatitis.
Collapse
Affiliation(s)
- Henry K Wong
- Department of Dermatology, University of Arkansas for Medical Science, Little Rock, Arkansas, USA.
| |
Collapse
|
38
|
van Doorn R, Slieker RC, Boonk SE, Zoutman WH, Goeman JJ, Bagot M, Michel L, Tensen CP, Willemze R, Heijmans BT, Vermeer MH. Epigenomic Analysis of Sézary Syndrome Defines Patterns of Aberrant DNA Methylation and Identifies Diagnostic Markers. J Invest Dermatol 2016; 136:1876-1884. [PMID: 27113428 DOI: 10.1016/j.jid.2016.03.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/09/2016] [Accepted: 03/29/2016] [Indexed: 11/28/2022]
Abstract
Sézary syndrome (Sz) is a malignancy of skin-homing CD4(+) memory T cells that is clinically characterized by erythroderma, lymphadenopathy, and blood involvement. Distinction of Sz from erythroderma secondary to inflammatory skin diseases (erythrodermic inflammatory dermatosis [EID]) is often challenging. Recent studies identified recurrent mutations in epigenetic enzymes involved in DNA modification in Sz. Here we defined the DNA methylomes of purified CD4(+) T cells from patients with Sz, EID, and healthy control subjects. Sz showed extensive global DNA methylation alterations, with 7.8% of 473,921 interrogated autosomal CpG sites showing hypomethylation and 3.2% hypermethylation. Promoter CpG islands were markedly enriched for hypermethylation. The 126 genes with recurrent promoter hypermethylation in Sz included multiple candidate tumor suppressors that showed transcriptional repression, implicating aberrant methylation in the pathogenesis of Sz. Validation in an independent sample set showed promoter hypermethylation of CMTM2, C2orf40, G0S2, HSPB6, PROM1, and PAM in 94-100% of Sz samples but not in EID samples. Notably, promoter hypermethylation of a single gene, the chemokine-like factor CMTM2, was sufficient to accurately distinguish Sz from EID in all cases. This study shows that Sz is characterized by widespread yet distinct DNA methylation alterations, which can be used clinically as epigenetic diagnostic markers.
Collapse
Affiliation(s)
- Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Roderick C Slieker
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stéphanie E Boonk
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelle J Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine Bagot
- Institut National de la Santé et de la Recherche Médicale U976, Onco-Dermatology, Immunology and Cutaneous Stem Cells, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Saint Louis Hospital, Department of Dermatology, Paris, France
| | - Laurence Michel
- Institut National de la Santé et de la Recherche Médicale U976, Onco-Dermatology, Immunology and Cutaneous Stem Cells, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Saint Louis Hospital, Department of Dermatology, Paris, France
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bas T Heijmans
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary syndrome: old enigmas, new targets. J Dtsch Dermatol Ges 2016; 14:256-64. [DOI: 10.1111/ddg.12900] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan P. Nicolay
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
- Department of Immunogenetics; German Cancer Research Center; Heidelberg Germany
| | - Moritz Felcht
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
40
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary-Syndrom: von ungelösten Fragen zu neuen Therapieansätzen. J Dtsch Dermatol Ges 2016. [DOI: 10.1111/ddg.12900_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan P. Nicolay
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
- Abteilung für Immungenetik; Deutsches Krebsforschungszentrum; Heidelberg Deutschland
| | - Moritz Felcht
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Kai Schledzewski
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Sergij Goerdt
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Cyrill Géraud
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| |
Collapse
|
41
|
Hurabielle C, Michel L, Ram-Wolff C, Battistella M, Jean-Louis F, Beylot-Barry M, d’Incan M, Bensussan A, Bagot M. Expression of Sézary Biomarkers in the Blood of Patients with Erythrodermic Mycosis Fungoides. J Invest Dermatol 2016; 136:317-20. [DOI: 10.1038/jid.2015.360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/18/2022]
|
42
|
|
43
|
Hameetman L, van der Fits L, Zoutman WH, Out-Luiting JJ, Siegal G, de Esch IJP, Vermeer MH, Tensen CP. EPHA4 is overexpressed but not functionally active in Sézary syndrome. Oncotarget 2015; 6:31868-76. [PMID: 26376612 PMCID: PMC4741646 DOI: 10.18632/oncotarget.5573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/15/2015] [Indexed: 01/29/2023] Open
Abstract
EPHA4 belongs to the largest subfamily of receptor tyrosine kinases. In addition to its function during development, overexpression of EPHA4 in tumors has been correlated with increased proliferation, migration and poor survival. Several genome-wide transcription profiling studies have demonstrated high EPHA4 expression in Sézary syndrome (SS), a leukemic variant of cutaneous CD4+ T-cell lymphoma (CTCL) with an aggressive clinical course and poor prognosis. In this study we set out to explore the functional role of EPHA4 in SS. Both high EPHA4 mRNA and protein expression was found in circulating SS-cells of patients compared to healthy CD4+ T-cells. However, using a phosphospecific EPHA4 antibody, phosphorylation of the EPHA4 kinase domain was not detected in either circulating or skin residing SS cells. Moreover, treatment with the phosphatase inhibitor pervanadate did not result in detectable phosphorylation of the EPHA4 kinase domain, in either SS cells or in healthy CD4+ T-cells. Thus, the results from our study confirm high EPHA4 expression in SS cells both on the mRNA and protein levels, making EPHA4 a good diagnostic marker. However, the overexpressed EPHA4 does not appear to be functionally active and its overexpression might be secondary to other oncogenic drivers in SS, like STAT3 and TWIST1.
Collapse
Affiliation(s)
- Liesbeth Hameetman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leslie van der Fits
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem H Zoutman
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacoba J Out-Luiting
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregg Siegal
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Iwan J P de Esch
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Norozi F, Ahmadzadeh A, Shahjahani M, Shahrabi S, Saki N. Twist as a new prognostic marker in hematological malignancies. Clin Transl Oncol 2015. [DOI: 10.1007/s12094-015-1357-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D, Duvic M. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle 2015; 13:3331-5. [PMID: 25485578 DOI: 10.4161/15384101.2014.965061] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deregulation of STAT signaling has been implicated in the pathogenesis for a variety of cancers, including CTCL. Constitutive activation of STAT5 and STAT3 was observed in early and late stages of CTCL, respectively. In early stages, IL-2, IL-7 and IL-15 signaling via JAK1 and JAK3 kinases is believed to be responsible for activating STAT5, while in advanced stages development of IL-21 autocrine signaling is thought to be important for STAT3 activation. Recent molecular evidence further suggests that upregulation of STAT5 in early disease stages results in increased expression of oncogenic miR-155 microRNA that subsequently targets STAT4 expression on mRNA level. STAT4 signaling is known to be critical for T helper (Th) 1 phenotype differentiation and its loss results in a switch from Th1 to Th2 phenotype in malignant T cells. During this switch the expression of STAT6 is often upregulated in CTCL. In advanced stages, activation of STAT3 and STAT5 may become completely cytokine-independent and be driven only via constitutively active JAK1 and JAK3 kinases. Further research into the molecular pathogenesis of JAK/STAT signaling in this cancer may enable us to develop effective therapies for our patients.
Collapse
Affiliation(s)
- Elena Netchiporouk
- a Division of Dermatology ; McGill University Health Centre ; Montréal , QC Canada
| | | | | | | | | | | |
Collapse
|
46
|
Henn A, Michel L, Fite C, Deschamps L, Ortonne N, Ingen-Housz-Oro S, Marinho E, Beylot-Barry M, Bagot M, Laroche L, Crickx B, Maubec E. Sézary syndrome without erythroderma. J Am Acad Dermatol 2015; 72:1003-9.e1. [DOI: 10.1016/j.jaad.2014.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 10/23/2022]
|
47
|
Fujii K, Karpova MB, Asagoe K, Georgiev O, Dummer R, Urosevic-Maiwald M. Versican upregulation in Sézary cells alters growth, motility and resistance to chemotherapy. Leukemia 2015; 29:2024-32. [DOI: 10.1038/leu.2015.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
|
48
|
Promoter-Specific Hypomethylation Is Associated with Overexpression of PLS3, GATA6, and TWIST1 in the Sezary Syndrome. J Invest Dermatol 2015; 135:2084-2092. [PMID: 25806852 DOI: 10.1038/jid.2015.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 10/25/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022]
Abstract
The Sézary Syndrome (SS) is an aggressive CD4+ leukemic variant of cutaneous T-cell lymphoma. Epigenetic modification of cancer cell genome is often linked to the expression of important cancer-related genes. Here we addressed the hypothesis that, in SS, DNA hypomethylation is involved in upregulation of PLS3, GATA6, and TWIST1, genes that are undetected in normal lymphocytes. Pyrosequencing analysis of CpG rich regions, and CpG dinucleotides within the 5' regulatory regions, confirmed hypomethylation of all three genes in SS, compared with controls. We then studied how methylation regulates PLS3 transcription in vitro using PLS3-negative (Jurkat) and PLS3-positive (HT-1080) cell lines. Treatment with the hypomethylating agent 5-azacytidine induced PLS3 expression in Jurkat cells and in vitro methylation of the cloned PLS3 promoter suppressed luciferase expression in HT-1080 cells. In conclusion, we show that promoter hypomethylation is associated with PLS3, GATA6, and TWIST1 overexpression in SS CD4+ T cells and that methylation can regulate PLS3 expression in vitro. The mechanisms of DNA hypomethylation in vivo and the functional role of PLS3, TWIST1, and GATA6 in SS are being investigated.
Collapse
|
49
|
Yu X, Li Z, Liu J. MiRNAs in primary cutaneous lymphomas. Cell Prolif 2015; 48:271-7. [PMID: 25736784 DOI: 10.1111/cpr.12179] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023] Open
Abstract
Primary cutaneous lymphomas (PCL) compose a heterogeneous disease with still unknown aetiology and mechanisms of development. MicroRNAs (miRNAs) have recently been discovered as one of the crucial players in PCL carcinogenesis through post-transcriptional regulation of gene expression. miRNAs have been reported to be frequently deregulated in PCLs and their biological significance has been further confirmed in multiple functional experiments. Such studies help us understand molecular pathogenesis of PCL. In this review, we summarize expression of miRNAs and their corresponding roles in different subtypes of PCL. With expression and functional role of miRNAs revealed, investigation of their possible clinical use as biomarkers for diagnosis, prediction of prognosis and target for therapies, will be a promising area in the future.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | | | | |
Collapse
|
50
|
Chang TP, Poltoratsky V, Vancurova I. Bortezomib inhibits expression of TGF-β1, IL-10, and CXCR4, resulting in decreased survival and migration of cutaneous T cell lymphoma cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2942-53. [PMID: 25681335 DOI: 10.4049/jimmunol.1402610] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased expression of the immunosuppressive cytokines, TGF-β1 and IL-10, is a hallmark of the advanced stages of cutaneous T cell lymphoma (CTCL), where it has been associated with suppressed immunity, increased susceptibility to infections, and diminished antitumor responses. Yet, little is known about the transcriptional regulation of TGF-β1 and IL-10 in CTCL, and about their function in regulating the CTCL cell responses. In this article, we show that TGF-β1 and IL-10 expression in CTCL cells is regulated by NF-κB and suppressed by bortezomib (BZ), which has shown promising results in the treatment of CTCL. However, although the TGF-β1 expression is IκBα dependent and is regulated by the canonical pathway, the IL-10 expression is IκBα independent, and its inhibition by BZ is associated with increased promoter recruitment of p52 that characterizes the noncanonical pathway. TGF-β1 suppression decreases CTCL cell viability and increases apoptosis, and adding exogenous TGF-β1 increases viability of BZ-treated CTCL cells, indicating TGF-β1 prosurvival function in CTCL cells. In addition, TGF-β1 suppression increases expression of the proinflammatory cytokines IL-8 and IL-17 in CTCL cells, suggesting that TGF-β1 also regulates the IL-8 and IL-17 expression. Importantly, our results demonstrate that BZ inhibits expression of the chemokine receptor CXCR4 in CTCL cells, resulting in their decreased migration, and that the CTCL cell migration is mediated by TGF-β1. These findings provide the first insights into the BZ-regulated TGF-β1 and IL-10 expression in CTCL cells, and indicate that TGF-β1 has a key role in regulating CTCL survival, inflammatory gene expression, and migration.
Collapse
Affiliation(s)
- Tzu-Pei Chang
- Department of Biological Sciences, St. John's University, New York, NY 11439; and
| | - Vladimir Poltoratsky
- Department of Pharmaceutical Sciences, St. John's University, New York, NY 11439
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, New York, NY 11439; and
| |
Collapse
|