1
|
Hyperactivation of p21-Activated Kinases in Human Cancer and Therapeutic Sensitivity. Biomedicines 2023; 11:biomedicines11020462. [PMID: 36830998 PMCID: PMC9953343 DOI: 10.3390/biomedicines11020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last three decades, p21-activated kinases (PAKs) have emerged as prominent intracellular nodular signaling molecules in cancer cells with a spectrum of cancer-promoting functions ranging from cell survival to anchorage-independent growth to cellular invasiveness. As PAK family members are widely overexpressed and/or hyperactivated in a variety of human tumors, over the years PAKs have also emerged as therapeutic targets, resulting in the development of clinically relevant PAK inhibitors. Over the last two decades, this has been a promising area of active investigation for several academic and pharmaceutical groups. Similar to other kinases, blocking the activity of one PAK family member leads to compensatory activity on the part of other family members. Because PAKs are also activated by stress-causing anticancer drugs, PAKs are components in the rewiring of survival pathways in the action of several therapeutic agents; in turn, they contribute to the development of therapeutic resistance. This, in turn, creates an opportunity to co-target the PAKs to achieve a superior anticancer cellular effect. Here we discuss the role of PAKs and their effector pathways in the modulation of cellular susceptibility to cancer therapeutic agents and therapeutic resistance.
Collapse
|
2
|
Paul AM, Amjesh R, George B, Sankaran D, Sandiford OA, Rameshwar P, Pillai MR, Kumar R. The Revelation of Continuously Organized, Co-Overexpressed Protein-Coding Genes with Roles in Cellular Communications in Breast Cancer. Cells 2022; 11:cells11233806. [PMID: 36497066 PMCID: PMC9741223 DOI: 10.3390/cells11233806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Many human cancers, including breast cancer, are polygenic and involve the co-dysregulation of multiple regulatory molecules and pathways. Though the overexpression of genes and amplified chromosomal regions have been closely linked in breast cancer, the notion of the co-upregulation of genes at a single locus remains poorly described. Here, we describe the co-overexpression of 34 continuously organized protein-coding genes with diverse functions at 8q.24.3(143437655-144326919) in breast and other cancer types, the CanCord34 genes. In total, 10 out of 34 genes have not been reported to be overexpressed in breast cancer. Interestingly, the overexpression of CanCord34 genes is not necessarily associated with genomic amplification and is independent of hormonal or HER2 status in breast cancer. CanCord34 genes exhibit diverse known and predicted functions, including enzymatic activities, cell viability, multipotency, cancer stem cells, and secretory activities, including extracellular vesicles. The co-overexpression of 33 of the CanCord34 genes in a multivariant analysis was correlated with poor survival among patients with breast cancer. The analysis of the genome-wide RNAi functional screening, cell dependency fitness, and breast cancer stem cell databases indicated that three diverse overexpressed CanCord34 genes, including a component of spliceosome PUF60, a component of exosome complex EXOSC4, and a ribosomal biogenesis factor BOP1, shared roles in cell viability, cell fitness, and stem cell phenotypes. In addition, 17 of the CanCord34 genes were found in the microvesicles (MVs) secreted from the mesenchymal stem cells that were primed with MDA-MB-231 breast cancer cells. Since these MVs were important in the chemoresistance and dedifferentiation of breast cancer cells into cancer stem cells, these findings highlight the significance of the CanCord34 genes in cellular communications. In brief, the persistent co-overexpression of CanCord34 genes with diverse functions can lead to the dysregulation of complementary functions in breast cancer. In brief, the present study provides new insights into the polygenic nature of breast cancer and opens new research avenues for basic, preclinical, and therapeutic studies in human cancer.
Collapse
Affiliation(s)
- Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- PhD Program, Manipal Academy of Higher Education, Manipal 576104, India
| | - Revikumar Amjesh
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Bijesh George
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- PhD Program, Manipal Academy of Higher Education, Manipal 576104, India
| | - Deivendran Sankaran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Oleta A. Sandiford
- Department of Medicine-Hematology and Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine-Hematology and Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Madhavan Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Correspondence: (M.R.P.); (R.K.)
| | - Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
- Department of Medicine-Hematology and Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun 248016, India
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: (M.R.P.); (R.K.)
| |
Collapse
|
3
|
Wang M, Zhang Y, Chang W, Zhang L, Syrigos KN, Li P. Noncoding RNA-mediated regulation of pyroptotic cell death in cancer. Front Oncol 2022; 12:1015587. [PMID: 36387211 PMCID: PMC9659888 DOI: 10.3389/fonc.2022.1015587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Pyroptosis is a newly discovered form of programmed cell death, which is manifested by DNA fragmentation, cell swelling, cell membrane rupture and leakage of cell contents. Previous studies have demonstrated that pyroptosis is tightly associated with the initiation and development of various cancers, whereas the molecular mechanisms underlying pyroptosis remain obscure. Noncoding RNAs (ncRNAs) are a type of heterogeneous transcripts that are broadly expressed in mammalian cells. Owing to their potency of regulating gene expression, ncRNAs play essential roles in physiological and pathological processes. NcRNAs are increasingly acknowledged as important regulators of the pyroptosis process. Importantly, the crosstalk between ncRNAs and pyroptosis affects various hallmarks of cancer, including cell growth, survival, metastasis and therapeutic resistance. The study of the involvement of pyroptosis-associated ncRNAs in cancer pathobiology has become a hot area in recent years, while there are limited reviews on this topic. Herein, we provide an overview of the complicated roles of ncRNAs, mainly including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in modulating pyroptosis, with a focus on the underlying mechanisms of the ncRNA-pyroptosis axis in cancer pathogenesis. Finally, we discuss the potential applications and challenges of exploiting pyroptosis-regulating ncRNAs as molecular biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Konstantinos N. Syrigos
- Third Department of Internal Medicine and Laboratory, National & Kapodistrian University of Athens, Athens, Greece
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
AKT1 Transcriptomic Landscape in Breast Cancer Cells. Cells 2022; 11:cells11152290. [PMID: 35892586 PMCID: PMC9332453 DOI: 10.3390/cells11152290] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Overexpression and hyperactivation of the serine/threonine protein kinase B (AKT) pathway is one of the most common cellular events in breast cancer progression. However, the nature of AKT1-specific genome-wide transcriptomic alterations in breast cancer cells and breast cancer remains unknown to this point. Here, we delineate the impact of selective AKT1 knock down using gene-specific siRNAs or inhibiting the AKT activity with a pan-AKT inhibitor VIII on the nature of transcriptomic changes in breast cancer cells using the genome-wide RNA-sequencing analysis. We found that changes in the cellular levels of AKT1 lead to changes in the levels of a set of differentially expressed genes and, in turn, imply resulting AKT1 cellular functions. In addition to an expected positive relationship between the status of AKT1 and co-expressed cellular genes, our study unexpectedly discovered an inherent role of AKT1 in inhibiting the expression of a subset of genes in both unstimulated and growth factor stimulated breast cancer cells. We found that depletion of AKT1 leads to upregulation of a subset of genes—many of which are also found to be downregulated in breast tumors with elevated high AKT1 as well as upregulated in breast tumors with no detectable AKT expression. Representative experimental validation studies in two breast cancer cell lines showed a reasonable concurrence between the expression data from the RNA-sequencing and qRT-PCR or data from ex vivo inhibition of AKT1 activity in cancer patient-derived cells. In brief, findings presented here provide a resource for further understanding of AKT1-dependent modulation of gene expression in breast cancer cells and broaden the scope and significance of AKT1 targets and their functions.
Collapse
|
5
|
Delineation of Pathogenomic Insights of Breast Cancer in Young Women. Cells 2022; 11:cells11121927. [PMID: 35741056 PMCID: PMC9221490 DOI: 10.3390/cells11121927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The prognosis of breast cancer (BC) in young women (BCYW) aged ≤40 years tends to be poorer than that in older patients due to aggressive phenotypes, late diagnosis, distinct biologic, and poorly understood genomic features of BCYW. Considering the estimated predisposition of only approximately 15% of the BC population to BC-promoting genes, the underlying reasons for an increased occurrence of BCYW, at large, cannot be completely explained based on general risk factors for BC. This underscores the need for the development of next-generation of tissue- and body fluid-based prognostic and predictive biomarkers for BCYW. Here, we identified the genes associated with BCYW with a particular focus on the age, intrinsic BC subtypes, matched normal or normal breast tissues, and BC laterality. In young women with BC, we observed dysregulation of age-associated cancer-relevant gene sets in both cancer and normal breast tissues, sub-sets of which substantially affected the overall survival (OS) or relapse-free survival (RFS) of patients with BC and exhibited statically significant correlations with several gene modules associated with cellular processes such as the stroma, immune responses, mitotic progression, early response, and steroid responses. For example, high expression of COL1A2, COL5A2, COL5A1, NPY1R, and KIAA1644 mRNAs in the BC and normal breast tissues from young women correlated with a substantial reduction in the OS and RFS of BC patients with increased levels of these exemplified genes. Many of the genes upregulated in BCYW were overexpressed or underexpressed in normal breast tissues, which might provide clues regarding the potential involvement of such genes in the development of BC later in life. Many of BCYW-associated gene products were also found in the extracellular microvesicles/exosomes secreted from breast and other cancer cell-types as well as in body fluids such as urine, saliva, breast milk, and plasma, raising the possibility of using such approaches in the development of non-invasive, predictive and prognostic biomarkers. In conclusion, the findings of this study delineated the pathogenomics of BCYW, providing clues for future exploration of the potential predictive and prognostic importance of candidate BCYW molecules and research strategies as well as a rationale to undertake a prospective clinical study to examine some of testable hypotheses presented here. In addition, the results presented here provide a framework to bring out the importance of geographical disparities, to overcome the current bottlenecks in BCYW, and to make the next quantum leap for sporadic BCYW research and treatment.
Collapse
|
6
|
Acconcia F, Fiocchetti M, Busonero C, Fernandez VS, Montalesi E, Cipolletti M, Pallottini V, Marino M. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Mol Cell Endocrinol 2021; 538:111452. [PMID: 34500041 DOI: 10.1016/j.mce.2021.111452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17β-estradiol (E2) through its estrogen receptors (i.e., ERα and ERβ). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERβ extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERβ extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Virginia Solar Fernandez
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Valentina Pallottini
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
7
|
Paul AM, Pillai MR, Kumar R. Prognostic Significance of Dysregulated Epigenomic and Chromatin Modifiers in Cervical Cancer. Cells 2021; 10:2665. [PMID: 34685645 PMCID: PMC8534148 DOI: 10.3390/cells10102665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
To broaden the understanding of the epigenomic and chromatin regulation of cervical cancer, we examined the status and significance of a set of epigenomic and chromatin modifiers in cervical cancer using computational biology. We observed that 61 of 917 epigenomic and/or chromatin regulators are differentially upregulated in human cancer, including 25 upregulated in invasive squamous cell carcinomas and 29 in cervical intraepithelial neoplasia 3 (CIN3), of which 14 are upregulated in cervical intraepithelial neoplasia 2 (CIN2). Interestingly, 57 of such regulators are uniquely upregulated in cervical cancer, but not ovarian and endometrial cancers. The observed overexpression of 57 regulators was found to have a prognostic significance in cervical cancer. The collective overexpression of these regulators, as well as its subsets belonging to specific histone modifications and corresponding top ten positively co-overexpressed genes, correlated with reduced survival of patients with high expressions of the tested overexpressed regulators compared to cases with low expressions. Using cell-dependency datasets from human cervical cancer cells, we found that 20 out of 57 epigenomic and chromatin regulators studied here appeared to be essential genes, as the depletion of these genes was accompanied by the loss in cellular viability. In brief, the results presented here provide further insights into the role of epigenomic and chromatin regulators in the oncobiology of cervical cancer and broaden the list of new potential molecules of therapeutic importance.
Collapse
Affiliation(s)
- Aswathy Mary Paul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India;
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Rakesh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India;
- Cancer Research Institute, Swami Rama Himalayan University, Dehradun, Uttarakhand 248016, India
- Department of Medicine, Division of Haematology and Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Liu J, Liu Z, Li M, Tang W, Pratap UP, Luo Y, Altwegg KA, Li X, Zou Y, Zhu H, Sareddy GR, Viswanadhapalli S, Vadlamudi RK. Interaction of transcription factor AP-2 gamma with proto-oncogene PELP1 promotes tumorigenesis by enhancing RET signaling. Mol Oncol 2021; 15:1146-1161. [PMID: 33269540 PMCID: PMC8024722 DOI: 10.1002/1878-0261.12871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 01/15/2023] Open
Abstract
A significant proportion of estrogen receptor-positive (ER+) breast cancer (BC) initially responds to endocrine therapy but eventually evolves into therapy-resistant BC. Transcription factor AP-2 gamma (TFAP2C) is a known regulator of ER activity, and high expression of TFAP2C is associated with a decreased response to endocrine therapies. PELP1 is a nuclear receptor coregulator, commonly overexpressed in BC, and its levels are correlated with poorer survival. In this study, we identified PELP1 as a novel interacting protein of TFAP2C. RNA-seq analysis of PELP1 knockdown BC cells followed by transcription factor motif prediction pointed to TFAP2C being enriched in PELP1-regulated genes. Gene set enrichment analysis (GSEA) revealed that the TFAP2C-PELP1 axis induced a subset of common genes. Reporter gene assays confirmed PELP1 functions as a coactivator of TFAP2C. Mechanistic studies showed that PELP1-mediated changes in histone methylation contributed to increased expression of the TFAP2C target gene RET. Furthermore, the TFAP2C-PELP1 axis promoted the activation of the RET signaling pathway, which contributed to downstream activation of AKT and ERK pathways in ER+ BC cells. Concomitantly, knockdown of PELP1 attenuated these effects mediated by TFAP2C. Overexpression of TFAP2C contributed to increased cell proliferation and therapy resistance in ER+ BC models, while knockdown of PELP1 mitigated these effects. Utilizing ZR75-TFAP2C xenografts with or without PELP1 knockdown, we provided genetic evidence that endogenous PELP1 is essential for TFAP2C-driven BC progression in vivo. Collectively, our studies demonstrated that PELP1 plays a critical role in TFAP2C transcriptional and tumorigenic functions in BC and blocking the PELP1-TFAP2C axis could have utility for treating therapy resistance.
Collapse
Affiliation(s)
- Junhao Liu
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Zexuan Liu
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Mengxing Li
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of Respiratory MedicineXiangya HospitalCentral South UniversityHunanChina
| | - Weiwei Tang
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of Obstetrics and GynecologyAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineChina
| | - Uday P. Pratap
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
| | - Yiliao Luo
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of General SurgeryXiangya HospitalCentral South UniversityHunanChina
| | - Kristin A. Altwegg
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Xiaonan Li
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
| | - Yi Zou
- Greehey Children's Cancer Research InstituteUT Health San AntonioTXUSA
| | - Hong Zhu
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Gangadhara R. Sareddy
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Suryavathi Viswanadhapalli
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Ratna K. Vadlamudi
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| |
Collapse
|
9
|
Rees M, Smith C, Barrett-Lee P, Hiscox S. PELP-1 regulates adverse responses to endocrine therapy in Estrogen Receptor (ER) positive breast cancer. Oncotarget 2020; 11:4722-4734. [PMID: 33473257 PMCID: PMC7771710 DOI: 10.18632/oncotarget.27846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Introduction: Endocrine therapy has played an important role in the management of ER positive breast cancer over recent decades. Despite this, not all patients respond equally to endocrine intervention, which can lead to resistance, associated disease relapse and progression. Previous reports suggest that endocrine agents themselves may induce an invasive phenotype in ER positive breast cancers with low/aberrant expression of E-cadherin. Here we investigate this phenomenon further and provide data supporting a role for the ER co-receptor, PELP-1, in mediating an adverse response to endocrine agents. Materials and Methods: The effects of tamoxifen, fulvestrant and estrogen withdrawal (as a model for aromatase inhibitor therapy) on the invasive and migratory capacity of endocrine-sensitive MCF-7 and T47D cells, in the presence or absence of functional E-cadherin and/or PELP-1 (using siRNA knockdown), was assessed via Matrigel invasion and Boyden chamber migration assays. The effects of these endocrine therapies alongside E-cadherin/PELP-1 modulation on cell proliferation were further assessed by MTT assay. Western blotting using phospho-specific antibodies was performed to investigate signalling pathway changes associated with endocrine-induced changes in invasion and migration. Results: Both tamoxifen and fulvestrant induced a pro-invasive and pro-migratory phenotype in ER positive breast cancer cells displaying a high basal expression of PELP-1, which was augmented in the context of poor cell-cell contact. This process occurred in a Src-dependent manner with Src inhibition reversing endocrine induced invasion/migration. While this adverse response was observed using both tamoxifen and fulvestrant therapy, it was not observed under conditions of estrogen withdrawal. Conclusions: Our data confirms previous reports that anti-estrogens induce an adverse cell phenotype in ER+ breast cancer, particularly in the absence of homotypic cell contact. These results implicate E-cadherin and PELP-1 as potential biomarkers when deciding upon optimum adjuvant endocrine therapy, whereby tumours with high PELP-1/low E-cadherin expression may benefit from estrogen withdrawal therapy via aromatase inhibition, as opposed to ER modulation/antagonism.
Collapse
Affiliation(s)
- Michael Rees
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.,Velindre Cancer Centre, Cardiff, UK
| | - Chris Smith
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Steve Hiscox
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Luo Y, Li M, Pratap UP, Viswanadhapalli S, Liu J, Venkata PP, Altwegg KA, Palacios BE, Li X, Chen Y, Rao MK, Brenner AJ, Sareddy GR, Vadlamudi RK. PELP1 signaling contributes to medulloblastoma progression by regulating the NF-κB pathway. Mol Carcinog 2019; 59:281-292. [PMID: 31872914 DOI: 10.1002/mc.23152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is the most common and deadliest brain tumor in children. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein and its oncogenic signaling is implicated in the progression of several cancers. However, the role of PELP1 in the progression of MB remains unknown. The objective of this study is to examine the role of PELP1 in the progression of MB. Immunohistochemical analysis of MB tissue microarrays revealed that PELP1 is overexpressed in the MB specimens compared to normal brain. Knockdown of PELP1 reduced cell proliferation, cell survival, and cell invasion of MB cell lines. The RNA-sequencing analysis revealed that PELP1 knockdown significantly downregulated the pathways related to inflammation and extracellular matrix. Gene set enrichment analysis confirmed that the PELP1-regulated genes were negatively correlated with nuclear factor-κB (NF-κB), extracellular matrix, and angiogenesis gene sets. Interestingly, PELP1 knockdown reduced the expression of NF-κB target genes, NF-κB reporter activity, and inhibited the nuclear translocation of p65. Importantly, the knockdown of PELP1 significantly reduced in vivo MB progression in orthotopic models and improved the overall mice survival. Collectively, these results suggest that PELP1 could be a novel target for therapeutic intervention in MB.
Collapse
Affiliation(s)
- Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Xiangya Hospital, Xiangya School of Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Prabhakar P Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Yihong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjeet K Rao
- Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas.,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrew J Brenner
- Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas.,Department of Hematology and Oncology, University of Texas Health San Antonio, San Antonio, Texas
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, Liu D, Chen Y, Zhang D, Zhang H. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett 2019; 450:22-31. [PMID: 30771436 DOI: 10.1016/j.canlet.2019.02.014] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023]
Abstract
Evasion of apoptosis is a major contributing factor to the development of chemo- and radiotherapy resistance. Therefore, activation of non-apoptotic programmed cell death (PCD) could be an effective alternative against apoptosis-resistant cancers. In this study, we demonstrated in vitro and in vivo that metformin can induce pyroptosis, a non-apoptotic PCD, in esophageal squamous cell carcinoma (ESCC), a commonly known chemo-refractory cancer, especially at its advanced stages. Proline-, glutamic acid- and leucine-rich protein-1 (PELP1) is a scaffolding oncogene and upregulated PELP1 in advanced stages of ESCC is highly associated with cancer progression and patient outcomes. Intriguingly, metformin treatment leads to gasdermin D (GSDMD)-mediated pyroptosis, which is abrogated by forced expression of PELP1. Mechanistically, metformin induces pyroptosis of ESCC by targeting miR-497/PELP1 axis. Our findings suggest that metformin and any other pyroptosis-inducing reagents could serve as alternative treatments for chemo- and radiotherapy refractory ESCC or other cancers sharing the same pyroptosis mechanisms.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, China; Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Kai Li
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, China; Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Xianjie Lin
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhimeng Yao
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Shuhong Wang
- Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao Xiong
- Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhifeng Ning
- Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Jing Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaozheng Xu
- Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Yi Jiang
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ditian Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA, 19131, USA
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Department of Pathology, Jinan University Medical College, Guangzhou, China; Research Centre of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
12
|
Wang X, Tsang JYS, Lee MA, Ni YB, Tong JH, Chan SK, Cheung SY, To KF, Tse GM. The Clinical Value of PELP1 for Breast Cancer: A Comparison with Multiple Cancers and Analysis in Breast Cancer Subtypes. Cancer Res Treat 2018; 51:706-717. [PMID: 30134648 PMCID: PMC6473277 DOI: 10.4143/crt.2018.316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose Proline, glutamic acid, and leucine-rich protein 1 (PELP1), a novel nuclear receptor (NR) co-regulator, is highly expressed in breast cancer. We investigated its expression in breast cancer subtypes, in comparison with other breast markers as well as cancers from different sites. Its prognostic relevance with different subtypes and other NR expression was also examined in breast cancers. Methods Immunohistochemical analysis was performed on totally 1,944 cancers from six different organs. Results PELP1 expression rate was the highest in breast cancers (70.5%) among different cancers. Compared to GATA3, mammaglobin and gross cystic disease fluid protein 15, PELP1 was less sensitive than GATA3 for luminal cancers, but was the most sensitive for non-luminal cancers. PELP1 has low expression rate (<20%) in colorectal cancers, gastric cancers and renal cell carcinomas, but higher in lung cancers (49.1%) and ovarian cancers (42.3%). In breast cancer, PELP1 expression was an independent adverse prognostic factor for non-luminal cancers (disease-free survival [DFS]: hazard ratio [HR], 1.403; p=0.012 and breast cancer specific survival [BCSS]: HR, 1.443; p=0.015). Interestingly, its expression affected the prognostication of androgen receptor (AR). ARposPELP1lo luminal cancer showed the best DFS (log-rank=8.563, p=0.036) while ARnegPELP1hi non-luminal cancers showed the worst DFS (log-rank=9.536, p=0.023). Conclusion PELP1 is a sensitive marker for breast cancer, particularly non-luminal cases. However, its considerable expression in lung and ovarian cancers may limit its utility in differential diagnosis in some scenarios. PELP1 expression was associated with poor outcome in non-luminal cancers and modified the prognostic effects of AR, suggesting the potential significance of NR co-regulator in prognostication.
Collapse
Affiliation(s)
- Xingen Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Julia Y S Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Michelle A Lee
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Joanna H Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Hong Kong
| | | | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
13
|
Cincin ZB, Kiran B, Baran Y, Cakmakoglu B. Hesperidin promotes programmed cell death by downregulation of nongenomic estrogen receptor signalling pathway in endometrial cancer cells. Biomed Pharmacother 2018; 103:336-345. [PMID: 29665555 DOI: 10.1016/j.biopha.2018.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/20/2023] Open
Abstract
Endometrial carcinoma (EC) is the most common malignant gynecologic tumor in women. EC is thought to be caused by increasing estrogen levels relative to progesterone in the body. Hesperidin (Hsd), a biologically active flavonoid, could be extracted from Citrus species. It has been recently shown that Hsd could exert anticarcinogenic properties in different cancer types. However, the effects of Hsd and its molecular mechanisms on EC remain unclear. In this study, the antiproliferative, apoptotic and genomic effects of Hsd in EC and its underlying mechanisms were identified. We found that Hsd significantly suppressed the proliferation of EC cells in dose and time dependent manner. Mechanistic studies showed that Hsd could contribute apoptosis by inducing externalization of phosphatidyl serine (PS), caspase-3 activity and loss of mitochondrial membrane (MMP). Furthermore, we examined that Hsd could also significantly upregulate the expression of proapoptotic Bax subgroup genes (Bax and Bik) while downregulating the anti-apoptotic protein Bcl-2 in EC cell lines. According to GO enrichment and KEGG pathway analysis of differentially expressed genes in Hsd treated EC cells, we identified that Hsd could promote cell death via downregulation of estrogen receptor I (ESRI) that was directly related to ERK/MAPK pathway. Taken together, our study first showed that Hsd could be an antiestrogenic compound that could modulate nongenomic estrogen receptor signaling through inhibition of EC cell growth. Our findings may provide us a novel growth inhibitory agent for EC treatment after verifying its molecular mechanism with in vivo studies.
Collapse
Affiliation(s)
- Z B Cincin
- Department of Molecular Medicine, Aziz Sancar Institute for Experimental Medicine Research, Istanbul University, Turkey; Department of Genetics and Bioengineering, Nisantasi University, Istanbul, Turkey
| | - B Kiran
- Department of Genetics and Bioengineering, Kastamonu University, Kastamonu, Turkey
| | - Y Baran
- Department of Molecular Biology and Genetics, Izmır Technology of Institute, Izmir, Turkey
| | - B Cakmakoglu
- Department of Molecular Medicine, Aziz Sancar Institute for Experimental Medicine Research, Istanbul University, Turkey.
| |
Collapse
|
14
|
Thakkar R, Sareddy GR, Zhang Q, Wang R, Vadlamudi RK, Brann D. PELP1: a key mediator of oestrogen signalling and actions in the brain. J Neuroendocrinol 2018; 30:10.1111/jne.12484. [PMID: 28485080 PMCID: PMC5785553 DOI: 10.1111/jne.12484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an oestrogen receptor (ER) coregulator protein identified by our collaborative group. Work from our laboratory and others has shown that PELP1 is a scaffold protein that interacts with ERs and kinase signalling factors, as well as proteins involved in chromatin remodelling and DNA repair. Its role in mediating 17β-oestradiol (E2 ) signalling and actions has been studied in detail in cancer cells, although only recently has attention turned to its role in the brain. In this review, we discuss the tissue, cellular and subcellular localisation of PELP1 in the brain. We also discuss recent evidence from PELP1 forebrain-specific knockout mice demonstrating a critical role of PELP1 in mediating both extranuclear and nuclear ER signalling in the brain, as well as E2 -induced neuroprotection, anti-inflammatory effects and regulation of cognitive function. Finally, the PELP1 interactome and unique gene network regulated by PELP1 in the brain is discussed, especially because it provides new insights into PELP1 biology, protein interactions and mechanisms of action in the brain. As a whole, the findings discussed in the present review indicate that PELP1 functions as a critical ER coregulator in the brain to mediate E2 signalling and actions.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Corresponding Author: Dr. Darrell Brann, Regents’ Professor and Vice Chair, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15 Street, CA-4004, Augusta, GA 30912, USA. Phone: 1-706-721-7779
| |
Collapse
|
15
|
Rago V, Romeo F, Giordano F, Malivindi R, Pezzi V, Casaburi I, Carpino A. Expression of oestrogen receptors (GPER, ESR1, ESR2) in human ductuli efferentes and proximal epididymis. Andrology 2017; 6:192-198. [PMID: 29145706 DOI: 10.1111/andr.12443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/16/2022]
Abstract
Oestrogen targeting in the human genital ducts is still not well-known. In fact, to date, the localization of oestrogen receptors, ESR1 and ESR2, is controversial and the presence of the membrane oestrogen receptor GPER (G protein-coupled oestrogen receptor) is unexplored. This study has investigated the expression of GPER, ESR1, ESR2 in human ductuli efferentes and proximal caput epididymis by immunohistochemistry and Western blot analysis. Furthermore, the presence of PELP1 (proline-glutamic acid-leucine-rich protein 1), a co-regulator of the oestrogen receptors, was also evaluated. In ductuli efferentes, GPER and ESR1 were clearly localized in all epithelial cells, while ESR2 was evidenced only in ciliated cells. Conversely, the epithelial cells of proximal caput epididymis revealed moderate GPER immunoreactivity, the absence of ERS1 and the occasional presence of ESR2. Furthermore, PELP1 was observed in ciliated cells of ductuli efferentes and in principal cells of proximal caput epididymis. Therefore, this study firstly demonstrated the expression of GPER in human male genital ducts, revealing a new mediator of oestrogen action in these anatomical sites. ESR1 and ESR2 were differentially localized in the two genital tracts together with PELP1, but cell sites of ERs and their co-regulator were not homogeneous. So, a different regional/cellular association of GPER with the classical oestrogen receptors was highlighted, suggesting that oestrogen action could be mediated by GPER, ESR1, ESR2 in ductuli efferentes, while by GPER and, occasionally by ESR2, in proximal caput epididymis. This study suggests that the specific oestrogen-mediated functions in human genital ducts might result from the different local interactions of oestrogens with oestrogen receptors and their co-regulators.
Collapse
Affiliation(s)
- V Rago
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - F Romeo
- Pathologic Anatomy Unit, Annunziata Hospital, Cosenza, Italy
| | - F Giordano
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - R Malivindi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - V Pezzi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - I Casaburi
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - A Carpino
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
16
|
Girard BJ, Knutson TP, Kuker B, McDowell L, Schwertfeger KL, Ostrander JH. Cytoplasmic Localization of Proline, Glutamic Acid, Leucine-rich Protein 1 (PELP1) Induces Breast Epithelial Cell Migration through Up-regulation of Inhibitor of κB Kinase ϵ and Inflammatory Cross-talk with Macrophages. J Biol Chem 2016; 292:339-350. [PMID: 27881676 DOI: 10.1074/jbc.m116.739847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/22/2016] [Indexed: 01/06/2023] Open
Abstract
Cytoplasmic localization of proline, glutamic acid, leucine-rich protein 1 (PELP1) is observed in ∼40% of women with invasive breast cancer. In mouse models, PELP1 overexpression in the mammary gland leads to premalignant lesions and eventually mammary tumors. In preliminary clinical studies, cytoplasmic localization of PELP1 was seen in 36% of women at high risk of developing breast cancer. Here, we investigated whether cytoplasmic PELP1 signaling promotes breast cancer initiation in models of immortalized human mammary epithelial cells (HMECs). Global gene expression analysis was performed on HMEC lines expressing vector control, PELP1-wt, or mutant PELP1 in which the nuclear localization sequence was altered, resulting in cytoplasmic localization of PELP1 (PELP1-cyto). Global gene expression analysis identified that PELP1-cyto expression in HMECs induced NF-κB signaling pathways. Western blotting analysis of PELP1-cyto HMECs showed up-regulation of inhibitor of κB kinase ϵ (IKKϵ) and increased phosphorylation of the NF-κB subunit RelB. To determine whether secreted factors produced by PELP1-cyto HMECs promote macrophage activation, THP-1 macrophages were treated with HMEC-conditioned medium (CM). PELP1-cyto CM induced changes in THP-1 gene expression as compared with control cell CM. Double conditioned medium (DCM) from the activated THP-1 cells was then applied to HMECs to determine whether paracrine signaling from PELP1-cyto-activated macrophages could in turn promote migration of HMECs. PELP1-cyto DCM induced robust HMEC migration, which was reduced in DCM from PELP1-cyto HMECs expressing IKKϵ shRNA. Our findings suggest that cytoplasmic localization of PELP1 up-regulates pro-tumorigenic IKKϵ and secreted inflammatory signals, which through paracrine macrophage activation regulates the migratory phenotype associated with breast cancer initiation.
Collapse
Affiliation(s)
| | | | | | | | - Kathryn L Schwertfeger
- From the Masonic Cancer Center and.,Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
17
|
PELP1: Structure, biological function and clinical significance. Gene 2016; 585:128-134. [PMID: 26997260 DOI: 10.1016/j.gene.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 01/10/2023]
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein that functions as a coregulator of several transcription factors and nuclear receptors. Notably, the PELP1 protein has a histone-binding domain, recognizes histone modifications and interacts with several chromatin-modifying complexes. PELP1 serves as a substrate of multitude of kinases, and phosphorylation regulates its functions in various complexes. Further, PELP1 plays essential roles in several pathways including hormonal signaling, cell cycle progression, ribosomal biogenesis, and the DNA damage response. PELP1 expression is upregulated in several cancers, its deregulation contributes to therapy resistance, and it is a prognostic biomarker for breast cancer survival. Recent evidence suggests that PELP1 represents a novel therapeutic target for many hormonal cancers. In this review, we summarized the emerging biological properties and functions of PELP1.
Collapse
|
18
|
Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain. Proc Natl Acad Sci U S A 2015; 112:E6673-82. [PMID: 26627258 DOI: 10.1073/pnas.1516729112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
17-β estradiol (E2) has been implicated as neuroprotective in a variety of neurodegenerative disorders. However, the underlying mechanism remains unknown. Here, we provide genetic evidence, using forebrain-specific knockout (FBKO) mice, that proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), an estrogen receptor coregulator protein, is essential for the extranuclear signaling and neuroprotective actions of E2 in the hippocampal CA1 region after global cerebral ischemia (GCI). E2-mediated extranuclear signaling (including activation of extracellular signal-regulated kinase and Akt) and antiapoptotic effects [such as attenuation of JNK signaling and increase in phosphorylation of glycogen synthase kinase-3β (GSK3β)] after GCI were compromised in PELP1 FBKO mice. Mechanistic studies revealed that PELP1 interacts with GSK3β, E2 modulates interaction of PELP1 with GSK3β, and PELP1 is a novel substrate for GSK3β. RNA-seq analysis of control and PELP1 FBKO mice after ischemia demonstrated alterations in several genes related to inflammation, metabolism, and survival in PELP1 FBKO mice, as well as a significant reduction in the activation of the Wnt/β-catenin signaling pathway. In addition, PELP1 FBKO studies revealed that PELP1 is required for E2-mediated neuroprotection and for E2-mediated preservation of cognitive function after GCI. Collectively, our data provide the first direct in vivo evidence, to our knowledge, of an essential role for PELP1 in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain.
Collapse
|
19
|
Abstract
Therapies targeting estrogen receptor alpha (ERα), including selective ER modulators such as tamoxifen, selective ER downregulators such as fulvestrant (ICI 182 780), and aromatase inhibitors such as letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited by acquired resistance. The role of microRNAs (miRNAs) in the progression of endocrine-resistant breast cancer is of keen interest in developing biomarkers and therapies to counter metastatic disease. This review focuses on miRNAs implicated as disruptors of antiestrogen therapies, their bona fide gene targets and associated pathways promoting endocrine resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| |
Collapse
|
20
|
Estrogens Correlate with PELP1 Expression in ER Positive Breast Cancer. PLoS One 2015; 10:e0134351. [PMID: 26247365 PMCID: PMC4527840 DOI: 10.1371/journal.pone.0134351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022] Open
Abstract
The Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an estrogen receptor (ER) coactivator and a proto-oncogene known to be deregulated in endocrine cancers. In breast cancer, PELP1 overexpression has been associated with endocrine therapy resistance. Although PELP1 is known to be regulated by estrogens in vitro, its association with estrogen levels within the tissue of breast cancer patients has not previously been assessed. Here, we determined PELP1 mRNA expression levels in paired samples of normal and malignant breast tissue obtained from 32 postmenopausal and 11 premenopausal women. In the total sample set, PELP1 levels were higher in tumors compared to normal breast tissue (P = 0.041). Among postmenopausal women, PELP1 tumor levels correlated positively with estrone (E1) and estradiol (E2) levels in both normal tissue (r = 0.543, P = 0.003 and r = 0.601, P = 0.001, respectively) and plasma (r = 0.392, P = 0.053 and r = 0.403, P = 0.046, respectively). Analyzing all ER+ tumors (n = 26), PELP1 correlated positively with E1 and E2 in tumor tissue (r = 0.562, P = 0.003 and r = 0.411, P = 0.037, respectively) and normal tissue (r = 0.461, P = 0.018 and r = 0.427, P = 0.030, respectively) in addition to plasma E1, E2 and estrone sulphate (E1S) concentrations (r = 0.576, P = 0.003, r = 0.456, P = 0.025 and r = 0.406, P = 0.049, respectively). Finally, PELP1 correlated positively with ER mRNA (ESR1) (r = 0.553, P = 0.026) in ER+ tumors, whereas a negative association between PELP1 and ESR1 (r = -0.733, P = 0.010) was observed in ER- breast tumors. Taken together, tumor PELP1 mRNA expression is associated with estrogen levels in breast cancer, suggesting a potentially important role of PELP1 in ER+ breast cancer growth in vivo.
Collapse
|
21
|
Ravindranathan P, Lange CA, Raj GV. Minireview: Deciphering the Cellular Functions of PELP1. Mol Endocrinol 2015; 29:1222-9. [PMID: 26158753 DOI: 10.1210/me.2015-1049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Preethi Ravindranathan
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Carol A Lange
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Ganesh V Raj
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| |
Collapse
|
22
|
Gonugunta VK, Miao L, Sareddy GR, Ravindranathan P, Vadlamudi R, Raj GV. The social network of PELP1 and its implications in breast and prostate cancers. Endocr Relat Cancer 2014; 21:T79-86. [PMID: 24859989 DOI: 10.1530/erc-13-0502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proline, glutamic acid- and leucine-rich protein 1 (PELP1) is a multi-domain scaffold protein that serves as a platform for various protein-protein interactions between steroid receptors (SRs) and signaling factors and cell cycle, transcriptional, cytoskeletal, and epigenetic remodelers. PELP1 is known to be a coregulator of transcription and participates in the nuclear and extranuclear functions of SRs, ribosome biogenesis, and cell cycle progression. The expression and localization of PELP1 are dysregulated in hormonal cancers including breast and prostate cancers. This review focuses on the interactive functions and therapeutic and prognostic significance of PELP1 in breast and prostate cancers.
Collapse
Affiliation(s)
- Vijay K Gonugunta
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Lu Miao
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Preethi Ravindranathan
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Ratna Vadlamudi
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Ganesh V Raj
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
23
|
Nair BC, Krishnan SR, Sareddy GR, Mann M, Xu B, Natarajan M, Hasty P, Brann D, Tekmal RR, Vadlamudi RK. Proline, glutamic acid and leucine-rich protein-1 is essential for optimal p53-mediated DNA damage response. Cell Death Differ 2014; 21:1409-18. [PMID: 24786831 DOI: 10.1038/cdd.2014.55] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/21/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022] Open
Abstract
Proline-, glutamic acid- and leucine-rich protein-1 (PELP1) is a scaffolding oncogenic protein that functions as a coregulator for a number of nuclear receptors. p53 is an important transcription factor and tumor suppressor that has a critical role in DNA damage response (DDR) including cell cycle arrest, repair or apoptosis. In this study, we found an unexpected role for PELP1 in modulating p53-mediated DDR. PELP1 is phosphorylated at Serine1033 by various DDR kinases like ataxia-telangiectasia mutated, ataxia telangiectasia and Rad3-related or DNAPKc and this phosphorylation of PELP1 is important for p53 coactivation functions. PELP1-depleted p53 (wild-type) breast cancer cells were less sensitive to various genotoxic agents including etoposide, camptothecin or γ-radiation. PELP1 interacts with p53, functions as p53-coactivator and is required for optimal activation of p53 target genes under genomic stress. Overall, these studies established a new role of PELP1 in DDRs and these findings will have future implications in our understanding of PELP1's role in cancer progression.
Collapse
Affiliation(s)
- B C Nair
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - S R Krishnan
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - G R Sareddy
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - M Mann
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - B Xu
- Molecular Radiation Biology Laboratory, Research Institute, South Birmingham, AL, USA
| | - M Natarajan
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - P Hasty
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - D Brann
- Institute of Molecular Medicine and Genetics, Georgia Reagents University, Augusta, GA, USA
| | - R R Tekmal
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - R K Vadlamudi
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| |
Collapse
|
24
|
The histone variant MacroH2A1 regulates target gene expression in part by recruiting the transcriptional coregulator PELP1. Mol Cell Biol 2014; 34:2437-49. [PMID: 24752897 DOI: 10.1128/mcb.01315-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MacroH2A1 is a histone variant harboring an ∼25-kDa carboxyl-terminal macrodomain. Due to its enrichment on the inactive X chromosome, macroH2A1 was thought to play a role in transcriptional repression. However, recent studies have shown that macroH2A1 occupies autosomal chromatin and regulates genes in a context-specific manner. The macrodomain may play a role in the modulation of gene expression outcomes via physical interactions with effector proteins, which may depend on the ability of the macrodomain to bind NAD(+) metabolite ligands. Here, we identify proline, glutamic acid, and leucine-rich protein 1 (PELP1), a chromatin-associated factor and transcriptional coregulator, as a ligand-independent macrodomain-interacting factor. We used chromatin immunoprecipitation coupled with tiling microarrays (ChIP-chip) to determine the genomic localization of PELP1 in MCF-7 human breast cancer cells. We find that PELP1 genomic localization is highly correlated with that of macroH2A1. Additionally, PELP1 positively correlates with heterochromatic chromatin marks and negatively correlates with active transcription marks, much like macroH2A1. MacroH2A1 specifically recruits PELP1 to the promoters of macroH2A1 target genes, but macroH2A1 occupancy occurs independent of PELP1. This recruitment allows macroH2A1 and PELP1 to cooperatively regulate gene expression outcomes.
Collapse
|
25
|
Mann M, Zou Y, Chen Y, Brann D, Vadlamudi R. PELP1 oncogenic functions involve alternative splicing via PRMT6. Mol Oncol 2014; 8:389-400. [PMID: 24447537 PMCID: PMC3943689 DOI: 10.1016/j.molonc.2013.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a proto-oncogene that functions as coactivator of the estrogen receptor and is an independent prognostic predictor of shorter survival of breast cancer patients. The dysregulation of PELP1 in breast cancer has been implicated in oncogenesis, metastasis, and therapy resistance. Although several aspects of PELP1 have been studied, a complete list of PELP1 target genes remains unknown, and the molecular mechanisms of PELP1 mediated oncogenesis remain elusive. In this study, we have performed a whole genome analysis to profile the PELP1 transcriptome by RNA-sequencing and identified 318 genes as PELP1 regulated genes. Pathway analysis revealed that PELP1 modulates several pathways including the molecular mechanisms of cancer, estrogen signaling, and breast cancer progression. Interestingly, RNA-seq analysis also revealed that PELP1 regulates the expression of several genes involved in alternative splicing. Accordingly, the PELP1 regulated genome includes several uniquely spliced isoforms. Mechanistic studies show that PELP1 binds RNA with a preference to poly-C, co-localizes with the splicing factor SC35 at nuclear speckles, and participates in alternative splicing. Further, PELP1 interacts with the arginine methyltransferase PRMT6 and modifies PRMT6 functions. Inhibition of PRMT6 reduced PELP1-mediated estrogen receptor activation, cellular proliferation, and colony formation. PELP1 and PRMT6 are co-recruited to estrogen receptor target genes, PELP1 knockdown affects the enrichment of histone H3R2 di-methylation, and PELP1 and PRMT6 coordinate to regulate the alternative splicing of genes involved in cancer. Collectively, our data suggest that PELP1 oncogenic functions involve alternative splicing leading to the activation of unique pathways that support tumor progression and that the PELP1-PRMT6 axis may be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Monica Mann
- The Department of Cellular and Structural Biology, San Antonio, TX 78229, USA; The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA.
| | - Yi Zou
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yidong Chen
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA.
| | - Ratna Vadlamudi
- The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
26
|
Girard BJ, Daniel AR, Lange CA, Ostrander JH. PELP1: a review of PELP1 interactions, signaling, and biology. Mol Cell Endocrinol 2014; 382:642-651. [PMID: 23933151 PMCID: PMC3844065 DOI: 10.1016/j.mce.2013.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
Proline, glutamic acid, and leucine rich protein 1 (PELP1) is a large multi-domain protein that has been shown to modulate an increasing number of pathways and biological processes. The first reports describing the cloning and characterization of PELP1 showed that it was an estrogen receptor coactivator. PELP1 has now been shown to be a coregulator for a growing number of transcription factors. Furthermore, recent reports have shown that PELP1 is a member of chromatin remodeling complexes. In addition to PELP1 nuclear functions, it has been shown to have cytoplasmic signaling functions as well. In the cytoplasm PELP1 acts as a scaffold molecule and mediates rapid signaling from growth factor and hormone receptors. PELP1 signaling ultimately plays a role in cancer biology by increasing proliferation and metastasis, among other cellular processes. Here we will review (1) the cloning and characterization of PELP1 expression, (2) interacting proteins, (3) PELP1 signaling, and (4) PELP1-mediated biology.
Collapse
Affiliation(s)
- Brian J Girard
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Andrea R Daniel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Julie H Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
27
|
Mann M, Cortez V, Vadlamudi R. PELP1 oncogenic functions involve CARM1 regulation. Carcinogenesis 2013; 34:1468-75. [PMID: 23486015 DOI: 10.1093/carcin/bgt091] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is implicated in the initiation and progression of breast cancer and its transcription depends on the modulation of epigenetic changes at target gene promoters via coregulators. There is a critical need to understand the molecular mechanism(s) by which deregulation of epigenetic changes occurs during breast cancer progression. The ERα coregulator PELP1 plays an important role in ERα signaling and is a proto-oncogene with aberrant expression in breast cancer. PELP1 interacts with histones and may be a reader of chromatin modifications. We profiled PELP1's epigenetic interactome using a histone peptide array. Our results show that PELP1 recognizes histones modified by arginine and lysine dimethylation. PELP1 functionally interacts with the arginine methyltransferase CARM1 and their interaction is enhanced by ERα. PELP1-CARM1 interactions synergistically enhance ERα transactivation. Chromatin immunoprecipitation assays revealed that PELP1 alters histone H3 arginine methylation status at ERα target gene promoters. Pharmacological inhibition or small interfering RNA knockdown of CARM1 substantially reduced PELP1 oncogenic functions. The critical role of PELP1 status in modulating arginine methylation status was also observed through in vivo studies where PELP1 knockdown mediated decreased tumorigenesis correlated with decreased arginine dimethylation. Further, immunohistochemical analysis of human breast tumor tissues revealed co-overexpression of PELP1 and CARM1 in a subset of ERα-positive breast tumors. Our findings show PELP1 is a reader of histone arginine methyl modifications and deregulation promotes tumor proliferation via epigenetic alterations at ERα target promoters. Targeting these epigenetic alterations through inhibition of PELP1 and the arginine methyltransferases could be a promising cancer therapeutic.
Collapse
Affiliation(s)
- Monica Mann
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
28
|
Increased PELP1 expression in rat periodontal ligament tissue in response to estrogens treatment. J Mol Histol 2013; 44:347-56. [DOI: 10.1007/s10735-013-9490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/04/2013] [Indexed: 01/21/2023]
|
29
|
Estrogen receptor-beta mediates the protective effects of aromatase induction in the MMTV-Her-2/neu x aromatase double transgenic mice. Discov Oncol 2012; 3:26-36. [PMID: 22006184 DOI: 10.1007/s12672-011-0083-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancers amplified for the tyrosine kinase receptor Her-2/neu constitute ~30% of advanced breast cancer cases, and are characterized by hormone independence and aggressive growth, implicating this pathway in breast oncogenesis. The induction of Her-2/neu leads to tumor development in 60% of transgenic mice. We have previously examined the effects of estrogen in the MMTV-Her-2/neu background by generating the MMTV-Her-2/neu x aromatase double transgenic mouse strain. MMTV-Her-2/neu x aromatase mice developed fewer mammary tumors than the Her-2/neu parental strain. Our present data show the induction of several estrogen-related genes, including the tumor suppressors BRCA1 and p53, and a decrease in several angiogenic factors. The phosphorylated forms of MAPK p42/44 and AKT were lower in the MMTV-Her-2/neu x aromatase double transgenic mice compared to the MMTV-Her-2/neu parental strain; conversely, phospho-p38 levels were higher in the double transgenic strain. The ERβ-selective antagonist THC reversed these changes. The regulation of these factors by ERβ was confirmed in clones of MCF7 breast cancer cells overexpressing Her-2/neu in combination with ERβ, suggesting that ERβ may play a direct role in regulating MAPK and AKT pathways. In summary, the data suggest that ERβ may play a major role in decreasing tumorigenesis and that it may affect breast cancer cell proliferation and survival by altering MAPK and AKT activation as well as modulation of tumor suppressor and angiogenesis factors. Treatment with selective ERβ agonist may provide therapeutic advantages for the treatment and prevention of breast cancer.
Collapse
|
30
|
Fanis P, Gillemans N, Aghajanirefah A, Pourfarzad F, Demmers J, Esteghamat F, Vadlamudi RK, Grosveld F, Philipsen S, van Dijk TB. Five friends of methylated chromatin target of protein-arginine-methyltransferase[prmt]-1 (chtop), a complex linking arginine methylation to desumoylation. Mol Cell Proteomics 2012; 11:1263-73. [PMID: 22872859 DOI: 10.1074/mcp.m112.017194] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin target of Prmt1 (Chtop) is a vertebrate-specific chromatin-bound protein that plays an important role in transcriptional regulation. As its mechanism of action remains unclear, we identified Chtop-interacting proteins using a biotinylation-proteomics approach. Here we describe the identification and initial characterization of Five Friends of Methylated Chtop (5FMC). 5FMC is a nuclear complex that can only be recruited by Chtop when the latter is arginine-methylated by Prmt1. It consists of the co-activator Pelp1, the Sumo-specific protease Senp3, Wdr18, Tex10, and Las1L. Pelp1 functions as the core of 5FMC, as the other components become unstable in the absence of Pelp1. We show that recruitment of 5FMC to Zbp-89, a zinc-finger transcription factor, affects its sumoylation status and transactivation potential. Collectively, our data provide a mechanistic link between arginine methylation and (de)sumoylation in the control of transcriptional activity.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Cell Biology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cortez V, Mann M, Tekmal S, Suzuki T, Miyata N, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK, Vadlamudi RK. Targeting the PELP1-KDM1 axis as a potential therapeutic strategy for breast cancer. Breast Cancer Res 2012; 14:R108. [PMID: 22812534 PMCID: PMC3680946 DOI: 10.1186/bcr3229] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/19/2012] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The estrogen receptor (ER) co-regulator proline glutamic acid and leucine-rich protein 1 (PELP1) is a proto-oncogene that modulates epigenetic changes on ER target gene promoters via interactions with lysine-specific histone demethylase 1 (KDM1). In this study, we assessed the therapeutic potential of targeting the PELP1-KDM1 axis in vivo using liposomal (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine; DOPC) siRNA to downregulate PELP1 expression and KDM1 inhibitors, pargyline and N-((1S)-3-(3-(trans-2-aminocyclopropyl)phenoxy)-1-(benzylcarbamoyl)propyl)benzamide using preclinical models. METHODS Preclinical xenograft models were used to test the efficacy of drugs in vivo. Ki-67 and terminal deoxynucleotidyl transferase dUTP nick end-labeling immunohistochemical analysis of epigenetic markers was performed on tumor tissues. The in vitro effect of PELP1-KDM axis blockers was tested using proliferation, reporter gene, chromatin immunoprecipitation and real-time RT-PCR assays. The efficacy of the KDM1 targeting drugs alone or in combination with letrozole and tamoxifen was tested using therapy-resistant model cells. RESULTS Treatment of ER-positive xenograft-based breast tumors with PELP1-siRNA-DOPC or pargyline reduced tumor volume by 58.6% and 62%, respectively. In a postmenopausal model, in which tumor growth is stimulated solely by local estrogen synthesis, daily pargyline treatment reduced tumor volume by 78%. Immunohistochemical analysis of excised tumors revealed a combined decrease in cellular proliferation, induction of apoptosis and upregulation of inhibitory epigenetic modifications. Pharmacological inhibition of KDM1 in vitro increased inhibitory histone mark dimethylation of histone H3 at lysine 9 (H3K9me2) and decreased histone activation mark acetylation of H3K9 (H3K9Ac) on ER target gene promoters. Combining KDM1 targeting drugs with current endocrine therapies substantially impeded growth and restored sensitivity of therapy-resistant breast cancer cells to treatment. CONCLUSION Our results suggest inhibition of PELP1-KDM1-mediated histone modifications as a potential therapeutic strategy for blocking breast cancer progression and therapy resistance.
Collapse
|
32
|
Castle CD, Cassimere EK, Denicourt C. LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis. Mol Biol Cell 2012; 23:716-28. [PMID: 22190735 PMCID: PMC3279398 DOI: 10.1091/mbc.e11-06-0530] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/14/2011] [Accepted: 12/13/2011] [Indexed: 01/02/2023] Open
Abstract
The coordination of RNA polymerase I transcription with pre-rRNA processing, preribosomal particle assembly, and nuclear export is a finely tuned process requiring the concerted actions of a number of accessory factors. However, the exact functions of some of these proteins and how they assemble in subcomplexes remain poorly defined. LAS1L was first described as a nucleolar protein required for maturation of the 60S preribosomal subunit. In this paper, we demonstrate that LAS1L interacts with PELP1, TEX10, and WDR18, the mammalian homologues of the budding yeast Rix1 complex, along with NOL9 and SENP3, to form a novel nucleolar complex that cofractionates with the 60S preribosomal subunit. Depletion of LAS1L-associated proteins results in a p53-dependent G1 arrest and leads to defects in processing of the pre-rRNA internal transcribed spacer 2 region. We further show that the nucleolar localization of this complex requires active RNA polymerase I transcription and the small ubiquitin-like modifier-specific protease SENP3. Taken together, our data identify a novel mammalian complex required for 60S ribosomal subunit synthesis, providing further insight into the intricate, yet poorly described, process of ribosome biogenesis in higher eukaryotes.
Collapse
Affiliation(s)
- Christopher D. Castle
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030
| | - Erica K. Cassimere
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030
| |
Collapse
|
33
|
Abstract
The participation of extranuclear steroid receptor signaling in organ physiology and the impact for pathobiology has increasingly been demonstrated. Important functions of membrane estrogen receptors in the cardiovascular system demonstrate new mechanisms of rapid steroid signaling to gene regulation, preventing cardiovascular disease and maintaining healthy arterial function. In cancer cells, kinase signaling initiated by extranuclear estrogen, progesterone, and androgen receptors modulates transcriptional events in the nucleus, which in turn regulate proliferation, migration, and invasion. Important mediators of cross talk between cytoplasmic and nuclear steroid receptor signaling are the proline-, glutamic acid-, and leucine-rich protein-1 and paxillin proteins, both of which modulate membrane and nuclear receptor pool signaling to promote a variety of cell biological functions.
Collapse
Affiliation(s)
- Stephen R Hammes
- Department of Medicine, University of Rochester, Rochester, New York 14642, USA.
| | | |
Collapse
|
34
|
Roy S, Chakravarty D, Cortez V, De Mukhopadhyay K, Bandyopadhyay A, Ahn JM, Raj GV, Tekmal RR, Sun L, Vadlamudi RK. Significance of PELP1 in ER-negative breast cancer metastasis. Mol Cancer Res 2011; 10:25-33. [PMID: 22086908 DOI: 10.1158/1541-7786.mcr-11-0456] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer metastasis is a major clinical problem. The molecular basis of breast cancer progression to metastasis remains poorly understood. PELP1 is an estrogen receptor (ER) coregulator that has been implicated as a proto-oncogene whose expression is deregulated in metastatic breast tumors and whose expression is retained in ER-negative tumors. We examined the mechanism and significance of PELP1-mediated signaling in ER-negative breast cancer progression using two ER-negative model cells (MDA-MB-231 and 4T1 cells) that stably express PELP1-shRNA. These model cells had reduced PELP1 expression (75% of endogenous levels) and exhibited less propensity to proliferate in growth assays in vitro. PELP1 downregulation substantially affected migration of ER-negative cells in Boyden chamber and invasion assays. Using mechanistic studies, we found that PELP1 modulated expression of several genes involved in the epithelial mesenchymal transition (EMT), including MMPs, SNAIL, TWIST, and ZEB. In addition, PELP1 knockdown reduced the in vivo metastatic potential of ER-negative breast cancer cells and significantly reduced lung metastatic nodules in a xenograft assay. These results implicate PELP1 as having a role in ER-negative breast cancer metastasis, reveal novel mechanism of coregulator regulation of metastasis via promoting cell motility/EMT by modulating expression of genes, and suggest PELP1 may be a potential therapeutic target for metastatic ER-negative breast cancer.
Collapse
Affiliation(s)
- Sudipa Roy
- Department of Obstetrics and Gynecology and Cancer Therapy & Research Center, UT Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boonyaratanakornkit V. Scaffolding proteins mediating membrane-initiated extra-nuclear actions of estrogen receptor. Steroids 2011; 76:877-84. [PMID: 21354435 DOI: 10.1016/j.steroids.2011.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/14/2011] [Accepted: 02/16/2011] [Indexed: 12/30/2022]
Abstract
Estrogen mediates biological effects on cell proliferation, differentiation, and homeostasis through estrogen receptor (ER). In addition to functioning as a ligand-activated nuclear transcription factor to directly regulate gene transcription, ER also mediates rapid activation of signaling pathways independent of its transcriptional activity. A subpopulation of ER localized to the cell membrane or cytoplasm has been proposed to mediate ER activation of signaling pathways. This review focuses on recent advances in our understanding of mechanisms responsible for ER cytoplasm/membrane localization, where rapid extra-nuclear signaling is initiated. These mechanisms include lipid modification of the receptor (palmitoylation) and interactions with membrane and cytoplasmic adaptor proteins including caveolins, striatin, p130Cas, Shc, HPIP, MTA-1s, and MNAR/PELP1. While it is clear that ER mediates rapid extra-nuclear signaling resulting in activation of signaling pathways such as Src/MAPK and PI-3 kinase/Akt, how ER extra-nuclear signaling influences overall ER/estrogen physiology is still not well understood. Future studies defining physiological roles of ER extra-nuclear actions and crosstalk with its nuclear counterparts will be important to our overall understanding of estrogen and ER biological functions.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, MS-130, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Abstract
Background Proline-, glutamic acid-, and leucine-rich protein (PELP1) is a novel nuclear receptor coregulator with a multitude of functions. PELP1 serves as a scaffolding protein that couples various signaling complexes with nuclear receptors and participates as a transcriptional coregulator. Recent data suggest that PELP1 expression is deregulated in hormonal cancers, and that PELP1 functions as a proto-oncogene; however, the mechanism by which PELP1 promotes oncogenesis remains elusive. Methodology/Principal Findings Using pharmacological inhibitors, confocal microscopy and biochemical assays, we demonstrated that PELP1 is localized in the nucleolus and that PELP1 is associated with the active ribosomal RNA transcription. Cell synchronization studies showed that PELP1 nucleolar localization varies and the greatest amount of nucleolar localization was observed during S and G2 phases. Using pharmacological compounds and CDK site mutants of PELP1, we found that CDK's activity plays an important role on PELP1 nucleolar localization. Depletion of PELP1 by siRNA decreased the expression of pre-rRNA. Reporter gene assays using ribosomal DNA (pHrD) luc-reporter revealed that PELP1WT but not PELP1MT enhanced the expression of reporter. Deletion of nucleolar domains abolished PELP1-mediated activation of the pHrD reporter. ChIP analysis revealed that PELP1 is recruited to the promoter regions of rDNA and is needed for optimal transcription of ribosomal RNA. Conclusions/Significance Collectively, our results suggest that proto-oncogene PELP1 plays a vital role in rDNA transcription. PELP1 modulation of rRNA transcription, a key step in ribosomal biogenesis may have implications in PELP1-mediated oncogenic functions.
Collapse
|
37
|
Chakravarty D, Roy SS, Babu CR, Dandamudi R, Curiel TJ, Vivas-Mejia P, Lopez-Berestein G, Sood AK, Vadlamudi RK. Therapeutic targeting of PELP1 prevents ovarian cancer growth and metastasis. Clin Cancer Res 2011; 17:2250-9. [PMID: 21421858 DOI: 10.1158/1078-0432.ccr-10-2718] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Ovarian cancer remains a major threat to women's health, partly due to difficulty in early diagnosis and development of metastases. A critical need exists to identify novel targets that curb the progression and metastasis of ovarian cancer. In this study, we examined whether the nuclear receptor coregulator PELP1 (proline-, glutamic acid-, leucine-rich protein-1) contributes to progression and metastatic potential of ovarian cancer cells and determined whether blocking of the PELP1 signaling axis had a therapeutic effect. EXPERIMENTAL DESIGN Ovarian cancer cells stably expressing PELP1-shRNA (short hairpin RNA) were established. Fluorescent microscopy, Boyden chamber, invasion assays, wound healing, and zymography assays were performed to examine the role of PELP1 in metastasis. Expression analysis of the model cells was conducted using tumor metastasis microarray to identify PELP1 Target genes. Therapeutic potential of PELP1-siRNA in vivo was determined using a nanoliposomal formulation of PELP1-siRNA-DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) administered systemically in a xenograft model. RESULTS PELP1 knockdown caused cytoskeletal defects and significantly affected the migratory potential of ovarian cancer cells. Microarray analysis revealed that PELP1 affected the expression of selective genes involved in metastasis including Myc, MTA1, MMP2, and MMP9. Zymography analysis confirmed that PELP1 knockdown caused a decrease in the activation of matrix metalloproteases (MMP) 2 and MMP9. Compared with control siRNA-DOPC-treated mice, animals injected with PELP1-siRNA-DOPC had 54% fewer metastatic tumor nodules, exhibited a 51% reduction in tumor growth and an 84% reduction in ascites volume. CONCLUSION The results suggest that PELP1 signaling axis is a potential druggable target and liposomal PELP1-siRNA-DOPC could be used as a novel drug to prevent or treat ovarian metastasis.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Obstetrics and Gynecology, CTRC, The UT Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fu XD, Russo E, Zullino S, Genazzani AR, Simoncini T. Sex steroids and breast cancer metastasis. Horm Mol Biol Clin Investig 2010; 3:383-9. [PMID: 25961210 DOI: 10.1515/hmbci.2010.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 10/19/2010] [Indexed: 11/15/2022]
Abstract
Sex steroids, particularly estrogen and progesterone, promote normal breast tissue growth and differentiation. Prolonged exposure of estrogen and/or progesterone is considered a risk factor for breast cancer carcinogenesis, and the effects of sex steroids on breast cancer metastasis are controversial. Emerging evidence indicates that sex steroids regulate breast cancer metastatic processes via nongenomic and genomic mechanisms. Through the regulation of actin-binding proteins estrogen and progesterone rapidly provoke actin cytoskeleton reorganization in breast cancer cells, leading to formation of membrane structures facilitating breast cancer cell migration and invasion. In addition, steroid receptors interact and trans-activate receptor tyrosine kinases (including epidermal growth factor receptor and insulin-like growth factor receptor), resulting in growth factor-like effects that promote cancer cell invasive behavior. Moreover, sex steroids regulate the expression of metastasis-associated molecules, such as E-cadherin, matrix metalloproteinases, growth factors, chemokines and their receptors, leading to epithelial-to-mesenchymal-like transition. However, there is also evidence that sex steroids and their receptors protect against breast cancer cell invasiveness through distinct mechanisms. Here, we present an overview of the currently identified actions of sex steroids on breast cancer metastasis and their potential clinical implications.
Collapse
|
39
|
Nair BC, Nair SS, Chakravarty D, Challa R, Manavathi B, Yew PR, Kumar R, Tekmal RR, Vadlamudi RK. Cyclin-dependent kinase-mediated phosphorylation plays a critical role in the oncogenic functions of PELP1. Cancer Res 2010; 70:7166-75. [PMID: 20807815 DOI: 10.1158/0008-5472.can-10-0628] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Estrogen receptor (ER) signaling plays an important role in breast cancer progression, and ER functions are influenced by coregulatory proteins. PELP1 (proline-, glutamic acid-, and leucine-rich protein 1) is a nuclear receptor coregulator that plays an important role in ER signaling. Its expression is deregulated in hormonal cancers. We identified PELP1 as a novel cyclin-dependent kinase (CDK) substrate. Using site-directed mutagenesis and in vitro kinase assays, we identified Ser(477) and Ser(991) of PELP1 as CDK phosphorylation sites. Using the PELP1 Ser(991) phospho-specific antibody, we show that PELP1 is hyperphosphorylated during cell cycle progression. Model cells stably expressing the PELP1 mutant that lack CDK sites had defects in estradiol (E2)-mediated cell cycle progression and significantly affected PELP1-mediated oncogenic functions in vivo. Mechanistic studies showed that PELP1 modulates transcription factor E2F1 transactivation functions, that PELP1 is recruited to pRb/E2F target genes, and that PELP1 facilitates ER signaling cross talk with cell cycle machinery. We conclude that PELP1 is a novel substrate of interphase CDKs and that its phosphorylation is important for the proper function of PELP1 in modulating hormone-driven cell cycle progression and also for optimal E2F transactivation function. Because the expression of both PELP1 and CDKs is deregulated in breast tumors, CDK-PELP1 interactions will have implications in breast cancer progression.
Collapse
Affiliation(s)
- Binoj C Nair
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chakravarty D, Tekmal RR, Vadlamudi RK. PELP1: A novel therapeutic target for hormonal cancers. IUBMB Life 2010; 62:162-9. [PMID: 20014005 DOI: 10.1002/iub.287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies implicate that the estrogen receptor (ER) coregulator proline-, glutamic acid-, and leucine-rich protein (PELP) 1 as playing critical roles in ER-genomic, ER-nongenomic, and ER-signaling cross talk with growth factor signaling pathways. PELP1 expression is deregulated in hormonal cancers and recent studies further elucidated the molecular mechanisms by which PELP1 regulates hormone therapy response. Although PELP1 is important for normal functions of the ER, the possibility to target ER-PELP1 axis appears to be an effective strategy for preventing hormonal carcinogenesis and therapy resistance. Thus, PELP1 may be useful as prognostic marker for hormonal cancers and PELP1 signaling may be useful to generate targeted therapeutics to overcome hormonal therapy resistance.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | |
Collapse
|
41
|
Chakravarty D, Nair SS, Santhamma B, Nair BC, Wang L, Bandyopadhyay A, Agyin JK, Brann D, Sun LZ, Yeh IT, Lee FY, Tekmal RR, Kumar R, Vadlamudi RK. Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells. Cancer Res 2010; 70:4092-101. [PMID: 20460518 DOI: 10.1158/0008-5472.can-09-3834] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular basis of breast cancer progression to metastasis and the role of estrogen receptor (ER) signaling in this process remain poorly understood. Emerging evidence suggests that ER participates in extranuclear signaling in addition to genomic functions. Recent studies identified proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) as one of the components of ER signalosome in the cytoplasm. PELP1 expression is deregulated in metastatic breast tumors. We examined the mechanism and significance of ER-PELP1-mediated extranuclear signals in the cytoskeletal remodeling and metastasis. Using estrogen dendrimer conjugate (EDC) that uniquely activate ER extranuclear signaling and by using model cells that stably express PELP1 short hairpin RNA (shRNA), we show that PELP1 is required for optimal activation of ER extranuclear actions. Using a yeast two-hybrid screen, we identified integrin-linked kinase 1 (ILK1) as a novel PELP1-binding protein. Activation of extranuclear signaling by EDC uniquely enhanced E2-mediated ruffles and filopodia-like structures. Using dominant-negative and dominant-active reagents, we found that estrogen-mediated extranuclear signaling promotes cytoskeleton reorganization through the ER-Src-PELP1-phosphoinositide 3-kinase-ILK1 pathway. Using in vitro Boyden chamber assays and in vivo xenograft assays, we found that ER extranuclear actions contribute to cell migration. Collectively, our results suggest that ER extranuclear actions play a role in cell motility/metastasis, establishing for the first time that endogenous PELP1 serves as a critical component of ER extranuclear actions leading to cell motility/invasion and that the ER-Src-PELP1-ILK1 pathway represents a novel therapeutic target for preventing the emergence of ER-positive metastasis.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Obstetrics and Gynecology and CTRC at The UT Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nair SS, Nair BC, Cortez V, Chakravarty D, Metzger E, Schüle R, Brann DW, Tekmal RR, Vadlamudi RK. PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep 2010; 11:438-44. [PMID: 20448663 DOI: 10.1038/embor.2010.62] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/25/2010] [Accepted: 03/26/2010] [Indexed: 11/09/2022] Open
Abstract
Histone methylation has a key role in oestrogen receptor (ERalpha)-mediated transactivation of genes. Proline glutamic acid and leucine-rich protein 1 (PELP1) is a new proto-oncogene that functions as an ERalpha co-regulator. In this study, we identified histone lysine demethylase, KDM1, as a new PELP1-interacting protein. These proteins, PELP1 and KDM1, were both recruited to ERalpha target genes, and PELP1 depletion affected the dimethyl histone modifications at ERalpha target genes. Dimethyl-modified histones H3K4 and H3K9 are recognized by PELP1, and PELP1 alters the substrate specificity of KDM1 from H3K4 to H3K9. Effective demethylation of dimethyl H3K9 by KDM1 requires a KDM1-ERalpha-PELP1 functional complex. These results suggest that PELP1 is a reader of H3 methylation marks and has a crucial role in modulating the histone code at the ERalpha target genes.
Collapse
Affiliation(s)
- Sujit S Nair
- Department of Obstetrics and Gynecology, University of Texas Health Science Center in San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kashiwaya K, Nakagawa H, Hosokawa M, Mochizuki Y, Ueda K, Piao L, Chung S, Hamamoto R, Eguchi H, Ohigashi H, Ishikawa O, Janke C, Shinomura Y, Nakamura Y. Involvement of the tubulin tyrosine ligase-like family member 4 polyglutamylase in PELP1 polyglutamylation and chromatin remodeling in pancreatic cancer cells. Cancer Res 2010; 70:4024-33. [PMID: 20442285 DOI: 10.1158/0008-5472.can-09-4444] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyglutamylation is a new class of posttranslational modification in which glutamate side chains are formed in proteins, although its biological significance is not well known. Through our genome-wide gene expression profile analyses of pancreatic ductal adenocarcinoma (PDAC) cells, we identified the overexpression of tubulin tyrosine ligase-like family member 4 (TTLL4) in PDAC cells. Subsequent reverse transcription-PCR and Northern blot analyses confirmed its upregulation in several PDACs. TTLL4 belongs to the TTLL family which was reported to have polyglutamylase activity. Knockdown of TTLL4 by short hairpin RNA in PDAC cells attenuated the growth of PDAC cells and exogenous introduction of TTLL4 enhanced cell growth. We also found that TTLL4 expression was correlated with polyglutamylation levels of a glutamate stretch region of the proline, glutamate, and leucine-rich protein 1 (PELP1) that was shown to interact with various proteins such as histone H3, and was involved in several signaling pathways through its function as a scaffold protein. PELP1 polyglutamylation could influence its interaction with histone H3 and affect histone H3 acetylation. We also identified the interaction of PELP1 with LAS1L and SENP3, components of the MLL1-WDR5 supercomplex involving chromatin remodeling. Our findings imply that TTLL4 could play important roles in pancreatic carcinogenesis through its polyglutamylase activity and subsequent coordination of chromatin remodeling, and might be a good molecular candidate for the development of new therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Kotoe Kashiwaya
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Components of the ESCRT (endosomal sorting complex required for transport) machinery mediate endosomal sorting of ubiquitinated membrane proteins. They are key regulators of biological processes important for cell growth and survival, such as growth-factor-mediated signalling and cytokinesis. In addition, enveloped viruses, such as HIV-1, hijack and utilize the ESCRTs for budding during virus release and infection. Obviously, the ESCRT-facilitated pathways require tight regulation, which is partly mediated by a group of interacting proteins, for which our knowledge is growing. In this review we discuss the different ESCRT-modulating proteins and how they influence ESCRT-dependent processes, for example, by acting as positive or negative regulators or by providing temporal and spatial control. A number of the interactors influence the classical ESCRT-mediated process of endosomal cargo sorting, for example, by modulating the interaction between ubiquitinated cargo and the ESCRTs. Certain accessory proteins have been implicated in regulating the activity or steady-state expression levels of the ESCRT components, whereas other interactors control the cellular localization of the ESCRTs, for example, by inducing shuttling between cytosol and nucleus or endosomes. In conclusion, the discovery of novel interactors has and will extend our knowledge of the biological roles of ESCRTs.
Collapse
|
45
|
Vadlamudi RK, Rajhans R, Chakravarty D, Nair BC, Nair SS, Evans DB, Chen S, Tekmal RR. Regulation of aromatase induction by nuclear receptor coregulator PELP1. J Steroid Biochem Mol Biol 2010; 118:211-8. [PMID: 19800002 PMCID: PMC2826517 DOI: 10.1016/j.jsbmb.2009.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 11/16/2022]
Abstract
Estradiol (E2), estrogen receptor (ER), ER-coregulators have been implicated in the development and progression of breast cancer. In situ E2 synthesis is implicated in tumor cell proliferation through autocrine or paracrine mechanisms, especially in post-menopausal women. Several recent studies demonstrated activity of aromatase P450 (Cyp19), a key enzyme that plays critical role in E2 synthesis in breast tumors. The mechanism by which tumors enhance aromatase expression is not completely understood. Recent studies from our laboratory suggested that PELP1 (Proline, Glutamic acid, Leucine rich Protein 1), a novel ER-coregulator, functions as a potential proto-oncogene and promotes tumor growth in nude mice models without exogenous E2 supplementation. In this study, we found that PELP1 deregulation contributes to increased expression of aromatase, local E2 synthesis and PELP1 cooperates with growth factor signaling components in the activation of aromatase. PELP1 deregulation uniquely up-regulated aromatase expression via activation of aromatase promoter I.3/II. Analysis of PELP1 driven mammary tumors in xenograft as well as in transgenic mouse models revealed increased aromatase expression. PELP1-mediated induction of aromatase requires functional Src and PI3K pathways. Chromatin immuno precipitation (ChIP) assays revealed that PELP1 is recruited to the Aro 1.3/II aromatase promoter. HER2 signaling enhances PELP1 recruitment to the aromatase promoter and PELP1 plays a critical role in HER2-mediated induction of aromatase expression. Mechanistic studies revealed that PELP1 interactions with orphan receptor ERRalpha, and histone demethylases play a role in the activation of aromatase promoter. Accordingly, ChIP analysis showed alterations in histone modifications at the aromatase promoter in the model cells that exhibit local E2 synthesis. Immunohistochemical analysis of breast tumor progression tissue arrays suggested that deregulation of aromatase expression occurs in advanced-stage and node-positive tumors, and that cooverexpression of PELP1 and aromatase occur in a sub set of tumors. Collectively, our results suggest that PELP1 regulation of aromatase represent a novel mechanism for in situ estrogen synthesis leading to tumor proliferation by autocrine loop and open a new avenue for ablating local aromatase activity in breast tumors.
Collapse
Affiliation(s)
- Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, and CTRC, San Antonio, TX, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Friend of Prmt1, a novel chromatin target of protein arginine methyltransferases. Mol Cell Biol 2010; 30:260-72. [PMID: 19858291 DOI: 10.1128/mcb.00645-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We describe the isolation and characterization of Friend of Prmt1 (Fop), a novel chromatin target of protein arginine methyltransferases. Human Fop is encoded by C1orf77, a gene of previously unknown function. We show that Fop is tightly associated with chromatin, and that it is modified by both asymmetric and symmetric arginine methylation in vivo. Furthermore, Fop plays an important role in the ligand-dependent activation of estrogen receptor target genes, including TFF1 (pS2). Fop depletion results in an almost complete block of estradiol-induced promoter occupancy by the estrogen receptor. Our data indicate that Fop recruitment to the promoter is an early critical event in the activation of estradiol-dependent transcription.
Collapse
|
47
|
Popov VM, Zhou J, Shirley LA, Quong J, Yeow WS, Wright JA, Wu K, Rui H, Vadlamudi RK, Jiang J, Kumar R, Wang C, Pestell RG. The cell fate determination factor DACH1 is expressed in estrogen receptor-alpha-positive breast cancer and represses estrogen receptor-alpha signaling. Cancer Res 2009; 69:5752-60. [PMID: 19605405 DOI: 10.1158/0008-5472.can-08-3992] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Dachshund (dac) gene, initially cloned as a dominant inhibitor of the Drosophila hyperactive EGFR mutant ellipse, encodes a key component of the cell fate determination pathway involved in Drosophila eye development. Analysis of more than 2,200 breast cancer samples showed improved survival by some 40 months in patients whose tumors expressed DACH1. Herein, DACH1 and estrogen receptor-alpha (ERalpha) expressions were inversely correlated in human breast cancer. DACH1 bound and inhibited ERalpha function. Nuclear DACH1 expression inhibited estradiol (E(2))-induced DNA synthesis and cellular proliferation. DACH1 bound ERalpha in immunoprecipitation-Western blotting, associated with ERalpha in chromatin immunoprecipitation, and inhibited ERalpha transcriptional activity, requiring a conserved DS domain. Proteomic analysis identified proline, glutamic acid, and leucine rich protein 1 (PELP1) as a DACH1-binding protein. The DACH1 COOH terminus was required for binding to PELP1. DACH1 inhibited induction of ERalpha signaling. E(2) recruited ERalpha and disengaged corepressors from DACH1 at an endogenous ER response element, allowing PELP1 to serve as an ERalpha coactivator. DACH1 expression, which is lost in poor prognosis human breast cancer, functions as an endogenous inhibitor of ERalpha function.
Collapse
Affiliation(s)
- Vladimir M Popov
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ellmann S, Sticht H, Thiel F, Beckmann MW, Strick R, Strissel PL. Estrogen and progesterone receptors: from molecular structures to clinical targets. Cell Mol Life Sci 2009; 66:2405-26. [PMID: 19333551 PMCID: PMC11115849 DOI: 10.1007/s00018-009-0017-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/19/2009] [Accepted: 03/06/2009] [Indexed: 01/24/2023]
Abstract
Research involving estrogen and progesterone receptors (ER and PR) have greatly contributed to our understanding of cell signaling and transcriptional regulation. In addition to the classical ER and PR nuclear actions, new signaling pathways have recently been identified due to ER and PR association with cell membranes and signal transduction proteins. Bio-informatics has unveiled how ER and PR recognize their ligands, selective modulators and co-factors, which has helped to implement them as key targets in the treatment of benign and malignant tumors. Knowledge regarding ER and PR is vast and complex; therefore, this review will focus on their isoforms, signaling pathways, co-activators and co-repressors, which lead to target gene regulation. Moreover it will highlight ER and PR involvement in benign and malignant diseases as well as pharmacological substances influencing cell signaling and provide established and new structural insights into the mechanism of activation and inhibition of these receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Computational Biology
- Estradiol/chemistry
- Estradiol/metabolism
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Progesterone/chemistry
- Progesterone/metabolism
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/classification
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/classification
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/antagonists & inhibitors
- Selective Estrogen Receptor Modulators/chemistry
- Selective Estrogen Receptor Modulators/metabolism
- Sequence Alignment
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Stephan Ellmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Heinrich Sticht
- Department of Bioinformatics, Institute of Biochemistry, University of Erlangen-Nuremberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Falk Thiel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Reiner Strick
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| | - Pamela L. Strissel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Universitaetsstr. 21-23, 91054 Erlangen, Germany
| |
Collapse
|
49
|
Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, Ellis IO. The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype. Breast Cancer Res Treat 2009; 120:603-12. [PMID: 19495959 DOI: 10.1007/s10549-009-0419-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/02/2009] [Indexed: 11/25/2022]
Abstract
The transcription functions of oestrogen receptors (ER) are influenced by several coregulators such as PELP1 (proline, glutamate and leucine rich protein 1). The aim of the present study, which uses tissue microarrays and immunohistochemistry, is to explore the clinical and biological relevance of PELP1 protein expression in a large series of consecutive patients (1,162 patients) with invasive breast cancers with particular emphasis on its role in the ER-positive/luminal-like class of tumours. Our results showed that increased PELP1 expression is associated with tumours of larger size, higher histological grade, higher mitotic count, and with positive expression of basal cytokeratins (CK) (CK14; P = 0.018 and CK5/6; P = 0.029), P-cadherin (P = 0.002), p53 and MIB1 (P = 0.018). There was an inverse association between PELP1 expression and ER (P = 0.002), progesterone (PgR) (P = 0.004), androgen (AR) receptor (P < 0.001), and luminal CK (CK18; P = 0.027) expression. A significant association between PELP1 expression and shorter breast cancer specific survival (BCSS) (P = 0.002) and disease-free survival (DFI) (P = 0.006) was found. Multivariate Cox hazard analysis showed that PELP1 expression was an independent predictor of shorter BCSS (Hazard ratio (HR) = 1.349, P = 0.006) and shorter DFI (HR = 1.255, P = 0.011). In the ER-positive/luminal-like group (n = 768), PELP1 expression showed similar association with other clinicopathological variables and was an independent predictor of shorter DFI (HR = 1.256, P = 0.036). In conclusion, PELP1 protein expression is an independent prognostic predictor of shorter BCSS and DFI in breast cancer and its elevated expression is positively associated with markers of poor outcome. PELP1 appears to have a potential application in assessing the clinical outcome of patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Hany Onsy Habashy
- Department of Histopathology, School of Molecular Medical Sciences, Nottingham University Hospitals NHS Trust, University of Nottingham, Hucknall Road, Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Kumar R, Zhang H, Holm C, Vadlamudi RK, Landberg G, Rayala SK. Extranuclear coactivator signaling confers insensitivity to tamoxifen. Clin Cancer Res 2009; 15:4123-30. [PMID: 19470742 DOI: 10.1158/1078-0432.ccr-08-2347] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tamoxifen is one of many standard therapeutic options currently available for estrogen receptor-alpha-positive breast cancer patients. Emerging data have suggested that levels of estrogen receptor coregulatory proteins play a significant role in acquiring resistance to antiestrogen action. It has been suggested that high levels of estrogen receptor coactivators and its mislocalization may enhance the estrogen agonist activity of tamoxifen and contribute to tamoxifen resistance. EXPERIMENTAL DESIGN In an effort to understand the impact of nongenomic signaling and its contribution to hormone resistance in a whole-animal setting, we generated a transgenic mouse expressing a cytoplasmic version of proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) mutant defective in its nuclear translocation (PELP1-cyto) and implanted these mice with tamoxifen pellets to assess its responsiveness. RESULTS We show that mammary glands from these mice developed widespread hyperplasia with increased cell proliferation and enhanced activation of mitogen-activated protein kinase and AKT as early as 12 weeks of age. Treatment with tamoxifen did not inhibit this hyperplasia; instead, such treatment exaggerated hyperplasia with an enhanced degree of alteration, indicative of hypersensitivity to tamoxifen. Analysis of molecular markers in the transgenic mammary glands from the tamoxifen-treated transgenic mice showed higher levels of proliferation markers proliferating cell nuclear antigen and activated mitogen-activated protein kinase than in untreated PELP1-cyto cell-derived mice. We also found that nude mice with MCF-7/PELP1-cyto cell-derived tumor xenografts did not respond to tamoxifen. Using immunohistochemical analysis, we found that 43% of human breast tumor samples had high levels of cytoplasmic PELP1, which shows a positive correlation between tumor grade and proliferation. Patients whose tumors had high levels of cytoplasmic PELP1 exhibited a tendency to respond poorly to tamoxifen compared with patients whose tumors had low levels of cytoplasmic PELP1. CONCLUSIONS These findings suggest that PELP1 localization could be used as a determinant of hormone sensitivity or vulnerability. The establishment of the PELP1-cyto transgenic mouse model is expected to facilitate the development of preclinical approaches for effective intervention of breast tumors using cytoplasmic coregulators and active nongenomic signaling.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Biology, Institute of Coregulator Biology, The George Washington University Medical Center, Washington, District of Columbia 20037, USA
| | | | | | | | | | | |
Collapse
|