1
|
Banchi M, Cox MC, Bocci G. Metronomic chemotherapy in hematology: Lessons from preclinical and clinical studies to build a solid rationale for future schedules. Cancer Lett 2024; 591:216900. [PMID: 38636896 DOI: 10.1016/j.canlet.2024.216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Metronomic chemotherapy (mCHEMO), based on frequent, regular administration of low, but pharmacologically active drug doses, optimizes antitumor efficacy by targeting multiple targets and reducing toxicity of antineoplastic drugs. This minireview will summarize preclinical and clinical studies on cytotoxic drugs given at weekly, daily, or at continuous metronomic schedules alone or in combination with novel targeted agents for hematological malignancies, including lymphoma, multiple myeloma, and leukemia. Most of the preclinical in vitro and in vivo studies have reported a significant benefit of both mCHEMO monotherapy and combinatorial regimens compared with chemotherapy at the maximum tolerated dose. However, the combination of mCHEMO with targeted drugs is still little explored in the hematologic clinical setting. Data obtained from preclinical studies on low dose metronomic chemotherapy in hematological malignancies clearly suggested the possibility to clinically investigate more tolerable and effective strategies for the treatment of patients with advanced hematological malignancies, or at least for those frail and elderly patients, who are not eligible or resistant to standard treatments.
Collapse
Affiliation(s)
- Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | | | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Joaquin Garcia A, Rediti M, Venet D, Majjaj S, Kammler R, Munzone E, Gianni L, Thürlimann B, Laáng I, Colleoni M, Loi S, Viale G, Regan MM, Buisseret L, Rothé F, Sotiriou C. Differential Benefit of Metronomic Chemotherapy Among Triple-Negative Breast Cancer Subtypes Treated in the IBCSG Trial 22-00. Clin Cancer Res 2023; 29:4908-4919. [PMID: 37733800 DOI: 10.1158/1078-0432.ccr-23-1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE To explore whether specific triple-negative breast cancer (TNBC) molecular subtypes are predictive for a benefit from maintenance low-dose cyclophosphamide and methotrexate (CM) in the adjuvant IBCSG 22-00 phase III clinical trial. EXPERIMENTAL DESIGN RNA sequencing was performed on a selection of 347 TNBC formalin-fixed paraffin-embedded (FFPE) tumor samples following a case-cohort-like sampling. TNBC subtypes were computed on gene expression data. The association between TNBC subtypes and treatment outcome was assessed using a Cox proportional-hazards interaction test. RESULTS Immunomodulatory (IM) and basal-like/immune activated (BLIA) molecular subtypes showed a significant survival benefit when treated with low-dose CM [disease-free survival (DFS): HR, 0.5; 95% confidence interval (CI), 0.28-0.89; Pinteraction = 0.018 and HR, 0.49; 95% CI, 0.27-0.9; Pinteraction = 0.021]. Moreover, a high expression of regulatory T-cell immune signature was associated with a better prognosis in the CM arm, in line with a potential immunomodulating role of cyclophosphamide. In contrast, a worse outcome was observed in tumors with a mesenchymal (M) subtype treated with low-dose CM (DFS: HR, 1.9; 95% CI, 1.2-3; Pinteraction = 0.0044). CONCLUSIONS Our results show a differential benefit of low-dose CM therapy across different TNBC subtypes. Low-dose CM therapy could be considered as a potential strategy for TNBC tumors with IM subtype in the early-disease setting.
Collapse
Affiliation(s)
- Andrea Joaquin Garcia
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mattia Rediti
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - David Venet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Samira Majjaj
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Roswitha Kammler
- Translational Research Coordination International Breast Cancer Study Group, Division of ETOP IBCSG Partners Foundation, Bern, Switzerland
| | | | - Lorenzo Gianni
- Department of Medical Oncology, Ospedale Infermi, Rimini, AUSL della Romagna, Italy
| | | | - István Laáng
- National Institute of Oncology, Budapest, Hungary
| | - Marco Colleoni
- International Breast Cancer Study Group, Division of Medical Senology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sherene Loi
- International Breast Cancer Study Group, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Meredith M Regan
- International Breast Cancer Study Group Statistical Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Laurence Buisseret
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Tang H, Cao C, Zhang G, Sun Z. Impact of particle size of multivesicular liposomes on the embolic and therapeutic effects in rabbit VX2 liver tumor. Drug Deliv 2023; 30:1-16. [PMID: 36644796 PMCID: PMC9987747 DOI: 10.1080/10717544.2022.2157519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is usually considered more efficacious in the local treatment of parenchyma-sparing hepatocellular carcinoma (HCC). At present, embolic agents commonly used in TACE, include DC pellets, Hepasphere, Lipiodol, etc. Except that iodine oil is a viscous fluid embolic agent, other solid microsphere particles used clinically range from 70 to 700 µm, among which 100 to 300 µm is the most commonly used. With the technology development of micro-invasive interventional therapy, the specific distal embolization through TACE to occlude tumor arterial blood supply in patients with HCC is also required more accurately. Effective terminal embolization is considered to be a preferred option for TACE therapy due to significantly improving the survival rate of patients and preserving liver function. In this article, we prepared the multifunctional multivesicular liposomes (IVO-DOX-MVLs) (<100 µm) that can simultaneously encapsulate ioversol and doxorubicin based on the high-phase transition temperature (Tm) lipid ingredients, and evaluated its local artery embolization and therapeutic effect in rabbit VX-2 tumor model. The influence of particle size on occlusion and therapeutic effect of MVLs on rabbit VX-2 liver tumor models were well evaluated, including the tumor volume change, tumor growth rate, and necrosis rate, which were evaluated by magnetic resonance (MR). MVL samples with average particle size distribution of 50-60 µm exhibited fewer off-target embolization. Through TACE, IVO-DOX-MVLs were directly transported to the tumor tissues, playing roles of embolization performance, CT imaging effect, and local tumor killing effect. The feasibility of MVLs as a multifunctional embolic agent in its clinical application can be further improved by optimization of lipid composition and preparation process.
Collapse
Affiliation(s)
- Hailing Tang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Changhui Cao
- Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Guangyuan Zhang
- Department of Radiology, Fudan University Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Zhengkao Sun
- Department of Orthopaedics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShangDong University, Qingdao, China
| |
Collapse
|
4
|
Strobl MAR, Gallaher J, Robertson-Tessi M, West J, Anderson ARA. Treatment of evolving cancers will require dynamic decision support. Ann Oncol 2023; 34:867-884. [PMID: 37777307 PMCID: PMC10688269 DOI: 10.1016/j.annonc.2023.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023] Open
Abstract
Cancer research has traditionally focused on developing new agents, but an underexplored question is that of the dose and frequency of existing drugs. Based on the modus operandi established in the early days of chemotherapies, most drugs are administered according to predetermined schedules that seek to deliver the maximum tolerated dose and are only adjusted for toxicity. However, we believe that the complex, evolving nature of cancer requires a more dynamic and personalized approach. Chronicling the milestones of the field, we show that the impact of schedule choice crucially depends on processes driving treatment response and failure. As such, cancer heterogeneity and evolution dictate that a one-size-fits-all solution is unlikely-instead, each patient should be mapped to the strategy that best matches their current disease characteristics and treatment objectives (i.e. their 'tumorscape'). To achieve this level of personalization, we need mathematical modeling. In this perspective, we propose a five-step 'Adaptive Dosing Adjusted for Personalized Tumorscapes (ADAPT)' paradigm to integrate data and understanding across scales and derive dynamic and personalized schedules. We conclude with promising examples of model-guided schedule personalization and a call to action to address key outstanding challenges surrounding data collection, model development, and integration.
Collapse
Affiliation(s)
- M A R Strobl
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa; Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, USA
| | - J Gallaher
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - M Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - J West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - A R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa.
| |
Collapse
|
5
|
Strobl M, Martin AL, West J, Gallaher J, Robertson-Tessi M, Gatenby R, Wenham R, Maini P, Damaghi M, Anderson A. Adaptive therapy for ovarian cancer: An integrated approach to PARP inhibitor scheduling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533721. [PMID: 36993591 PMCID: PMC10055330 DOI: 10.1101/2023.03.22.533721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Toxicity and emerging drug resistance are important challenges in PARP inhibitor (PARPi) treatment of ovarian cancer. Recent research has shown that evolutionary-inspired treatment algorithms which adapt treatment to the tumor's treatment response (adaptive therapy) can help to mitigate both. Here, we present a first step in developing an adaptive therapy protocol for PARPi treatment by combining mathematical modelling and wet-lab experiments to characterize the cell population dynamics under different PARPi schedules. Using data from in vitro Incucyte Zoom time-lapse microscopy experiments and a step-wise model selection process we derive a calibrated and validated ordinary differential equation model, which we then use to test different plausible adaptive treatment schedules. Our model can accurately predict the in vitro treatment dynamics, even to new schedules, and suggests that treatment modifications need to be carefully timed, or one risks losing control over tumour growth, even in the absence of any resistance. This is because our model predicts that multiple rounds of cell division are required for cells to acquire sufficient DNA damage to induce apoptosis. As a result, adaptive therapy algorithms that modulate treatment but never completely withdraw it are predicted to perform better in this setting than strategies based on treatment interruptions. Pilot experiments in vivo confirm this conclusion. Overall, this study contributes to a better understanding of the impact of scheduling on treatment outcome for PARPis and showcases some of the challenges involved in developing adaptive therapies for new treatment settings.
Collapse
Affiliation(s)
- Maximilian Strobl
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Alexandra L. Martin
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Gynecologic Oncology, West Cancer Center and Research Institute, Memphis, TN, USA
| | - Jeffrey West
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jill Gallaher
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Wenham
- Gynecologic Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Philip Maini
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK
| | - Mehdi Damaghi
- Department of Pathology, Stony Brook Medicine, SUNY, NY, USA
- Stony Brook Cancer Center, Stony Brook Medicine, SUNY, NY, USA
| | - Alexander Anderson
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
6
|
Cazzaniga ME, Capici S, Cordani N, Cogliati V, Pepe FF, Riva F, Cerrito MG. Metronomic Chemotherapy for Metastatic Breast Cancer Treatment: Clinical and Preclinical Data between Lights and Shadows. J Clin Med 2022; 11:4710. [PMID: 36012949 PMCID: PMC9410269 DOI: 10.3390/jcm11164710] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Metronomic chemotherapy (mCHT), defined as continuous administration of low-dose chemotherapeutic agents with no or short regular treatment-free intervals, was first introduced to the clinic in international guidelines in 2017, and, since then, has become one of the available strategies for the treatment of advanced breast cancer (ABC). Despite recent successes, many unsolved practical and theoretical issues remain to be addressed. The present review aims to identify the "lights and shadows" of mCHT in preclinical and clinical settings. In the preclinical setting, several findings indicate that one of the most noticeable effects of mCHT is on the tumor microenvironment, which, over the last twenty years, has been demonstrated to be pivotal in supporting tumor cell survival and proliferation. On the other hand, the direct effects on tumor cells have been less well-defined. In addition, critical items to be addressed are the lack of definition of an optimal biological dose (OBD), the method of administration of metronomic schedules, and the recognition and validation of predictive biomarkers. In the clinical context-where mCHT has mainly been used in a metastatic setting-low toxicity is the most well-recognised light of mCHT, whereas the type of study design, the absence of randomised trials and uncertainty in terms of doses and drugs remain among the shadows. In conclusion, growing evidence indicates that mCHT is a suitable treatment option for selected metastatic breast cancer (MBC) patients. Moreover, given its multimodal mechanisms of action, its addition to immunological and targeted therapies might represent a promising new approach to the treatment of MBC. More preclinical data are needed in this regard, which can only be obtained through support for translational research as the key link between basic science and patient care.
Collapse
Affiliation(s)
- Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Phase 1 Research Centre, ASST Monza, 20900 Monza, Italy
| | - Serena Capici
- Phase 1 Research Centre, ASST Monza, 20900 Monza, Italy
| | - Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | | | | | | | | |
Collapse
|
7
|
Kashyap L, Patil V, Noronha V, Joshi A, Menon N, Jobanputra K, Saha S, Chaturvedi P, Banavali SD, Prabhash K. Efficacy and safety of neoadjuvant chemotherapy (NACT) with paclitaxel plus carboplatin and oral metronomic chemotherapy (OMCT) in patients with technically unresectable oral squamous cell carcinoma (OSCC). Ecancermedicalscience 2022; 15:1325. [PMID: 35211194 PMCID: PMC8816505 DOI: 10.3332/ecancer.2021.1325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 11/24/2022] Open
Abstract
A combination of maximum tolerated dose and metronomic chemotherapy schedule may lead to synergistic effects with acceptable toxicity. We assessed the efficacy and safety of this combination as neoadjuvant chemotherapy (NACT) in 14 patients with technically unresectable oral squamous cell carcinoma. They received NACT with paclitaxel-carboplatin and triple oral metronomic chemotherapy (OMCT) (methotrexate, celecoxib and erlotinib). Patients were assessed clinically and radiologically after a minimum of two cycles for resectability. Primary tumour site was buccal mucosa and oral tongue in 12 (86%) and 2 (14%) patients, respectively. The median number of NACT administered was three. The tumours of nine (65%) patients showed partial response and none of the patients had tumour progression. The tumours of nine patients (65%) were deemed resectable after NACT. Median progression free survival was 11.4 months (95% CI = 7.9–15 months) and median overall survival (OS) was not reached. OS at 15 months was 63.5% (95% CI = 37.8%–89.2%). Grade 3 or 4 haematological toxicities were seen in eight (57%) patients. Paclitaxel-carboplatin combined with OMCT is a well-tolerated and less resource intensive NACT regimen which leads to favourable resection rate and survival.
Collapse
Affiliation(s)
- Lakhan Kashyap
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Amit Joshi
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Kunal Jobanputra
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Saswata Saha
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Pankaj Chaturvedi
- Department of Head and Neck Oncosurgery, Tata Memorial Hospital, Mumbai 400012, India
| | - Shripad D Banavali
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai 400012, India
| |
Collapse
|
8
|
Pharmacodynamic biomarkers in metronomic chemotherapy: multiplex cytokine measurements in gastrointestinal cancer patients. Clin Exp Med 2020; 21:149-159. [PMID: 33048259 DOI: 10.1007/s10238-020-00666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Metronomic chemotherapy has shown promising antitumor activity in a number of malignancies. We previously reported a phase II clinical trial of metronomic UFT (a 5-fluorouracil prodrug; 100 mg/twice per day p.o.) and cyclophosphamide (CTX; 500 mg/m2 i.v. bolus on day 1 and then 50 mg/day p.o.) plus celecoxib (200 mg/twice a day p.o.) in 38 patients with advanced refractory gastrointestinal tumors. The mechanisms of action of metronomic chemotherapy include inhibition of angiogenesis, direct cytotoxic effects on cancer cells, and, at least for drugs such as CTX, activation of the immune system. To further evaluate the latter, we carried out an immune system multiplex 14-cytokine profiling of plasma samples that were available (for day 0, day 28, and day 56) from 31 of the 38 patients in the above-noted clinical trial. Our results show that pre-treatment plasma-level cutoffs of interferon gamma (> 12.84 pg/ml), sCD40L (< 2168 pg/ml), interferon alpha 2 (> 55.11 pg/ml), and IL-17a (< 15.1 pg/ml) were predictive markers for those patients with better progression-free survival (p < .05 for each cytokine). After 28 days of metronomic therapy, the plasma levels of sCD40L, IL-17a, and IL-6 (< 130 pg/ml) could serve as predictors of improved progression-free survival, as could levels interferon gamma and sCD40L after 56 days of therapy. We observed minimal changes in cytokine profiles, from baseline, as a consequence of the metronomic therapy, with the exception of an elevation of IL-6 and IL-8 levels 28 days (and 56 days) after treatment started (p < 0.05). Our results indicate that a selective cytokine elevation involves IL-6 and IL-8, following metronomic chemotherapy administration. In addition, interferon gamma and sCD40L may be potential biomarkers for gastrointestinal cancer patients that are likely to benefit from metronomic chemotherapy. Our study contributes to our understanding of the mechanisms of action of metronomic chemotherapy, and the cytokine profiling we describe may guide future selection of gastrointestinal cancer patients for UFT/CTX/celecoxib combination metronomic chemotherapy.
Collapse
|
9
|
Mainetti LE, Rico MJ, Kaufman CD, Grillo MC, Guercetti J, Baglioni MV, Del Giúdice A, Capitani MC, Fusini M, Rozados VR, Scharovsky OG. Losartan improves the therapeutic effect of metronomic cyclophosphamide in triple negative mammary cancer models. Oncotarget 2020; 11:3048-3060. [PMID: 32850009 PMCID: PMC7429183 DOI: 10.18632/oncotarget.27694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Metronomic chemotherapy refers to the minimum biologically effective doses of a chemotherapy agent given as a continuous regimen without extended rest periods. Drug repurposing is defined as the use of an already known drug for a new medical indication, different from the original one. In oncology the combination of these two therapeutic approaches is called "Metronomics". The aim of this work is to evaluate the therapeutic effect of cyclophosphamide in a metronomic schedule in combination with the repurposed drug losartan in two genetically different mice models of triple negative breast cancer. Our findings showed that adding losartan to metronomic cyclophosphamide significantly improved the therapeutic outcome. In both models the combined treatment increased the mice's survival without sings of toxicity. Moreover, we elucidated some of the mechanisms of action involved, which include a decrease of intratumor hypoxia, stimulation of the immune response and remodeling of the tumor microenvironment. The remarkable therapeutic effect, the lack of toxicity, the low cost of the drugs and its oral administration, strongly suggest its translation to the clinical setting in the near future.
Collapse
Affiliation(s)
- Leandro E. Mainetti
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- These authors contributed equally and are co-first authors
| | - María José Rico
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- These authors contributed equally and are co-first authors
| | - Cintia Daniela Kaufman
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Monica Carolina Grillo
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julian Guercetti
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Virginia Baglioni
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Antonela Del Giúdice
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Maria Celeste Capitani
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matias Fusini
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Viviana Rosa Rozados
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- These authors contributed equally and are co-senior authors
| | - O. Graciela Scharovsky
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Metronomics Global Health Initiative, Marseille, France
- These authors contributed equally and are co-senior authors
| |
Collapse
|
10
|
Scharovsky OG, Rico MJ, Mainetti LE, Perroud HA, Rozados VR. Achievements and challenges in the use of metronomics for the treatment of breast cancer. Biochem Pharmacol 2020; 175:113909. [DOI: 10.1016/j.bcp.2020.113909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
|
11
|
Abstract
Resistance to cancer therapy remains a major challenge in clinical oncology. Although the initial treatment phase is often successful, eventual resistance, characterized by tumour relapse or spread, is discouraging. The majority of studies devoted to investigating the basis of resistance have focused on tumour-related changes that contribute to therapy resistance and tumour aggressiveness. However, over the last decade, the diverse roles of various host cells in promoting therapy resistance have become more appreciated. A growing body of evidence demonstrates that cancer therapy can induce host-mediated local and systemic responses, many of which shift the delicate balance within the tumour microenvironment, ultimately facilitating or supporting tumour progression. In this Review, recent advances in understanding how the host response to different cancer therapies may promote therapy resistance are discussed, with a focus on therapy-induced immunological, angiogenic and metastatic effects. Also summarized is the potential of evaluating the host response to cancer therapy in an era of precision medicine in oncology.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Malik SS, Masood N, Fatima I, Kazmi Z. Microbial-Based Cancer Therapy: Diagnostic Tools and Therapeutic Strategies. MICROORGANISMS FOR SUSTAINABILITY 2019:53-82. [DOI: 10.1007/978-981-13-8844-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
14
|
Natale G, Bocci G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 2018; 432:28-37. [PMID: 29885517 DOI: 10.1016/j.canlet.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
Abstract
Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that has shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.
Collapse
Affiliation(s)
- Gianfranco Natale
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, and Museo di Anatomia Umana ''Filippo Civinini'', Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
15
|
Hughes E, Scurr M, Campbell E, Jones E, Godkin A, Gallimore A. T-cell modulation by cyclophosphamide for tumour therapy. Immunology 2018; 154:62-68. [PMID: 29460448 PMCID: PMC5904691 DOI: 10.1111/imm.12913] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The power of T cells for cancer treatment has been demonstrated by the success of co-inhibitory receptor blockade and adoptive T-cell immunotherapies. These treatments are highly successful for certain cancers, but are often personalized, expensive and associated with harmful side effects. Other T-cell-modulating drugs may provide additional means of improving immune responses to tumours without these disadvantages. Conventional chemotherapeutic drugs are traditionally used to target cancers directly; however, it is clear that some also have significant immune-modulating effects that can be harnessed to target tumours. Cyclophosphamide is one such drug; used at lower doses than in mainstream chemotherapy, it can perturb immune homeostasis, tipping the balance towards generation of anti-tumour T-cell responses and control of cancer growth. This review discusses its growing reputation as an immune-modulator whose multiple effects synergize with the microbiota to tip the balance towards tumour immunity offering widespread benefits as a safe, and relatively inexpensive component of cancer immunotherapy.
Collapse
Affiliation(s)
- Ellyn Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
- Present address:
Faculty of Medicine Nursing and Health SciencesSchool of Biomedical SciencesMonash UniversityMelbourneAustralia
| | - Martin Scurr
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Emma Campbell
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Emma Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Andrew Godkin
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Awen Gallimore
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityCardiffUK
| |
Collapse
|
16
|
Chen YJ, Tsai TH, Wang LY, Hsieh CH. Local Radiotherapy Affects Drug Pharmacokinetics-Exploration of a Neglected but Significant Uncertainty of Cancer Therapy. Technol Cancer Res Treat 2017; 16:705-716. [PMID: 29332468 PMCID: PMC5762083 DOI: 10.1177/1533034617737011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: Concurrent chemoradiation therapy is the mainstay of treatment for many types of malignancies. However, concurrent chemoradiation therapy is associated with a greater number of systemic adverse effects than radiotherapy or chemotherapy alone. Summary: Pharmacokinetics is the study of a drug and/or its metabolite kinetics in the body, including absorption, distribution, metabolism, and elimination. The incidences of adverse effects are markedly higher in patients who receive concurrent chemoradiation therapy than in those who receive either radiotherapy or chemotherapy alone. This phenomenon implies that irradiation affects the pharmacokinetics of cytotoxic agents, namely the radiotherapy–pharmacokinetic phenomenon. Experimental animal studies have shown that local irradiation affects the systemic pharmacokinetics of 5-fluorouracil and cisplatin at both low dose (simulating generous dose distributed to normal tissues) and daily practice dose (mimicking therapeutic dose to target volumes). These effects are significant in the circulation of blood and lymphatic system as well as in the hepatobiliary excretion. Furthermore, recent studies have demonstrated that matrix metalloproteinase-8 plays an important role in the radiotherapy–pharmacokinetic phenomenon. Conclusion: In the present review, we provide a general overview of the radiotherapy–pharmacokinetic phenomenon and discuss the possible mechanisms governing the phenomenon.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Hsi Hsieh
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
André N, Tsai K, Carré M, Pasquier E. Metronomic Chemotherapy: Direct Targeting of Cancer Cells after all? Trends Cancer 2017; 3:319-325. [DOI: 10.1016/j.trecan.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
|
18
|
Gaspar TB, Henriques J, Marconato L, Queiroga FL. The use of low-dose metronomic chemotherapy in dogs-insight into a modern cancer field. Vet Comp Oncol 2017; 16:2-11. [PMID: 28317239 DOI: 10.1111/vco.12309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 02/03/2017] [Accepted: 02/11/2017] [Indexed: 12/22/2022]
Abstract
The era of chemotherapy, which started in the middle of the last century, has been ruled by the routine use of dose-intense protocols, based on the "maximum-tolerated dose" concept. By promoting a balance between patient's quality of life and the goal of rapidly killing as many tumour cells as possible, these protocols still play a prominent role in veterinary oncology. However, with the opening of a new millennium, metronomic chemotherapy (MC) started to be considered a possible alternative to traditional dose-intense chemotherapy. Characterized by a long-term daily administration of lower doses of cytotoxic drugs, this new modality stands out for its unique combination of effects, namely on neovascularization, immune response and tumour dormancy. This article reviews the rationale for treatment with MC, its mechanism of action and the main studies conducted in veterinary medicine, and discusses the key challenges yet to be solved.
Collapse
Affiliation(s)
- T B Gaspar
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Hospital Veterinário Berna, Lisboa, Portugal
| | - J Henriques
- Hospital Veterinário Berna, Lisboa, Portugal
| | - L Marconato
- Centro Oncologico Veterinario, Bologna, Italy
| | - F L Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal.,Center for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
19
|
Resistance to metronomic chemotherapy and ways to overcome it. Cancer Lett 2017; 400:311-318. [PMID: 28259819 DOI: 10.1016/j.canlet.2017.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Therapeutic resistance is amongst the major determinants of cancer mortality. Contrary to initial expectations, antivascular therapies are equally prone to inherent or acquired resistance as other cancer treatment modalities. However, studies into resistance to vascular endothelial growth factor pathway inhibitors revealed distinct mechanisms of resistance compared to conventional cytotoxic therapy. While some of these novel mechanisms of resistance also appear to be functional regarding metronomic chemotherapy, herein we summarize available evidence for mechanisms of resistance specifically described in the context of metronomic chemotherapy. Numerous preclinically identified molecular targets and pathways represent promising avenues to overcome resistance and enhance the benefits achieved with metronomic chemotherapy eventually. However, there are considerable challenges to clinically translate the preclinical findings.
Collapse
|
20
|
Kerbel RS, Shaked Y. The potential clinical promise of 'multimodality' metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Lett 2017; 400:293-304. [PMID: 28202353 DOI: 10.1016/j.canlet.2017.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/04/2017] [Indexed: 12/24/2022]
Abstract
We present a rationale for further clinical development and assessment of metronomic chemotherapy on the basis of unexpected results obtained in translational mouse models of cancer involving treatment of advanced metastatic disease. Historically, mouse cancer therapy models have been dominated by treating established primary tumors or early stage low volume microscopic disease. Treatment of primary tumors is also almost always the case when using genetically engineered mouse models (GEMMs) of cancer or patient-derived xenografts (PDXs). Studies using such models, and others including transplanted cell lines, often yield highly encouraging results which are seldom recapitulated in the clinic, especially when assessed in randomized phase III clinical trials. While there are likely many different reasons for this discrepancy, one is likely the failure to recapitulate treatment of advanced visceral metastatic disease in mice. With this gap in mind, we have developed a number of models of metastatic human tumor xenografts (and more recently, of mouse tumors in syngeneic immunocompetent mice). A pattern of response we have observed with various targeted agents, e.g. VEGF pathway targeting antiangiogenic drugs or trastuzumab, is effective when treating primary tumors in contrast to a complete or severely reduced lack of such efficacy when treating advanced metastatic disease. Interestingly, an exception to this pattern has been observed using various continuous low-dose metronomic chemotherapy regimens, where counterintuitively, superior responses are observed in the metastatic setting, as well as superiority or equivalence of metronomic chemotherapy over standard maximum tolerated dose (MTD) chemotherapy, with lesser toxicity. The basis for these encouraging results may be related to the multiple mechanisms responsible for the anti-tumor effects and longer duration of metronomic chemotherapy regimens made possible by lesser toxicity. These include antiangiogenesis, stimulation of the immune system, stromal cell targeting in tumors, and possibly direct tumor cell targeting, including targeting cancer stem cells (CSCs). In addition, metronomic chemotherapy regimens minimize or even eliminate the problem of chemotherapy-induced host responses that may actually secondarily promote tumor growth and malignancy after causing an initial and beneficial anti-tumor response. We suggest that future preclinical studies of metronomic chemotherapy should be concentrated in the following areas: i) further comparative assessment of anti-tumor efficacy in primary vs metastatic treatment settings; ii) rigorous comparative assessment of conventional MTD chemotherapy vs metronomic chemotherapy using the same agent; iii) assessment of potential predictive biomarkers for metronomic chemotherapy, and methods to determine optimal biologic dose and schedule; and iv) a further detailed assessment of the potential of different chemotherapy drugs administered using MTD or metronomic regimens on stimulating or suppressing components of the innate or adaptive immune systems.
Collapse
Affiliation(s)
- Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Canada.
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| |
Collapse
|
21
|
Parra K, Valenzuela P, Lerma N, Gallegos A, Reza LC, Rodriguez G, Emmenegger U, Di Desidero T, Bocci G, Felder MS, Manciu M, Kirken RA, Francia G. Impact of CTLA-4 blockade in conjunction with metronomic chemotherapy on preclinical breast cancer growth. Br J Cancer 2017; 116:324-334. [PMID: 28056464 PMCID: PMC5294484 DOI: 10.1038/bjc.2016.429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Although there are reports that metronomic cyclophosphamide (CTX) can be immune stimulating, the impact of its combination with anti-CTLA-4 immunotherapy for the treatment of cancer remains to be evaluated. Methods: Murine EMT-6/P breast cancer, or its cisplatin or CTX-resistant variants, or CT-26 colon, were implanted into Balb/c mice. Established tumours were monitored for relative growth following treatment with anti-CTLA-4 antibody alone or in combination with; (a) metronomic CTX (ldCTX; 20 mg kg−1 day−1), b) bolus (150 mg kg−1) plus ldCTX, or (c) sequential treatment with gemcitabine (160 mg kg−1 every 3 days). Results: EMT-6/P tumours responded to anti-CTLA-4 therapy, but this response was less effective when combined with bolus plus ldCTX. Anti-CTLA-4 could be effectively combined with either ldCTX (without a bolus), or with regimens of either sequential or concomitant gemcitabine, including in orthotopic EMT-6 tumours, and independently of the schedule of drug administration. Tumour responses were confirmed with CT-26 tumours but were less pronounced in drug-resistant EMT-6/CTX or EMT-6/DDP tumour models than in the parent tumour. A number of tumour bearing mice developed spontaneous metastases under continuous therapy. The majority of cured mice rejected tumour re-challenges. Conclusions: Metronomic CTX can be combined with anti-CTLA-4 therapy, but this therapy is impaired by concomitant bolus CTX. Sequential therapy of anti-CTLA-4 followed by gemcitabine is effective in chemotherapy-naive tumours, although tumour relapses can occur, in some cases accompanied by the development of spontaneous metastases.
Collapse
Affiliation(s)
- Karla Parra
- Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Paloma Valenzuela
- Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Natzidielly Lerma
- Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Alejandra Gallegos
- Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Luis C Reza
- Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Urban Emmenegger
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Teresa Di Desidero
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mitchell S Felder
- William Beaumont Army Medical Center, Department of Neurology, El Paso, TX, USA
| | | | - Robert A Kirken
- Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Giulio Francia
- Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| |
Collapse
|
22
|
Pantziarka P, Hutchinson L, André N, Benzekry S, Bertolini F, Bhattacharjee A, Chiplunkar S, Duda DG, Gota V, Gupta S, Joshi A, Kannan S, Kerbel R, Kieran M, Palazzo A, Parikh A, Pasquier E, Patil V, Prabhash K, Shaked Y, Sholler GS, Sterba J, Waxman DJ, Banavali S. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai. Ecancermedicalscience 2016; 10:689. [PMID: 27994645 PMCID: PMC5130328 DOI: 10.3332/ecancer.2016.689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
The 5th Biennial Metronomic and Anti-angiogenic Therapy Meeting was held on 6th – 8th May in the Indian city of Mumbai. The meeting brought together a wide range of clinicians and researchers interested in metronomic chemotherapy, anti-angiogenics, drug repurposing and combinations thereof. Clinical experiences, including many from India, were reported and discussed in three symposia covering breast cancer, head and neck cancers and paediatrics. On the pre-clinical side research into putative mechanisms of action, and the interactions between low dose metronomic chemotherapy and angiogenesis and immune responses, were discussed in a number of presentations. Drug repurposing was discussed both in terms of clinical results, particularly with respect to angiosarcoma and high-risk neuroblastoma, and in pre-clinical settings, particularly the potential for peri-operative interventions. However, it was clear that there remain a number of key areas of challenge, particularly in terms of definitions, perceptions in the wider oncological community, mechanisms of action and predictive biomarkers. While the potential for metronomics and drug repurposing in low and middle income countries remains a key theme, it is clear that there is also considerable potential for clinically relevant improvements in patient outcomes even in high income economies.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; The George Pantziarka TP53 Trust, London, UK
| | | | - Nicolas André
- Service d'hématologie et Oncologie Pédiatrique, Centre Hospitalo-Universitaire Timone Enfants, AP-HM, Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille, France; Metronomics Global Health Initiative, Marseille, France
| | - Sébastien Benzekry
- Inria team MONC and Institut de Mathématiques de Bordeaux, Talence, France
| | | | | | | | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Vikram Gota
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Sudeep Gupta
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | - Sadhana Kannan
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Robert Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Mark Kieran
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Antonella Palazzo
- Division of Medical Senology, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Eddy Pasquier
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, Marseille, France; Metronomics Global Health Initiative, Marseille, France
| | | | | | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital and RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - David J Waxman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Shripad Banavali
- Tata Memorial Hospital, Mumbai, India; Metronomics Global Health Initiative, Marseille, France
| |
Collapse
|
23
|
Wendelburg KM, Price LL, Burgess KE, Lyons JA, Lew FH, Berg J. Survival time of dogs with splenic hemangiosarcoma treated by splenectomy with or without adjuvant chemotherapy: 208 cases (2001-2012). J Am Vet Med Assoc 2016. [PMID: 26225611 DOI: 10.2460/javma.247.4.393] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine survival time for dogs with splenic hemangiosarcoma treated with splenectomy alone, identify potential prognostic factors, and evaluate the efficacy of adjuvant chemotherapy. DESIGN Retrospective case series. ANIMALS 208 dogs. PROCEDURES Medical records were reviewed, long-term follow-up information was obtained, and survival data were analyzed statistically. RESULTS 154 dogs were treated with surgery alone, and 54 were treated with surgery and chemotherapy. Twenty-eight dogs received conventional chemotherapy, 13 received cyclophosphamide-based metronomic chemotherapy, and 13 received both conventional and metronomic chemotherapy. Median survival time of dogs treated with splenectomy alone was 1.6 months. Clinical stage was the only prognostic factor significantly associated with survival time. When the entire follow-up period was considered, there was no significant difference in survival time between dogs treated with surgery alone and dogs treated with surgery and chemotherapy. However, during the first 4 months of follow-up, after adjusting for the effects of clinical stage, survival time was significantly prolonged among dogs receiving any type of chemotherapy (hazard ratio, 0.6) and among dogs receiving both conventional and metronomic chemotherapy (hazard ratio, 0.4). CONCLUSIONS AND CLINICAL RELEVANCE Clinical stage was strongly associated with prognosis for dogs with splenic hemangiosarcoma. Chemotherapy was effective in prolonging survival time during the early portion of the follow-up period. Combinations of doxorubicin-based conventional protocols and cyclophosphamide-based metronomic protocols appeared to be more effective than either type of chemotherapy alone, but prolongations in survival time resulting from current protocols were modest.
Collapse
|
24
|
Bocci G, Kerbel RS. Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect. Nat Rev Clin Oncol 2016; 13:659-673. [DOI: 10.1038/nrclinonc.2016.64] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Shaked Y. Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat Rev Clin Oncol 2016; 13:611-26. [PMID: 27118493 DOI: 10.1038/nrclinonc.2016.57] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Local and systemic treatments for cancer include surgery, radiation, chemotherapy, hormonal therapy, molecularly targeted therapies, antiangiogenic therapy, and immunotherapy. Many of these therapies can be curative in patients with early stage disease, but much less frequently is this the case when they are used to treat advanced-stage metastatic disease. In the latter setting, innate and/or acquired resistance are among the reasons for reduced responsiveness or nonresponsiveness to therapy, or for tumour relapse after an initial response. Most studies of resistance or reduced responsiveness focus on 'driver' genetic (or epigenetic) changes in the tumour-cell population. Several studies have highlighted the contribution of therapy-induced physiological changes in host tissues and cells that can reduce or even nullify the desired antitumour effects of therapy. These unwanted host effects can promote tumour-cell proliferation (repopulation) and even malignant aggressiveness. These effects occur as a result of systemic release of numerous cytokines, and mobilization of various host accessory cells, which can invade the treated tumour microenvironment. In short, the desired tumour-targeting effects of therapy (the 'yin') can be offset by a reactive host response (the 'yang'); proactively preventing or actively suppressing the latter represents a possible new approach to improving the efficacy of both local and systemic cancer therapies.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron St. Bat Galim, Haifa 31096, Israel
| |
Collapse
|
26
|
Aboul-Soud MAM, El-Shemy HA, Aboul-Enein KM, Mahmoud AM, Al-Abd AM, Lightfoot DA. Effects of plant-derived anti-leukemic drugs on individualized leukemic cell population profiles in Egyptian patients. Oncol Lett 2015; 11:642-648. [PMID: 26870259 PMCID: PMC4727189 DOI: 10.3892/ol.2015.3916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Leukemias are a group of cancer types that originate from blood-forming tissues. In this disease, an abnormally large number of immature white blood cells is produced by the bone marrow. The relationship between treatments with plant-derived drugs and leukemia-associated immunophenotypes (LAIPs) of clinically isolated leukemia cells has yet to be established. The aim of the present study was to develop a preliminary clinical prognostic map for commonly expressed LAIPs in patients clinically diagnosed with leukemia, as well as to assess the potential involvement of LAIPs in the response rate to 10 natural products of plant origin. An increased expression of LAIPs, including CD4, CD14, CD33 and CD34, was considered a surrogate marker of the desired response of leukemia cells to treatment with plant-derived drugs. By contrast, the increased expression of the LAIPs, MPO and DR, was associated with poor prognostic outcomes following treatment with the plant-derived drugs. The results showed that 5 of the 10 plant-derived drugs tested induced the expression of several desirable LAIPs biomarkers. These findings clearly highlight the potential treatment efficacy of certain plant-derived drugs against leukemic cell types.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Faculty of Agriculture Research Park (FARP) and Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia
| | - Hany A El-Shemy
- Faculty of Agriculture Research Park (FARP) and Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Khalid M Aboul-Enein
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo 12513, Egypt
| | - Ali M Mahmoud
- Faculty of Agriculture Research Park (FARP) and Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; Center for Aging and Associated Diseases (CAAD), Helmy Institute for Medical Science (HIMS), Zewail City for Science and Technology, 6th of October City, Giza 12588, Egypt
| | - Ahmed M Al-Abd
- Department of Pharmacology, Medical Division, National Research Centre, Cairo 11796, Egypt
| | - David A Lightfoot
- Genomics Core-Facility, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
27
|
Rasmussen RM, Kurzman ID, Biller BJ, Guth A, Vail DM. Phase I lead-in and subsequent randomized trial assessing safety and modulation of regulatory T cell numbers following a maximally tolerated dose doxorubicin and metronomic dose cyclophosphamide combination chemotherapy protocol in tumour-bearing dogs. Vet Comp Oncol 2015; 15:421-430. [DOI: 10.1111/vco.12179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- R. M. Rasmussen
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
| | - I. D. Kurzman
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
| | - B. J. Biller
- Flint Animal Cancer Center; Colorado State University; Fort Collins CO USA
| | - A. Guth
- Flint Animal Cancer Center; Colorado State University; Fort Collins CO USA
| | - D. M. Vail
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
- The Carbone Cancer Center; University of Wisconsin-Madison; Madison WI USA
| |
Collapse
|
28
|
Chen P, Luo S, Wen YJ, Li YH, Li J, Wang YS, Du LC, Zhang P, Tang J, Yang DB, Hu HZ, Zhao X, Wei YQ. Low-dose paclitaxel improves the therapeutic efficacy of recombinant adenovirus encoding CCL21 chemokine against murine cancer. Cancer Sci 2015; 105:1393-401. [PMID: 25230206 PMCID: PMC4462366 DOI: 10.1111/cas.12537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/05/2023] Open
Abstract
Secondary lymphoid tissue chemokine (SLC/CCL21), one of the CC chemokines, exerts potent antitumor immunity by co-localizing T cells and dendritic cells at the tumor site and is currently tested against human solid tumors. Here, we investigated whether the combination of recombinant adenovirus encoding murine CCL21 (Ad-mCCL21) with low-dose paclitaxel would improve therapeutic efficacy against murine cancer. Immunocompetent mice bearing B16-F10 melanoma or 4T1 breast carcinoma were treated with either Ad-mCCL21, paclitaxel, or both agents together. Our results showed that Ad-mCCL21 + low-dose paclitaxel more effectively reduced the growth of tumors as compared with either treatment alone and significantly prolonged survival time of the tumor-bearing animals. These antitumor effects of the combined therapy were linked to altered cytokine network at the tumor site, enhanced apoptosis of tumor cells, and decreased formation of new vessels in tumors. Importantly, the combined therapy elicited a strong therapeutic antitumor immunity, which could be partly abrogated by the depletion of CD4+ or CD8+ T lymphocytes. Collectively, these preclinical evaluations may provide a combined strategy for antitumor immunity and should be considered for testing in clinical trials.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China; National Institutes for Food and Drug Control, Beijing, China; Chengdu Institute of Biological Products Co., Ltd, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Katz OB, Shaked Y. Host effects contributing to cancer therapy resistance. Drug Resist Updat 2014; 19:33-42. [PMID: 25575621 DOI: 10.1016/j.drup.2014.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 01/14/2023]
Abstract
There are several approaches for the management of malignant disease. However, tumor resistance to therapy is still a major challenge in the clinic. Efflux transporters, genetic responses and enzyme activity in tumor cells are examples of the main modalities that account for resistance to therapy. In addition, emerging evidence suggests that the host also plays a significant role in promoting therapy resistance. Recruitment of different host cell types to the treated tumor site occurs in response to a range of therapies, including chemotherapy, radiation and even targeted drugs. This host response may have a protective effect on the tumor cells, not only negating anti-tumor activity, but also promoting a resistant tumor. In this review, we focus on host-tumor interactions leading to therapy resistance with special emphasis on different host cells and secreted factors within the tumor microenvironment. The development of novel inhibitors that block the host response to therapy could be used as a treatment strategy to enhance therapy outcomes and survival.
Collapse
Affiliation(s)
- Ofrat Beyar Katz
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
30
|
Bouche G, André N, Banavali S, Berthold F, Berruti A, Bocci G, Brandi G, Cavallaro U, Cinieri S, Colleoni M, Curigliano G, Di Desidero T, Eniu A, Fazio N, Kerbel R, Hutchinson L, Ledzewicz U, Munzone E, Pasquier E, Graciela Scharovsky O, Shaked Y, Stěrba J, Villalba M, Bertolini F. Lessons from the Fourth Metronomic and Anti-angiogenic Therapy Meeting, 24-25 June 2014, Milan. Ecancermedicalscience 2014; 8:463. [PMID: 25228919 PMCID: PMC4162678 DOI: 10.3332/ecancer.2014.463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 01/10/2023] Open
Abstract
The Fourth Metronomic and Anti-angiogenic Therapy Meeting was held in Milan 24–25 June 2014. The meeting was a true translational meeting where researchers and clinicians shared their results, experiences, and insights in order to continue gathering useful evidence on metronomic approaches. Several speakers emphasised that exact mechanisms of action, best timing, and optimal dosage are still not well understood and that the field would learn a lot from ancillary studies performed during the clinical trials of metronomic chemotherapies. From the pre-clinical side, new research findings indicate additional possible mechanisms of actions of metronomic schedule on the immune and blood vessel compartments of the tumour micro-environment. New clinical results of metronomic chemotherapy were presented in particular in paediatric cancers [especially neuroblastoma and central nervous system (CNS) tumours], in angiosarcoma (together with beta-blockers), in hepatocellular carcinoma, in prostate cancer, and in breast cancer. The use of repurposed drugs such as metformin, celecoxib, or valproic acid in the metronomic regimen was reported and highlighted the potential of other candidate drugs to be repurposed. The clinical experiences from low- and middle-income countries with affordable regimens gave very encouraging results which will allow more patients to be effectively treated in economies where new drugs are not accessible. Looking at the impact of metronomic approaches that have been shown to be effective, it was admitted that those approaches were rarely used in clinical practice, in part because of the absence of commercial interest for companies. However, performing well-designed clinical trials of metronomic and repurposing approaches demonstrating substantial improvement, especially in populations with the greatest unmet needs, may be an easier solution than addressing the financial issue. Metronomics should always be seen as a chance to come up with new innovative affordable approaches and not as a cheap rescue strategy.
Collapse
Affiliation(s)
| | - Nicolas André
- Metronomics Global Health Initiative; Aix Marseille Université, Inserm, CRO2 UMR_S 911; & Paediatric Haematology and Oncology Department, Children's Hospital of La Timone, Marseille 13005, France
| | | | - Frank Berthold
- Department of Paediatric Oncology, University of Cologne D50924, Germany
| | - Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Ospedaliera Spedali Civili, Brescia 25123, Italy
| | - Guido Bocci
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma 55, Pisa 56126, Italy
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine University Hospital S. Orsola-Malpighi Bologna, 40138, Italy
| | - Ugo Cavallaro
- Molecular Medicine Programme, European Institute of Oncology, Milan 20141, Italy
| | | | - Marco Colleoni
- Division of Medical Senology, European Institute of Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, European Institute of Oncology, Milan 20141, Italy
| | - Teresa Di Desidero
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma 55, Pisa 56126, Italy
| | - Alexandru Eniu
- Cancer Institute 'I. Chiricuta', Cluj-Napoca 400015, Romania
| | - Nicola Fazio
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Unit, European Institute of Oncology, Milan 20141, Italy
| | - Robert Kerbel
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto M4N 3M5, Canada
| | | | - Urszula Ledzewicz
- Department of Mathematics and Statistics, Southern Illinois University, Edwardsville, IL 62026, USA
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, Milan 20141, Italy
| | - Eddy Pasquier
- Tumour Biology and Targeting Programme, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia; Metronomics Global Health Initiative, Marseille 13005, France; & Centre for Research in Oncobiology and Oncopharmacology, INSERM UMR911, Marseille 13005, France
| | - O Graciela Scharovsky
- Jefa Sección Oncología Experimental, Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, 2000, Argentina
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jaroslav Stěrba
- Department of Pediatric Oncology, Masaryk University School of Medicine and University Hospital, Brno, Cernopolni 9 Brno 613 00, Czech Republic
| | - Martin Villalba
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier 34295, France & Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier 34295, France
| | - Francesco Bertolini
- Laboratory of Haematology-Oncology, European Institute of Oncology, Milan 20141, Italy
| |
Collapse
|
31
|
Derosa L, Galli L, Orlandi P, Fioravanti A, Di Desidero T, Fontana A, Antonuzzo A, Biasco E, Farnesi A, Marconcini R, Francia G, Danesi R, Falcone A, Bocci G. Docetaxel plus oral metronomic cyclophosphamide: A phase II study with pharmacodynamic and pharmacogenetic analyses in castration-resistant prostate cancer patients. Cancer 2014; 120:3923-31. [DOI: 10.1002/cncr.28953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Derosa
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
| | - Luca Galli
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
| | - Paola Orlandi
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
| | - Anna Fioravanti
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
| | - Teresa Di Desidero
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
| | - Andrea Fontana
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
| | | | - Elisa Biasco
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
| | | | | | - Giulio Francia
- Border Biomedical Research Center; University of Texas at El Paso; El Paso Texas
| | - Romano Danesi
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
| | - Alfredo Falcone
- Oncology Unit 2; University Hospital of Pisa; Pisa Italy
- Tumor Institute of Tuscany; Florence Italy
| | - Guido Bocci
- Division of Pharmacology; Department of Experimental and Clinical Medicine; University of Pisa; Pisa Italy
- Tumor Institute of Tuscany; Florence Italy
| |
Collapse
|
32
|
Hasnis E, Alishekevitz D, Gingis-Veltski S, Bril R, Fremder E, Voloshin T, Raviv Z, Karban A, Shaked Y. Anti-Bv8 antibody and metronomic gemcitabine improve pancreatic adenocarcinoma treatment outcome following weekly gemcitabine therapy. Neoplasia 2014; 16:501-10. [PMID: 24957319 PMCID: PMC4198746 DOI: 10.1016/j.neo.2014.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 12/13/2022] Open
Abstract
Weekly gemcitabine therapy is the major treatment offered for patients with pancreatic adenocarcinoma cancer; however, relative resistance of tumor cells to chemotherapy, rapid regrowth, and metastasis are the main causes of death within a year. Recently, the daily continuous administration of chemotherapy in low doses--called metronomic chemotherapy (MC)--has been shown to inhibit primary tumor growth and delay metastases in several tumor types; however, its use as a single therapy is still in question due to its moderate therapeutic benefit. Here, we show that the combination of weekly gemcitabine with MC of the same drug delays tumor regrowth and inhibits metastasis in mice implanted orthotopically with pancreatic tumors. We further demonstrate that weekly gemcitabine, but not continuous MC gemcitabine or the combination of the two drug regimens, promotes rebound myeloid-derived suppressor cell (MDSC) mobilization and increases angiogenesis in this tumor model. Furthermore, Bv8 is highly expressed in MDSCs colonizing pancreatic tumors in mice treated with weekly gemcitabine compared to MC gemcitabine or the combination of the two regimens. Blocking Bv8 with antibodies in weekly gemcitabine-treated mice results in a significant reduction in tumor regrowth, angiogenesis, and metastasis. Overall, our results suggest that pro-tumorigenic effects induced by weekly gemcitabine are mediated in part by MDSCs expressing Bv8. Therefore, both Bv8 inhibition and MC can be used as legitimate 'add-on' treatments for preventing post-chemotherapy pancreatic cancer recurrence, progression, and metastasis following weekly gemcitabine therapy.
Collapse
Affiliation(s)
- Erez Hasnis
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Internal Medicine C, Rambam Health Care Campus, Haifa, Israel
| | - Dror Alishekevitz
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Svetlana Gingis-Veltski
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Rotem Bril
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ella Fremder
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tali Voloshin
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ziv Raviv
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Amir Karban
- Department of Internal Medicine C, Rambam Health Care Campus, Haifa, Israel
| | - Yuval Shaked
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
33
|
Nelius T, Martinez-Marin D, Hirsch J, Miller B, Rinard K, Lopez J, de Riese W, Filleur S. Pigment epithelium-derived factor expression prolongs survival and enhances the cytotoxicity of low-dose chemotherapy in castration-refractory prostate cancer. Cell Death Dis 2014; 5:e1210. [PMID: 24810046 PMCID: PMC4047872 DOI: 10.1038/cddis.2014.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/24/2023]
Abstract
There is currently no cure for advanced castration-refractory prostate cancer (CRPC) despite the recent approval of several new therapeutic agents. We report here the anti-tumor effect of the angio-inhibitory pigment epithelium-derived factor (PEDF) in the metastatic LNCaP-derivative CRPC CL1 model and explore PEDF anti-neoplasic efficacy in combination with low-dose chemotherapy. Androgen-sensitive LNCaP and CRPC PC3 cell lines were examined as comparison. Using a retroviral expression system, we showed that PEDF limited the proliferation of all prostatic cell lines tested; an effect attributed to interleukin 8 (IL8)-CXCR1/IL8RA inhibition. PEDF also reduced the number and size of 3D tumor spheroids in vitro, but only induced cell differentiation in CRPC spheroids. Similarly, PEDF inhibited the migration of CRPC cells suggesting both anti-proliferative and anti-migratory functions. In vivo, PEDF decreased by 85% and 65% the growth of subcutaneous (s.c.) PC3 and CL1 tumors, respectively. In the CL1 orthotopic model, tumor intake with lethal metastases was found in all animals; nevertheless, PEDF prolonged the median survival of tumor-bearing mice (95% confidence interval: 53±0.001 to 57±1 days). Accordingly, PEDF delayed the emergence of skeletal-related event in intra-tibial xenografts. Next, we evaluated low-dose docetaxel (DTX; 5, 1, 0.5 mg/kg) or cyclophosphamide (CTX; 10–20 mg/kg) on established s.c. PC3 tumors that conditionally express PEDF anti-tumoral epitope/NT3. Although NT3–DTX-5 mg/kg combination was inefficient, NT3–DTX-1 mg/kg and -0.5 mg/kg inhibited by 95% and 87.8%, respectively, tumor growth compared with control and induced tumor stasis. Both NT3–CTX combinations were advantageous. Inversely, PEDF–DTX-5 mg/kg and PEDF–CTX-10 mg/kg delayed the most CL1 tumor growth (15, 11 and 5 days for PEDF–DTX-5 mg/kg, PEDF–CTX-10 mg/kg and single treatments, respectively) with elevated apoptosis and serum thrombospondin-1 as possible mechanism and marker, respectively. As well, both PEDF–CTX-10 mg/kg and PEDF–DTX-5 mg/kg prolonged significantly the survival of tumor-bearing mice compared with single treatments. Metastases were reduced in PEDF–DTX-5 mg/kg compared with other treatments, suggesting that PEDF–DTX delayed metastases formation. Our results advocate that PEDF/low-dose chemotherapy may represent a new therapeutic alternative for CRPC.
Collapse
Affiliation(s)
- T Nelius
- Department of Urology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
| | - D Martinez-Marin
- Department of Urology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
| | - J Hirsch
- Department of Urology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
| | - B Miller
- Department of Pathology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
| | - K Rinard
- Department of Urology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
| | - J Lopez
- Department of Urology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
| | - W de Riese
- Department of Urology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
| | - S Filleur
- 1] Department of Urology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA [2] Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, 3601 4th Street, Lubbock, TX, USA
| |
Collapse
|
34
|
Bracha S, Walshaw R, Danton T, Holland S, Ruaux C, Obradovich J. Evaluation of toxicities from combined metronomic and maximal-tolerated dose chemotherapy in dogs with osteosarcoma. J Small Anim Pract 2014; 55:369-74. [PMID: 24803081 DOI: 10.1111/jsap.12228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the tolerability of a piroxicam and cyclophosphamide metronomic treatment protocol combined with carboplatin alone or carboplatin and doxorubicin at maximal-tolerated doses. METHODS Retrospective study of 30 dogs diagnosed with osteosarcoma. All dogs underwent amputation and chemotherapy treatment with one of the two maximal-tolerated dose protocols. Metronomic chemotherapy was administered in conjunction with these protocols, and continued subsequently. The protocols included 0 · 3 mg/kg piroxicam and 10 to 12 mg/M(2) cyclophosphamide with 300 mg/M(2) carboplatin alone, or 300 mg/M(2) carboplatin alternating with 30 mg/M(2) doxorubicin. RESULTS Fourteen dogs were treated with the carboplatin and metronomic protocol and 16 were treated with the carboplatin alternating with doxorubicin and metronomic protocol. Grades 3 and 4 toxicities overall were significantly (P = 0 · 018) more common in the former group. The disease-free interval of the carboplatin and metronomic group was 192 days, which was not significantly different (P = 0 · 916) to the 182 days for the carboplatin alternating with doxorubicin and metronomic group. The median survival times of the two groups were 217 and 189 days, respectively. CLINICAL SIGNIFICANCE Piroxicam and cyclophosphamide metronomic protocols can be safely administered in combination with maximal-tolerated dose chemotherapy protocols. A significantly higher frequency of toxicities was observed in dogs treated with the carboplatin and metronomic protocol.
Collapse
Affiliation(s)
- S Bracha
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | | | | | | | | | | |
Collapse
|
35
|
Fuereder T, Wacheck V, Strommer S, Horak P, Gerschpacher M, Lamm W, Kivaranovic D, Krainer M. Circulating endothelial progenitor cells in castration resistant prostate cancer: a randomized, controlled, biomarker study. PLoS One 2014; 9:e95310. [PMID: 24755958 PMCID: PMC3995874 DOI: 10.1371/journal.pone.0095310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/25/2014] [Indexed: 12/03/2022] Open
Abstract
Background Endothelial progenitor cells (CEPs) and circulating endothelial cells (CECs) are potential biomarkers of response to anti-angiogenic treatment regimens. In the current study, we investigated the effect of docetaxel and sunitinib on CEP/CEC kinetics and clinical response in castration resistant prostate cancer (CRPC) patients. Patients and methods Chemonaive patients with CRPC were enrolled in this study to receive either sunitinib (37.5 mg/d), in combination with docetaxel (75 mg/m2) or docetaxel alone. CEP and CEC kinetics were analyzed for every cycle. The primary objective was to compare CEP/CEC pharmacodynamics between both treatment arms. We also investigated if CEC/CEP spikes, induced by MTD docetaxel, are suppressed by sunitinib in patients treated with docetaxel/sunitinib relative to docetaxel monotherapy. Results A total of 27 patients were enrolled. We observed a significant increase of CEP/CEC (total/viable) counts over time within each cycle (coefficients 0.29233, 0.22092 and 0.26089, respectively; p<0.001). However, no differences between the treatment groups, in terms of CEP and CEC kinetics, were detected. In the docetaxel monotherapy arm 4 (30%) patients responded to therapy with a 50% PSA decline, while 9 (64%) patients showed a PSA decline in the combination group (n.s.). The median PFS in the docetaxel monotherapy group was 3.1 months (2.6–3.6 months, 95% CI) and 6.2 months (4.9–7.4 months, 95% CI; p = 0.062) in the combination arm. Sunitinib/docetaxel was reasonably well tolerated and toxicity manageable. Conclusion In summary, no significant differences in CEC and CEP kinetics between the treatment arms were observed, although a highly significant increase of CEPs/CECs within each cycle over time was detected. These results mirror the challenge we have to face when employing anti-angiogenic strategies in CRPC. Additional preclinical research is needed to elucidate the underlying molecular mechanisms. However, docetaxel/sunitinib therapy resulted in a better response in terms of PSA decline and a trend towards improved PFS. Trial Registery clinicaltrialsregister.eu EudraCT 2007-003705-27
Collapse
Affiliation(s)
- Thorsten Fuereder
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Volker Wacheck
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sabine Strommer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Horak
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marion Gerschpacher
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Lamm
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Danijel Kivaranovic
- Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Michael Krainer
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
36
|
[Salvage therapy for castration-refractory prostate cancer resistant to docetaxel]. Nihon Hinyokika Gakkai Zasshi 2014; 104:681-7. [PMID: 24564074 DOI: 10.5980/jpnjurol.104.681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES To evaluate the treatment for castration-refractory prostate cancer (CRPC) resistant to docetaxel MATERIALS AND METHODS Among 45 patients with CRPC treated with docetaxel (70-75 mg/m2) every 3 to 4 weeks at Hamamatsu University Hospital from January 2004 to July 2012, 19 patients underwent salvage treatments. We retrospectively analyzed the medical records of 14 patients except for 5 patients who were enrolled in clinical trials. RESULTS The median age and serum prostate-specific antigen (PSA) level at starting salvage treatments was 71 years (range 45 to 79) and 241.1 ng/mL (range 3.06 to 1,643.0), respectively. All patients maintained castration status. Salvage treatments include DTX (30 mg/m2) + cisplatin (CDDP) (70 mg/m2)/carboplatin (Area under the curve = 4), etoposide + CDDP, paclitaxel + CDDP, cyclophosphamide, S-l, tegaful-uracil. The reasons why 14 patients moved to salvage treatments after DTX were progressive disease in 12 patients and adverse events in 2. Eight patients had a PSA response, 3 patients>50% and 5 patients<50%. Six patients had a PSA progression. The median overall survival was 10.4 months (range 4.1 to 27.3). All patients died of cancer, 13 patients with prostate cancer and one patient with lung adenocarcinoma. Most adverse events were mild. Transitory grade 3 leukopenia was observed in 2 patients, and grade 3 anemia in 2. No grade 4 toxicities were noted. CONCLUSIONS All salvage treatments without grade 4 toxicities described in this study may be acceptable in the patients with CRPC progressing after docetaxel although the effect would be limited.
Collapse
|
37
|
Rüter J, Barnett BG, Kryczek I, Brumlik MJ, Daniel BJ, Coukos G, Zou W, Curiel TJ. Manipulating T regulatory cells in cancer immunotherapy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.4.589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther 2013; 15:69-80. [PMID: 24145298 DOI: 10.4161/cbt.26609] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Multidrug resistance (MDR) is a hallmark of cancer cells and a crucial factor in chemotherapy failure, cancer reappearance, and patient deterioration. We have previously described the physicochemical characteristics and the in vitro anticancer properties of a multifunctional doxorubicin-loaded liposomal formulation. Lipodox(®), a commercially available PEGylated liposomal doxorubicin, was made multifunctional by surface-decorating with a cell-penetrating peptide, TATp, conjugated to PEG 1000-PE, to enhance liposomal cell uptake. A pH-sensitive polymer, PEG 2000-Hz-PE, with a pH-sensitive hydrazone (Hz) bond to shield the peptide in the body and expose it only at the acidic tumor cell surface, was used as well. In addition, an anti-nucleosome monoclonal antibody 2C5 attached to a long-chain polymer to target nucleosomes overexpressed on the tumor cell surface was also present. Here, we report the in vitro cell uptake and cytotoxicity of the modified multifunctional immunoliposomes as well as the in vivo studies on tumor xenografts developed subcutaneously in nude mice with MDR and drug-sensitive human ovarian cancer cells (SKOV-3). Our results show the ability of multifunctional immunoliposomes to overcome MDR by enhancing cytotoxicity in drug-resistant cells, compared with non-modified liposomes. Furthermore, in comparison with the non-modified liposomes, upon intravenous injection of these multifunctional immunoliposomes into mice with tumor xenografts, a significant reduction in tumor growth and enhanced therapeutic efficacy of the drug in both drug-resistant and drug-sensitive mice was obtained. The use of "smart" multifunctional delivery systems may provide the basis for an effective strategy to develop, improve, and overcome MDR cancers in the future.
Collapse
Affiliation(s)
- Anjali Apte
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| | - Erez Koren
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| | - Alexander Koshkaryev
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine; Northeastern University; Boston, MA USA
| |
Collapse
|
39
|
Cardillo I, Spugnini EP, Galluzzo P, Contestabile M, Dell’Anna ML, Picardo M, Crispi S, Calogero RA, Piccolo MT, Arigoni M, Cantarella D, Boccellino M, Quagliuolo L, Ferretti G, Carlini P, Felici A, Boccardo F, Cognetti F, Baldi A. Functional and pharmacodynamic evaluation of metronomic cyclophosphamide and docetaxel regimen in castration-resistant prostate cancer. Future Oncol 2013; 9:1375-88. [DOI: 10.2217/fon.13.99] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: The aim of our study was to investigate the association of docetaxel and metronomic cyclophosphamide (CYC) in castration-resistant prostate cancer (CRPC). Materials & methods: CRPC xenografts were established with PC3 cells. Mice were treated with a combination of CYC (50 mg/kg/day) and docetaxel (10–30 mg/kg/week) or with docetaxel alone. Docetaxel plasma levels were analyzed in patients receiving the drug alone or combined with CYC. Results: Metronomic CYC is an effective adjuvant in blocking tumor growth in vivo, with comparable efficacy and less toxic effects compared with docetaxel treatment. CYC acts by downregulating cell proliferation and inducing apoptosis thorough upregulation of p21 and inhibition of angiogenesis. Finally, CYC increases docetaxel plasma levels in patients. Conclusion: Metronomic CYC exerts anti-tumoral effects in an in vivo model of prostate cancer and in patients with CRPC, and also increases the bioavailability of docetaxel. These results explain the favorable toxicity and activity profiles observed in patients treated with this regimen.
Collapse
Affiliation(s)
- Irene Cardillo
- SAFU Department, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Enrico P Spugnini
- SAFU Department, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Paola Galluzzo
- SAFU Department, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Michela Contestabile
- SAFU Department, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Maria Lucia Dell’Anna
- Laboratory of Cutaneous Physiopathology & CIRM, Dermatologic San Gallicano Institute, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology & CIRM, Dermatologic San Gallicano Institute, Rome, Italy
| | - Stefania Crispi
- Gene Expression & Human Molecular Genetics Laboratory, Institute of Genetics & Biophysics, CNR, Naples, Italy
| | - Raffaele A Calogero
- Bioinformatics & Genomics Unit, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Maria Teresa Piccolo
- Gene Expression & Human Molecular Genetics Laboratory, Institute of Genetics & Biophysics, CNR, Naples, Italy
| | - Maddalena Arigoni
- Bioinformatics & Genomics Unit, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics & General Pathology, Second University of Naples, Naples, Italy
| | - Lucio Quagliuolo
- Department of Biochemistry, Biophysics & General Pathology, Second University of Naples, Naples, Italy
| | - Gianluigi Ferretti
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Paolo Carlini
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Alessandra Felici
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | | | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | - Alfonso Baldi
- Department of Environmental, Biological & Pharmaceutical Sciences & Technologies, Second University of Naples, Naples, Italy
| |
Collapse
|
40
|
Vives M, Ginestà MM, Gracova K, Graupera M, Casanovas O, Capellà G, Serrano T, Laquente B, Viñals F. Metronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells. Int J Cancer 2013; 133:2464-72. [PMID: 23649709 DOI: 10.1002/ijc.28259] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 12/30/2022]
Abstract
In this article, the effectiveness of a multi-targeted chemo-switch (C-S) schedule that combines metronomic chemotherapy (MET) after treatment with the maximum tolerated dose (MTD) is reported. This schedule was tested with gemcitabine in two distinct human pancreatic adenocarcinoma orthotopic models and with cyclophosphamide in an orthotopic ovarian cancer model. In both models, the C-S schedule had the most favourable effect, achieving at least 80% tumour growth inhibition without increased toxicity. Moreover, in the pancreatic cancer model, although peritoneal metastases were observed in control and MTD groups, no dissemination was observed in the MET and C-S groups. C-S treatment caused a decrease in angiogenesis, and its effect on tumour growth was similar to that produced by the MTD followed by anti-angiogenic DC101 treatment. C-S treatment combined an increase in thrombospondin-1 expression with a decrease in the number of CD133+ cancer cells and triple-positive CD133+/CD44+/CD24+ cancer stem cells (CSCs). These findings confirm that the C-S schedule is a challenging clinical strategy with demonstrable inhibitory effects on tumour dissemination, angiogenesis and CSCs.
Collapse
Affiliation(s)
- Marta Vives
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chow A, Wong A, Francia G, Man S, Kerbel RS, Emmenegger U. Preclinical analysis of resistance and cross-resistance to low-dose metronomic chemotherapy. Invest New Drugs 2013; 32:47-59. [PMID: 23728939 DOI: 10.1007/s10637-013-9974-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Abstract
Low-dose metronomic chemotherapy is an emerging form of chemotherapy with distinct mechanisms of action from conventional chemotherapy (e.g., antiangiogenesis). Although developed to overcome resistance to conventional chemotherapy, metronomic chemotherapy is subject to resistance on its own. However, there is a paucity of information on mechanisms of resistance, on cross-resistance between metronomic regimens using different cytotoxic drugs, and on cross-resistance between metronomic versus conventional chemotherapy, or versus targeted antiangiogenic therapy. Herein we show that PC-3 human prostate cancer xenografts were sensitive to both metronomic cyclophosphamide and metronomic docetaxel, but resistant to metronomic topotecan. Conventional docetaxel was only moderately active in parental PC-3 and in metronomic cyclophosphamide resistant PC-3 tumors. However, in metronomic cyclophosphamide resistant PC-3 tumors combining conventional docetaxel or bolus cyclophosphamide therapy with continued metronomic cyclophosphamide was superior to each treatment alone. Furthermore, bevacizumab had single-agent activity against metronomic cyclophosphamide resistant PC-3 tumors. Microarray analyses identified altered regulation of protein translation as a potential mechanism of resistance to metronomic cyclophosphamide. Our results suggest that sensitivity to metronomic chemotherapy regimens using different cytotoxic drugs not only depends on shared mechanisms of action such as antiangiogenesis, but also on as yet unknown additional antitumor effects that appear to be drug-specific. As clinically observed with targeted antiangiogenic agents, the continued use of metronomic chemotherapy beyond progression may amplify the effects of added second-line therapies or vice versa. However, metronomic chemotherapy is no different from other systemic therapies in that predictive biomarkers will be essential to fully exploit this novel use of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Low-dose metronomic chemotherapy: from past experience to new paradigms in the treatment of cancer. Drug Discov Today 2013; 18:193-201. [PMID: 22868084 DOI: 10.1016/j.drudis.2012.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/28/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
|
43
|
Kuo YH, Lin CH, Shau WY, Chen TJ, Yang SH, Huang SM, Hsu C, Lu YS, Cheng AL. Dynamics of circulating endothelial cells and endothelial progenitor cells in breast cancer patients receiving cytotoxic chemotherapy. BMC Cancer 2012; 12:620. [PMID: 23268621 PMCID: PMC3561193 DOI: 10.1186/1471-2407-12-620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 12/18/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The abundance of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs), which serve as surrogate markers for angiogenesis, may be affected by chemotherapy. We studied their dynamic change during consecutive cycles of chemotherapy. METHODS We collected blood samples from 15 breast cancer patients, who received a total of 56 courses of systemic chemotherapy, and measured the CECs, viable CECs (V-CECs), and CEPs by six-color flow cytometry within the seven days prior to chemotherapy, twice a week during the first and second cycles of chemotherapy, and then once a week during the subsequent cycles. RESULTS The CEC, V-CEC, and CEP levels all significantly decreased from day 1 of treatment to the first week of chemotherapy. After one week of chemotherapy, the CEC and V-CEC levels returned to a level similar to day 1. The CEP level remained significantly reduced after the first week of chemotherapy, but gradually rebounded until the next course of chemotherapy. After six cycles of chemotherapy, the total number of CEC and V-CEC cells trended toward a decrease and the CEP cells toward an increase. Clinical factors, including the existence of a tumor, chemotherapy regimens, and the use of granulocyte colony stimulating factor, did not significantly affect these results. CONCLUSIONS The CEC and CEP counts change dynamically during each course of chemotherapy and after the chemotherapy cycles, providing background data for any future study planning to use CECs and CEPs as surrogate markers of angiogenesis in antiangiogenesis treatments combined with chemotherapy.
Collapse
Affiliation(s)
- Yu-Hsuan Kuo
- Department of Oncology, Chi-Mei Hospital, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sun Y, Nelson PS. Molecular pathways: involving microenvironment damage responses in cancer therapy resistance. Clin Cancer Res 2012; 18:4019-25. [PMID: 22619305 DOI: 10.1158/1078-0432.ccr-11-0768] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The armamentarium of therapeutics used to treat cancer patients relies heavily on ionizing radiation and chemotherapeutic drugs that severely damage DNA. Tumor cells' responses to such treatments are heavily influenced by their environment: Physical contacts with structural elements such as the extracellular matrix, associations with resident and transitory benign cells such as fibroblasts and leukocytes, and interactions with numerous soluble endocrine and paracrine-acting factors all modulate tumor-cell behavior. Of importance, this complex tumor microenvironment is not static and dynamically responds to a variety of stimuli. Here, we describe emerging data indicating that genotoxic cancer treatments activate highly conserved damage response programs in benign constituents of the tumor microenvironment. These damage signals, transmitted via master regulators such as NF-κB, culminate in a powerful and diverse secretory program that generates a proangiogenic, proinflammatory microenvironment. Constituents of this program include interleukin (IL)-6, IL-8, hepatocyte growth factor, amphiregulin, matrix metalloproteinases, and other factors that have been shown to promote adverse tumor-cell phenotypes, such as enhanced resistance to treatment and rapid tumor repopulation. A detailed understanding of these survival signals induced in the context of genotoxic stress provides a platform for developing combinatorial treatment strategies that take into account malignant cells, the tumor microenvironment, and the dynamics exerted by the treatment itself.
Collapse
Affiliation(s)
- Yu Sun
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 91809, USA
| | | |
Collapse
|
45
|
Penel N, Adenis A, Bocci G. Cyclophosphamide-based metronomic chemotherapy: After 10 years of experience, where do we stand and where are we going? Crit Rev Oncol Hematol 2012; 82:40-50. [DOI: 10.1016/j.critrevonc.2011.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/07/2011] [Accepted: 04/21/2011] [Indexed: 02/08/2023] Open
|
46
|
Francia G, Shaked Y, Hashimoto K, Sun J, Yin M, Cesta C, Xu P, Man S, Hackl C, Stewart J, Uhlik M, Dantzig AH, Foster FS, Kerbel RS. Low-dose metronomic oral dosing of a prodrug of gemcitabine (LY2334737) causes antitumor effects in the absence of inhibition of systemic vasculogenesis. Mol Cancer Ther 2011; 11:680-9. [PMID: 22188817 DOI: 10.1158/1535-7163.mct-11-0659] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metronomic chemotherapy refers to the close, regular administration of conventional chemotherapy drugs at relatively low, minimally toxic doses, with no prolonged break periods; it is now showing encouraging results in various phase II clinical trials and is currently undergoing phase III trial evaluation. It is thought to cause antitumor effects primarily by antiangiogenic mechanisms, both locally by targeting endothelial cells of the tumor neovasculature and systemically by effects on bone marrow-derived cells, including circulating endothelial progenitor cells (CEP). Previous studies have shown reduction of CEPs by metronomic administration of a number of different chemotherapeutic drugs, including vinblastine, cyclophosphamide, paclitaxel, topotecan, and tegafur plus uracil (UFT). However in addition to, or even instead of, antiangiogenic effects, metronomic chemotherapy may cause suppression of tumor growth by other mechanisms such as stimulating cytotoxic T-cell responses or by direct antitumor effects. Here we report results evaluating the properties of metronomic administration of an oral prodrug of gemcitabine LY2334737 in nontumor-bearing mice and in preclinical models of human ovarian (SKOV3-13) and breast cancer (LM2-4) xenografts. Through daily gavage (at 6 mg/kg/d), the schedules tested were devoid of toxicity and caused antitumor effects; however, a suppressive effect on CEPs was not detected. Unexpectedly, metronomic LY2334737 administration caused increased blood flow in luciferase-tagged LM2-4 tumor xenografts, and this effect, readily measured using contrast micro-ultrasound, coincided with a relative increase in tumor bioluminescence. These results highlight the possibility of significant antitumor effects mediated by metronomic administration of some chemotherapy drugs without a concomitant inhibition of systemic angiogenesis.
Collapse
Affiliation(s)
- Giulio Francia
- Department of Medical Biophysics, Platform Biological Sciences, Sunnybrook Research Institute, S-217 Research Building, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oral/metronomic cyclophosphamide-based chemotherapy as option for patients with castration-refractory prostate cancer – Review of the literature. Cancer Treat Rev 2011; 37:444-55. [DOI: 10.1016/j.ctrv.2010.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 12/08/2010] [Accepted: 12/18/2010] [Indexed: 11/21/2022]
|
48
|
Hatiboglu MA, Kong LY, Wei J, Wang Y, McEnery KA, Fuller GN, Qiao W, Davies MA, Priebe W, Heimberger AB. The tumor microenvironment expression of p-STAT3 influences the efficacy of cyclophosphamide with WP1066 in murine melanoma models. Int J Cancer 2011; 131:8-17. [PMID: 21792892 DOI: 10.1002/ijc.26307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/28/2011] [Indexed: 02/04/2023]
Abstract
Melanoma is a common and deadly tumor that upon metastasis to the central nervous system (CNS) has median survival duration of less than 5 months. Activation of the signal transducer and activator of transcription 3 (STAT3) has been identified as a key mediator that drives the fundamental components of melanoma. We hypothesized that WP1066, a novel inhibitor of STAT3 signaling, would enhance the antitumor activity of cyclophosphamide (CTX) against melanoma, including disease within the CNS. The mechanisms of efficacy were investigated by tumor- and immune-mediated cytotoxic assays, in vivo evaluation of the reduction of regulatory T cells (Tregs) and by determining intratumoral p-STAT3 expression by immunohistochemistry. Combinational therapy of WP1066, with both metronomic and cytotoxic dosing of CTX, was investigated in a model system of systemic and intracerebral melanoma in syngeneic mice. Inhibition of p-STAT3 by WP1066 was enhanced with CTX in a dose-dependent manner. However, in mice with intracerebral melanoma, the greatest therapeutic benefit was seen in animals treated with cytotoxic CTX dosing and WP1066, whose median survival time was 120 days, an increase of 375%, with 57% long-term survivors. This treatment efficacy correlated with p-STAT3 expression levels within the tumor microenvironment. The efficacy of the combination of cytotoxic dosing of CTX with WP1066 is attributed to the direct tumor cytotoxic effects of the agents and has the greatest therapeutic potential for the treatment of CNS melanoma.
Collapse
Affiliation(s)
- Mustafa Aziz Hatiboglu
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee CK, Friedlander M, Brown C, Gebski VJ, Georgoulopoulos A, Vergote I, Pignata S, Donadello N, Schmalfeldt B, Delva R, Mirza MR, Sauthier P, Pujade-Lauraine E, Lord SJ, Simes RJ. Early decline in cancer antigen 125 as a surrogate for progression-free survival in recurrent ovarian cancer. J Natl Cancer Inst 2011; 103:1338-42. [PMID: 21840849 DOI: 10.1093/jnci/djr282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We used data from 886 patients from the CAELYX in Platinum Sensitive Ovarian Patients (CALYPSO) trial, recruited between April 2005 and September 2007, to examine the role of early decline in cancer antigen 125 (CA125) and early tumor response as prognostic factors and surrogates for superiority of treatment with carboplatin-pegylated liposomal doxorubicin (CPLD) compared with carboplatin-paclitaxel (CP) in a landmark analysis. Progression-free survival (PFS) was estimated by Kaplan-Meier analyses. We used univariate and multivariable Cox proportional hazards analyses to assess early decline and early response as surrogates for CPLD treatment benefit compared with CP. All statistical tests were two-sided. Early decline (defined as rate of CA125 decrease of at least 50% per month) was associated with improved PFS (adjusted hazard ratio [HR] for progression = 0.81, 95% confidence interval [CI] = 0.67 to 0.97, P = .02) but early response (complete or partial responses) was not. CPLD was associated with improved PFS compared with CP (HR = 0.82, 95% CI = 0.69 to 0.96, P = .01). However, fewer CPLD patients had an early decline (161 [37.4%] vs 233 [51.2%], P < .001) or an early response (146 [33.9%] vs 176 [38.7%], P = .14) compared with CP patients. The PFS for CPLD patients did not change statistically significantly after adjustment for early decline (adjusted HR = 0.80, 95% CI = 0.68 to 0.94, P = .007). These findings are opposite to what would be expected if these markers were good surrogates for treatment benefit.
Collapse
Affiliation(s)
- Chee K Lee
- NHMRC Clinical Trials Centre, University of Sydney, Locked Bag 77, Camperdown, Sydney, NSW 1450, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Burton J, Mitchell L, Thamm D, Dow S, Biller B. Low-Dose Cyclophosphamide Selectively Decreases Regulatory T Cells and Inhibits Angiogenesis in Dogs with Soft Tissue Sarcoma. J Vet Intern Med 2011; 25:920-6. [DOI: 10.1111/j.1939-1676.2011.0753.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|