1
|
Stergiopoulos GM, Concilio SC, Galanis E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr Treat Options Oncol 2024; 25:952-991. [PMID: 38896326 DOI: 10.1007/s11864-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
OPINION STATEMENT Malignant gliomas are common central nervous system tumors that pose a significant clinical challenge due to the lack of effective treatments. Glioblastoma (GBM), a grade 4 malignant glioma, is the most prevalent primary malignant brain tumor and is associated with poor prognosis. Current clinical trials are exploring various strategies to combat GBM, with oncolytic viruses (OVs) appearing particularly promising. In addition to ongoing and recently completed clinical trials, one OV (Teserpaturev, Delytact®) received provisional approval for GBM treatment in Japan. OVs are designed to selectively target and eliminate cancer cells while promoting changes in the tumor microenvironment that can trigger and support long-lasting anti-tumor immunity. OVs offer the potential to remodel the tumor microenvironment and reverse systemic immune exhaustion. Additionally, an increasing number of OVs are armed with immunomodulatory payloads or combined with immunotherapy approaches in an effort to promote anti-tumor responses in a tumor-targeted manner. Recently completed oncolytic virotherapy trials can guide the way for future treatment individualization through patient preselection, enhancing the likelihood of achieving the highest possible clinical success. These trials also offer valuable insight into the numerous challenges inherent in malignant glioma treatment, some of which OVs can help overcome.
Collapse
Affiliation(s)
| | | | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Monaco ML, Filpi GA, Kohler SL, Eversole R, Idris OA, Essani K. Oncolytic Tanapoxvirus Recombinants Expressing Flagellin C or Mouse Interleukin-2 Are Capable of Regressing Human Triple-Negative Breast Cancer Xenografts in Immuno-Competent BALB/c Nude Mice. Pathogens 2024; 13:402. [PMID: 38787254 PMCID: PMC11124456 DOI: 10.3390/pathogens13050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) in humans is the most aggressive and deadly form of BC. Although TNBCs are about 15 percent of the total number of BC cases, they are associated with the highest mortalities. Current treatment options are limited, and most modalities are toxic and have not increased the 5-year survival rates of TNBC. Many oncolytic viruses are emerging as potential therapies for TNBC. In this study, two Tanapoxvirus (TPV) recombinants, one expressing FliC and the other expressing mouse interleukin-2 (mIL-2), were assessed for their efficacy in an immuno-competent xenograft mouse model. MDA-MB-231 tumors were planted in BALB/c nude mice, treated, made immuno-competent via adoptive transfer of splenocytes from healthy BALB/c donors, and then monitored for 40 days. TPV/Δ2L/66R/FliC and TPV/Δ66R/mIL-2 demonstrated significant tumor reduction (p = 0.01602 and p = 0.03890, respectively) compared to the reconstituted control (RC), whereas wtTPV did not. Pathological analyses of treated tumors revealed cells consistent with lymphocyte and plasma cell morphology in reconstituted mice treated with TPV recombinants. Anti-viral plaque reduction assays conducted using harvested serum from treated animals indicated the presence of anti-TPV antibodies in mice reconstituted and treated with TPV that were missing from immune-deficient nude mice, including those exposed to TPV and of statistically equivalent serum concentrations to normal BALB/c mice immunized against TPV. The results suggest immuno-deficient BALB/c nude mice can become immuno-competent via adoptive transfer of splenocytes from genetically identical donors and allow for testing of tumor xenografts in a competent model system. The TPV recombinants tested should be further studied for the potential treatment of human TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA; (M.L.M.); (G.A.F.); (S.L.K.); (R.E.); (O.A.I.)
| |
Collapse
|
3
|
Yeşilaltay A, Muz D, Erdal B. Oncolytic Myxoma virus Increases Autophagy in Multiple Myeloma. Turk J Haematol 2024; 41:16-25. [PMID: 38258554 PMCID: PMC10918390 DOI: 10.4274/tjh.galenos.2024.2023.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 01/24/2024] Open
Abstract
Objective Multiple myeloma, which affects plasma cells, is the second most common hematological malignancy. Despite the development of new drugs and treatment protocols, patient survival has not reached the desired level. In this study, we investigated the effects of Myxoma virus (MYXV), an oncolytic virus, on autophagy in myeloma cells. Materials and Methods We analyzed protein expressions of ATG-5, p62, Beclin-1, LC3B, and the apoptosis marker Bcl-2 as autophagy markers in human U-266 and mouse MOPC-315 myeloma cell lines subjected to different doses of MYXV. In addition, autophagic images of myeloma cells were investigated using transmission electron microscopy (TEM). Results In the first 24 h, which is the early stage of autophagy, ATG-5 and Beclin-1 expression levels were increased in the U-266 and MOPC-315 cell lines in the groups that had received MYXV at a multiplicity of infection of 15. At 48 h, a significant increase was detected in the expression of LC3B, which is a late indicator. Autophagosomes were observed in myeloma cells by TEM. Conclusion MYXV shows an antimyeloma effect by increasing autophagy in myeloma cells.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Başkent University İstanbul Hospital, Department of Hematology, İstanbul, Türkiye
| | - Dilek Muz
- Tekirdağ Namık Kemal University Faculty of Veterinary Medicine, Department of Virology, Tekirdağ, Türkiye
| | - Berna Erdal
- Tekirdağ Namık Kemal University Faculty of Medicine, Department of Microbiology, Tekirdağ, Türkiye
| |
Collapse
|
4
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Yeşilaltay A, Muz D, Erdal B, Bilgen T, Batar B, Turgut B, Topçu B, Yılmaz B, Avcı BA. Myxoma Virus Combination Therapy Enhances Lenalidomide and Bortezomib Treatments for Multiple Myeloma. Pathogens 2024; 13:72. [PMID: 38251379 PMCID: PMC10820570 DOI: 10.3390/pathogens13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the effectiveness and safety of Myxoma virus (MYXV) in MM cell lines and primary myeloma cells obtained from patients with multiple myeloma. Myeloma cells were isolated from MM patients and cultured. MYXV, lenalidomide, and bortezomib were used in MM cells. The cytotoxicity assay was investigated using WST-1. Apoptosis was assessed through flow cytometry with Annexin V/PI staining and caspase-9 concentrations using ELISA. To explore MYXV entry into MM cells, monoclonal antibodies were used. Moreover, to explore the mechanisms of MYXV entry into MM cells, we examined the level of GFP-labeled MYXV within the cells after blocking with monoclonal antibodies targeting BCMA, CD20, CD28, CD33, CD38, CD56, CD86, CD117, CD138, CD200, and CD307 in MM cells. The study demonstrated the effects of treating Myxoma virus with lenalidomide and bortezomib. The treatment resulted in reduced cell viability and increased caspase-9 expression. Only low-dose CD86 blockade showed a significant difference in MYXV entry into MM cells. The virus caused an increase in the rate of apoptosis in the cells, regardless of whether it was administered alone or in combination with drugs. The groups with the presence of the virus showed higher rates of early apoptosis. The Virus, Virus + Bortezomib, and Virus + Lenalidomide groups had significantly higher rates of early apoptosis (p < 0.001). However, the measurements of late apoptosis and necrosis showed variability. The addition of MYXV resulted in a statistically significant increase in early apoptosis in both newly diagnosed and refractory MM patients. Our results highlight that patient-based therapy should also be considered for the effective management of MM.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Department of Hematology, Faculty of Medicine, Başkent University Istanbul, Istanbul 34662, Türkiye
| | - Dilek Muz
- Department of Virology, Faculty of Veterinary, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Berna Erdal
- Department of Medical Microbiology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Türker Bilgen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Bahadır Batar
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Burhan Turgut
- Department of Hematology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye; (B.T.); (B.A.A.)
| | - Birol Topçu
- Department of Biostatistics, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Bahar Yılmaz
- Department of Tumor Biology and Immunology, Institute of Health Sciences, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye;
| | - Burcu Altındağ Avcı
- Department of Hematology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdag 59030, Türkiye; (B.T.); (B.A.A.)
| |
Collapse
|
6
|
Shah S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med Sci (Basel) 2023; 12:1. [PMID: 38249077 PMCID: PMC10801585 DOI: 10.3390/medsci12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most prevalent primary malignant brain tumors is glioblastoma (GB). About 6 incidents per 100,000 people are reported annually. Most frequently, these tumors are linked to a poor prognosis and poor quality of life. There has been little advancement in the treatment of GB. In recent years, some innovative medicines have been tested for the treatment of newly diagnosed cases of GB and recurrent cases of GB. Surgery, radiotherapy, and alkylating chemotherapy are all common treatments for GB. A few of the potential alternatives include immunotherapy, tumor-treating fields (TTFs), and medications that target specific cellular receptors. To provide new multimodal therapies that focus on the molecular pathways implicated in tumor initiation and progression in GB, novel medications, delivery technologies, and immunotherapy approaches are being researched. Of these, oncolytic viruses (OVs) are among the most recent. Coupling OVs with certain modern treatment approaches may have significant benefits for GB patients. Here, we discuss several OVs and how they work in conjunction with other therapies, as well as virotherapy for GB. The study was based on the PRISMA guidelines. Systematic retrieval of information was performed on PubMed. A total of 307 articles were found in a search on oncolytic viral therapies for glioblastoma. Out of these 83 articles were meta-analyses, randomized controlled trials, reviews, and systematic reviews. A total of 42 articles were from the years 2018 to 2023. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. One of the most prevalent malignant brain tumors is still GB. Significant promise and opportunity exist for oncolytic viruses in the treatment of GB and in boosting immune response. Making the most of OVs in the treatment of GB requires careful consideration and evaluation of a number of its application factors.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
7
|
Thomas RJ, Bartee MY, Valenzuela-Cardenas M, Bartee E. Oncolytic myxoma virus is effective in murine models of triple negative breast cancer despite poor rates of infection. Mol Ther Oncolytics 2023; 30:316-319. [PMID: 37732297 PMCID: PMC10507476 DOI: 10.1016/j.omto.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Oncolytic viruses are being heavily investigated as novel methods to treat cancers; however, predicting their therapeutic efficacy remains challenging. The most commonly used predictive tests involve determining the in vitro susceptibility of a tumor's malignant cells to infection with an oncolytic agent. Whether these tests are truly predictive of in vivo efficacy, however, remains unclear. Here we demonstrate that a recombinant, oncolytic myxoma virus shows efficacy in two murine models of triple negative breast cancer despite extremely low permissivity of these models to viral infection. These data demonstrate that in vitro infectivity studies are not an accurate surrogate for therapeutic efficacy and suggest that other tests need to be developed.
Collapse
Affiliation(s)
- Raquela J. Thomas
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mee Y. Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Eric Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
8
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Mahar R, Ragavan M, Chang MC, Hardiman S, Moussatche N, Behar A, Renne R, Merritt ME. Metabolic signatures associated with oncolytic myxoma viral infections. Sci Rep 2022; 12:12599. [PMID: 35871072 PMCID: PMC9308783 DOI: 10.1038/s41598-022-15562-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractOncolytic viral therapy is a recent advance in cancer treatment, demonstrating promise as a primary treatment option. To date, the secondary metabolic effects of viral infection in cancer cells has not been extensively studied. In this work, we have analyzed early-stage metabolic changes in cancer cells associated with oncolytic myxoma virus infection. Using GC–MS based metabolomics, we characterized the myxoma virus infection induced metabolic changes in three cancer cell lines—small cell (H446) and non-small cell (A549) lung cancers, and glioblastoma (SFxL). We show that even at an early stage (6 and 12 h) myxoma infection causes profound changes in cancer cell metabolism spanning several important pathways such as the citric acid cycle, fatty acid metabolism, and amino acid metabolism. In general, the metabolic effects of viral infection across cell lines are not conserved. However, we have identified several candidate metabolites that can potentially serve as biomarkers for monitoring oncolytic viral action in general.
Collapse
|
10
|
Zheng N, Fang J, Xue G, Wang Z, Li X, Zhou M, Jin G, Rahman MM, McFadden G, Lu Y. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance. Cancer Cell 2022; 40:973-985.e7. [PMID: 36027915 PMCID: PMC9489043 DOI: 10.1016/j.ccell.2022.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/28/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
Cytotoxicity of tumor-specific T cells requires tumor cell-to-T cell contact-dependent induction of classic tumor cell apoptosis and pyroptosis. However, this may not trigger sufficient primary responses of solid tumors to adoptive cell therapy or prevent tumor antigen escape-mediated acquired resistance. Here we test myxoma virus (MYXV)-infected tumor-specific T (TMYXV) cells expressing chimeric antigen receptor (CAR) or T cell receptor (TCR), which systemically deliver MYXV into solid tumors to overcome primary resistance. In addition to T cell-induced apoptosis and pyroptosis, tumor eradication by CAR/TCR-TMYXV cells is also attributed to tumor cell autosis induction, a special type of cell death. Mechanistically, T cell-derived interferon γ (IFNγ)-protein kinase B (AKT) signaling synergizes with MYXV-induced M-T5-SKP-1-VPS34 signaling to trigger robust tumor cell autosis. CAR/TCR-TMYXV-elicited autosis functions as a type of potent bystander killing to restrain antigen escape. We uncover an unexpected synergy between T cells and MYXV to bolster solid tumor cell autosis that reinforces tumor clearance.
Collapse
Affiliation(s)
- Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jing Fang
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Gang Xue
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ziyu Wang
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Mengshi Zhou
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Guangxu Jin
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Masmudur M Rahman
- Biodesign Center for Immunotherapy Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA.
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
11
|
Cheng K, Zhang H, Guo Q, Zhai P, Zhou Y, Yang W, Wang Y, Lu Y, Shen Z, Wu H. Emerging trends and research foci of oncolytic virotherapy for central nervous system tumors: A bibliometric study. Front Immunol 2022; 13:975695. [PMID: 36148235 PMCID: PMC9486718 DOI: 10.3389/fimmu.2022.975695] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundCentral nervous system tumor (CNST) is one of the most complicated and lethal forms of human tumors with very limited treatment options. In recent years, growing evidence indicates that oncolytic virotherapy (OVT) has emerged as a promising therapeutic strategy for CNSTs. And a considerable amount of literature on OVT-CNSTs has been published. However, there are still no studies summarizing the global research trends and hotspots of this field through a bibliometric approach. To fulfill this knowledge gap, bibliometric analysis was conducted based on all publications relating to OVT-CNSTs since 2000s.MethodsWe searched the Web of Science Core Collection for all relevant studies published between 2000 and 2022. Four different tools (online analysis platform, R-bibliometrix, CiteSpace and VOSviewer) were used to perform bibliometric analysis and network visualization, including annual publication output, active journals, contribution of countries, institutions, and authors, references, as well as keywords.ResultsA total of 473 articles and reviews were included. The annual number of publications on OVT-CNSTs showed a significant increasing trend. Molecular Therapy and Cancer Research were the most active and co-cited journals, respectively. In terms of contributions, there is no doubt that the United States occupied a leading position with the most publications (n=307, 64.9%) and the highest H-index (57). The institution and author that contributed the largest number of publications were Ohio State University and Chiocca EA, respectively. As can be seen from citation analysis, the current studies mainly focused on preclinical and phase I/II clinical results of various oncolytic virus for CNSTs treatment. Keywords co-occurrence and burst analysis revealed that the following research topics including immunotherapy, T-cells, tumor microenvironment, vaccine, blood-brain-barrier, checkpoint inhibitors, macrophage, stem cell, and recurrent glioblastoma have been research frontiers of this field and also have great potential to continue to be research hotspots in the future.ConclusionThere has been increasing attention on oncolytic viruses for use as CNSTs therapeutics. Oncolytic immunotherapy is a topic of great concern in this field. This bibliometric study provides a comprehensive analysis of the knowledge base, research hotspots, development perspective in the field of OVT-CNSTs, which could become an essential reference for scholars in this area.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Qiang Guo
- Department of Orhopaedic Surgery, Baodi Clinical College of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengfei Zhai
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of NeuroSpine Surgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Zhou
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Weiguang Yang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yanqiu Lu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Zefeng Shen
- Department of Graduate School, Sun Yat-sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| | - Haiyang Wu
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
- *Correspondence: Yanqiu Lu, ; Zefeng Shen, ; Haiyang Wu,
| |
Collapse
|
12
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
13
|
Jazowiecka-Rakus J, Sochanik A, Hadryś A, Fidyk W, Chmielik E, Rahman MM, McFadden G. Combination of LIGHT (TNFSF14)-Armed Myxoma Virus Pre-Loaded into ADSCs and Gemcitabine in the Treatment of Experimental Orthotopic Murine Pancreatic Adenocarcinoma. Cancers (Basel) 2022; 14:2022. [PMID: 35454928 PMCID: PMC9027757 DOI: 10.3390/cancers14082022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly neoplasm. Oncolytic viruses have tumorolytic and immune response-boosting effects and present great potential for PDAC management. We used LIGHT-armed myxoma virus (vMyx-LIGHT) loaded ex vivo into human adipose-derived mesenchymal stem cells (ADSCs) to evaluate murine PDAC treatment in conjunction with gemcitabine (GEM). The cytotoxicity of this treatment was confirmed in vitro using human and murine pancreatic cancer cell cultures, which were more sensitive to the combined approach and largely destroyed. Unlike cancer cells, ADSCs sustain significant viability after infection. The in vivo administration of vMyx-LIGHT-loaded ADSCs and gemcitabine was evaluated using immunocompetent mice with induced orthotopic PDAC lesions. The expression of virus-encoded LIGHT increased the influx of T cells to the tumor site. Shielded virus followed by gemcitabine improved tumor regression and survival. The addition of gemcitabine slightly compromised the adaptive immune response boost obtained with the shielded virus alone, conferring no survival benefit. ADSCs pre-loaded with vMyx-LIGHT allowed the effective transport of the oncolytic construct to PDAC lesions and yielded significant immune response; additional GEM administration failed to improve survival. In view of our results, the delivery of targeted/shielded virus in combination with TGF-β ablation and/or checkpoint inhibitors is a promising option to improve the therapeutic effects of vMyx-LIGHT/ADSCs against PDAC in vivo.
Collapse
Affiliation(s)
- Joanna Jazowiecka-Rakus
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland; (A.S.); (A.H.)
| | - Aleksander Sochanik
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland; (A.S.); (A.H.)
| | - Agata Hadryś
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland; (A.S.); (A.H.)
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland;
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland;
| | - Masmudur M. Rahman
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.M.R.); (G.M.)
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.M.R.); (G.M.)
| |
Collapse
|
14
|
Gospel of malignant Glioma: Oncolytic virus therapy. Gene 2022; 818:146217. [PMID: 35093451 DOI: 10.1016/j.gene.2022.146217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Glioma accounts for nearly 80% of all intracranial malignant tumors. It is a major challenge to society as it is causes to impaired brain function in many patients. Currently, gliomas are mainly treated with surgery, postoperative radiotherapy, and chemotherapy. However, the curative effects of these treatments are not satisfactory. Oncolytic virus (OV) is a novel treatment which works by activating the immune functions and inducing apoptosis of tumor cells. The OV propagates indefinitely in the host cell, eventually leading to the death of host cell. Subsequently, a large number of antigens and signal molecules are released which exert antitumor immunity. Several preclinical and clinical studies have shown that G207, DNX2401, Zika and other viruses have important roles in malignant tumors. For example, these viruses can reduce the growth of tumor cells without causing severe complications. However, the known OVs have not been clearly classified. Herein, we divided OVs into neurotropic and non-neurophilic OVs based on whether the OVs are naturally neurotropic or not. The therapeutic effects of each group were compared. Finally, challenges encountered in the clinical application of OVs in the treatment of malignant gliomas were summarized.
Collapse
|
15
|
Villa NY, Rahman MM, Mamola J, Sharik ME, de Matos AL, Kilbourne J, Lowe K, Daggett-Vondras J, D'Isabella J, Goras E, Chesi M, Bergsagel PL, McFadden G. Transplantation of autologous bone marrow pre-loaded ex vivo with oncolytic myxoma virus is efficacious against drug-resistant Vk*MYC mouse myeloma. Oncotarget 2022; 13:490-504. [PMID: 35251496 PMCID: PMC8893797 DOI: 10.18632/oncotarget.28205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that remains incurable despite significant progress with myeloablative regimens and autologous stem cell transplantation for eligible patients and, more recently with T cell redirected immunotherapy. Recently, we reported that ex vivo virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model. Here, we tested the Vk*MYC transplantable C57BL/6 mouse MM model that more closely recapitulates human disease. In vitro, the murine bortezomib-resistant Vk12598 cell line is fully susceptible to MYXV infection. In vivo results demonstrate: (i) autologous bone marrow (BM) leukocytes armed ex vivo with MYXV exhibit moderate therapeutic effects against MM cells pre-seeded into recipient mice; (ii) Cyclophosphamide in combination with BM/MYXV delays the onset of myeloma in mice seeded with Vk12598 cells; (iii) BM/MYXV synergizes with the Smac-mimetics LCL161 and with immune checkpoint inhibitor α-PD-1 to control the progression of established MM in vivo, resulting in significant improvement of survival rates and decreased of tumor burden; (iv) Survivor mice from (ii) and (iii), when re-challenged with fresh Vk12598 cells, developed acquired anti-MM immunity. These results highlight the utility of autologous BM grafts armed ex vivo with oncolytic MYXV alone or in combination with chemotherapy/immunotherapy to treat drug-resistant MM in vivo.
Collapse
Affiliation(s)
- Nancy Y. Villa
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
- Division of Hematology/Oncology, School of Medicine, Emory University, Atlanta, GA 32322, USA
| | - Masmudur M. Rahman
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Joseph Mamola
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | | | - Ana Lemos de Matos
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Jacquelyn Kilbourne
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth Lowe
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Juliane Daggett-Vondras
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Julia D'Isabella
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Elizabeth Goras
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | - Grant McFadden
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
16
|
Schultz BM, Acevedo OA, Kalergis AM, Bueno SM. Role of Extracellular Trap Release During Bacterial and Viral Infection. Front Microbiol 2022; 13:798853. [PMID: 35154050 PMCID: PMC8825568 DOI: 10.3389/fmicb.2022.798853] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are innate immune cells that play an essential role during the clearance of pathogens that can release chromatin structures coated by several cytoplasmatic and granular antibacterial proteins, called neutrophil extracellular traps (NETs). These supra-molecular structures are produced to kill or immobilize several types of microorganisms, including bacteria and viruses. The contribution of the NET release process (or NETosis) to acute inflammation or the prevention of pathogen spreading depends on the specific microorganism involved in triggering this response. Furthermore, studies highlight the role of innate cells different from neutrophils in triggering the release of extracellular traps during bacterial infection. This review summarizes the contribution of NETs during bacterial and viral infections, explaining the molecular mechanisms involved in their formation and the relationship with different components of such pathogens.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando A Acevedo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Christie JD, Appel N, Zhang L, Lowe K, Kilbourne J, Daggett-Vondras J, Elliott N, Lucas AR, Blattman JN, Rahman MM, McFadden G. Systemic Delivery of mLIGHT-Armed Myxoma Virus Is Therapeutic for Later-Stage Syngeneic Murine Lung Metastatic Osteosarcoma. Cancers (Basel) 2022; 14:337. [PMID: 35053501 PMCID: PMC8773855 DOI: 10.3390/cancers14020337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Cancers that metastasize to the lungs represent a major challenge in both basic and clinical cancer research. Oncolytic viruses are newly emerging options but successful delivery and choice of appropriate therapeutic armings are two critical issues. Using an immunocompetent murine K7M2-luc lung metastases model, the efficacy of MYXV armed with murine LIGHT (TNFSF14/CD258) expressed under virus-specific early/late promoter was tested in an advanced later-stage disease K7M2-luc model. Results in this model show that mLIGHT-armed MYXV, delivered systemically using ex vivo pre-loaded PBMCs as carrier cells, reduced tumor burden and increased median survival time. In vitro, when comparing direct infection of K7M2-luc cancer cells with free MYXV vs. PBMC-loaded virus, vMyx-mLIGHT/PBMCs also demonstrated greater cytotoxic capacity against the K7M2 cancer cell targets. In vivo, systemically delivered vMyx-mLIGHT/PBMCs increased viral reporter transgene expression levels both in the periphery and in lung tumors compared to unarmed MYXV, in a tumor- and transgene-dependent fashion. We conclude that vMyx-mLIGHT, especially when delivered using PBMC carrier cells, represents a new potential therapeutic strategy for solid cancers that metastasize to the lung.
Collapse
Affiliation(s)
- John D. Christie
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (J.D.C.); (N.A.); (J.N.B.)
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA; (L.Z.); (N.E.); (A.R.L.)
| | - Nicole Appel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (J.D.C.); (N.A.); (J.N.B.)
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA; (L.Z.); (N.E.); (A.R.L.)
| | - Liqiang Zhang
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA; (L.Z.); (N.E.); (A.R.L.)
| | - Kenneth Lowe
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (K.L.); (J.K.); (J.D.-V.)
| | - Jacquelyn Kilbourne
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (K.L.); (J.K.); (J.D.-V.)
| | - Juliane Daggett-Vondras
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (K.L.); (J.K.); (J.D.-V.)
| | - Natalie Elliott
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA; (L.Z.); (N.E.); (A.R.L.)
| | - Alexandra R. Lucas
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA; (L.Z.); (N.E.); (A.R.L.)
| | - Joseph N. Blattman
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (J.D.C.); (N.A.); (J.N.B.)
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA; (L.Z.); (N.E.); (A.R.L.)
| | - Masmudur M. Rahman
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA; (L.Z.); (N.E.); (A.R.L.)
| | - Grant McFadden
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (J.D.C.); (N.A.); (J.N.B.)
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA; (L.Z.); (N.E.); (A.R.L.)
| |
Collapse
|
18
|
Srinivasan Rajsri K, Rao M. Poxvirus-driven human diseases and emerging therapeutics. Ther Adv Infect Dis 2022; 9:20499361221136751. [PMID: 36406813 PMCID: PMC9666863 DOI: 10.1177/20499361221136751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Poxviridae have been successful pathogens throughout recorded history, infecting humans among a variety of other hosts. Although eradication of the notorious smallpox has been a globally successful healthcare phenomenon, the recent emergence of Monkeypox virus, also belonging to the Orthopoxvirus genus and causing human disease, albeit milder than smallpox, is a cause of significant public health concern. The ongoing outbreak of monkeypox, demonstrating human-human transmission, in previously nonendemic countries, calls for critical need into further research in the areas of viral biology, ecology, and epidemiology to better understand, prevent and treat human infections. In the wake of these recent events, it becomes important to revisit poxviral infections, their pathogenesis and ability to cause infection across multiple nonhuman hosts and leap to a human host. The poxviruses that cause human diseases include Monkeypox virus, Molluscum contagiosum virus, and Orf virus. In this review, we summarize the current understanding of various poxviruses causing human diseases, provide insights into their replication and pathogenicity, disease progression and symptoms, preventive and treatment options, and their importance in shaping modern medicine through application in gene therapy, oncolytic viral therapies for human cancers, or as poxvirus vectors for vaccines.
Collapse
Affiliation(s)
- Kritika Srinivasan Rajsri
- Division of Biomaterials, Department of
Molecular Pathobiology, New York University College of Dentistry, New York,
NY, USA
- Department of Pathology, Vilcek Institute, New
York University School of Medicine, New York, NY, USA
| | - Mana Rao
- Essen Medical Associates, Bronx, NY 10461, USA.
ArchCare, New York, NY, USA
| |
Collapse
|
19
|
Zeng J, Li X, Sander M, Zhang H, Yan G, Lin Y. Oncolytic Viro-Immunotherapy: An Emerging Option in the Treatment of Gliomas. Front Immunol 2021; 12:721830. [PMID: 34675919 PMCID: PMC8524046 DOI: 10.3389/fimmu.2021.721830] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023] Open
Abstract
The prognosis of malignant gliomas remains poor, with median survival fewer than 20 months and a 5-year survival rate merely 5%. Their primary location in the central nervous system (CNS) and its immunosuppressive environment with little T cell infiltration has rendered cancer therapies mostly ineffective, and breakthrough therapies such as immune checkpoint inhibitors (ICIs) have shown limited benefit. However, tumor immunotherapy is developing rapidly and can help overcome these obstacles. But for now, malignant gliomas remain fatal with short survival and limited therapeutic options. Oncolytic virotherapy (OVT) is a unique antitumor immunotherapy wherein viruses selectively or preferentially kill tumor cells, replicate and spread through tumors while inducing antitumor immune responses. OVTs can also recondition the tumor microenvironment and improve the efficacy of other immunotherapies by escalating the infiltration of immune cells into tumors. Some OVTs can penetrate the blood-brain barrier (BBB) and possess tropism for the CNS, enabling intravenous delivery. Despite the therapeutic potential displayed by oncolytic viruses (OVs), optimizing OVT has proved challenging in clinical development, and marketing approvals for OVTs have been rare. In June 2021 however, as a genetically engineered OV based on herpes simplex virus-1 (G47Δ), teserpaturev got conditional and time-limited approval for the treatment of malignant gliomas in Japan. In this review, we summarize the current state of OVT, the synergistic effect of OVT in combination with other immunotherapies as well as the hurdles to successful clinical use. We also provide some suggestions to overcome the challenges in treating of gliomas.
Collapse
Affiliation(s)
- Jiayi Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Max Sander
- Department of International Cooperation, Guangzhou Virotech Pharmaceutical Co., Ltd., Guangzhou, China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Christie JD, Appel N, Canter H, Achi JG, Elliott NM, de Matos AL, Franco L, Kilbourne J, Lowe K, Rahman MM, Villa NY, Carmen J, Luna E, Blattman J, McFadden G. Systemic delivery of TNF-armed myxoma virus plus immune checkpoint inhibitor eliminates lung metastatic mouse osteosarcoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:539-554. [PMID: 34553039 PMCID: PMC8433070 DOI: 10.1016/j.omto.2021.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Solid cancers that metastasize to the lungs represent a major therapeutic challenge. Current treatment paradigms for lung metastases consist of radiation therapy, chemotherapies, and surgical resection, but there is no single treatment or combination that is effective for all tumor types. To address this, oncolytic myxoma virus (MYXV) engineered to express human tumor necrosis factor (vMyx-hTNF) was tested after systemic administration in an immunocompetent mouse K7M2-Luc lung metastatic osteosarcoma model. Virus therapy efficacy against pre-seeded lung metastases was assessed after systemic infusion of either naked virus or ex vivo-loaded autologous bone marrow leukocytes or peripheral blood mononuclear cells (PBMCs). Results of this study showed that the PBMC pre-loaded strategy was the most effective at reducing tumor burden and increasing median survival time, but sequential intravenous multi-dosing with naked virus was comparably effective to a single infusion of PBMC-loaded virus. PBMC-loaded vMyx-hTNF also potentially synergized very effectively with immune checkpoint inhibitors anti-PD-1, anti-PD-L1, and anti-cytotoxic T lymphocyte associated protein 4 (CTLA-4). Finally, in addition to the pro-immune stimulation caused by unarmed MYXV, the TNF transgene of vMyx-hTNF further induced the unique expression of numerous additional cytokines associated with the innate and adaptive immune responses in this model. We conclude that systemic ex vivo virotherapy with TNF-α-armed MYXV represents a new potential strategy against lung metastatic cancers like osteosarcoma and can potentially act synergistically with established checkpoint immunotherapies.
Collapse
Affiliation(s)
- John D Christie
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Nicole Appel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Hannah Canter
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | - Natalie M Elliott
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Ana Lemos de Matos
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Lina Franco
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA.,Oncomyx Therapeutics, Phoenix, AZ 85004, USA
| | - Jacquelyn Kilbourne
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth Lowe
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Masmudur M Rahman
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Nancy Y Villa
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Joshua Carmen
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Evelyn Luna
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Joseph Blattman
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| | - Grant McFadden
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
21
|
Zhu G, Zhang Q, Zhang J, Liu F. Targeting Tumor-Associated Antigen: A Promising CAR-T Therapeutic Strategy for Glioblastoma Treatment. Front Pharmacol 2021; 12:661606. [PMID: 34248623 PMCID: PMC8264285 DOI: 10.3389/fphar.2021.661606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) therapy is a prospective therapeutic strategy for blood cancers tumor, especially leukemia, but it is not effective for solid tumors. Glioblastoma (GBM) is a highly immunosuppressive and deadly malignant tumor with poor responses to immunotherapies. Although CAR-T therapeutic strategies were used for glioma in preclinical trials, the current proliferation activity of CAR-T is not sufficient, and malignant glioma usually recruit immunosuppressive cells to form a tumor microenvironment that hinders CAR-T infiltration, depletes CAR-T, and impairs their efficacy. Moreover, specific environments such as hypoxia and nutritional deficiency can hinder the killing effect of CAR-T, limiting their therapeutic effect. The normal brain lack lymphocytes, but CAR-T usually can recognize specific antigens and regulate the tumor immune microenvironment to increase and decrease pro- and anti-inflammatory factors, respectively. This increases the number of T cells and ultimately enhances anti-tumor effects. CAR-T therapy has become an indispensable modality for glioma due to the specific tumor-associated antigens (TAAs). This review describes the characteristics of CAR-T specific antigen recognition and changing tumor immune microenvironment, as well as ongoing research into CAR-T therapy targeting TAAs in GBM and their potential clinical application.
Collapse
Affiliation(s)
- Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China.,Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
22
|
Estevez-Ordonez D, Chagoya G, Salehani A, Atchley TJ, Laskay NMB, Parr MS, Elsayed GA, Mahavadi AK, Rahm SP, Friedman GK, Markert JM. Immunovirotherapy for the Treatment of Glioblastoma and Other Malignant Gliomas. Neurosurg Clin N Am 2021; 32:265-281. [PMID: 33781507 DOI: 10.1016/j.nec.2020.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) represents one of the most challenging malignancies due to many factors including invasiveness, heterogeneity, and an immunosuppressive microenvironment. Current treatment modalities have resulted in only modest effect on outcomes. The development of viral vectors for oncolytic immunovirotherapy and targeted drug delivery represents a promising therapeutic prospect for GBM and other brain tumors. A host of genetically engineered viruses, herpes simplex virus, poliovirus, measles, and others, have been described and are at various stages of clinical development. Herein we provide a review of the advances and current state of oncolytic virotherapy for the targeted treatment of GBM and malignant gliomas.
Collapse
Affiliation(s)
- Dagoberto Estevez-Ordonez
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Arsalaan Salehani
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Travis J Atchley
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Nicholas M B Laskay
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Matthew S Parr
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Galal A Elsayed
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Anil K Mahavadi
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Sage P Rahm
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA; Department of Pediatrics, Division of Pediatric Hematology-Oncology, The University of Alabama at Birmingham
| | - James M Markert
- Department of Neurosurgery, Neurosurgery, Pediatrics, and Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA.
| |
Collapse
|
23
|
Jiang B, Huang D, He W, Guo W, Yin X, Forsyth P, Lun X, Wang Z. Inhibition of glioma using a novel non-neurotoxic vesicular stomatitis virus. Neurosurg Focus 2021; 50:E9. [PMID: 33524950 DOI: 10.3171/2020.11.focus20839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to demonstrate the in vivo safety and antitumor effect of a novel recombinant vesicular stomatitis virus (VSV): G protein less (GLESS)-fusion-associated small transmembrane (FAST)-VSV. METHODS Viral infection efficiency and cell proliferation were detected using an inverted fluorescence microscope and alarmaBlue assay, respectively. To evaluate the safety of the virus, different doses of GLESS-FAST-VSV and a positive control virus (VSV∆M51) were injected into normal F344 rats and C57BL/6 mice, and each animal's weight, survival time, and pathological changes were examined on the following day. To evaluate the efficacy of the virus, RG2 and GL261 cells were used to construct rat and mouse glioma models, respectively, via a stereotactic method. After multiple intratumoral injections of the virus, tumor growth (size) and the survival time of the animals were observed. RESULTS In vitro experiments showed that GLESS-FAST-VSV could infect and kill brain tumor cells and had less toxic effects on normal cells. After direct injection of GLESS-FAST-VSV into the animal brains, all animals tolerated the virus well, and no animal death, encephalitis, or ventriculitis was observed. In contrast, all animals that received brain injections of VSV∆M51 in the brain died. Moreover, multiple injections of GLESS-FAST-VSV in brain tumors significantly prolonged the survival of normal-immunity animals harboring brain tumors. CONCLUSIONS GLESS-FAST-VSV exhibited little neurotoxicity and could be injected directly into the tumor to effectively inhibit tumor growth and prolong the survival of normal-immunity animals, laying a theoretical foundation for the early application of such viruses in clinical trials.
Collapse
Affiliation(s)
- Bin Jiang
- 1Department of Neurosurgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China; and
| | - Dezhang Huang
- 1Department of Neurosurgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China; and
| | - Wei He
- 1Department of Neurosurgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China; and
| | | | -
- 1Department of Neurosurgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China; and
| | | | -
- 1Department of Neurosurgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China; and
| | - Peter Forsyth
- 2Department of Oncology, University of Calgary, Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
| | - Xueqing Lun
- 2Department of Oncology, University of Calgary, Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
| | - Zhigang Wang
- 1Department of Neurosurgery, Qilu Hospital of Shandong University, Qingdao, Shandong, China; and
| |
Collapse
|
24
|
Mohamadi A, Pagès G, Hashemzadeh MS. The Important Role of Oncolytic Viruses in Common Cancer Treatments. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394716666200211120906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oncolytic viruses (OV) are considered as promising tools in cancer treatment. In addition
to direct cytolysis, the stimulation of both innate and adaptive immune responses is the most
important mechanism in oncolytic virotherapy that finally leads to the long-standing tumor retardations
in the advanced melanoma clinical trials. The OVs have become a worthy method in cancer
treatment, due to their several biological advantages including (1) the selective replication in
cancer cells without affecting normal cells; (2) the lack of resistance to the treatment; (3) cancer
stem cell targeting; (4) the ability to be spread; and (5) the immune response induction against the
tumors. Numerous types of viruses; for example, Herpes simplex viruses, Adenoviruses, Reoviruses,
Poliovirus, and Newcastle disease virus have been studied as a possible cancer treatment
strategy. Although some viruses have a natural orientation or tropism to cancer cells, several others
need attenuation and genetic manipulation to increase the safety and tumor-specific replication activity.
Two important mechanisms are involved in OV antitumor responses, which include the tumor
cell death due to virus replication, and also induction of immunogenic cell death as a result of
the immune system responses against the tumor cells. Furthermore, the high efficiency of OV on
antitumor immune response stimulation can finally lead to a significant tumor shrinkage.
Collapse
Affiliation(s)
- Amir Mohamadi
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gilles Pagès
- Centre Antoine Lacassagne, University of Cote d’Azur, Nice, France
| | | |
Collapse
|
25
|
Rius-Rocabert S, García-Romero N, García A, Ayuso-Sacido A, Nistal-Villan E. Oncolytic Virotherapy in Glioma Tumors. Int J Mol Sci 2020; 21:ijms21207604. [PMID: 33066689 PMCID: PMC7589679 DOI: 10.3390/ijms21207604] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Glioma tumors are one of the most devastating cancer types. Glioblastoma is the most advanced stage with the worst prognosis. Current therapies are still unable to provide an effective cure. Recent advances in oncolytic immunotherapy have generated great expectations in the cancer therapy field. The use of oncolytic viruses (OVs) in cancer treatment is one such immune-related therapeutic alternative. OVs have a double oncolytic action by both directly destroying the cancer cells and stimulating a tumor specific immune response to return the ability of tumors to escape the control of the immune system. OVs are one promising alternative to conventional therapies in glioma tumor treatment. Several clinical trials have proven the feasibility of using some viruses to specifically infect tumors, eluding undesired toxic effects in the patient. Here, we revisited the literature to describe the main OVs proposed up to the present moment as therapeutic alternatives in order to destroy glioma cells in vitro and trigger tumor destruction in vivo. Oncolytic viruses were divided with respect to the genome in DNA and RNA viruses. Here, we highlight the results obtained in various clinical trials, which are exploring the use of these agents as an alternative where other approaches provide limited hope.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668 Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Correspondence: (A.A.-S.); (E.N.-V.); Tel.: +34-913-724-714 (E.N.-V.)
| | - Estanislao Nistal-Villan
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28668 Madrid, Spain;
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, 28668 Madrid, Spain
- Correspondence: (A.A.-S.); (E.N.-V.); Tel.: +34-913-724-714 (E.N.-V.)
| |
Collapse
|
26
|
Chaurasiya S, Fong Y, Warner SG. Optimizing Oncolytic Viral Design to Enhance Antitumor Efficacy: Progress and Challenges. Cancers (Basel) 2020; 12:cancers12061699. [PMID: 32604787 PMCID: PMC7352900 DOI: 10.3390/cancers12061699] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The field of oncolytic virotherapy has seen remarkable advancements in last two decades, leading to approval of the first oncolytic immuno-virotherapy, Talimogene Laherparepvec, for the treatment of melanoma. A plethora of preclinical and clinical studies have demonstrated excellent safety profiles of other oncolytic viruses. While oncolytic viruses show clinical promise in already immunogenic malignancies, response rates are inconsistent. Response rates are even less consistent in immunosuppressed tumor microenvironments like those found in liver, pancreas, and MSI-stable colon cancers. Therefore, the efficacy of oncolytic viruses needs to be improved for more oncolytic viruses to enter mainstream cancer therapy. One approach to increase the therapeutic efficacy of oncolytic viruses is to use them as primers for other immunotherapeutics. The amenability of oncolytic viruses to transgene-arming provides an immense opportunity for investigators to explore different ways of improving the outcome of oncolytic therapy. In this regard, genes encoding immunomodulatory proteins are the most commonly studied genes for arming oncolytic viruses. Other transgenes used to arm oncolytic viruses include those with the potential to favorably modulate tumor stroma, making it possible to image the virus distribution and increase its suitability for combination with other therapeutics. This review will detail the progress made in arming oncolytic viruses with a focus on immune-modulatory transgenes, and will discuss the challenges that need to be addressed for more armed oncolytic viruses to find widespread clinical use.
Collapse
|
27
|
Ashton LV, Graham B, Afzali MF, Gustafson D, MacNeill AL. Treatment of an Alveolar Rhabdomyosarcoma Allograft with Recombinant Myxoma Virus and Oclacitinib. Oncolytic Virother 2020; 9:17-29. [PMID: 32548076 PMCID: PMC7266523 DOI: 10.2147/ov.s252727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Rhabdomyosarcomas (RMS) are difficult tumors to treat with conventional therapies. Publications indicate that oncolytic virotherapy (OV) could benefit cancer patients with tumors that are refractory to conventional treatments. It is believed that the efficacy of OV can be enhanced when used in combination with other treatments. This study evaluated the response of mice with aggressive alveolar RMS (ARMS) allografts to treatment with an OV [recombinant myxoma virus (MYXVΔserp2)] in combination with a Janus kinase (JAK) inhibitor (oclacitinib). Oclacitinib is known to inhibit JAK1 and JAK2 cell signaling pathways, which should limit the antiviral Type I interferon response. However, oclacitinib does not inhibit immune pathways that promote antigen presentation, which help stimulate an anti-cancer immune response. Materials and Methods To determine if MYXVΔserp2 and oclacitinib could improve outcomes in animals with ARMS, nude mice were inoculated subcutaneously with murine ARMS cells to establish tumors. Immune responses, tumor growth, and clinical signs in mice treated with combination therapy were compared to mice given placebo therapy and mice treated with OV alone. Results Combination therapy was safe; no viral DNA was detected in off-target organs, only within tumors. As predicted, viral DNA was detected in tumors of mice given oclacitinib and MYXVΔserp2 for a longer time period than mice treated with OV alone. Although tumor growth rates and median survival times were not significantly different between groups, clinical signs were less severe in mice treated with OV. Conclusion Our data indicate that MYXVΔserp2 treatment benefits mice with ARMS by reducing clinical signs of disease and improving quality of life.
Collapse
Affiliation(s)
- Laura V Ashton
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel Gustafson
- Departiment of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy L MacNeill
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Ashton LV, Quackenbush SL, Castle J, Wilson G, McCoy J, Jordan M, MacNeill AL. Recombinant Myxoma Virus Expressing Walleye Dermal Sarcoma Virus orfC Is Attenuated in Rabbits. Viruses 2020; 12:v12050517. [PMID: 32397134 PMCID: PMC7290507 DOI: 10.3390/v12050517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
The poxvirus, myxoma virus (MYXV) has shown efficacy as an oncolytic virus (OV) in some cancer models. However, MYXV replication within murine cancer models and spontaneous canine sarcomas is short-lived. In mice, successful treatment of tumors requires frequent injections with MYXV. We hypothesize that treatment of cancer with a recombinant MYXV that promotes apoptosis could improve the efficacy of MYXV. The orfC gene of walleye dermal sarcoma virus (WDSV), which induces apoptosis, was recombined into the MYXV genome (MYXVorfC). A marked increase in apoptosis was observed in cells infected with MYXVorfC. To ensure that expression of WDSV orfC by MYXV does not potentiate the pathogenesis of MYXV, we evaluated the effects of MYXVorfC inoculation in the only known host of MYXV, New Zealand white rabbits. Virus dissemination in rabbit tissues was similar for MYXVorfC and MYXV. Virus titers recovered from tissues were lower in MYXVorfC-infected rabbits as compared to MYXV-infected rabbits. Importantly, rabbits infected with MYXVorfC had a delayed onset of clinical signs and a longer median survival time than rabbits infected with MYXV. This study indicates that MYXVorfC is attenuated and suggests that MYXVorfC will be safe to use as an OV therapy in future studies.
Collapse
Affiliation(s)
- Laura V. Ashton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Sandra L. Quackenbush
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Jake Castle
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Garin Wilson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Jasmine McCoy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Mariah Jordan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Amy L. MacNeill
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
- Correspondence: ; Tel.: +1-970-297-5112
| |
Collapse
|
29
|
Tang B, Guo ZS, Bartlett DL, Yan DZ, Schane CP, Thomas DL, Liu J, McFadden G, Shisler JL, Roy EJ. Synergistic Combination of Oncolytic Virotherapy and Immunotherapy for Glioma. Clin Cancer Res 2020; 26:2216-2230. [PMID: 32019860 DOI: 10.1158/1078-0432.ccr-18-3626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/05/2019] [Accepted: 01/30/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE We hypothesized that the combination of a local stimulus for activating tumor-specific T cells and an anti-immunosuppressant would improve treatment of gliomas. Virally encoded IL15Rα-IL15 as the T-cell activating stimulus and a prostaglandin synthesis inhibitor as the anti-immunosuppressant were combined with adoptive transfer of tumor-specific T cells. EXPERIMENTAL DESIGN Two oncolytic poxviruses, vvDD vaccinia virus and myxoma virus, were each engineered to express the fusion protein IL15Rα-IL15 and a fluorescent protein. Viral gene expression (YFP or tdTomato Red) was confirmed in the murine glioma GL261 in vitro and in vivo. GL261 tumors in immunocompetent C57BL/6J mice were treated with vvDD-IL15Rα-YFP vaccinia virus or vMyx-IL15Rα-tdTr combined with other treatments, including vaccination with GARC-1 peptide (a neoantigen for GL261), rapamycin, celecoxib, and adoptive T-cell therapy. RESULTS vvDD-IL15Rα-YFP and vMyx-IL15Rα-tdTr each infected and killed GL261 cells in vitro. In vivo, NK cells and CD8+ T cells were increased in the tumor due to the expression of IL15Rα-IL15. Each component of a combination treatment contributed to prolonging survival: an oncolytic virus, the IL15Rα-IL15 expressed by the virus, a source of T cells (whether by prevaccination or adoptive transfer), and prostaglandin inhibition all synergized to produce elimination of gliomas in a majority of mice. vvDD-IL15Rα-YFP occasionally caused ventriculitis-meningitis, but vMyx-IL15Rα-tdTr was safe and effective, causing a strong infiltration of tumor-specific T cells and eliminating gliomas in 83% of treated mice. CONCLUSIONS IL15Rα-IL15-armed oncolytic poxviruses provide potent antitumor effects against brain tumors when combined with adoptive T-cell therapy, rapamycin, and celecoxib.
Collapse
Affiliation(s)
- Bingtao Tang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David Z Yan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Claire P Schane
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Diana L Thomas
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
30
|
Rahman MM, McFadden G. Oncolytic Virotherapy with Myxoma Virus. J Clin Med 2020; 9:jcm9010171. [PMID: 31936317 PMCID: PMC7020043 DOI: 10.3390/jcm9010171] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses are one of the most promising novel therapeutics for malignant cancers. They selectively infect and kill cancer cells while sparing the normal counterparts, expose cancer- specific antigens and activate the host immune system against both viral and tumor determinants. Oncolytic viruses can be used as monotherapy or combined with existing cancer therapies to become more potent. Among the many types of oncolytic viruses that have been developed thus far, members of poxviruses are the most promising candidates against diverse cancer types. This review summarizes recent advances that are made with oncolytic myxoma virus (MYXV), a member of the Leporipoxvirus genus. Unlike other oncolytic viruses, MYXV infects only rabbits in nature and causes no harm to humans or any other non-leporid animals. However, MYXV can selectively infect and kill cancer cells originating from human, mouse and other host species. This selective cancer tropism and safety profile have led to the testing of MYXV in various types of preclinical cancer models. The next stage will be successful GMP manufacturing and clinical trials that will bring MYXV from bench to bedside for the treatment of currently intractable malignancies.
Collapse
|
31
|
Sivanandam V, LaRocca CJ, Chen NG, Fong Y, Warner SG. Oncolytic Viruses and Immune Checkpoint Inhibition: The Best of Both Worlds. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:93-106. [PMID: 31080879 PMCID: PMC6503136 DOI: 10.1016/j.omto.2019.04.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer immunotherapy and the emergence of immune checkpoint inhibitors have markedly changed the treatment paradigm for many cancers. They function to disrupt cancer cell evasion of the immune response and activate sustained anti-tumor immunity. Oncolytic viruses have also emerged as an additional therapeutic agent for cancer treatment. These viruses are designed to target and kill tumor cells while leaving the normal cells unharmed. As part of this process, oncolytic virus infection stimulates anti-cancer immune responses that augment the efficacy of checkpoint inhibition. These viruses have the capability of transforming a “cold” tumor microenvironment with few immune effector cells into a “hot” environment with increased immune cell and cytokine infiltration. For this reason, there are multiple ongoing clinical trials that combine oncolytic virotherapy and immune checkpoint inhibitors. This review will detail the key oncolytic viruses in preclinical and clinical studies and highlight the results of their testing with checkpoint inhibitors.
Collapse
Affiliation(s)
- Venkatesh Sivanandam
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Nanhai G Chen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Susanne G Warner
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
32
|
Tang B, Guo ZS, Bartlett DL, Liu J, McFadden G, Shisler JL, Roy EJ. A cautionary note on the selectivity of oncolytic poxviruses. Oncolytic Virother 2019; 8:3-8. [PMID: 30805315 PMCID: PMC6375109 DOI: 10.2147/ov.s189832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Oncolytic viruses selectively infect cancer cells while avoiding infection of normal cells. Usually, selectivity is demonstrated by injecting a virus into tumor-bearing mice and observing infection and lysis of tumor cells without infection of other tissues. The general view is that this selectivity is due to tropisms of the virus. However, apparent selectivity could be due to accessibility. For example, intravenously injected virus may not gain access to cells within the central nervous system (CNS) because of the blood-brain barrier. Purpose We tested the CNS safety of two oncolytic poxviruses that have been demonstrated to be safe for treatment of peripheral tumors (vaccinia virus vvDD-IL15-Rα and myxoma virus vMyx-IL15Rα-tdTr). Methods Two poxviruses were tested for selectivity in vitro and in vivo. Results Both viruses infected glioma cells in vitro. In vivo, both viruses infected glioma cells and did not infect neurons when injected into a tumor or into the normal striatum. However, viral gene expression was observed in ependymal cells lining the ventricles, implying that these poxviruses were not as selective as originally predicted. For vvDD-IL15-Rα, some tumor-bearing mice died soon after virus treatment. If the same titer of vvDD-IL15-Rα was injected directly into the lateral cerebral ventricle of nontumor-bearing mice, it was uniformly fatal. Infection of ependymal cells, subventricular cells, and meninges was widespread. On the other hand, vMyx-IL15Rα-tdTr only transiently infected ependymal cells and was safe even when injected directly into the lateral cerebral ventricles. The two poxviruses also differed in their infection of dendritic cells; vvDD-IL15-Rα infected dendritic cells and lysed them but vMyx-IL15Rα-tdTr did not. Conclusion Vaccinia virus vvDD-IL15-Rα is very promising for treating cancer types outside of the brain. However, for cancers located within the brain, myxoma virus vMyx-IL15Rα-tdTr offers a safer alternative.
Collapse
Affiliation(s)
- Bingtao Tang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA,
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL USA
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA,
| |
Collapse
|
33
|
Conrad SJ, Liu J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol Biol 2019; 1937:189-209. [PMID: 30706397 DOI: 10.1007/978-1-4939-9065-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.
Collapse
Affiliation(s)
- Steven J Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA. .,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
34
|
Lynes J, Sanchez V, Dominah G, Nwankwo A, Nduom E. Current Options and Future Directions in Immune Therapy for Glioblastoma. Front Oncol 2018; 8:578. [PMID: 30568917 PMCID: PMC6290347 DOI: 10.3389/fonc.2018.00578] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is in need of innovative treatment approaches. Immune therapy for cancer refers to the use of the body's immune system to target malignant cells in the body. Such immune therapeutics have recently been very successful in treating a diverse group of cancerous lesions. As a result, many new immune therapies have gained Food and Drug Administration approval for the treatment of cancer, and there has been an explosion in the study of immune therapeutics for cancer treatment over the past few years. However, the immune suppression of glioblastoma and the unique immune microenvironment of the brain make immune therapeutics more challenging to apply to the brain than to other systemic cancers. Here, we discuss the existing barriers to successful immune therapy for glioblastoma and the ongoing development of immune therapeutics. We will discuss the discovery and classification of immune suppressive factors in the glioblastoma microenvironment; the development of vaccine-based therapies; the use of convection-enhanced delivery to introduce tumoricidal viruses into the tumor microenvironment, leading to secondary immune responses; the emerging use of adoptive cell therapy in the treatment of glioblastoma; and future frontiers, such as the use of cerebral microdialysis for immune monitoring and the use of sequencing to develop patient-specific therapeutics. Armed with a better understanding of the challenges inherent in immune therapy for glioblastoma, we may soon see more successes in immune-based clinical trials for this deadly disease.
Collapse
Affiliation(s)
- John Lynes
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,MedStar Georgetown University Hospital, Washington, DC, United States
| | - Victoria Sanchez
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Gifty Dominah
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Anthony Nwankwo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Edjah Nduom
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
35
|
Burton C, Das A, McDonald D, Vandergrift WA, Patel SJ, Cachia D, Bartee E. Oncolytic myxoma virus synergizes with standard of care for treatment of glioblastoma multiforme. Oncolytic Virother 2018; 7:107-116. [PMID: 30538967 PMCID: PMC6251439 DOI: 10.2147/ov.s179335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is an aggressive form of brain cancer which is associated with poor prognosis. A variety of oncolytic viruses have previously shown positive efficacy against GBM, potentially offering new treatment options for patients. One such oncolytic virus is Myxoma virus (MYXV), a rabbit-specific poxvirus that has been shown to be efficacious against a variety of tumor models including GBM. Purpose The purpose of this study was to test the efficacy of MYXV combined with current treatment regimens for GBM in both established cell lines as well as patient biopsy samples. Materials and methods U118 gliobastoma cell lines were treated under various standard of care combinations (untreated, radiation and chemotherapeutic) prior to infection with MYXV. Infection was then monitored for differences in rate of infection, titer and rate of spread. Cellular death was measured by MTT assay and Caspase-3 colorimetric assay. Patient biopsies were harvested and treated under similar treatment conditions. Results The addition of GBM standard of care to MYXV infection resulted in an increased rate of spread compared to single treatment with either radiation or chemotherapeutic alone. SOC did not alter viral replication or infection rates. Similar effects were seen in ex vivo patient biopsies. Cellular viability was significantly decreased with the combination therapy of SOC and MYXV infection compared to any other treatment outcome. Caspase-3 activity was also significantly increased in samples treated with combination therapy when compared to any other treatment combination. Conclusion Our results show that the combination of MYXV with current SOC results in both increased killing of GBM cells compared to either treatment regime alone as well as increased spread of MYXV infection. These findings lay the foundation for future in vivo studies on combining MYXV with GBM SOC.
Collapse
Affiliation(s)
- Chase Burton
- Department of Microbiology and Immunology, Medical University of South Carolina, SC, USA,
| | - Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, SC, USA
| | - Daniel McDonald
- Department of Radiation Oncology, Medical University of South Carolina, SC, USA
| | | | - Sunil J Patel
- Department of Neurosurgery, Medical University of South Carolina, SC, USA
| | - David Cachia
- Department of Neurosurgery, Medical University of South Carolina, SC, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, SC, USA,
| |
Collapse
|
36
|
Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic Viruses for Canine Cancer Treatment. Cancers (Basel) 2018; 10:cancers10110404. [PMID: 30373251 PMCID: PMC6266482 DOI: 10.3390/cancers10110404] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Gabriela Cesarman-Maus
- Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| | - Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
37
|
Phelps MP, Yang H, Patel S, Rahman MM, McFadden G, Chen E. Oncolytic Virus-Mediated RAS Targeting in Rhabdomyosarcoma. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:52-61. [PMID: 30364635 PMCID: PMC6197336 DOI: 10.1016/j.omto.2018.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Aberrant activation of the receptor tyrosine kinase-mediated RAS signaling cascade is the primary driver of embryonal rhabdomyosarcoma (ERMS), a pediatric cancer characterized by a block in myogenic differentiation. To investigate the cellular function of activated RAS signaling in regulating the growth and differentiation of ERMS cells, we genetically ablated activated RAS oncogenes with high-efficiency genome-editing technology. Knockout of NRAS in CRISPR-inducible ERMS xenograft models resulted in near-complete tumor regression through a combination of cell death and myogenic differentiation. Utilizing this strategy for therapeutic RAS targeting in ERMS, we developed a recombinant oncolytic myxoma virus (MYXV) engineered with CRISPR/Cas9 gene-editing capability. Treatment of pre-clinical human ERMS tumor xenografts with an NRAS-targeting version of this MYXV significantly reduced tumor growth and increased overall survival. Our data suggest that targeted gene-editing cancer therapies have promising translational applications, especially with improvements to gene-targeting specificity and oncolytic vector technology.
Collapse
Affiliation(s)
- Michael P Phelps
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Heechang Yang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shivani Patel
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Masmudur M Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Eleanor Chen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
38
|
MacNeill AL, Weishaar KM, Séguin B, Powers BE. Safety of an Oncolytic Myxoma Virus in Dogs with Soft Tissue Sarcoma. Viruses 2018; 10:v10080398. [PMID: 30060548 PMCID: PMC6115854 DOI: 10.3390/v10080398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Many oncolytic viruses that are efficacious in murine cancer models are ineffective in humans. The outcomes of oncolytic virus treatment in dogs with spontaneous tumors may better predict human cancer response and improve treatment options for dogs with cancer. The objectives of this study were to evaluate the safety of treatment with myxoma virus lacking the serp2 gene (MYXVΔserp2) and determine its immunogenicity in dogs. To achieve these objectives, dogs with spontaneous soft tissue sarcomas were treated with MYXVΔserp2 intratumorally (n = 5) or post-operatively (n = 5). In dogs treated intratumorally, clinical scores were recorded and tumor biopsies and swabs (from the mouth and virus injection site) were analyzed for viral DNA at multiple time-points. In all dogs, blood, urine, and feces were frequently collected to evaluate organ function, virus distribution, and immune response. No detrimental effects of MYXVΔserp2 treatment were observed in any canine cancer patients. No clinically significant changes in complete blood profiles, serum chemistry analyses, or urinalyses were measured. Viral DNA was isolated from one tumor swab, but viral dissemination was not observed. Anti-MYXV antibodies were occasionally detected. These findings provide needed safety information to advance clinical trials using MYXVΔserp2 to treat patients with cancer.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Kristen M Weishaar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernard Séguin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Barbara E Powers
- Veterinary Diagnostic Laboratories, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
39
|
Myxoma Virus M083 Is a Virulence Factor Which Mediates Systemic Dissemination. J Virol 2018; 92:JVI.02186-17. [PMID: 29343569 DOI: 10.1128/jvi.02186-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are large, DNA viruses whose protein capsid is surrounded by one or more lipid envelopes. Embedded into these lipid envelopes are three conserved viral proteins which are thought to mediate binding of virions to target cells. While the function of these proteins has been studied in vitro, their specific roles during the pathogenesis of poxviral disease remain largely unclear. Here we present data demonstrating that the putative chondroitin binding protein M083 from the leporipoxvirus myxoma virus is a significant virulence factor during infection of susceptible Oryctolagus rabbits. Removal of M083 results in a reduced capacity of virus to spread beyond the regional lymph nodes and completely eliminates infection-mediated mortality. In vitro, removal of M083 results in only minor intracellular replication defects but causes a significant reduction in the ability of myxoma virus to spread from infected epithelial cells onto primary lymphocytes. We hypothesize that the physiological role of M083 is therefore to mediate the spread of myxoma virus onto rabbit lymphocytes, allowing these cells to disseminate virus throughout infected rabbits.IMPORTANCE Poxviruses represent both a class of human pathogens and potential therapeutic agents for the treatment of human malignancy. Understanding the basic biology of these agents is therefore significant to human health in a variety of ways. While the mechanisms mediating poxviral binding have been well studied in vitro, how these mechanisms impact poxviral pathogenesis in vivo remains unclear. The current study advances our understanding of how poxviral binding impacts viral pathogenesis by demonstrating that the putative chondroitin binding protein M083 plays a critical role during the pathogenesis of myxoma virus in susceptible Oryctolagus rabbits by impacting viral dissemination through changes in the transfer of virions onto primary splenocytes.
Collapse
|
40
|
Shchelkunov SN, Razumov IA, Kolosova IV, Romashchenko AV, Zavjalov EL. Virotherapy of the Malignant U87 Human Glioblastoma in the Orthotopic Xenotransplantation Mouse SCID Model. DOKL BIOCHEM BIOPHYS 2018; 478:30-33. [PMID: 29536305 DOI: 10.1134/s1607672918010088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 11/23/2022]
Abstract
The possibility of glioblastoma virotherapy at intravenous injection of the LIVP-GFP recombinant virus was studied in experimental model of orthotopic xenotransplantation of human glioblastoma cell line U87 to SCID laboratory mice. The LIVP-GFP recombinant virus deficient for thymidine kinase exhibited a significantly greater oncolytic capacity than the original LIVP virus, and an intravenous injection of LIVP-GFP at the early stages of tumorigenesis in mouse brain in most cases resulted in the lysis of the tumor.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - I A Razumov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - I V Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia
| | - A V Romashchenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - E L Zavjalov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
41
|
Abstract
Multiple myeloma (MM) is a clonal malignancy of plasma cells that is newly diagnosed in ~30,000 patients in the US each year. While recently developed therapies have improved the prognosis for MM patients, relapse rates remain unacceptably high. To overcome this challenge, researchers have begun to investigate the therapeutic potential of oncolytic viruses as a novel treatment option for MM. Preclinical work with these viruses has demonstrated that their infection can be highly specific for MM cells and results in impressive therapeutic efficacy in a variety of preclinical models. This has led to the recent initiation of several human trials. This review summarizes the current state of oncolytic therapy as a therapeutic option for MM and highlights a variety of areas that need to be addressed as the field moves forward.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
42
|
Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model. PLoS One 2018; 13:e0192449. [PMID: 29420595 PMCID: PMC5805294 DOI: 10.1371/journal.pone.0192449] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022] Open
Abstract
Oncolytic virus (OV) is a replication competent virus that selectively invades cancer cells; as these cells die under the viral burden, the released virus particles proceed to infect other cancer cells. Oncolytic viruses are designed to also be able to stimulate the anticancer immune response. Thus, one may represent an OV by two parameters: its replication potential and its immunogenicity. In this paper we consider a combination therapy with OV and a checkpoint inhibitor, anti-PD-1. We evaluate the efficacy of the combination therapy in terms of the tumor volume at some later time, for example, 6 months from initial treatment. Since T cells kill not only virus-free cancer cells but also virus-infected cancer cells, the following question arises: Does increasing the amount of the checkpoint inhibitor always improve the efficacy? We address this question, by a mathematical model consisting of a system of partial differential equations. We use the model to construct, by simulations, an efficacy map in terms of the doses of the checkpoint inhibitor and the OV injection. We show that there are regions in the map where an increase in the checkpoint inhibitor actually decreases the efficacy of the treatment. We also construct efficacy maps with checkpoint inhibitor vs. the replication potential of the virus that show the same antagonism, namely, an increase in the checkpoint inhibitor may actually decrease the efficacy. These results have implications for clinical trials.
Collapse
|
43
|
Temozolomide resistant human brain tumor stem cells are susceptible to recombinant vesicular stomatitis virus and double-deleted Vaccinia virus in vitro. Biomed Pharmacother 2017; 95:1201-1208. [PMID: 28931212 DOI: 10.1016/j.biopha.2017.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Malignant glioma still has a poor prognosis and remains incurable. Although temozolomide (TMZ) has demonstrated antitumor activity, its use recently has been halted because of some patients' resistance to this drug. New treatments are desperately needed. An oncolytic virus (virotherapy) is being developed as a novel cancer therapy. We have previously reported that recombinant Vesicular Stomatitis Virus (VSV-ΔM51) and double deleted Vaccinia Virus (vvDD) infected and killed glioma cell lines in vitro and prolonged survival in animal glioma models. As a proposed ex vivo test, the oncolytic potential of VSV-ΔM51 and vvDD in the established human brain tumor stem cells (BTSCs) and the differentiated cells from fresh brain tumor tissues in vitro were further investigated. METHODS BTSCs from fresh surgical glioblastoma multiforme (GBM) specimens were isolated and cultured, and the characterization of BTSCs were tested. The sensitivity of BTSCs to TMZ and the susceptibility of TMZ resistant BTSCs and their differentiated cells to both oncolytic viruses were examined. RESULTS The BTSC spheres cultured had all the characteristics of stem cells. The GFP-labeled VSV-ΔM51 and vvDD could infect TMZ resistant BTSCs and cause cytopathic effects. The VSV-ΔM51and vvDD inhibited the self-renewal activity of TMZ resistant BTSCs. And the VSV-ΔM51and vvDD also infected and caused cytopathic effects in differentiated BTSCs. CONCLUSION VSV-ΔM51and vvDD could infect and kill both the TMZ resistant BTSCs and the differentiated compartments of GBMs in vitro, suggesting that they may be an effective treatment supplement for GBM therapy, particularly for TMZ resistant GBM patients.
Collapse
|
44
|
Zhang QS, Zhang M, Huang XJ, Liu XJ, Li WP. Apoptosis-inducing effect of myxoma virus on human neuroglioma cell lines. Exp Ther Med 2017; 14:344-348. [PMID: 28672936 DOI: 10.3892/etm.2017.4487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/23/2017] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to further evaluate the role of myxoma virus (MYXV) as an oncolytic agent against experimental human gliomas in vitro, and analyze the effect of MYXV on malignant glioma cells at different incubation periods and infected at different multiplicities of infection. Neuroglioma cell lines U251 and A172 were cultured with various infective doses of myxoma virus at different time points (0-3 days) and cellular survival rates were evaluated using an MTT assay. Cell viability and cell death rates were assessed using Annexin V/propidium iodide and applying flow cytometry. Furthermore, the expression levels of phosphorylated AKT (p-AKT) in malignant gliomas were detected by western blot analysis to investigate the possible cell signaling targets in the pathway. MYXV exhibited a dose and time-dependent cytotoxic effect on neuroglioma cells, and there was increased expression of p-AKT in malignant gliomas. The present study confirms that MYXV induces oncolysis of malignant gliomas through regulating the activation of AKT. As such, MYXV is a potential therapeutic agent against human malignant gliomas.
Collapse
Affiliation(s)
- Qiu-Sheng Zhang
- Department of Neurosurgery, Shenzhen Clinical College Affiliated to Anhui Medical University, Shenzhen, Guandong 518000, P.R. China.,Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| | - Meng Zhang
- Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| | - Xian-Jian Huang
- Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| | - Xiao-Jia Liu
- Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| | - Wei-Ping Li
- Department of Neurosurgery, Shenzhen 2nd People's Hospital, Shenzhen, Guangdong 508035, P.R. China
| |
Collapse
|
45
|
Gardeck AM, Sheehan J, Low WC. Immune and viral therapies for malignant primary brain tumors. Expert Opin Biol Ther 2017; 17:457-474. [DOI: 10.1080/14712598.2017.1296132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrew M. Gardeck
- Departments of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Jordan Sheehan
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Departments of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
46
|
Bartee E, Bartee MY, Bogen B, Yu XZ. Systemic therapy with oncolytic myxoma virus cures established residual multiple myeloma in mice. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16032. [PMID: 27933316 PMCID: PMC5142464 DOI: 10.1038/mto.2016.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
Multiple myeloma is an incurable malignancy of plasma B-cells. Traditional chemotherapeutic regimes often induce initial tumor regression; however, virtually all patients eventually succumb to relapse caused by either reintroduction of disease during autologous transplant or expansion of chemotherapy resistant minimal residual disease. It has been previously demonstrated that an oncolytic virus known as myxoma can completely prevent myeloma relapse caused by reintroduction of malignant cells during autologous transplant. The ability of this virus to treat established residual disease in vivo, however, remained unknown. Here we demonstrate that intravenous administration of myxoma virus into mice bearing disseminated myeloma results in the elimination of 70–90% of malignant cells within 24 hours. This rapid debulking was dependent on direct contact of myxoma virus with residual myeloma and did not occur through destruction of the hematopoietic bone marrow niche. Importantly, systemic myxoma therapy also induced potent antimyeloma CD8+ T cell responses which localized to the bone marrow and were capable of completely eradicating established myeloma in some animals. These results demonstrate that oncolytic myxoma virus is not only effective at preventing relapse caused by reinfusion of tumor cells during stem cell transplant, but is also potentially curative for patients bearing established minimal residual disease.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Mee Y Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Bjarne Bogen
- Institute of Immunology, KG Jebsen Centre for Research on Influenza Vaccines and Centre for Immune Regulation, University of Oslo and Oslo University Hospital , Oslo, Norway
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
47
|
Kinn VG, Hilgenberg VA, MacNeill AL. Myxoma virus therapy for human embryonal rhabdomyosarcoma in a nude mouse model. Oncolytic Virother 2016; 5:59-71. [PMID: 27579297 PMCID: PMC4996258 DOI: 10.2147/ov.s108831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a devastating tumor of young people that is difficult to cure. To determine if oncolytic virus therapy can improve outcomes in individuals with RMS, myxoma virus expressing a red fluorescent protein (MYXV-red) was evaluated for antitumoral effects using a murine model of RMS. Fluorescent protein was expressed in four RMS cell lines inoculated with MYXV-red, indicating that these cells were semipermissive to MYXV infection. MYXV-red replication and cytopathic effects were further evaluated using human embryonal RMS (CCL-136) cells. Logarithmic growth of MYXV-red and significant cell death were observed 72 hours after inoculation with MYXV. The oncolytic effects of MYXV-red were then studied in nude mice that were injected subcutaneously with CCL-136 cells to establish RMS xenografts. Once tumors measured 5 mm in diameter, mice were treated with multiple intratumoral injections of MXYV-red or saline. The average final tumor volume and rate of tumor growth were significantly decreased, and median survival time was significantly increased in MYXV-red-treated mice (P-values =0.0416, 0.0037, and 0.0004, respectively). Histologic sections of MYXV-red-treated tumors showed increased inflammation compared to saline-treated tumors (P-value =0.0002). In conclusion, MXYV-red treatment of RMS tumors was successful in individual mice as it resulted in decreased tumor burden in eight of eleven mice with nearly complete tumor remission in five of eleven mice. These data hold promise that MYXV-red treatment may be beneficial for people suffering from RMS. To our knowledge, this is the first report of successful treatment of RMS tumors using an oncolytic poxvirus.
Collapse
Affiliation(s)
- Veronica G Kinn
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Valerie A Hilgenberg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
48
|
Pisklakova A, McKenzie B, Zemp F, Lun X, Kenchappa RS, Etame AB, Rahman MM, Reilly K, Pilon-Thomas S, McFadden G, Kurz E, Forsyth PA. M011L-deficient oncolytic myxoma virus induces apoptosis in brain tumor-initiating cells and enhances survival in a novel immunocompetent mouse model of glioblastoma. Neuro Oncol 2016; 18:1088-1098. [PMID: 26962017 DOI: 10.1093/neuonc/now006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myxoma virus (MYXV) is a promising oncolytic agent and is highly effective against immortalized glioma cells but less effective against brain tumor initiating cells (BTICs), which are believed to mediate glioma development/recurrence. MYXV encodes various proteins to attenuate host cell apoptosis, including an antiapoptotic Bcl-2 homologue known as M011L. Such proteins may limit the ability of MYXV to kill BTICs, which have heightened resistance to apoptosis. We hypothesized that infecting BTICs with an M011L-deficient MYXV construct would overcome BTIC resistance to MYXV. METHODS We used patient-derived BTICs to evaluate the efficacy of M011L knockout virus (vMyx-M011L-KO) versus wild-type MYXV (vMyx-WT) and characterized the mechanism of virus-induced cell death in vitro. To extend our findings in a novel immunocompetent animal model, we derived, cultured, and characterized a C57Bl/6J murine BTIC (mBTIC0309) from a spontaneous murine glioma and evaluated vMyx-M011L-KO efficacy with and without temozolomide (TMZ) in mBTIC0309-bearing mice. RESULTS We demonstrated that vMyx-M011L-KO induces apoptosis in BTICs, dramatically increasing sensitivity to the virus. vMyx-WT failed to induce apoptosis as M011L protein prevented Bax activation and cytochrome c release. In vivo, intracranial implantation of mBTIC0309 generated tumors that closely recapitulated the pathological and molecular profile of human gliomas. Treatment of tumor-bearing mice with vMyx-M011L-KO significantly prolonged survival in immunocompetent-but not immunodeficient-mouse models, an effect that is significantly enhanced in combination with TMZ. CONCLUSIONS Our data suggest that vMyx-M011L-KO is an effective, well-tolerated, proapoptotic oncolytic virus and a strong candidate for clinical translation.
Collapse
Affiliation(s)
- Alexandra Pisklakova
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Brienne McKenzie
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Franz Zemp
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Xueqing Lun
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Rajappa S Kenchappa
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Arnold B Etame
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Masmudur M Rahman
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Karlyne Reilly
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Shari Pilon-Thomas
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Grant McFadden
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Ebba Kurz
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| | - Peter A Forsyth
- Department of Neuro-Oncology and Tumor Biology, Moffitt Cancer Center, Tampa, Florida (A.P., R.S.K., A.B.E., P.A.F.); Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada (B.M., F.Z., X.L., E.K., P.A.F.); Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida (M.M.R., G.M.); Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.R.); Department of Immunology, Moffitt Cancer Center, Tampa, Florida (S.P.-T.)
| |
Collapse
|
49
|
Sosnovtceva A, Grinenko N, Lipatova A, Chumakov P, Chekhonin V. Oncolytic viruses for therapy of malignant glioma. ACTA ACUST UNITED AC 2016; 62:376-90. [DOI: 10.18097/pbmc20166204376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effective treatment of malignant brain tumors is still an open problem. Location of tumor in vital areas of the brain significantly limits capasities of surgical treatment. The presence of tumor stem cells resistant to radiation and anticancer drugs in brain tumor complicates use of chemoradiotherapy and causes a high rate of disease recurrence. A technological improvement in bioselection and production of recombinant resulted in creation of viruses with potent oncolytic properties against glial tumors. Recent studies, including clinical trials, showed, that majority of oncolytic viruses are safe. Despite the impressive results of the viral therapy in some patients, the treatment of other patients is not effective; therefore, further improvement of the methods of oncolytic virotherapy is necessary. High genetic heterogeneity of glial tumor cells even within a single tumor determines differences in individual sensitivity of tumor cells to oncolytic viruses. This review analyses the most successful oncolytic virus strains, including those which had reached clinical trials, and discusses the prospects for new approaches to virotherapy of gliomas.
Collapse
Affiliation(s)
- A.O. Sosnovtceva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N.F. Grinenko
- Serbsky Federal Medical Research Center for Narcology and Psychiatry, Moscow, Russia
| | - A.V. Lipatova
- Engelhardt institute of molecular biology RAS, Moscow, Russia
| | - P.M. Chumakov
- Engelhardt institute of molecular biology RAS, Moscow, Russia
| | - V.P. Chekhonin
- Pirogov Russian National Research Medical University, Moscow, Russia; Serbsky Federal Medical Research Center for Narcology and Psychiatry, Moscow, Russia
| |
Collapse
|
50
|
Pikor LA, Bell JC, Diallo JS. Oncolytic Viruses: Exploiting Cancer's Deal with the Devil. Trends Cancer 2015; 1:266-277. [PMID: 28741515 DOI: 10.1016/j.trecan.2015.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Tumor cells harbor tens to thousands of genetic and epigenetic alterations that disrupt cellular pathways, providing them with growth and survival advantages. However, these benefits come at a cost, with uncontrolled cell growth, defective apoptosis, sustained pathological angiogenesis, immune evasion, and a metastatic phenotype occurring at the expense of the antiviral response of the individual tumor cell. Oncolytic virotherapy is an emerging therapeutic strategy that uses replication-competent viruses to selectivity kill cancer cells by exploiting their impaired antiviral response. In this review, we outline our understanding of the alterations in signaling pathways that simultaneously contribute to the malignant phenotype and virus-mediated killing of cancer cells.
Collapse
Affiliation(s)
- Larissa A Pikor
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ONT, Canada
| | - John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ONT, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, ONT, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ONT, Canada.
| |
Collapse
|