1
|
Kruchinin AA, Kamzeeva PN, Zharkov DO, Aralov AV, Makarova AV. 8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals? Int J Mol Sci 2024; 25:1342. [PMID: 38279342 PMCID: PMC10816367 DOI: 10.3390/ijms25021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.
Collapse
Affiliation(s)
- Alexander A. Kruchinin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| | - Polina N. Kamzeeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| |
Collapse
|
2
|
Gilea AI, Magistrati M, Notaroberto I, Tiso N, Dallabona C, Baruffini E. The Saccharomyces cerevisiae mitochondrial DNA polymerase and its contribution to the knowledge about human POLG-related disorders. IUBMB Life 2023; 75:983-1002. [PMID: 37470284 DOI: 10.1002/iub.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.
Collapse
Affiliation(s)
- Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilenia Notaroberto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Yeom M, Hong JK, Shin JH, Lee Y, Guengerich FP, Choi JY. Identification of Three Human POLH Germline Variants Defective in Complementing the UV- and Cisplatin-Sensitivity of POLH-Deficient Cells. Int J Mol Sci 2023; 24:5198. [PMID: 36982269 PMCID: PMC10048814 DOI: 10.3390/ijms24065198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
DNA polymerase (pol) η is responsible for error-free translesion DNA synthesis (TLS) opposite ultraviolet light (UV)-induced cis-syn cyclobutane thymine dimers (CTDs) and cisplatin-induced intrastrand guanine crosslinks. POLH deficiency causes one form of the skin cancer-prone disease xeroderma pigmentosum variant (XPV) and cisplatin sensitivity, but the functional impacts of its germline variants remain unclear. We evaluated the functional properties of eight human POLH germline in silico-predicted deleterious missense variants, using biochemical and cell-based assays. In enzymatic assays, utilizing recombinant pol η (residues 1-432) proteins, the C34W, I147N, and R167Q variants showed 4- to 14-fold and 3- to 5-fold decreases in specificity constants (kcat/Km) for dATP insertion opposite the 3'-T and 5'-T of a CTD, respectively, compared to the wild-type, while the other variants displayed 2- to 4-fold increases. A CRISPR/Cas9-mediated POLH knockout increased the sensitivity of human embryonic kidney 293 cells to UV and cisplatin, which was fully reversed by ectopic expression of wild-type pol η, but not by that of an inactive (D115A/E116A) or either of two XPV-pathogenic (R93P and G263V) mutants. Ectopic expression of the C34W, I147N, and R167Q variants, unlike the other variants, did not rescue the UV- and cisplatin-sensitivity in POLH-knockout cells. Our results indicate that the C34W, I147N, and R167Q variants-substantially reduced in TLS activity-failed to rescue the UV- and cisplatin-sensitive phenotype of POLH-deficient cells, which also raises the possibility that such hypoactive germline POLH variants may increase the individual susceptibility to UV irradiation and cisplatin chemotherapy.
Collapse
Affiliation(s)
- Mina Yeom
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jin-Kyung Hong
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | | | - Jeong-Yun Choi
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Anand J, Chiou L, Sciandra C, Zhang X, Hong J, Wu D, Zhou P, Vaziri C. Roles of trans-lesion synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer 2023; 5:zcad005. [PMID: 36755961 PMCID: PMC9900426 DOI: 10.1093/narcan/zcad005] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
DNA damage tolerance and mutagenesis are hallmarks and enabling characteristics of neoplastic cells that drive tumorigenesis and allow cancer cells to resist therapy. The 'Y-family' trans-lesion synthesis (TLS) DNA polymerases enable cells to replicate damaged genomes, thereby conferring DNA damage tolerance. Moreover, Y-family DNA polymerases are inherently error-prone and cause mutations. Therefore, TLS DNA polymerases are potential mediators of important tumorigenic phenotypes. The skin cancer-propensity syndrome xeroderma pigmentosum-variant (XPV) results from defects in the Y-family DNA Polymerase Pol eta (Polη) and compensatory deployment of alternative inappropriate DNA polymerases. However, the extent to which dysregulated TLS contributes to the underlying etiology of other human cancers is unclear. Here we consider the broad impact of TLS polymerases on tumorigenesis and cancer therapy. We survey the ways in which TLS DNA polymerases are pathologically altered in cancer. We summarize evidence that TLS polymerases shape cancer genomes, and review studies implicating dysregulated TLS as a driver of carcinogenesis. Because many cancer treatment regimens comprise DNA-damaging agents, pharmacological inhibition of TLS is an attractive strategy for sensitizing tumors to genotoxic therapies. Therefore, we discuss the pharmacological tractability of the TLS pathway and summarize recent progress on development of TLS inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Jay Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lilly Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carly Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Eckert KA. Nontraditional Roles of DNA Polymerase Eta Support Genome Duplication and Stability. Genes (Basel) 2023; 14:genes14010175. [PMID: 36672916 PMCID: PMC9858799 DOI: 10.3390/genes14010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
DNA polymerase eta (Pol η) is a Y-family polymerase and the product of the POLH gene. Autosomal recessive inheritance of POLH mutations is the cause of the xeroderma pigmentosum variant, a cancer predisposition syndrome. This review summarizes mounting evidence for expanded Pol η cellular functions in addition to DNA lesion bypass that are critical for maintaining genome stability. In vitro, Pol η displays efficient DNA synthesis through difficult-to-replicate sequences, catalyzes D-loop extensions, and utilizes RNA-DNA hybrid templates. Human Pol η is constitutively present at the replication fork. In response to replication stress, Pol η is upregulated at the transcriptional and protein levels, and post-translational modifications regulate its localization to chromatin. Numerous studies show that Pol η is required for efficient common fragile site replication and stability. Additionally, Pol η can be recruited to stalled replication forks through protein-protein interactions, suggesting a broader role in replication fork recovery. During somatic hypermutations, Pol η is recruited by mismatch repair proteins and is essential for VH gene A:T basepair mutagenesis. Within the global context of repeat-dense genomes, the recruitment of Pol η to perform specialized functions during replication could promote genome stability by interrupting pure repeat arrays with base substitutions. Alternatively, not engaging Pol η in genome duplication is costly, as the absence of Pol η leads to incomplete replication and increased chromosomal instability.
Collapse
Affiliation(s)
- Kristin A Eckert
- Gittlen Cancer Research Laboratories, Department of Pathology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17036, USA
| |
Collapse
|
6
|
Balint E, Unk I. Manganese Is a Strong Specific Activator of the RNA Synthetic Activity of Human Polη. Int J Mol Sci 2021; 23:ijms23010230. [PMID: 35008656 PMCID: PMC8745064 DOI: 10.3390/ijms23010230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
DNA polymerase η (Polη) is a translesion synthesis polymerase that can bypass different DNA lesions with varying efficiency and fidelity. Its most well-known function is the error-free bypass of ultraviolet light-induced cyclobutane pyrimidine dimers. The lack of this unique ability in humans leads to the development of a cancer-predisposing disease, the variant form of xeroderma pigmentosum. Human Polη can insert rNTPs during DNA synthesis, though with much lower efficiency than dNTPs, and it can even extend an RNA chain with ribonucleotides. We have previously shown that Mn2+ is a specific activator of the RNA synthetic activity of yeast Polη that increases the efficiency of the reaction by several thousand-fold over Mg2+. In this study, our goal was to investigate the metal cofactor dependence of RNA synthesis by human Polη. We found that out of the investigated metal cations, only Mn2+ supported robust RNA synthesis. Steady state kinetic analysis showed that Mn2+ activated the reaction a thousand-fold compared to Mg2+, even during DNA damage bypass opposite 8-oxoG and TT dimer. Our results revealed a two order of magnitude higher affinity of human Polη towards ribonucleotides in the presence of Mn2+ compared to Mg2+. It is noteworthy that activation occurred without lowering the base selectivity of the enzyme on undamaged templates, whereas the fidelity decreased across a TT dimer. In summary, our data strongly suggest that, like with its yeast homolog, Mn2+ is the proper metal cofactor of hPolη during RNA chain extension, and selective metal cofactor utilization contributes to switching between its DNA and RNA synthetic activities.
Collapse
|
7
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Khairullin RF, Smal MP, Makarova AV. Translesion DNA Synthesis and Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2021; 85:425-435. [PMID: 32569550 DOI: 10.1134/s0006297920040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - R F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420012, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
8
|
Guérillon C, Smedegaard S, Hendriks IA, Nielsen ML, Mailand N. Multisite SUMOylation restrains DNA polymerase η interactions with DNA damage sites. J Biol Chem 2020; 295:8350-8362. [PMID: 32350109 PMCID: PMC7307195 DOI: 10.1074/jbc.ra120.013780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Indexed: 12/26/2022] Open
Abstract
Translesion DNA synthesis (TLS) mediated by low-fidelity DNA polymerases is an essential cellular mechanism for bypassing DNA lesions that obstruct DNA replication progression. However, the access of TLS polymerases to the replication machinery must be kept tightly in check to avoid excessive mutagenesis. Recruitment of DNA polymerase η (Pol η) and other Y-family TLS polymerases to damaged DNA relies on proliferating cell nuclear antigen (PCNA) monoubiquitylation and is regulated at several levels. Using a microscopy-based RNAi screen, here we identified an important role of the SUMO modification pathway in limiting Pol η interactions with DNA damage sites in human cells. We found that Pol η undergoes DNA damage- and protein inhibitor of activated STAT 1 (PIAS1)-dependent polySUMOylation upon its association with monoubiquitylated PCNA, rendering it susceptible to extraction from DNA damage sites by SUMO-targeted ubiquitin ligase (STUbL) activity. Using proteomic profiling, we demonstrate that Pol η is targeted for multisite SUMOylation, and that collectively these SUMO modifications are essential for PIAS1- and STUbL-mediated displacement of Pol η from DNA damage sites. These findings suggest that a SUMO-driven feedback inhibition mechanism is an intrinsic feature of TLS-mediated lesion bypass functioning to curtail the interaction of Pol η with PCNA at damaged DNA to prevent harmful mutagenesis.
Collapse
Affiliation(s)
- Claire Guérillon
- Ubiquitin Signaling Group, Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Stine Smedegaard
- Ubiquitin Signaling Group, Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| |
Collapse
|
9
|
Pilzecker B, Buoninfante OA, Jacobs H. DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Res 2019; 47:7163-7181. [PMID: 31251805 PMCID: PMC6698745 DOI: 10.1093/nar/gkz531] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response network guards the stability of the genome from a plethora of exogenous and endogenous insults. An essential feature of the DNA damage response network is its capacity to tolerate DNA damage and structural impediments during DNA synthesis. This capacity, referred to as DNA damage tolerance (DDT), contributes to replication fork progression and stability in the presence of blocking structures or DNA lesions. Defective DDT can lead to a prolonged fork arrest and eventually cumulate in a fork collapse that involves the formation of DNA double strand breaks. Four principal modes of DDT have been distinguished: translesion synthesis, fork reversal, template switching and repriming. All DDT modes warrant continuation of replication through bypassing the fork stalling impediment or repriming downstream of the impediment in combination with filling of the single-stranded DNA gaps. In this way, DDT prevents secondary DNA damage and critically contributes to genome stability and cellular fitness. DDT plays a key role in mutagenesis, stem cell maintenance, ageing and the prevention of cancer. This review provides an overview of the role of DDT in these aspects.
Collapse
Affiliation(s)
- Bas Pilzecker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Olimpia Alessandra Buoninfante
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
10
|
Zhang J, Sun W, Ren C, Kong X, Yan W, Chen X. A PolH Transcript with a Short 3'UTR Enhances PolH Expression and Mediates Cisplatin Resistance. Cancer Res 2019; 79:3714-3724. [PMID: 31064846 DOI: 10.1158/0008-5472.can-18-3928] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Platinum-based anticancer drugs are widely used as a first-line drug for cancers, such as non-small cell lung carcinoma (NSCLC) and bladder cancer. However, the efficacy is limited due to intrinsic or acquired resistance to these drugs. DNA polymerase eta (PolH, Polη) belongs to the Y-family of DNA polymerases and mediates DNA translesion synthesis, a major mechanism for DNA damage tolerance. Here, we showed that a high level of PolH is associated with cisplatin resistance in lung and bladder cancer. Consistent with this, loss of PolH markedly attenuates cisplatin resistance in both cisplatin-sensitive and cisplatin-resistant lung cancer cells. Interestingly, we found that due to the presence of multiple polyadenylation sites, alternative polyadenylation (APA) produces three major PolH transcripts with various lengths of 3'untranslated region (3'UTR; 427-/2516-/6245-nt). We showed that the short PolH transcript with 427-nt 3'UTR is responsible for high expression of PolH in various cisplatin-resistant lung and bladder cancer cell lines. Importantly, loss of the short PolH transcript significantly sensitizes cancer cells to cisplatin treatment. Moreover, we found that miR-619 selectively inhibits the ability of the long PolH transcript with 6245-nt 3'UTR to produce PolH protein and, subsequently, PolH-dependent cell growth. Together, our data suggest that PolH expression is controlled by APA and that the short PolH transcript produced by APA can escape miR-619-mediated repression and, subsequently, confers PolH-mediated cisplatin resistance. SIGNIFICANCE: A short PolH transcript produced by alternative polyadenylation escapes repression by miR-619 and confers resistance to cisplatin.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California.
| | - Wenqiang Sun
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Cong Ren
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, California.
| |
Collapse
|
11
|
Lee CW, Wu PC, Hsu IL, Liu TM, Chong WH, Wu CH, Hsieh TY, Guo LZ, Tsao Y, Wu PT, Yu J, Tsai PJ, Huang HS, Chuang YC, Huang CC. New Templated Ostwald Ripening Process of Mesostructured FeOOH for Third-Harmonic Generation Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805086. [PMID: 30925031 DOI: 10.1002/smll.201805086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/12/2019] [Indexed: 05/20/2023]
Abstract
Emerging advances in iron oxide nanoparticles exploit their high magnetization for various applications, such as bioseparation, hyperthermia, and magnetic resonance imaging. In contrast to their excellent magnetic performance, the harmonic generation and luminescence properties of iron oxide nanoparticles have not been thoroughly explored, thus limiting their development as a tool in photomedicine. In this work, a seed/growth-inspired synthesis is developed combined with primary mineralization and a ligand-assisted secondary growth strategy to prepare mesostructured α-FeOOH nanorods (NRs). The sub-wavelength heterogeneity of the refractive index leads to enhanced third-harmonic generation (THG) signals under near-infrared excited wavelengths at 1230 nm. The as-prepared NRs exhibit an 11-fold stronger THG intensity compared to bare α-FeOOH NRs. Using these unique nonlinear optical properties, it is demonstrated that mesostructured α-FeOOH NRs can serve as biocompatible and nonbleaching contrast agents in THG microscopy for long-term labeling of cells as well as in angiography in vivo by modifying lectin to enhance the binding efficiency to the glycocalyx layers on the wall of blood vessels. These results provide a new insight into Fe-based nanoplatforms capable of emitting coherent light as molecular probes in optical microscopy, thus establishing a complementary microscopic imaging method for macroscopic magnetic imaging systems.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Department of Photonics, Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pei-Chun Wu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China
| | - I-Ling Hsu
- Department of Photonics, Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China
| | - Wai-How Chong
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China
| | - Cheng-Ham Wu
- Institute of Biomedical Engineering & Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsung-Yuan Hsieh
- Institute of Biomedical Engineering & Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Lun-Zhang Guo
- Institute of Biomedical Engineering & Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu Tsao
- Research Center for Information Technology Innovation, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
12
|
Mani C, Reddy PH, Palle K. DNA repair fidelity in stem cell maintenance, health, and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165444. [PMID: 30953688 DOI: 10.1016/j.bbadis.2019.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are a sub population of cell types that form the foundation of our body, and have the potential to replicate, replenish and repair limitlessly to maintain the tissue and organ homeostasis. Increased lifetime and frequent replication set them vulnerable for both exogenous and endogenous agents-induced DNA damage compared to normal cells. To counter these damages and preserve genetic information, stem cells have evolved with various DNA damage response and repair mechanisms. Furthermore, upon experiencing irreparable DNA damage, stem cells mostly prefer early senescence or apoptosis to avoid the accumulation of damages. However, the failure of these mechanisms leads to various diseases, including cancer. Especially, given the importance of stem cells in early development, DNA repair deficiency in stem cells leads to various disabilities like developmental delay, premature aging, sensitivity to DNA damaging agents, degenerative diseases, etc. In this review, we have summarized the recent update about how DNA repair mechanisms are regulated in stem cells and their association with disease progression and pathogenesis.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - P Hemachandra Reddy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America.
| |
Collapse
|
13
|
Yoon JH, McArthur MJ, Park J, Basu D, Wakamiya M, Prakash L, Prakash S. Error-Prone Replication through UV Lesions by DNA Polymerase θ Protects against Skin Cancers. Cell 2019; 176:1295-1309.e15. [PMID: 30773314 PMCID: PMC6453116 DOI: 10.1016/j.cell.2019.01.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/01/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023]
Abstract
Cancers from sun-exposed skin accumulate "driver" mutations, causally implicated in oncogenesis. Because errors incorporated during translesion synthesis (TLS) opposite UV lesions would generate these mutations, TLS mechanisms are presumed to underlie cancer development. To address the role of TLS in skin cancer formation, we determined which DNA polymerase is responsible for generating UV mutations, analyzed the relative contributions of error-free TLS by Polη and error-prone TLS by Polθ to the replication of UV-damaged DNA and to genome stability, and examined the incidence of UV-induced skin cancers in Polθ-/-, Polη-/-, and Polθ-/- Polη-/- mice. Our findings that the incidence of skin cancers rises in Polθ-/- mice and is further exacerbated in Polθ-/- Polη-/- mice compared with Polη-/- mice support the conclusion that error-prone TLS by Polθ provides a safeguard against tumorigenesis and suggest that cancer formation can ensue in the absence of somatic point mutations.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Mark J McArthur
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeseong Park
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Debashree Basu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Maki Wakamiya
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
14
|
Barnes RP, Tsao WC, Moldovan GL, Eckert KA. DNA Polymerase Eta Prevents Tumor Cell-Cycle Arrest and Cell Death during Recovery from Replication Stress. Cancer Res 2018; 78:6549-6560. [DOI: 10.1158/0008-5472.can-17-3931] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/19/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
|
15
|
Peddu C, Zhang S, Zhao H, Wong A, Lee EYC, Lee MYWT, Zhang Z. Phosphorylation Alters the Properties of Pol η: Implications for Translesion Synthesis. iScience 2018; 6:52-67. [PMID: 30240625 PMCID: PMC6137289 DOI: 10.1016/j.isci.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/26/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
There are significant ambiguities regarding how DNA polymerase η is recruited to DNA lesion sites in stressed cells while avoiding normal replication forks in non-stressed cells. Even less is known about the mechanisms responsible for Pol η-induced mutations in cancer genomes. We show that there are two safeguards to prevent Pol η from adventitious participation in normal DNA replication. These include sequestration by a partner protein and low basal activity. Upon cellular UV irradiation, phosphorylation enables Pol η to be released from sequestration by PDIP38 and activates its polymerase function through increased affinity toward monoubiquitinated proliferating cell nuclear antigen (Ub-PCNA). Moreover, the high-affinity binding of phosphorylated Pol η to Ub-PCNA limits its subsequent displacement by Pol δ. Consequently, activated Pol η replicates DNA beyond the lesion site and potentially introduces clusters of mutations due to its low fidelity. This mechanism could account for the prevalence of Pol η signatures in cancer genome.
Collapse
Affiliation(s)
- Chandana Peddu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Hong Zhao
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | - Agnes Wong
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
16
|
Tanoue Y, Toyoda T, Sun J, Mustofa MK, Tateishi C, Endo S, Motoyama N, Araki K, Wu D, Okuno Y, Tsukamoto T, Takeya M, Ihn H, Vaziri C, Tateishi S. Differential Roles of Rad18 and Chk2 in Genome Maintenance and Skin Carcinogenesis Following UV Exposure. J Invest Dermatol 2018; 138:2550-2557. [PMID: 29859927 DOI: 10.1016/j.jid.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
Defects in DNA polymerase Eta (Polη) cause the sunlight-sensitivity and skin cancer-propensity disorder xeroderma pigmentosum variant. The extent to which Polη function depends on the upstream E3 ubiquitin ligase Rad18 is controversial and has not been investigated using mouse models. Therefore, we tested the role of Rad18 in UV-inducible skin tumorigenesis. Because Rad18 deficiency leads to compensatory DNA damage signaling by Chk2, we also investigated genetic interactions between Rad18 and Chk2 in vivo. Chk2-/-Rad18-/- mice were prone to spontaneous lymphomagenesis. Both Chk2-/- and Chk2-/-Rad18-/- mice were prone to UV-B irradiation-induced skin tumorigenesis when compared with wild-type (WT) animals, but unexpectedly Rad18-/- mice did not recapitulate the skin tumor propensity of Polη mutants. UV-irradiated Rad18-/- cells were more susceptible to G1/S arrest and apoptosis than WT cultures. Chk2 deficiency alleviated both UV-induced G1/S phase arrest and apoptosis of WT and Rad18-/- cells, but led to increased genomic instability. Taken together, our results demonstrate that the tumor-suppressive role of Polη in UV-treated skin is Rad18 independent. We also define a role for Chk2 in suppressing UV-induced skin carcinogenesis in vivo. This study identifies Chk2 dysfunction as a potential risk factor for sunlight-induced skin tumorigenesis in humans.
Collapse
Affiliation(s)
- Yuki Tanoue
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Takeshi Toyoda
- Division of Pathology, National institute of Health Sciences Biological safety center, Tokyo, Japan
| | - Jinghua Sun
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Md Kawsar Mustofa
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Chie Tateishi
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinya Endo
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Noboru Motoyama
- Department of Human Nutrition, Sugiyama Jogakuen University School of Life Studies, Nagoya, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Di Wu
- Department of Periodontology, Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yutaka Okuno
- Departments of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology I, Fujita Health University School of Medicine, Toyoake, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Cyrus Vaziri
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Satoshi Tateishi
- Department of Cell Maintenance, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
17
|
Ma X, Liu H, Li J, Wang Y, Ding YH, Shen H, Yang Y, Sun C, Huang M, Tu Y, Liu Y, Zhao Y, Dong MQ, Xu P, Tang TS, Guo C. Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis. Nat Commun 2017; 8:1941. [PMID: 29208956 PMCID: PMC5717138 DOI: 10.1038/s41467-017-02164-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
DNA polymerase η (Polη) facilitates translesion DNA synthesis (TLS) across ultraviolet (UV) irradiation- and cisplatin-induced DNA lesions implicated in skin carcinogenesis and chemoresistant phenotype formation, respectively. However, whether post-translational modifications of Polη are involved in these processes remains largely unknown. Here, we reported that human Polη undergoes O-GlcNAcylation at threonine 457 by O-GlcNAc transferase upon DNA damage. Abrogation of this modification results in a reduced level of CRL4CDT2-dependent Polη polyubiquitination at lysine 462, a delayed p97-dependent removal of Polη from replication forks, and significantly enhanced UV-induced mutagenesis even though Polη focus formation and its efficacy to bypass across cyclobutane pyrimidine dimers after UV irradiation are not affected. Furthermore, the O-GlcNAc-deficient T457A mutation impairs TLS to bypass across cisplatin-induced lesions, causing increased cellular sensitivity to cisplatin. Our findings demonstrate a novel role of Polη O-GlcNAcylation in TLS regulation and genome stability maintenance and establish a new rationale to improve chemotherapeutic treatment.
Collapse
Affiliation(s)
- Xiaolu Ma
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yihao Wang
- State Key Laboratory of Proteomics National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Yue-He Ding
- National Institute of Biological Sciences (Beijing), Beijing, 102206, China
| | - Hongyan Shen
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yeran Yang
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenyi Sun
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Huang
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingfeng Tu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (Beijing), Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Sasatani M, Xi Y, Kajimura J, Kawamura T, Piao J, Masuda Y, Honda H, Kubo K, Mikamoto T, Watanabe H, Xu Y, Kawai H, Shimura T, Noda A, Hamasaki K, Kusunoki Y, Zaharieva EK, Kamiya K. Overexpression of Rev1 promotes the development of carcinogen-induced intestinal adenomas via accumulation of point mutation and suppression of apoptosis proportionally to the Rev1 expression level. Carcinogenesis 2017; 38:570-578. [PMID: 28498946 PMCID: PMC5872566 DOI: 10.1093/carcin/bgw208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer development often involves mutagenic replication of damaged DNA by the error-prone translesion synthesis (TLS) pathway. Aberrant activation of this pathway plays a role in tumorigenesis by promoting genetic mutations. Rev1 controls the function of the TLS pathway, and Rev1 expression levels are associated with DNA damage induced cytotoxicity and mutagenicity. However, it remains unclear whether deregulated Rev1 expression triggers or promotes tumorigenesis in vivo. In this study, we generated a novel Rev1-overexpressing transgenic (Tg) mouse and characterized its susceptibility to tumorigenesis. Using a small intestinal tumor model induced by N-methyl-N-nitrosourea (MNU), we found that transgenic expression of Rev1 accelerated intestinal adenoma development in proportion to the Rev1 expression level; however, overexpression of Rev1 alone did not cause spontaneous development of intestinal adenomas. In Rev1 Tg mice, MNU-induced mutagenesis was elevated, whereas apoptosis was suppressed. The effects of hREV1 expression levels on the cytotoxicity and mutagenicity of MNU were confirmed in the human cancer cell line HT1080. These data indicate that dysregulation of cellular Rev1 levels leads to the accumulation of mutations and suppression of cell death, which accelerates the tumorigenic activities of DNA-damaging agents.
Collapse
Affiliation(s)
- Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yang Xi
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Diabetes Center, Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Junko Kajimura
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Toshiyuki Kawamura
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Jinlian Piao
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuji Masuda
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.,Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.,Department of Toxicogenomics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kei Kubo
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takahiro Mikamoto
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiromitsu Watanabe
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yanbin Xu
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hidehiko Kawai
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako, Saitama 351-0197, Japan and
| | - Asao Noda
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Kanya Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Elena Karamfilova Zaharieva
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
19
|
|
20
|
Abstract
Life as we know it, simply would not exist without DNA replication. All living organisms utilize a complex machinery to duplicate their genomes and the central role in this machinery belongs to replicative DNA polymerases, enzymes that are specifically designed to copy DNA. "Hassle-free" DNA duplication exists only in an ideal world, while in real life, it is constantly threatened by a myriad of diverse challenges. Among the most pressing obstacles that replicative polymerases often cannot overcome by themselves are lesions that distort the structure of DNA. Despite elaborate systems that cells utilize to cleanse their genomes of damaged DNA, repair is often incomplete. The persistence of DNA lesions obstructing the cellular replicases can have deleterious consequences. One of the mechanisms allowing cells to complete replication is "Translesion DNA Synthesis (TLS)". TLS is intrinsically error-prone, but apparently, the potential downside of increased mutagenesis is a healthier outcome for the cell than incomplete replication. Although most of the currently identified eukaryotic DNA polymerases have been implicated in TLS, the best characterized are those belonging to the "Y-family" of DNA polymerases (pols η, ι, κ and Rev1), which are thought to play major roles in the TLS of persisting DNA lesions in coordination with the B-family polymerase, pol ζ. In this review, we summarize the unique features of these DNA polymerases by mainly focusing on their biochemical and structural characteristics, as well as potential protein-protein interactions with other critical factors affecting TLS regulation.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
21
|
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic Biol Med 2017; 107:110-124. [PMID: 28109890 DOI: 10.1016/j.freeradbiomed.2017.01.029] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil.
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Natielen Jacques Schuch
- Departamento de Nutrição, Centro Universitário Franciscano, 97010-032 Santa Maria, RS, Brazil.
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|
22
|
Non-transcriptional Function of FOXO1/DAF-16 Contributes to Translesion DNA Synthesis. Mol Cell Biol 2016; 36:2755-2766. [PMID: 27550812 DOI: 10.1128/mcb.00265-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Forkhead box O (FOXO; DAF-16 in nematode) transcription factors activate a program of genes that control stress resistance, metabolism, and lifespan. Given the adverse impact of the stochastic DNA damage on organismal development and ageing, we examined the role of FOXO/DAF-16 in UV-induced DNA-damage response. Knockdown of FOXO1, but not FOXO3a, increases sensitivity to UV irradiation when exposed during S phase, suggesting a contribution of FOXO1 to translesion DNA synthesis (TLS), a replicative bypass of UV-induced DNA lesions. Actually, FOXO1 depletion results in a sustained activation of the ATR-Chk1 signaling and a reduction of PCNA monoubiquitination following UV irradiation. FOXO1 does not alter the expression of TLS-related genes but binds to the protein replication protein A (RPA1) that coats single-stranded DNA and acts as a scaffold for TLS. In Caenorhabditis elegans, daf-16 null mutants show UV-induced retardation in larval development and are rescued by overexpressing DAF-16 mutant lacking transactivation domain, but not substitution mutant unable to interact with RPA-1. Thus, our findings demonstrate that FOXO1/DAF-16 is a functional component in TLS independently of its transactivation activity.
Collapse
|
23
|
Maul RW, MacCarthy T, Frank EG, Donigan KA, McLenigan MP, Yang W, Saribasak H, Huston DE, Lange SS, Woodgate R, Gearhart PJ. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J Exp Med 2016; 213:1675-83. [PMID: 27455952 PMCID: PMC4995076 DOI: 10.1084/jem.20151227] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/01/2016] [Indexed: 11/04/2022] Open
Abstract
DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794
| | - Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Katherine A Donigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Donald E Huston
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Sabine S Lange
- Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
24
|
Genna V, Gaspari R, Dal Peraro M, De Vivo M. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η. Nucleic Acids Res 2016; 44:2827-36. [PMID: 26935581 PMCID: PMC4824119 DOI: 10.1093/nar/gkw128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Roberto Gaspari
- CONCEPT Lab., Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland Swiss Institute of Bioinformatics (SIB), CH-1015, Lausanne, Switzerland
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy IAS-5 / INM-9 Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße 52428 Jülich, Germany
| |
Collapse
|
25
|
O'Flaherty DK, Guengerich FP, Egli M, Wilds CJ. Backbone Flexibility Influences Nucleotide Incorporation by Human Translesion DNA Polymerase η opposite Intrastrand Cross-Linked DNA. Biochemistry 2015; 54:7449-56. [PMID: 26624500 DOI: 10.1021/acs.biochem.5b01078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrastrand cross-links (IaCL) connecting two purine nucleobases in DNA pose a challenge to high-fidelity replication in the cell. Various repair pathways or polymerase bypass can cope with these lesions. The influence of the phosphodiester linkage between two neighboring 2'-deoxyguanosine (dG) residues attached through the O(6) atoms by an alkylene linker on bypass with human DNA polymerase η (hPol η) was explored in vitro. Steady-state kinetics and mass spectrometric analysis of products from nucleotide incorporation revealed that although hPol η is capable of bypassing the 3'-dG in a mostly error-free fashion, significant misinsertion was observed for the 5'-dG of the IaCL containing a butylene or heptylene linker. The lack of the phosphodiester linkage triggered an important increase in frameshift adduct formation across the 5'-dG by hPol η, in comparison to the 5'-dG of IaCL DNA containing the phosphodiester group.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Martin Egli
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
26
|
Chen YW, Harris RA, Hatahet Z, Chou KM. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities. Proc Natl Acad Sci U S A 2015; 112:E4556-64. [PMID: 26240351 PMCID: PMC4547227 DOI: 10.1073/pnas.1506954112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η(-/-)) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η(-/-) mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η(-/-) mice was observed and measured by up-regulation of senescence markers, including p53, p16(Ink4a), p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η(-/-) mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η(-/-) mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance.
Collapse
Affiliation(s)
- Yih-Wen Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Robert A Harris
- Richard Roudebush Veterans Affairs Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Zafer Hatahet
- Department of Biological and Physical Sciences, Northwestern State University of Louisiana, Natchitoches, LA 71497
| | - Kai-ming Chou
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202;
| |
Collapse
|
27
|
Cohen IS, Bar C, Paz-Elizur T, Ainbinder E, Leopold K, de Wind N, Geacintov N, Livneh Z. DNA lesion identity drives choice of damage tolerance pathway in murine cell chromosomes. Nucleic Acids Res 2015; 43:1637-45. [PMID: 25589543 PMCID: PMC4330363 DOI: 10.1093/nar/gku1398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA-damage tolerance (DDT) via translesion DNA synthesis (TLS) or homology-dependent repair (HDR) functions to bypass DNA lesions encountered during replication, and is critical for maintaining genome stability. Here, we present piggyBlock, a new chromosomal assay that, using piggyBac transposition of DNA containing a known lesion, measures the division of labor between the two DDT pathways. We show that in the absence of DNA damage response, tolerance of the most common sunlight-induced DNA lesion, TT-CPD, is achieved by TLS in mouse embryo fibroblasts. Meanwhile, BP-G, a major smoke-induced DNA lesion, is bypassed primarily by HDR, providing the first evidence for this mechanism being the main tolerance pathway for a biologically important lesion in a mammalian genome. We also show that, far from being a last-resort strategy as it is sometimes portrayed, TLS operates alongside nucleotide excision repair, handling 40% of TT-CPDs in repair-proficient cells. Finally, DDT acts in mouse embryonic stem cells, exhibiting the same pattern—mutagenic TLS included—despite the risk of propagating mutations along all cell lineages. The new method highlights the importance of HDR, and provides an effective tool for studying DDT in mammalian cells.
Collapse
|
28
|
Abstract
Genome instability is a hallmark of cancer, and DNA replication is the most vulnerable cellular process that can lead to it. Any condition leading to high levels of DNA damage will result in replication stress, which is a source of genome instability and a feature of pre-cancerous and cancerous cells. Therefore, understanding the molecular basis of replication stress is crucial to the understanding of tumorigenesis. Although a negative aspect of replication stress is its prominent role in tumorigenesis, a positive aspect is that it provides a potential target for cancer therapy. In this Review, we discuss the link between persistent replication stress and tumorigenesis, with the goal of shedding light on the mechanisms underlying the initiation of an oncogenic process, which should open up new possibilities for cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| | - Tatiana García-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Sevilla 41092, Spain
| |
Collapse
|
29
|
Kanao R, Yokoi M, Ohkumo T, Sakurai Y, Dotsu K, Kura S, Nakatsu Y, Tsuzuki T, Masutani C, Hanaoka F. UV-induced mutations in epidermal cells of mice defective in DNA polymerase η and/or ι. DNA Repair (Amst) 2015; 29:139-46. [PMID: 25733082 DOI: 10.1016/j.dnarep.2015.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 02/05/2023]
Abstract
Xeroderma pigmentosum variant (XP-V) is a human rare inherited recessive disease, predisposed to sunlight-induced skin cancer, which is caused by deficiency in DNA polymerase η (Polη). Polη catalyzes accurate translesion synthesis (TLS) past pyrimidine dimers, the most prominent UV-induced lesions. DNA polymerase ι (Polι) is a paralog of Polη that has been suggested to participate in TLS past UV-induced lesions, but its function in vivo remains uncertain. We have previously reported that Polη-deficient and Polη/Polι double-deficient mice showed increased susceptibility to UV-induced carcinogenesis. Here, we investigated UV-induced mutation frequencies and spectra in the epidermal cells of Polη- and/or Polι-deficient mice. While Polη-deficient mice showed significantly higher UV-induced mutation frequencies than wild-type mice, Polι deficiency did not influence the frequencies in the presence of Polη. Interestingly, the frequencies in Polη/Polι double-deficient mice were statistically lower than those in Polη-deficient mice, although they were still higher than those of wild-type mice. Sequence analysis revealed that most of the UV-induced mutations in Polη-deficient and Polη/Polι double-deficient mice were base substitutions at dipyrimidine sites. An increase in UV-induced mutations at both G:C and A:T pairs associated with Polη deficiency suggests that Polη contributes to accurate TLS past both thymine- and cytosine-containing dimers in vivo. A significant decrease in G:C to A:T transition in Polη/Polι double-deficient mice when compared with Polη-deficient mice suggests that Polι is involved in error-prone TLS past cytosine-containing dimers when Polη is inactivated.
Collapse
Affiliation(s)
- Rie Kanao
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masayuki Yokoi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Tsuyoshi Ohkumo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasutaka Sakurai
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kantaro Dotsu
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Shinobu Kura
- Faculty of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Maidashi, Fukuoka 812-8582, Japan
| | - Yoshimichi Nakatsu
- Faculty of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Maidashi, Fukuoka 812-8582, Japan
| | - Teruhisa Tsuzuki
- Faculty of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Maidashi, Fukuoka 812-8582, Japan
| | - Chikahide Masutani
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Fumio Hanaoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
30
|
Ananda G, Hile SE, Breski A, Wang Y, Kelkar Y, Makova KD, Eckert KA. Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes. PLoS Genet 2014; 10:e1004498. [PMID: 25033203 PMCID: PMC4102424 DOI: 10.1371/journal.pgen.1004498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/28/2014] [Indexed: 01/01/2023] Open
Abstract
Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. Microsatellites are short tandem repeat DNA sequences located throughout the human genome that display a high degree of inter-individual variation. This characteristic makes microsatellites an attractive tool for population genetics and forensics research. Some microsatellites affect gene expression, and mutations within such microsatellites can cause disease. Interruption mutations disrupt the perfect repeated array and are frequently associated with altered disease risk, but they have not been thoroughly studied in human genomes. We identified interrupted mono-, di-, tri- and tetranucleotide MSs (iMS) within individual genomes from African, European, Asian and American population groups. We show that many iMSs, including some within disease-associated genes, are unique to a single population group. By measuring the conservation of microsatellites between human and chimpanzee genomes, we demonstrate that interruptions decrease the probability of microsatellite mutations throughout the genome. We demonstrate that iMSs arise in the human genome by single base changes within the DNA, and provide biochemical data suggesting that these stabilizing changes may be created by error-prone DNA polymerases. Our genome-wide study supports the model in which iMSs act to stabilize individual genomes, and suggests that population-specific differences in microsatellite architecture may be an avenue by which genetic ancestry impacts individual disease risk.
Collapse
Affiliation(s)
- Guruprasad Ananda
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Suzanne E. Hile
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Amanda Breski
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Yanli Wang
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Yogeshwar Kelkar
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail: (KDM); (KAE)
| | - Kristin A. Eckert
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Center for Medical Genomics, Penn State University, University Park, Pennsylvania, United States of America
- * E-mail: (KDM); (KAE)
| |
Collapse
|
31
|
Herman KN, Toffton S, McCulloch SD. Detrimental effects of UV-B radiation in a xeroderma pigmentosum-variant cell line. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:375-384. [PMID: 24549972 PMCID: PMC4102177 DOI: 10.1002/em.21857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 06/03/2023]
Abstract
DNA polymerase η (pol η), of the Y-family, is well known for its in vitro DNA lesion bypass ability. The most well-characterized lesion bypassed by this polymerase is the cyclobutane pyrimidine dimer (CPD) caused by ultraviolet (UV) light. Historically, cellular and whole-animal models for this area of research have been conducted using UV-C (λ=100-280 nm) owing to its ability to generate large quantities of CPDs and also the more structurally distorting 6-4 photoproduct. Although UV-C is useful as a laboratory tool, exposure to these wavelengths is generally very low owing to being filtered by stratospheric ozone. We are interested in the more environmentally relevant wavelength range of UV-B (λ=280-315 nm) for its role in causing cytotoxicity and mutagenesis. We evaluated these endpoints in both a normal human fibroblast control line and a Xeroderma pigmentosum variant cell line in which the POLH gene contains a truncating point mutation, leading to a nonfunctional polymerase. We demonstrate that UV-B has similar but less striking effects compared to UV-C in both its cytotoxic and its mutagenic effects. Analysis of the mutation spectra after a single dose of UV-B shows that a majority of mutations can be attributed to mutagenic bypass of dipyrimidine sequences. However, we do note additional types of mutations with UV-B that are not previously reported after UV-C exposure. We speculate that these differences are attributed to a change in the spectra of photoproduct lesions rather than other lesions caused by oxidative stress.
Collapse
Affiliation(s)
- Kimberly N. Herman
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, North Carolina
| | - Shannon Toffton
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, North Carolina
| | - Scott D. McCulloch
- Department of Biological Sciences, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, North Carolina
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
32
|
Pan Y, Yang H, Claret FX. Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer. Cancer Biol Ther 2014; 15:256-62. [PMID: 24495954 DOI: 10.4161/cbt.27823] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Jab1/CSN5 is a multifunctional protein that plays an important role in integrin signaling, cell proliferation, apoptosis, and the regulation of genomic instability and DNA repair. Dysregulation of Jab1/CSN5 activity has been shown to contribute to oncogenesis by functionally inactivating several key negative regulatory proteins and tumor suppressors. In this review, we discuss our current understanding of the relationship between Jab1/CSN5 and DNA damage and summarize recent findings regarding opportunities for and challenges to therapeutic intervention.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou, Guangdong, PR China; Breast Tumor Center; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou, Guangdong, PR China
| | - Huiling Yang
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou, Guangdong, PR China
| | - Francois X Claret
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Experimental Therapeutic Academic Program and Cancer Biology Program; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX USA
| |
Collapse
|
33
|
Cell cycle: mechanisms of control and dysregulation in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
34
|
Liu CL, Liu TM, Hsieh TY, Liu HW, Chen YS, Tsai CK, Chen HC, Lin JW, Hsu RB, Wang TD, Chen CC, Sun CK, Chou PT. In vivo metabolic imaging of insulin with multiphoton fluorescence of human insulin-Au nanodots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2103-2102. [PMID: 23172627 DOI: 10.1002/smll.201201887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 06/01/2023]
Abstract
Functional human insulin-Au nanodots (NDs) are synthesized for the in vivo imaging of insulin metabolism. Benefiting from its efficient red to near infrared fluorescence, deep tissue subcellular uptake of insulin-Au NDs can be clearly resolved through a least-invasive harmonic generation and two-photon fluorescence (TPF) microscope. In vivo investigations on mice ear and ex vivo assays on human fat tissues conclude that cells with rich insulin receptors have higher uptake of administrated insulin. Interestingly, the insulin-Au NDs can even permeate into lipid droplets (LDs) of adipocytes. Using this newly discovered metabolic phenomenon of insulin, it is found that enlarged adipocytes in type II diabetes mice have higher adjacent/LD concentration contrast with small-sized ones in wild type mice. For human clinical samples, the epicardial adipocytes of patients with diabetes and coronary artery disease (CAD) also show elevated adjacent/LD concentration contrast. As a result, human insulin-Au nanodots provide a new approach to explore subcellular insulin metabolism in model animals or patients with metabolic or cardiovascular diseases.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Menezes MR, Sweasy JB. Mouse models of DNA polymerases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:645-665. [PMID: 23001998 DOI: 10.1002/em.21731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
In 1956, Arthur Kornberg discovered the mechanism of the biological synthesis of DNA and was awarded the Nobel Prize in Physiology or Medicine in 1959 for this contribution, which included the isolation and characterization of Escherichia coli DNA polymerase I. Now there are 15 known DNA polymerases in mammalian cells that belong to four different families. These DNA polymerases function in many different cellular processes including DNA replication, DNA repair, and damage tolerance. Several biochemical and cell biological studies have provoked a further investigation of DNA polymerase function using mouse models in which polymerase genes have been altered using gene-targeting techniques. The phenotypes of mice harboring mutant alleles reveal the prominent role of DNA polymerases in embryogenesis, prevention of premature aging, and cancer suppression.
Collapse
Affiliation(s)
- Miriam R Menezes
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
36
|
Suzuki M, Takahashi T. Aberrant DNA replication in cancer. Mutat Res 2012; 743-744:111-117. [PMID: 22968031 DOI: 10.1016/j.mrfmmm.2012.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/11/2022]
Abstract
Genomic instability plays an important role in cancer susceptibility, though the mechanics of its development remain unclear. An often-stated hypothesis is that error-prone phenotypes in DNA replication or aberrations in translesion DNA synthesis lead to genomic instability and cancer. Mutations in core DNA replication proteins have been identified in human cancer, although DNA replication is essential for cell proliferation and most mutations eliminating this function are deleterious. With recent developments in this field we review and discuss the possible involvement of DNA replication proteins in carcinogenesis.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
37
|
Nicolay NH, Carter R, Hatch SB, Schultz N, Prevo R, McKenna WG, Helleday T, Sharma RA. Homologous recombination mediates S-phase-dependent radioresistance in cells deficient in DNA polymerase eta. Carcinogenesis 2012; 33:2026-34. [PMID: 22822095 DOI: 10.1093/carcin/bgs239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt's lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control.
Collapse
Affiliation(s)
- Nils H Nicolay
- Cancer Research UK-Medical Research Council Gray Institute for Radiation Oncology and Biology, Oncology Department, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Klarer AC, Stallons LJ, Burke TJ, Skaggs RL, McGregor WG. DNA polymerase eta participates in the mutagenic bypass of adducts induced by benzo[a]pyrene diol epoxide in mammalian cells. PLoS One 2012; 7:e39596. [PMID: 22745795 PMCID: PMC3380003 DOI: 10.1371/journal.pone.0039596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/28/2012] [Indexed: 11/18/2022] Open
Abstract
Y-family DNA-polymerases have larger active sites that can accommodate bulky DNA adducts allowing them to bypass these lesions during replication. One member, polymerase eta (pol eta), is specialized for the bypass of UV-induced thymidine-thymidine dimers, correctly inserting two adenines. Loss of pol eta function is the molecular basis for xeroderma pigmentosum (XP) variant where the accumulation of mutations results in a dramatic increase in UV-induced skin cancers. Less is known about the role of pol eta in the bypass of other DNA adducts. A commonly encountered DNA adduct is that caused by benzo[a]pyrene diol epoxide (BPDE), the ultimate carcinogenic metabolite of the environmental chemical benzo[a]pyrene. Here, treatment of pol eta-deficient fibroblasts from humans and mice with BPDE resulted in a significant decrease in Hprt gene mutations. These studies in mammalian cells support a number of in vitro reports that purified pol eta has error-prone activity on plasmids with site-directed BPDE adducts. Sequencing the Hprt gene from this work shows that the majority of mutations are G>T transversions. These data suggest that pol eta has error-prone activity when bypassing BPDE-adducts. Understanding the basis of environmental carcinogen-derived mutations may enable prevention strategies to reduce such mutations with the intent to reduce the number of environmentally relevant cancers.
Collapse
Affiliation(s)
- Alden C. Klarer
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - L. Jay Stallons
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Tom J. Burke
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky, United States of America
| | - Robert L. Skaggs
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - W. Glenn McGregor
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
39
|
Masutani C. Human DNA Polymerase η and Its Regulatory Mechanisms. Genes Environ 2012. [DOI: 10.3123/jemsge.34.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Dysregulation of DNA polymerase κ recruitment to replication forks results in genomic instability. EMBO J 2011; 31:908-18. [PMID: 22157819 DOI: 10.1038/emboj.2011.457] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/18/2011] [Indexed: 11/08/2022] Open
Abstract
Translesion synthesis polymerases (TLS Pols) are required to tolerate DNA lesions that would otherwise cause replication arrest and cell death. Aberrant expression of these specialized Pols may be responsible for increased mutagenesis and loss of genome integrity in human cancers. The molecular events that control the usage of TLS Pols in non-pathological conditions remain largely unknown. Here, we show that aberrant recruitment of TLS Polκ to replication forks results in genomic instability and can be mediated through the loss of the deubiquitinase USP1. Moreover, artificial tethering of Polκ to proliferating cell nuclear antigen (PCNA) circumvents the need for its ubiquitin-binding domain in the promotion of genomic instability. Finally, we show that the loss of USP1 leads to a dramatic reduction of replication fork speed in a Polκ-dependent manner. We propose a mechanism whereby reversible ubiquitination of PCNA can prevent spurious TLS Pol recruitment and regulate replication fork speed to ensure the maintenance of genome integrity.
Collapse
|
41
|
Hentosh P, Benjamin T, Hall L, Leap S, Loescher J, Poyner E, Sundin T, Whittle M, Wilkinson S, Peffley DM. Xeroderma pigmentosum variant: complementary molecular approaches to detect a 13 base pair deletion in the DNA polymerase eta gene. Exp Mol Pathol 2011; 91:528-33. [PMID: 21640722 DOI: 10.1016/j.yexmp.2011.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 01/06/2023]
Abstract
Deficiencies of DNA polymerase eta-an enzyme mediating replication past UV-induced DNA damage-predispose individuals to xeroderma pigmentosum variant (XPV) and result in a high incidence of skin cancers. We designed, developed and assessed several complementary molecular approaches to detect a genetically inherited deletion within DNA polymerase eta. RNA was reverse transcribed from XPV fibroblasts and from normal human cells, and standard polymerase chain reaction (PCR) was conducted on the cDNA targeting a region with a 13 base pair deletion within the polymerase eta gene. PCR products were subjected to restriction fragment length polymorphism (RFLP) analysis and cycle DNA sequencing. The deletion was found to eliminate a BsrGI restriction site and affected the number of resultant fragments visualized after gel electrophoresis. Cycle sequencing of polymerase eta-specific amplicons from XPV and normal cells provided a second approach for detecting the mutation. Additionally, the use of a fluorescent nucleic acid dye-EvaGreen-in real-time PCR and melt curve analysis distinguished normal and XPV patient-derived amplicons as well as heteroduplexes that represent heterozygotic carriers without the need for high resolution melt analysis-compatible software. Our approaches are easily adaptable by diagnostic laboratories that screen for or verify genetically inherited disorders and identify carriers of a defective gene.
Collapse
Affiliation(s)
- Patricia Hentosh
- Department of Medical Laboratory and Radiation Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
There are 15 different DNA polymerases encoded in mammalian genomes, which are specialized for replication, repair or the tolerance of DNA damage. New evidence is emerging for lesion-specific and tissue-specific functions of DNA polymerases. Many point mutations that occur in cancer cells arise from the error-generating activities of DNA polymerases. However, the ability of some of these enzymes to bypass DNA damage may actually defend against chromosome instability in cells, and at least one DNA polymerase, Pol ζ, is a suppressor of spontaneous tumorigenesis. Because DNA polymerases can help cancer cells tolerate DNA damage, some of these enzymes might be viable targets for therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Richard D. Wood
- Correspondence to: 1808 Park Road 1C, P.O. Box 389, Smithville, TX, USA, 78957 Tel: (512) 237-9431 Fax: (512) 237-6532
| |
Collapse
|
43
|
Zhu Y, Stroud J, Song L, Parris DS. Kinetic approaches to understanding the mechanisms of fidelity of the herpes simplex virus type 1 DNA polymerase. J Nucleic Acids 2010; 2010:631595. [PMID: 21197400 PMCID: PMC3010682 DOI: 10.4061/2010/631595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/13/2010] [Accepted: 09/30/2010] [Indexed: 12/25/2022] Open
Abstract
We discuss how the results of presteady-state and steady-state kinetic analysis of the polymerizing and excision activities of herpes simplex virus type 1 (HSV-1) DNA polymerase have led to a better understanding of the mechanisms controlling fidelity of this important model replication polymerase. Despite a poorer misincorporation frequency compared to other replicative polymerases with intrinsic 3′ to 5′ exonuclease (exo) activity, HSV-1 DNA replication fidelity is enhanced by a high kinetic barrier to extending a primer/template containing a mismatch or abasic lesion and by the dynamic ability of the polymerase to switch the primer terminus between the exo and polymerizing active sites. The HSV-1 polymerase with a catalytically inactivated exo activity possesses reduced rates of primer switching and fails to support productive replication, suggesting a novel means to target polymerase for replication inhibition.
Collapse
Affiliation(s)
- Yali Zhu
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, 2198 Graves Hall, 333 West Tenth Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
44
|
Day TA, Palle K, Barkley LR, Kakusho N, Zou Y, Tateishi S, Verreault A, Masai H, Vaziri C. Phosphorylated Rad18 directs DNA polymerase η to sites of stalled replication. ACTA ACUST UNITED AC 2010; 191:953-66. [PMID: 21098111 PMCID: PMC2995173 DOI: 10.1083/jcb.201006043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cdc7 phosphorylates Rad18 to integrate S phase progression with postreplication DNA repair, ensuring genome stability. The E3 ubiquitin ligase Rad18 guides DNA Polymerase eta (Polη) to sites of replication fork stalling and mono-ubiquitinates proliferating cell nuclear antigen (PCNA) to facilitate binding of Y family trans-lesion synthesis (TLS) DNA polymerases during TLS. However, it is unclear exactly how Rad18 is regulated in response to DNA damage and how Rad18 activity is coordinated with progression through different phases of the cell cycle. Here we identify Rad18 as a novel substrate of the essential protein kinase Cdc7 (also termed Dbf4/Drf1-dependent Cdc7 kinase [DDK]). A serine cluster in the Polη-binding motif of Rad18 is phosphorylated by DDK. Efficient association of Rad18 with Polη is dependent on DDK and is necessary for redistribution of Polη to sites of replication fork stalling. This is the first demonstration of Rad18 regulation by direct phosphorylation and provides a novel mechanism for integration of S phase progression with postreplication DNA repair to maintain genome stability.
Collapse
Affiliation(s)
- Tovah A Day
- Department of Genetics and Genomics and 2 Center for Human Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Arana ME, Kunkel TA. Mutator phenotypes due to DNA replication infidelity. Semin Cancer Biol 2010; 20:304-11. [PMID: 20934516 DOI: 10.1016/j.semcancer.2010.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 12/19/2022]
Abstract
This article considers the fidelity of DNA replication performed by eukaryotic DNA polymerases involved in replicating the nuclear genome. DNA replication fidelity can vary widely depending on the DNA polymerase, the composition of the error, the flanking sequence, the presence of DNA damage and the ability to correct errors. As a consequence, defects in processes that determine DNA replication fidelity can confer strong mutator phenotypes whose specificity can help determine the molecular nature of the defect.
Collapse
Affiliation(s)
- Mercedes E Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
46
|
Preston BD, Albertson TM, Herr AJ. DNA replication fidelity and cancer. Semin Cancer Biol 2010; 20:281-93. [PMID: 20951805 PMCID: PMC2993855 DOI: 10.1016/j.semcancer.2010.10.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 10/07/2010] [Indexed: 12/14/2022]
Abstract
Cancer is fueled by mutations and driven by adaptive selection. Normal cells avoid deleterious mutations by replicating their genomes with extraordinary accuracy. Here we review the pathways governing DNA replication fidelity and discuss evidence implicating replication errors (point mutation instability or PIN) in carcinogenesis.
Collapse
Affiliation(s)
- Bradley D Preston
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
47
|
Stallons LJ, McGregor WG. Translesion synthesis polymerases in the prevention and promotion of carcinogenesis. J Nucleic Acids 2010; 2010. [PMID: 20936171 PMCID: PMC2945679 DOI: 10.4061/2010/643857] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/13/2010] [Indexed: 12/29/2022] Open
Abstract
A critical step in the transformation of cells to the malignant state of cancer is the induction of mutations in the DNA of cells damaged by genotoxic agents. Translesion DNA synthesis (TLS) is the process by which cells copy DNA containing unrepaired damage that blocks progression of the replication fork. The DNA polymerases that catalyze TLS in mammals have been the topic of intense investigation over the last decade. DNA polymerase η (Pol η) is best understood and is active in error-free bypass of UV-induced DNA damage. The other TLS polymerases (Pol ι, Pol κ, REV1, and Pol ζ) have been studied extensively in vitro, but their in vivo role is only now being investigated using knockout mouse models of carcinogenesis. This paper will focus on the studies of mice and humans with altered expression of TLS polymerases and the effects on cancer induced by environmental agents.
Collapse
Affiliation(s)
- L Jay Stallons
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | |
Collapse
|
48
|
Cruet-Hennequart S, Gallagher K, Sokòl AM, Villalan S, Prendergast AM, Carty MP. DNA polymerase eta, a key protein in translesion synthesis in human cells. Subcell Biochem 2010; 50:189-209. [PMID: 20012583 DOI: 10.1007/978-90-481-3471-7_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genomic DNA is constantly damaged by exposure to exogenous and endogenous agents. Bulky adducts such as UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA present a barrier to DNA synthesis by the major eukaryotic replicative polymerases including DNA polymerase delta. Translesion synthesis (TLS) carried out by specialized DNA polymerases is an evolutionarily conserved mechanism of DNA damage tolerance. The Y family of DNA polymerases, including DNA polymerase eta (Pol eta), the subject of this chapter, play a key role in TLS. Mutations in the human POLH gene encoding Pol eta underlie the genetic disease xeroderma pigmentosum variant (XPV), characterized by sun sensitivity, elevated incidence of skin cancer, and at the cellular level, by delayed replication and hypermutability after UV-irradiation. Pol eta is a low fidelity enzyme when copying undamaged DNA, but can carry out error-free TLS at sites of UV-induced dithymine CPDs. The active site of Pol eta has an open conformation that can accommodate CPDs, as well as cisplatin-induced intrastrand DNA crosslinks. Pol eta is recruited to sites of replication arrest in a tightly regulated process through interaction with PCNA. Pol eta-deficient cells show strong activation of downstream DNA damage responses including ATR signaling, and accumulate strand breaks as a result of replication fork collapse. Thus, Pol eta plays an important role in preventing genome instability after UV- and cisplatin-induced DNA damage. Inhibition of DNA damage tolerance pathways in tumors might also represent an approach to potentiate the effects of DNA damaging agents such as cisplatin.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
49
|
Error-prone translesion replication of damaged DNA suppresses skin carcinogenesis by controlling inflammatory hyperplasia. Proc Natl Acad Sci U S A 2009; 106:21836-41. [PMID: 20007784 DOI: 10.1073/pnas.0909507106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The induction of skin cancer involves both mutagenic and proliferative responses of the epidermis to ultraviolet (UV) light. It is believed that tumor initiation requires the mutagenic replication of damaged DNA by translesion synthesis (TLS) pathways. The mechanistic basis for the induction of proliferation, providing tumor promotion, is poorly understood. Here, we have investigated the role of TLS in the initiation and promotion of skin carcinogenesis, using a sensitive nucleotide excision repair-deficient mouse model that carries a hypomorphic allele of the error-prone TLS gene Rev1. Despite a defect in UV-induced mutagenesis, skin carcinogenesis was accelerated in these mice. This paradoxical phenotype was caused by the induction of inflammatory hyperplasia of the mutant skin that provides strong tumor promotion. The induction of hyperplasia was associated with mild and transient replicational stress of the UV-damaged genome, triggering DNA damage signaling and senescence. The concomitant expression of Interleukin-6 (IL-6) is in agreement with an executive role for IL-6 and possibly other cytokines in the autocrine induction of senescence and the paracrine induction of inflammatory hyperplasia. In conclusion, error-prone TLS suppresses tumor-promoting activities of UV light, thereby controlling skin carcinogenesis.
Collapse
|
50
|
Affiliation(s)
- Anthony J Berdis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| |
Collapse
|