1
|
Xie Y, Wu F, Chen Z, Hou Y. Epithelial membrane protein 1 in human cancer: a potential diagnostic biomarker and therapeutic target. Biomark Med 2024:1-11. [PMID: 39469853 DOI: 10.1080/17520363.2024.2416887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Epithelial membrane protein 1 (EMP1) is a member of the small hydrophobic membrane protein subfamily. EMP1 is aberrantly expressed in various tumor tissues and governs multiple cellular behaviors (e.g., proliferation, differentiation, and migration). The resultant regulation of the cancer pathway is responsible for the metastasis of cancer cells and determines the risk of malignant tumor progression. This review provides an updated overview of EMP1 as either an oncogene or a tumor suppressor contingent on the cancer type and summarizes its upstream regulators and downstream target genes. This systematic review summarizes our current understanding of the role of EMP1 in malignant tumor development, including critical functional mechanisms and implications for its potential use as the biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Wu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Khedri A, Guo S, Ramar V, Hudson B, Liu M. FOSL1's Oncogene Roles in Glioma/Glioma Stem Cells and Tumorigenesis: A Comprehensive Review. Int J Mol Sci 2024; 25:5362. [PMID: 38791400 PMCID: PMC11121637 DOI: 10.3390/ijms25105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review specifically examines the important function of the oncoprotein FOSL1 in the dimeric AP-1 transcription factor, which consists of FOS-related components. FOSL1 is identified as a crucial controller of invasion and metastatic dissemination, making it a potential target for therapeutic treatment in cancer patients. The review offers a thorough examination of the regulatory systems that govern the influence exerted on FOSL1. These include a range of changes that occur throughout the process of transcription and after the translation of proteins. We have discovered that several non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a significant role in regulating FOSL1 expression by directly interacting with its mRNA transcripts. Moreover, an investigation into the functional aspects of FOSL1 reveals its involvement in apoptosis, proliferation, and migration. This work involves a comprehensive analysis of the complex signaling pathways that support these diverse activities. Furthermore, particular importance is given to the function of FOSL1 in coordinating the activation of several cytokines, such as TGF-beta, and the commencement of IL-6 and VEGF production in tumor-associated macrophages (TAMs) that migrate into the tumor microenvironment. There is a specific emphasis on evaluating the predictive consequences linked to FOSL1. Insights are now emerging on the developing roles of FOSL1 in relation to the processes that drive resistance and reliance on specific treatment methods. Targeting FOSL1 has a strong inhibitory effect on the formation and spread of specific types of cancers. Despite extensive endeavors, no drugs targeting AP-1 or FOSL1 for cancer treatment have been approved for clinical use. Hence, it is imperative to implement innovative approaches and conduct additional verifications.
Collapse
Affiliation(s)
- Azam Khedri
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, New Orleans, LA 70125, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
3
|
Ganesh SR, Roth CM, Parekkadan B. Simulating Interclonal Interactions in Diffuse Large B-Cell Lymphoma. Bioengineering (Basel) 2023; 10:1360. [PMID: 38135951 PMCID: PMC10740451 DOI: 10.3390/bioengineering10121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the most common types of cancers, accounting for 37% of B-cell tumor cases globally. DLBCL is known to be a heterogeneous disease, resulting in variable clinical presentations and the development of drug resistance. One underexplored aspect of drug resistance is the evolving dynamics between parental and drug-resistant clones within the same microenvironment. In this work, the effects of interclonal interactions between two cell populations-one sensitive to treatment and the other resistant to treatment-on tumor growth behaviors were explored through a mathematical model. In vitro cultures of mixed DLBCL populations demonstrated cooperative interactions and revealed the need for modifying the model to account for complex interactions. Multiple best-fit models derived from in vitro data indicated a difference in steady-state behaviors based on therapy administrations in simulations. The model and methods may serve as a tool for understanding the behaviors of heterogeneous tumors and identifying the optimal therapeutic regimen to eliminate cancer cell populations using computer-guided simulations.
Collapse
Affiliation(s)
- Siddarth R. Ganesh
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (S.R.G.); (C.M.R.)
| | - Charles M. Roth
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (S.R.G.); (C.M.R.)
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (S.R.G.); (C.M.R.)
- Department of Medicine, Rutgers Biomedical Health Sciences, New Brunswick, NJ 08852, USA
| |
Collapse
|
4
|
Crintea A, Constantin AM, Motofelea AC, Crivii CB, Velescu MA, Coșeriu RL, Ilyés T, Crăciun AM, Silaghi CN. Targeted EGFR Nanotherapy in Non-Small Cell Lung Cancer. J Funct Biomater 2023; 14:466. [PMID: 37754880 PMCID: PMC10532491 DOI: 10.3390/jfb14090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Despite advances in treatment, the prognosis remains poor, highlighting the need for novel therapeutic strategies. The present review explores the potential of targeted epidermal growth factor receptor (EGFR) nanotherapy as an alternative treatment for NSCLC, showing that EGFR-targeted nanoparticles are efficiently taken up by NSCLC cells, leading to a significant reduction in tumor growth in mouse models. Consequently, we suggest that targeted EGFR nanotherapy could be an innovative treatment strategy for NSCLC; however, further studies are needed to optimize the nanoparticles and evaluate their safety and efficacy in clinical settings and human trials.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Alexandru C. Motofelea
- Department of Internal Medicine, University of Medicine and Pharmacy “Victor Babeș”, 300041 Timișoara, Romania;
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Maria A. Velescu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania;
| | - Răzvan L. Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mureș, Romania;
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Alexandra M. Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| |
Collapse
|
5
|
Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int J Mol Sci 2023; 24:11110. [PMID: 37446288 DOI: 10.3390/ijms241311110] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Despite all of the progress in understanding its molecular biology and pathogenesis, glioblastoma (GBM) is one of the most aggressive types of cancers, and without an efficient treatment modality at the moment, it remains largely incurable. Nowadays, one of the most frequently studied molecules with important implications in the pathogenesis of the classical subtype of GBM is the epidermal growth factor receptor (EGFR). Although many clinical trials aiming to study EGFR targeted therapies have been performed, none of them have reported promising clinical results when used in glioma patients. The resistance of GBM to these therapies was proven to be both acquired and innate, and it seems to be influenced by a cumulus of factors such as ineffective blood-brain barrier penetration, mutations, heterogeneity and compensatory signaling pathways. Recently, it was shown that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. It seems imperative to understand how the EGFR signaling pathways function and how they interconnect with other pathways. Furthermore, it is important to identify the mechanisms of drug resistance and to develop better tailored therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Suzana Danoiu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| |
Collapse
|
6
|
Tręda C, Włodarczyk A, Pacholczyk M, Rutkowska A, Stoczyńska-Fidelus E, Kierasińska A, Rieske P. Increased EGFRvIII Epitope Accessibility after Tyrosine Kinase Inhibitor Treatment of Glioblastoma Cells Creates More Opportunities for Immunotherapy. Int J Mol Sci 2023; 24:4350. [PMID: 36901782 PMCID: PMC10001577 DOI: 10.3390/ijms24054350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The number of glioblastoma (GB) cases is increasing every year, and the currently available therapies remain ineffective. A prospective antigen for GB therapy is EGFRvIII, an EGFR deletion mutant containing a unique epitope that is recognized by the L8A4 antibody used in CAR-T (chimeric antigen receptor T cell) therapy. In this study, we observed that the concomitant use of L8A4 with particular tyrosine kinase inhibitors (TKIs) does not impede the interaction between L8A4 and EGFRvIII; moreover, in this case, the stabilization of formed dimers results in increased epitope display. Unlike in wild-type EGFR, a free cysteine at position 16 (C16) is exposed in the extracellular structure of EGFRvIII monomers, leading to covalent dimer formation in the region of L8A4-EGFRvIII mutual interaction. Following in silico analysis of cysteines possibly involved in covalent homodimerization, we prepared constructs containing cysteine-serine substitutions of EGFRvIII in adjacent regions. We found that the extracellular part of EGFRvIII possesses plasticity in the formation of disulfide bridges within EGFRvIII monomers and dimers due to the engagement of cysteines other than C16. Our results suggest that the EGFRvIII-specific L8A4 antibody recognizes both EGFRvIII monomers and covalent dimers, regardless of the cysteine bridging structure. To summarize, immunotherapy based on the L8A4 antibody, including CAR-T combined with TKIs, can potentially increase the chances of success in anti-GB therapy.
Collapse
Affiliation(s)
- Cezary Tręda
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Marcin Pacholczyk
- Department of Research and Development, Celther Polska Ltd., Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| |
Collapse
|
7
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
8
|
Sun H, Li L, Lao I, Li X, Xu B, Cao Y, Jin W. Single-cell RNA sequencing reveals cellular and molecular reprograming landscape of gliomas and lung cancer brain metastases. Clin Transl Med 2022; 12:e1101. [PMID: 36336787 PMCID: PMC9637666 DOI: 10.1002/ctm2.1101] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Brain malignancies encompass gliomas and brain metastases originating from extracranial tumours including lung cancer. Approximately 50% of patients with lung adenocarcinoma (LUAD) will eventually develop brain metastases. However, the specific characteristics of gliomas and lung-to-brain metastases (LC) are largely unknown. METHODS We applied single-cell RNA sequencing to profile immune and nonimmune cells in 4 glioma and 10 LC samples. RESULTS Our analysis revealed that tumour microenvironment (TME) cells are present in heterogeneous subpopulations. LC reprogramed cells into immune suppressed state, including microglia, macrophages, endothelial cells, and CD8+ T cells, with unique cell proportions and gene signatures. Particularly, we identified that a subset of macrophages was associated with poor prognosis. ROS (reactive oxygen species)-producing neutrophils was found to participant in angiogenesis. Furthermore, endothelial cells participated in active communication with fibroblasts. Metastatic epithelial cells exhibited high heterogeneity in chromosomal instability (CIN) and cell population. CONCLUSIONS Our findings provide a comprehensive understanding of the heterogenicity of the tumor microenvironment and tumour cells and it will be crucial for successful immunotherapy development for brain metastasis of lung cancer.
Collapse
Affiliation(s)
- He‐Fen Sun
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Liang‐Dong Li
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - I‐Weng Lao
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xuan Li
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Bao‐Jin Xu
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yi‐Qun Cao
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wei Jin
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
9
|
Beytagh MC, Weiss WA. EGFR ligands dictate tumour suppression. Nat Cell Biol 2022; 24:1189-1191. [PMID: 35915160 PMCID: PMC10484171 DOI: 10.1038/s41556-022-00967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amplification of EGFR occurs frequently in glioblastoma. Canonically, EGFR is an oncogene with a major role in cancer pathogenesis. A new study posits a tumor suppressive role of EGFR in EGFR -amplified glioblastoma, regulated by ligand abundance. Increased EGFR ligand in EGFR -amplified glioblastoma suppresses invasion by upregulation of BIN3, inhibiting activation of Rho GTPases.
Collapse
Affiliation(s)
- Mary Clare Beytagh
- Medical Scientist Training Program and Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA
| | - William A Weiss
- Medical Scientist Training Program and Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Departments of Pediatrics and Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Guo G, Gong K, Beckley N, Zhang Y, Yang X, Chkheidze R, Hatanpaa KJ, Garzon-Muvdi T, Koduru P, Nayab A, Jenks J, Sathe AA, Liu Y, Xing C, Wu SY, Chiang CM, Mukherjee B, Burma S, Wohlfeld B, Patel T, Mickey B, Abdullah K, Youssef M, Pan E, Gerber DE, Tian S, Sarkaria JN, McBrayer SK, Zhao D, Habib AA. EGFR ligand shifts the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastoma by suppressing invasion through BIN3 upregulation. Nat Cell Biol 2022; 24:1291-1305. [PMID: 35915159 PMCID: PMC9389625 DOI: 10.1038/s41556-022-00962-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/14/2022] [Indexed: 02/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a prime oncogene that is frequently amplified in glioblastomas. Here we demonstrate a new tumour-suppressive function of EGFR in EGFR-amplified glioblastomas regulated by EGFR ligands. Constitutive EGFR signalling promotes invasion via activation of a TAB1-TAK1-NF-κB-EMP1 pathway, resulting in large tumours and decreased survival in orthotopic models. Ligand-activated EGFR promotes proliferation and surprisingly suppresses invasion by upregulating BIN3, which inhibits a DOCK7-regulated Rho GTPase pathway, resulting in small hyperproliferating non-invasive tumours and improved survival. Data from The Cancer Genome Atlas reveal that in EGFR-amplified glioblastomas, a low level of EGFR ligands confers a worse prognosis, whereas a high level of EGFR ligands confers an improved prognosis. Thus, increased EGFR ligand levels shift the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastomas by suppressing invasion. The tumour-suppressive function of EGFR can be activated therapeutically using tofacitinib, which suppresses invasion by increasing EGFR ligand levels and upregulating BIN3.
Collapse
Affiliation(s)
- Gao Guo
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ke Gong
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Basic Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Nicole Beckley
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yue Zhang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyao Yang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rati Chkheidze
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arifa Nayab
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer Jenks
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Liu
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharamacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharamacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sandeep Burma
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bryan Wohlfeld
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Toral Patel
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Mickey
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kalil Abdullah
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Youssef
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward Pan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shulan Tian
- Department of Quantitative Heath Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samuel K McBrayer
- Department of Pediatrics and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
11
|
Aragon-Sanabria V, Aditya A, Zhang L, Chen F, Yoo B, Cao T, Madajewski B, Lee R, Turker MZ, Ma K, Monette S, Chen P, Wu J, Ruan S, Overholtzer M, Zanzonico P, Rudin CM, Brennan C, Wiesner U, Zhang L. Ultrasmall Nanoparticle Delivery of Doxorubicin Improves Therapeutic Index for High-Grade Glioma. Clin Cancer Res 2022; 28:2938-2952. [DOI: 10.1158/1078-0432.ccr-21-4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/11/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: Despite dramatic growth in the number of small molecule drugs developed to treat solid tumors, durable therapeutic options to control primary central nervous system malignancies are relatively scarce. Chemotherapeutic agents which appear biologically potent in model systems have often been found to be marginally effective at best when given systemically in clinical trials. This work presents for the first time an ultrasmall (< 8 nm) multimodal core-shell silica nanoparticle, Cornell prime dots (or C' dots), for the efficacious treatment of high-grade gliomas. Experimental Design: This work presents first-in-kind renally-clearable ultrasmall (< 8 nm) multimodal Cornell prime dots (or C' dots) with surface-conjugated doxorubicin via pH-sensitive linkers for the efficacious treatment in two different clinically relevant high-grade glioma models. Results: Optimal drug-per-particle ratios of as-developed nanoparticle-drug conjugates were established and used to obtain favorable pharmacokinetic profiles. The in vivo efficacy results showed significantly improved biological, therapeutic, and toxicological properties over the native drug after intravenous administration in platelet-derived growth factor-driven genetically engineered mouse model, and an epidermal growth factor expressing patient-derived xenograft (EGFR PDX) model. Conclusions: Ultrasmall C' dot-drug conjugates showed great translational potential over doxorubicin for improving the therapeutic outcome of patients with high-grade gliomas, even without a cancer-targeting moiety.
Collapse
Affiliation(s)
| | - Anusha Aditya
- Memorial Sloan Kettering Cancer Center, New York, United States
| | - Li Zhang
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Feng Chen
- Memorial Sloan Kettering Cancer Center, United States
| | | | - Tianye Cao
- Memorial Sloan Kettering Cancer Center, New York, United States
| | - Brian Madajewski
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | | - Kai Ma
- Cornell University, Ithaca, NY, United States
| | - Sebastien Monette
- Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York, United States
| | - Peiming Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jing Wu
- Hunter College, United States
| | - Shutian Ruan
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Pat Zanzonico
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Charles M. Rudin
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | - Cameron Brennan
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Li Zhang
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
12
|
Krolicki L, Kunikowska J, Bruchertseifer F, Koziara H, Morgenstern A, Krolicki B, Rosiak E, Pawlak D, Merlo A. Nuclear medicine therapy of CNS tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Kim HS, Kang YH, Lee J, Han SR, Kim DB, Ko H, Park S, Lee MS. Biphasic Regulation of Mitogen-Activated Protein Kinase Phosphatase 3 in Hypoxic Colon Cancer Cells. Mol Cells 2021; 44:710-722. [PMID: 34711689 PMCID: PMC8560588 DOI: 10.14348/molcells.2021.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Hypoxia, or low oxygen tension, is a hallmark of the tumor microenvironment. The hypoxia-inducible factor-1α (HIF-1α) subunit plays a critical role in the adaptive cellular response of hypoxic tumor cells to low oxygen tension by activating gene-expression programs that control cancer cell metabolism, angiogenesis, and therapy resistance. Phosphorylation is involved in the stabilization and regulation of HIF-1α transcriptional activity. HIF-1α is activated by several factors, including the mitogen-activated protein kinase (MAPK) superfamily. MAPK phosphatase 3 (MKP-3) is a cytoplasmic dual-specificity phosphatase specific for extracellular signal-regulated kinase 1/2 (Erk1/2). Recent evidence indicates that hypoxia increases the endogenous levels of both MKP-3 mRNA and protein. However, its role in the response of cells to hypoxia is poorly understood. Herein, we demonstrated that small-interfering RNA (siRNA)-mediated knockdown of MKP-3 enhanced HIF-1α (not HIF-2α) levels. Conversely, MKP-3 overexpression suppressed HIF-1α (not HIF-2α) levels, as well as the expression levels of hypoxia-responsive genes (LDHA, CA9, GLUT-1, and VEGF), in hypoxic colon cancer cells. These findings indicated that MKP-3, induced by HIF-1α in hypoxia, negatively regulates HIF-1α protein levels and hypoxia-responsive genes. However, we also found that long-term hypoxia (>12 h) induced proteasomal degradation of MKP-3 in a lactic acid-dependent manner. Taken together, MKP-3 expression is modulated by the hypoxic conditions prevailing in colon cancer, and plays a role in cellular adaptation to tumor hypoxia and tumor progression. Thus, MKP-3 may serve as a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yun Hee Kang
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon 34824, Korea
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Seung Ro Han
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon 34824, Korea
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Da Bin Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
| | - Haeun Ko
- Medical Course, College of Medicine, Inha University, Incheon 22212, Korea
| | - Seyoun Park
- Medical Course, College of Medicine, Inha University, Incheon 22212, Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| |
Collapse
|
14
|
Singh S, Drude N, Blank L, Desai PB, Königs H, Rütten S, Langen K, Möller M, Mottaghy FM, Morgenroth A. Protease Responsive Nanogels for Transcytosis across the Blood-Brain Barrier and Intracellular Delivery of Radiopharmaceuticals to Brain Tumor Cells. Adv Healthc Mater 2021; 10:e2100812. [PMID: 34490744 PMCID: PMC11468667 DOI: 10.1002/adhm.202100812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Despite profound advances in treatment approaches, gliomas remain associated with very poor prognoses. The residual cells after incomplete resection often migrate and proliferate giving a seed for highly resistant gliomas. The efficacy of chemotherapeutic drugs is often strongly limited by their poor selectivity and the blood brain barrier (BBB). Therefore, the development of therapeutic carrier systems for efficient transport across the BBB and selective delivery to tumor cells remains one of the most complex problems facing molecular medicine and nano-biotechnology. To address this challenge, a stimuli sensitive nanogel is synthesized using pre-polymer approach for the effective delivery of nano-irradiation. The nanogels are cross-linked via matrix metalloproteinase (MMP-2,9) substrate and armed with Auger electron emitting drug 5-[125 I]Iodo-4"-thio-2"-deoxyuridine ([125 I]ITdU) which after release can be incorporated into the DNA of tumor cells. Functionalization with diphtheria toxin receptor ligand allows nanogel transcytosis across the BBB at tumor site. Functionalized nanogels efficiently and increasingly explore transcytosis via BBB co-cultured with glioblastoma cells. The subsequent nanogel degradation correlates with up-regulated MMP2/9. Released [125 I]ITdU follows the thymidine salvage pathway ending in its incorporation into the DNA of tumor cells. With this concept, a highly efficient strategy for intracellular delivery of radiopharmaceuticals across the challenging BBB is presented.
Collapse
Affiliation(s)
- Smriti Singh
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
- Max Planck Institute for Medical ResearchJahnstraße 29Heidelberg69120Germany
| | - Natascha Drude
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
| | - Lena Blank
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
| | - Prachi Bharat Desai
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
| | - Hiltrud Königs
- Pathology–Department of Electron MicroscopyRWTH Aachen UniversityAachen52074Germany
| | - Stephan Rütten
- Pathology–Department of Electron MicroscopyRWTH Aachen UniversityAachen52074Germany
| | - Karl‐Josef Langen
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
- Institute of Neuroscience and MedicineForschungszentrum JülichJülich52428Germany
| | - Martin Möller
- DWI–Leibniz Institute for Interactive Material ResearchRWTH Aachen UniversityAachen52074Germany
| | - Felix M. Mottaghy
- Department of Nuclear MedicineRWTH Aachen UniversityAachen52074Germany
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastricht6229 HXThe Netherlands
| | | |
Collapse
|
15
|
Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 2021; 40:2483-2495. [PMID: 33686241 PMCID: PMC8035212 DOI: 10.1038/s41388-021-01714-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
More than 25 years of research and preclinical validation have defined EphA2 receptor tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches harnessing antitumor immunity against EphA2-expressing cancer cells have emerged as a promising strategy. This review will summarize preclinical studies supporting the oncogenic role of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also summarizes completed and ongoing clinical trials, highlighting the promise and challenges of targeting EphA2 in cancer.
Collapse
Affiliation(s)
- Kalin Wilson
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eileen Shiuan
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
16
|
Updated Insights on EGFR Signaling Pathways in Glioma. Int J Mol Sci 2021; 22:ijms22020587. [PMID: 33435537 PMCID: PMC7827907 DOI: 10.3390/ijms22020587] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, due to recent advances in molecular biology, the pathogenesis of glioblastoma is better understood. For the newly diagnosed, the current standard of care is represented by resection followed by radiotherapy and temozolomide administration, but because median overall survival remains poor, new diagnosis and treatment strategies are needed. Due to the quick progression, even with aggressive multimodal treatment, glioblastoma remains almost incurable. It is known that epidermal growth factor receptor (EGFR) amplification is a characteristic of the classical subtype of glioma. However, targeted therapies against this type of receptor have not yet shown a clear clinical benefit. Many factors contribute to resistance, such as ineffective blood-brain barrier penetration, heterogeneity, mutations, as well as compensatory signaling pathways. A better understanding of the EGFR signaling network, and its interrelations with other pathways, are essential to clarify the mechanisms of resistance and create better therapeutic agents.
Collapse
|
17
|
Lin B, Zhang T, Ye X, Yang H. High expression of EMP1 predicts a poor prognosis and correlates with immune infiltrates in bladder urothelial carcinoma. Oncol Lett 2020; 20:2840-2854. [PMID: 32782602 PMCID: PMC7400100 DOI: 10.3892/ol.2020.11841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Epithelial membrane protein 1 (EMP1) is a key gene that regulates cell proliferation and metastatic capability in various types of cancer, and serves an important role in tumor-immune interactions. However, the association between EMP1 and clinical prognosis, as well as the presence of tumor-infiltrating lymphocytes in bladder urothelial carcinoma (BLCA) remains unclear. The present study aimed to explore the relationship between EMP1 expression and tumor immune cell infiltration in BLCA. In the present study, EMP1 expression in BLCA was analyzed using the Oncomine database, The Cancer Genome Atlas (TCGA) and the Tumor Immune Estimation Resource (TIMER). The effects of EMP1 on clinical prognosis were evaluated using the Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis. The correlations between EMP1, cancer immune infiltrates and lymphocyte abundance were determined using the TIMER and Tumor immune system interaction database. In addition, correlations between EMP1 expression and gene markers in immune infiltrates were analyzed using cBioportal. The results demonstrated that, compared with adjacent normal tissues, EMP1 was downregulated in BLCA tissues. High expression of EMP1 was significantly associated with poor overall survival (OS) in BLCA cases obtained from TCGA. Multivariate Cox analysis revealed that EMP1 was an independent predictor of OS in patients with BLCA. Gene set enrichment analysis revealed that EMP1 was associated with cancer-related pathways and was positively correlated with the levels of infiltrating CD8+ T cells, macrophages, neutrophils and dendritic cells in BLCA. Further analysis demonstrated that EMP1 was significantly associated with the enrichment of multiple types of lymphocyte. EMP1 expression exhibited a strong correlation with a range of immune markers in BLCA. In conclusion, the results of the present study demonstrated that EMP1 was associated with a poor prognosis in patients with BLCA, and that the levels of immune infiltration and multiple immunomarker groups were associated with EMP1 expression. These results suggested that EMP1 may be used as a predictive biomarker to determine the prognosis and immune infiltration in BLCA.
Collapse
Affiliation(s)
- Bo Lin
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tianwen Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xin Ye
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
18
|
Kim JO, Kim HN, Kim KH, Baek EJ, Park JY, Ha K, Heo DR, Seo MD, Park SG. Development and characterization of a fully human antibody targeting SCF/c-kit signaling. Int J Biol Macromol 2020; 159:66-78. [PMID: 32437800 DOI: 10.1016/j.ijbiomac.2020.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022]
Abstract
CD117/c-kit, a tyrosine kinase receptor, plays a critical role in hematopoiesis, pigmentation, and fertility. The overexpression and activation of c-kit are thought to promote tumor growth and have been reported in various cancers, including leukemia, glioblastoma and mastocytosis. To disrupt the SCF/c-kit signaling axis in cancer, we generated a c-kit antagonist human antibody (NN2101) that binds to domain 2/3 of c-kit. This completely blocked the SCF-mediated phosphorylation of c-kit and inhibited TF-1 cell proliferation, erythroleukemia. In addition, the examination of binding affinity using surface plasmon resonance (SPR) assay showed that NN2101 can bind to c-kit of monkeys (KD = 2.92 × 10-10 M), rats (KD = 1.68 × 10-6 M), mice (KD = 11.5 × 10-9 M), and humans (KD = 2.83 × 10-12 M). We showed that NN2101 does not cause antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The immunogenicity of NN2101 was similar to that of bevacizumab. Furthermore, the crystal structure of NN2101 Fab was determined and the structure of NN2101 Fab:c-kit complex was modeled. Structural information, as well as mutagenesis results, revealed that NN2101 can bind to the SCF-binding regions of c-kit. Collectively, we generated a c-kit neutralizing human antibody (NN2101) for the treatment of erythroleukemia and characterized its biophysical properties. NN2101 can potentially be used as a therapeutic antibody to treat different cancers.
Collapse
Affiliation(s)
- Jin-Ock Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Ha-Neul Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kwang-Hyeok Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Eun Ji Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Jeong-Yang Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Kyungsoo Ha
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea
| | - Deok Rim Heo
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea; College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong 28160, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| | - Sang Gyu Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, Republic of Korea; Novelty Nobility, 227 Unjung-ro, Seongnam-si, Gyeonggi-do 13477, Republic of Korea.
| |
Collapse
|
19
|
Receptor Tyrosine Kinases: Principles and Functions in Glioma Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:151-178. [PMID: 32034713 DOI: 10.1007/978-3-030-30651-9_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
|
20
|
Signaling Determinants of Glioma Cell Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:129-149. [PMID: 32034712 DOI: 10.1007/978-3-030-30651-9_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. In addition, there is accumulating evidence that current therapeutic modalities, including anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma cell invasion has led to the identification of molecular targets for therapeutic intervention in this devastating disease.
Collapse
|
21
|
Zdechlik AC, He Y, Aird EJ, Gordon WR, Schmidt D. Programmable Assembly of Adeno-Associated Virus-Antibody Composites for Receptor-Mediated Gene Delivery. Bioconjug Chem 2019; 31:1093-1106. [PMID: 31809024 DOI: 10.1021/acs.bioconjchem.9b00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adeno-associated virus (AAV) has emerged as a viral gene delivery vector that is safe in humans, able to infect both dividing and arrested cells and drive long-term expression (>6 months). Unfortunately, the naturally evolved properties of many AAV serotypes-including low cell type specificity and largely overlapping tropism-are mismatched to applications that require cell type-specific infection, such as neural circuit mapping or precision gene therapy. A variety of approaches to redirect AAV tropism exist, but there is still the need for a universal solution for directing AAV tropism toward user-defined cellular receptors that does not require extensive case-by-case optimization and works with readily available components. Here, we report AAV engineering approaches that enable programmable receptor-mediated gene delivery. First, we genetically encode small targeting scaffolds into a variable region of an AAV capsid and show that this redirects tropism toward the receptor recognized by these targeting scaffolds and also renders this AAV variant resistant to neutralizing antibodies present in nonhuman primate serum. We then simplify retargeting of tropism by engineering the same variable loop to encode a HUH tag, which forms a covalent bond to single-stranded DNA oligos conjugated to store-bought antibodies. We demonstrate that retargeting this HUH-AAVs toward different receptors is as simple as "arming" a premade noninfective AAV template with a different antibody in a conjugation process that uses widely available reagents and requires no optimization or extensive purification. Composite antibody-AAV nanoparticles structurally separate tropism and payload encapsulation, allowing each to be engineered independently.
Collapse
|
22
|
Targeted genomic CRISPR-Cas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Sci Rep 2019; 9:14020. [PMID: 31570734 PMCID: PMC6768851 DOI: 10.1038/s41598-019-50160-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/02/2019] [Indexed: 01/11/2023] Open
Abstract
Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.
Collapse
|
23
|
Derouiche A, Geiger KD. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology. Int J Mol Sci 2019; 20:ijms20153776. [PMID: 31382374 PMCID: PMC6695708 DOI: 10.3390/ijms20153776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are increasingly perceived as active partners in physiological brain function and behaviour. The structural correlations of the glia–synaptic interaction are the peripheral astrocyte processes (PAPs), where ezrin and radixin, the two astrocytic members of the ezrin-radixin-moesin (ERM) family of proteins are preferentially localised. While the molecular mechanisms of ERM (in)activation appear universal, at least in mammalian cells, and have been studied in great detail, the actual ezrin and radixin kinases, phosphatases and binding partners appear cell type specific and may be multiplexed within a cell. In astrocytes, ezrin is involved in process motility, which can be stimulated by the neurotransmitter glutamate, through activation of the glial metabotropic glutamate receptors (mGluRs) 3 or 5. However, it has remained open how this mGluR stimulus is transduced to ezrin activation. Knowing upstream signals of ezrin activation, ezrin kinase(s), and membrane-bound binding partners of ezrin in astrocytes might open new approaches to the glial role in brain function. Ezrin has also been implicated in invasive behaviour of astrocytomas, and glial activation. Here, we review data pertaining to potential molecular interaction partners of ezrin in astrocytes, with a focus on PKC and GRK2, and in gliomas and other diseases, to stimulate further research on their potential roles in glia-synaptic physiology and pathology.
Collapse
Affiliation(s)
- Amin Derouiche
- Institute of Anatomy II, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany.
| | - Kathrin D Geiger
- Neuropathology, Institute for Pathology, Carl Gustav Carus University Hospital, TU Dresden, D-01307 Dresden, Germany
| |
Collapse
|
24
|
Miao L, Jiang Z, Wang J, Yang N, Qi Q, Zhou W, Feng Z, Li W, Zhang Q, Huang B, Chen A, Zhang D, Zhao P, Li X. Epithelial membrane protein 1 promotes glioblastoma progression through the PI3K/AKT/mTOR signaling pathway. Oncol Rep 2019; 42:605-614. [PMID: 31233190 PMCID: PMC6609345 DOI: 10.3892/or.2019.7204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor. Although the affected patients are usually treated with surgery combined with radiotherapy and chemotherapy, the median survival time for GBM patients is still approximately 12–14 months. Identifying the key molecular mechanisms and targets of GBM development may therefore lead to the development of improved therapies for GBM patients. In the present study, the clinical significance and potential function of epithelial membrane protein 1 (EMP1) in malignant gliomas were investigated. Increased EMP1 expression was associated with increasing tumor grade (P<0.001) and worse prognosis in patients (P<0.001) based on TCGA, Rembrandt and CGGA databases for human gliomas. In vitro, gene silencing of EMP1 in U87MG and P3 GBM (primary glioma) cells significantly inhibited tumor proliferation and invasion. In addition, it was revealed that activation of the PI3K/AKT/mTOR signaling pathway is the driving force of EMP1-promoted glioma progression. Finally, it was demonstrated, using an intracranial GBM animal model, that EMP1 knockdown significantly inhibits tumor growth in vivo and increases overall survival in tumor-bearing animals. Our research provides new insights into the molecular mechanisms underlying EMP1 knockdown-mediated inhibition of GBM cell invasion and raises the possibility that targeting of EMP1 may represent a promising strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Lifeng Miao
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Wenjing Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Key Laboratory of Brain Functional Remodeling, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Koga T, Chen CC, Furnari FB. When less is more: Gaining power through gene rearrangement of amplified EGFR. Oncotarget 2019; 10:2116-2117. [PMID: 31040904 PMCID: PMC6481334 DOI: 10.18632/oncotarget.26786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Tomoyuki Koga
- Ludwig Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Clark C Chen
- Ludwig Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Frank B Furnari
- Ludwig Cancer Research, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Integrative Genomic Analyses Identifies GGA2 as a Cooperative Driver of EGFR-Mediated Lung Tumorigenesis. J Thorac Oncol 2018; 14:656-671. [PMID: 30578931 DOI: 10.1016/j.jtho.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Targeted therapies for lung adenocarcinoma (LUAD) have improved patient outcomes; however, drug resistance remains a major problem. One strategy to achieve durable response is to develop combination-based therapies that target both mutated oncogenes and key modifiers of oncogene-driven tumorigenesis. This is based on the premise that mutated oncogenes, although necessary, are not sufficient for malignant transformation. We aimed to uncover genetic alterations that cooperate with mutant EGFR during LUAD development. METHODS We performed integrative genomic analyses, combining copy number, gene expression and mutational information for over 500 LUAD tumors. Co-immunoprecipitation and Western blot analysis were performed in LUAD cell lines to confirm candidate interactions while RNA interference and gene overexpression were used for in vitro and in vivo functional assessment. RESULTS We identified frequent amplifications/deletions of chromosomal regions affecting the activity of genes specifically in the context of EGFR mutation, including amplification of the mutant EGFR allele and deletion of dual specificity phosphatase 4 (DUSP4), which have both previously been reported. In addition, we identified the novel amplification of a segment of chromosome arm 16p in mutant-EGFR tumors corresponding to increased expression of Golgi Associated, Gamma Adaptin Ear Containing, ARF Binding Protein 2 (GGA2), which functions in protein trafficking and sorting. We found that GGA2 interacts with EGFR, increases EGFR protein levels and modifies EGFR degradation after ligand stimulation. Furthermore, we show that overexpression of GGA2 enhances EGFR mediated transformation while GGA2 knockdown reduces the colony and tumor forming ability of EGFR mutant LUAD. CONCLUSIONS These data suggest that overexpression of GGA2 in LUAD tumors results in the accumulation of EGFR protein and increased EGFR signaling, which helps drive tumor progression. Thus, GGA2 plays a cooperative role with EGFR during LUAD development and is a potential therapeutic target for combination-based strategies in LUAD.
Collapse
|
27
|
Sepúlveda-Sánchez JM, Vaz MÁ, Balañá C, Gil-Gil M, Reynés G, Gallego Ó, Martínez-García M, Vicente E, Quindós M, Luque R, Ramos A, Ruano Y, Pérez-Segura P, Benavides M, Sánchez-Gómez P, Hernández-Laín A. Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro Oncol 2018; 19:1522-1531. [PMID: 28575464 DOI: 10.1093/neuonc/nox105] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background We conducted a multicenter, 2-stage, open-label, phase II trial to assess the efficacy and safety of dacomitinib in adult patients with recurrent glioblastoma (GB) and epidermal growth factor receptor gene (EGFR) amplification with or without variant III (EGFRvIII) deletion. Methods Patients with first recurrence were enrolled in 2 cohorts. Cohort A included patients with EGFR gene amplification without EGFRvIII mutation. Cohort B included patients with EGFR gene amplification and EGFRvIII mutation. Dacomitinib was administered (45 mg/day) until disease progression/unacceptable adverse events (AEs). Primary endpoint was progression-free survival (PFS; RANO criteria) at 6 months (PFS6). Results Thirty patients in Cohort A and 19 in Cohort B were enrolled. Median age was 59 years (range 39-81), 65.3% were male, and Eastern Cooperative Oncology Group Performance Status 0/1/2 were 10.2%/65.3%/24.5%, respectively. PFS6 was 10.6% (Cohort A: 13.3%; Cohort B: 5.9%) with a median PFS of 2.7 months (Cohort A: 2.7 mo; Cohort B: 2.6 mo). Four patients were progression free at 6 months and 3 patients were so at 12 months. Median overall survival was 7.4 months (Cohort A: 7.8 mo; Cohort B: 6.7 mo). The best overall response included 1 complete response and 2 partial responses (4.1%). Stable disease was observed in 12 patients (24.5%: eight in Cohort A and four in Cohort B). Diarrhea and rash were the most common AEs; 20 (40.8%) patients experienced grade 3-4 drug-related AEs. Conclusions Dacomitinib has a limited single-agent activity in recurrent GB with EGFR amplification. The detailed molecular characterization of the 4 patients with response in this trial can be useful to select patients who could benefit from dacomitinib.
Collapse
Affiliation(s)
- Juan Manuel Sepúlveda-Sánchez
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Ángeles Vaz
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carmen Balañá
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miguel Gil-Gil
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gaspar Reynés
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Óscar Gallego
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Martínez-García
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena Vicente
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Quindós
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Raquel Luque
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana Ramos
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Yolanda Ruano
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pedro Pérez-Segura
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Manuel Benavides
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pilar Sánchez-Gómez
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aurelio Hernández-Laín
- Neuro-oncology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain; Medical Oncology, Institut Català d'Oncologia, Badalona, Spain; Medical Oncology, Institut Català d'Oncologia, IDIBELL, L'Hospitalet, Barcelona, Spain; Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Medical Oncology, Hospital Santa Creu i Sant Pau, Universitat Autonòma de Barcelona, Spain; Medical Oncology, Hospital del Mar, Barcelona, Spain; Medical Oncology, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain; Medical Oncology, Hospital A Coruña, A Coruña, Spain; Medical Oncology, Complejo Hospitalario de Granada, Granada, Spain; Neuro-radiology, Hospital Universitario 12 de Octubre, Madrid, Spain; Molecular Pathology Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; Medical Oncology, Hospital Clínico de San Carlos, Madrid, Spain; Medical Oncology, Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain; Neuro-oncology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Neuro-pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
28
|
Liao WC, Liao CK, Tsai YH, Tseng TJ, Chuang LC, Lan CT, Chang HM, Liu CH. DSE promotes aggressive glioma cell phenotypes by enhancing HB-EGF/ErbB signaling. PLoS One 2018; 13:e0198364. [PMID: 29864158 PMCID: PMC5986151 DOI: 10.1371/journal.pone.0198364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/17/2018] [Indexed: 01/23/2023] Open
Abstract
Remodeling of the extracellular matrix (ECM) in the tumor microenvironment promotes glioma progression. Chondroitin sulfate (CS) proteoglycans appear in the ECM and on the cell surface, and can be catalyzed by dermatan sulfate epimerase to form chondroitin sulfate/dermatan sulfate (CS/DS) hybrid chains. Dermatan sulfate epimerase 1 (DSE) is overexpressed in many types of cancer, and CS/DS chains mediate several growth factor signals. However, the role of DSE in gliomas has never been explored. In the present study, we determined the expression of DSE in gliomas by consulting a public database and conducting immunohistochemistry on a tissue array. Our investigation revealed that DSE was upregulated in gliomas compared with normal brain tissue. Furthermore, high DSE expression was associated with advanced tumor grade and poor survival. We found high DSE expression in several glioblastoma cell lines, and DSE expression directly mediated DS chain formation in glioblastoma cells. Knockdown of DSE suppressed the proliferation, migration, and invasion of glioblastoma cells. In contrast, overexpression of DSE in GL261 cells enhanced these malignant phenotypes and in vivo tumor growth. Interestingly, we found that DSE selectively regulated heparin-binding EGF-like growth factor (HB-EGF)-induced signaling in glioblastoma cells. Inhibiting epidermal growth factor receptor (EGFR) and ErbB2 with afatinib suppressed DSE-enhanced malignant phenotypes, establishing the critical role of the ErbB pathway in regulating the effects of DSE expression. This evidence indicates that upregulation of DSE in gliomas contributes to malignant behavior in cancer cells. We provide novel insight into the significance of DS chains in ErbB signaling and glioma pathogenesis.
Collapse
Affiliation(s)
- Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Kai Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - You-Huan Tsai
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Ching Chuang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Fiscon G, Conte F, Licursi V, Nasi S, Paci P. Computational identification of specific genes for glioblastoma stem-like cells identity. Sci Rep 2018; 8:7769. [PMID: 29773872 PMCID: PMC5958093 DOI: 10.1038/s41598-018-26081-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma, the most malignant brain cancer, contains self-renewing, stem-like cells that sustain tumor growth and therapeutic resistance. Identifying genes promoting stem-like cell differentiation might unveil targets for novel treatments. To detect them, here we apply SWIM - a software able to unveil genes (named switch genes) involved in drastic changes of cell phenotype - to public datasets of gene expression profiles from human glioblastoma cells. By analyzing matched pairs of stem-like and differentiated glioblastoma cells, SWIM identified 336 switch genes, potentially involved in the transition from stem-like to differentiated state. A subset of them was significantly related to focal adhesion and extracellular matrix and strongly down-regulated in stem-like cells, suggesting that they may promote differentiation and restrain tumor growth. Their expression in differentiated cells strongly correlated with the down-regulation of transcription factors like OLIG2, POU3F2, SALL2, SOX2, capable of reprogramming differentiated glioblastoma cells into stem-like cells. These findings were corroborated by the analysis of expression profiles from glioblastoma stem-like cell lines, the corresponding primary tumors, and conventional glioma cell lines. Switch genes represent a distinguishing feature of stem-like cells and we are persuaded that they may reveal novel potential therapeutic targets worthy of further investigation.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- SysBio Centre of Systems Biology, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
- SysBio Centre of Systems Biology, Rome, Italy
| | - Valerio Licursi
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Sergio Nasi
- Department of Biology and Biotecnology - Charles Darwin, "Sapienza" University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
- SysBio Centre of Systems Biology, Rome, Italy.
| |
Collapse
|
30
|
Shen R, Ye D, Huang Q, Li J, Wang Q, Fei J. An EGF receptor-targeting amphinase recombinant protein mediates anti-tumor activity in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2018; 50:391-398. [PMID: 29566107 DOI: 10.1093/abbs/gmy016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 11/13/2022] Open
Abstract
Utilizing cytotoxic proteins linked to tumor targeting molecules as anti-tumor drugs is a promising approach. However, most cytotoxins derived from bacteria or plants have inherent problems such as large molecular weights and they trigger a strong immune system reaction, which leads to drug failure and serious side effects. Amphinase (Amph) is a ribonuclease with a low molecular weight that is found in northern leopard frog oocytes. It has strong cytotoxicity against tumor cell lines in vitro and weak immunogenicity in vivo, and is a promising candidate in the development of targeted drugs. Transforming growth factor-α (TGF-α) that binds to the epidermal growth factor receptor (EGFR) is being used as a targeting molecule for the treatment of EGFR high-expressing tumors. In this study, we expressed and purified a recombinant amphinase and its TGF-α fusion protein (AGT) separately from Escherichia coli. AGT exhibited more significant cytotoxicity in vitro on EGFR high-expressing tumor cell lines, and stronger anti-tumor effects in vivo. This fusion protein also exhibited unusual thermostability, low in vivo immunogenicity, and side effects. Our results provide a new entry point for the development of novel, highly efficient anti-tumor targeting biological agents with low immunogenicity.
Collapse
Affiliation(s)
- Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Danrong Ye
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Qin Huang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jun Li
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Qingcheng Wang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| |
Collapse
|
31
|
An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018; 37:1561-1575. [PMID: 29321659 PMCID: PMC5860944 DOI: 10.1038/s41388-017-0045-7] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
Collapse
Affiliation(s)
- Zhenyi An
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ozlem Aksoy
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Tina Zheng
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, CA, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
32
|
Spatio-temporal regulation of EGFR signaling by the Eps15 homology domain-containing protein 3 (EHD3). Oncotarget 2018; 7:79203-79216. [PMID: 27811356 PMCID: PMC5346708 DOI: 10.18632/oncotarget.13008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
The epidermal growth factor (EGF) receptor EGFR is a major receptor tyrosine kinase whose role in gliomagenesis is well established. We have recently identified EHD3 [Eps15 homology (EH) domain-containing protein 3], an endocytic trafficking regulatory protein, as a putative brain tumor suppressor. Here, we investigate the underlying mechanisms, by establishing a novel mechanistic and functional connection between EHD3 and the EGFR signaling pathway. We show that, in response to stimulation with the EGF ligand, EHD3 accelerates the rate of EGFR degradation by dramatically increasing its ubiquitination. As part of this process, EHD3 also regulates EGFR endosomal trafficking by diverting it away from the recycling route into the degradative pathway. Moreover, we found that upon EGF activation, rather than affecting the total MAPK and AKT downstream signaling, EHD3 decreases endosome-based signaling of these two pathways, thus suggesting the contribution of EHD3 in the spatial regulation of EGFR signaling. This function explains the higher sensitivity of EHD3-expressing cells to the growth-inhibitory effects of EGF. In summary, this is the first report supporting a mechanism of EHD3-mediated tumor suppression that involves the attenuation of endosomal signaling of the EGFR oncogene.
Collapse
|
33
|
Stec W, Rosiak K, Treda C, Smolarz M, Peciak J, Pacholczyk M, Lenart A, Grzela D, Stoczynska-Fidelus E, Rieske P. Cyclic trans-phosphorylation in a homodimer as the predominant mechanism of EGFRvIII action and regulation. Oncotarget 2018; 9:8560-8572. [PMID: 29492217 PMCID: PMC5823601 DOI: 10.18632/oncotarget.24058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/29/2017] [Indexed: 11/25/2022] Open
Abstract
Despite intensive research no therapies targeted against the oncogenic EGFRvIII are present in the clinic. One of the reasons is the elusive nature of the molecular structure and activity of the truncated receptor. The recent publications indicate the EGF-bound wild-type EGFR to trans-phosphorylate the EGFRvIII initiating aberrant signaling cascade. The elevated stability of the mutant receptor contributes towards oncogenic potential, preventing termination of signaling by receptor degradation. Here, we show that inhibition of phosphatases leads to a marked increase in phosphorylation of wild-type EGFR and EGFRvIII, indicating that both undergo cyclic rounds of phosphorylation and dephosphorylation on all investigated tyrosine residues, including Tyr1045. Still, we observe elevated stability of the mutant receptor, suggesting phosphorylation as insufficient to cause degradation. Hyperphosphorylation of EGFRvIII was hindered only by EGFR tyrosine kinase inhibitors. Co-immunoprecipitation as well as semi-native Western blotting structural analyses together with functional investigation of EGFRvIII's phosphorylation following depletion of wild-type EGFR by shRNA or EGF-mediated degradation indicated homodimerization as the predominant quaternary structure of the mutant receptor. Dimers were observed only under non-reducing conditions, suggesting that homodimerization is mediated by covalent bonds. Previous reports indicated cysteine at position 16 to mediate covalent homodimerization. Upon its substitution to serine, we have observed impaired formation of dimers and lower phosphorylation levels of the mutated oncogene. Based on the obtained results we propose that EGFRvIII is predominantly regulated dynamically by phosphatases that counteract the process of trans-phosphorylation occurring within the homodimers.
Collapse
Affiliation(s)
- Wojciech Stec
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Kamila Rosiak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Cezary Treda
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Maciej Smolarz
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Joanna Peciak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Marcin Pacholczyk
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Anna Lenart
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Dawid Grzela
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland.,Research and Development Unit, Personather Ltd., Lodz, Poland
| |
Collapse
|
34
|
Stec WJ, Rosiak K, Siejka P, Peciak J, Popeda M, Banaszczyk M, Pawlowska R, Treda C, Hulas-Bigoszewska K, Piaskowski S, Stoczynska-Fidelus E, Rieske P. Cell line with endogenous EGFRvIII expression is a suitable model for research and drug development purposes. Oncotarget 2017; 7:31907-25. [PMID: 27004406 PMCID: PMC5077985 DOI: 10.18632/oncotarget.8201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/10/2016] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most common and malignant brain tumor, characterized by high cellular heterogeneity. About 50% of glioblastomas are positive for EGFR amplification, half of which express accompanying EGFR mutation, encoding truncated and constitutively active receptor termed EGFRvIII. Currently, no cell models suitable for development of EGFRvIII-targeting drugs exist, while the available ones lack the intratumoral heterogeneity or extrachromosomal nature of EGFRvIII. The reports regarding the biology of EGFRvIII expressed in the stable cell lines are often contradictory in observations and conclusions. In the present study, we use DK-MG cell line carrying endogenous non-modified EGFRvIII amplicons and derive a sub-line that is near depleted of amplicons, whilst remaining identical on the chromosomal level. By direct comparison of the two lines, we demonstrate positive effects of EGFRvIII on cell invasiveness and populational growth as a result of elevated cell survival but not proliferation rate. Investigation of the PI3K/Akt indicated no differences between the lines, whilst NFκB pathway was over-active in the line strongly expressing EGFRvIII, finding further supported by the effects of NFκB pathway specific inhibitors. Taken together, these results confirm the important role of EGFRvIII in intrinsic and extrinsic regulation of tumor behavior. Moreover, the proposed models are stable, making them suitable for research purposes as well as drug development process utilizing high throughput approach.
Collapse
Affiliation(s)
- Wojciech J Stec
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | - Kamila Rosiak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Paulina Siejka
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Joanna Peciak
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Marta Popeda
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | | | - Roza Pawlowska
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Cezary Treda
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland
| | | | - Sylwester Piaskowski
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Research and Development Unit, Celther Polska Ltd., Lodz, Poland.,Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
35
|
Zhu H, Chen D, Tang J, Huang C, Lv S, Wang D, Li G. Overexpression of centrosomal protein 55 regulates the proliferation of glioma cell and mediates proliferation promoted by EGFRvIII in glioblastoma U251 cells. Oncol Lett 2017; 15:2700-2706. [PMID: 29434995 DOI: 10.3892/ol.2017.7573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is often amplified in glioma, with the most common extracellular domain mutation being EGFR variant III (EGFRvIII). Abnormal EGFRvIII signaling has been shown to be important in driving tumor progression. Centrosomal protein 55 (CEP55), a member of the centrosomal relative proteins family, participates cytokinesis in the cell cycle. It exists in a few normal tissues and various tumor cells. The expression and function of CEP55 in human glioma cells need to investigate. In this study, the expression of CEP55 was detected in 40 cases of glioma tissues and 10 cases of non-tumor brain tissue. The proliferation of glioblastoma U251 cells was analyzed after transfection with EGFRvIII and CEP55 siRNA. We found that the expression of CEP55 was increased significantly in the glioma tissues than in normal brain tissue. The proliferation of U251 cells increased remarkably after transfection with EGFRvIII. Knockdown of CEP55 inhibited proliferation of U251 cells and was able to eliminate the effect of promoting proliferation induced by EGFRvIII in U251 cells. CEP55 played a key role in the proliferation of glioma cells and mediated EGFRvIII-stimulated proliferation in glioma cells. CEP55 might be a novel molecular therapeutic target in patients with gliomas expressing EGFRvIII.
Collapse
Affiliation(s)
- Hongfan Zhu
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, The Third Military Medical University, P.R. China
| | - Diangang Chen
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, The Third Military Medical University, P.R. China
| | - Jinliang Tang
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, P.R. China
| | - Changlin Huang
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, The Third Military Medical University, P.R. China
| | - Shengqing Lv
- Department of Neurosurgery, Xinqiao Hospital, The Third Military Medical University, P.R. China
| | - Donglin Wang
- Department of Oncology, Cancer Hospital of Chongqing, Chongqing 400037, P.R. China
| | - Guanghui Li
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, The Third Military Medical University, P.R. China
| |
Collapse
|
36
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
37
|
Abstract
This Outlook discusses the study in this issue by Zanca et al., in which mutant EGFR expression in a small population of cancer cells in high-grade brain tumors (glioblastoma) can orchestrate the complex behavior of the entire tumor. Converging evidence from numerous laboratories has revealed that malignant brain cancers are complex ecological systems composed of distinct cellular and acellular elements that collectively dictate glioblastoma biology. Our understanding of the individual contributions of each of these components is vital to the design of effective therapies against these cancers. In this issue of Genes & Development, Zanca and colleagues (pp. 1212–1227) demonstrate that one subpopulation of glioblastoma cells expressing a mutant epidermal growth factor receptor (EGFRvIII) is responsible for the survival of non-EGFRvIII-expressing tumor cells as well as for evading molecularly targeted therapy.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yuan Pan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
38
|
A TNF-JNK-Axl-ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma. Nat Neurosci 2017; 20:1074-1084. [PMID: 28604685 PMCID: PMC5529219 DOI: 10.1038/nn.4584] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
Aberrant EGFR signaling is widespread in cancer, making the EGFR an important target for therapy. EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition has not been effective in treating this tumor. Here, we propose that primary resistance to EGFR inhibition in glioma cells results from a rapid compensatory response to EGFR inhibition that mediates cell survival. We show that in glioma cells expressing either EGFR wild type or the mutant EGFRvIII, EGFR inhibition triggers a rapid adaptive response driven by increased TNF secretion that leads to activation of a TNF-JNK-Axl-ERK signaling axis. Inhibition of this adaptive axis at multiple nodes renders glioma cells with primary resistance sensitive to EGFR inhibition. Our findings provide a possible explanation for the multiple failures of anti-EGFR therapy in GBM and suggest a new approach to the treatment of EGFR expressing GBM using a combination of EGFR and TNF inhibition.
Collapse
|
39
|
Cuyàs E, Queralt B, Martin-Castillo B, Bosch-Barrera J, Menendez JA. EphA2 receptor activation with ephrin-A1 ligand restores cetuximab efficacy in NRAS-mutant colorectal cancer cells. Oncol Rep 2017; 38:263-270. [DOI: 10.3892/or.2017.5682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
|
40
|
microRNA-200a-3p increases 5-fluorouracil resistance by regulating dual specificity phosphatase 6 expression. Exp Mol Med 2017; 49:e327. [PMID: 28496200 PMCID: PMC5454440 DOI: 10.1038/emm.2017.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition of resistance to anti-cancer drugs is a significant obstacle to effective cancer treatment. Although several efforts have been made to overcome drug resistance in cancer cells, the detailed mechanisms have not been fully elucidated. Here, we investigated whether microRNAs (miRNAs) function as pivotal regulators in the acquisition of anti-cancer drug resistance to 5-fluorouracil (5-FU). A survey using a lentivirus library containing 572 precursor miRNAs revealed that five miRNAs promoted cell survival after 5-FU treatment in human hepatocellular carcinoma Hep3B cells. Among the five different clones, the clone expressing miR-200a-3p (Hep3B-miR-200a-3p) was further characterized as a 5-FU-resistant cell line. The cell viability and growth rate of Hep3B-miR-200a-3p cells were higher than those of control cells after 5-FU treatment. Ectopic expression of a miR-200a-3p mimic increased, while inhibition of miR-200a-3p downregulated, cell viability in response to 5-FU, doxorubicin, and CDDP (cisplatin). We also showed that dual-specificity phosphatase 6 (DUSP6) is a novel target of miR-200a-3p and regulates resistance to 5-FU. Ectopic expression of DUSP6 mitigated the pro-survival effects of miR-200a-3p. Taken together, these results lead us to propose that miR-200a-3p enhances anti-cancer drug resistance by decreasing DUSP6 expression.
Collapse
|
41
|
Shin CH, Robinson JP, Sonnen JA, Welker AE, Yu DX, VanBrocklin MW, Holmen SL. HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss. Oncogene 2017; 36:4610-4618. [PMID: 28368403 PMCID: PMC5552427 DOI: 10.1038/onc.2017.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the epidermal growth factor receptor (EGFR), one of the most commonly amplified receptor tyrosine kinases (RTK) in glioblastoma. While HBEGF has been found to be expressed in a subset of malignant gliomas, its sufficiency for glioma initiation has not been evaluated. In this study, we demonstrate that HBEGF can initiate glioblastoma (GBM) in mice in the context of Ink4a/Arf and Pten loss, and that these tumors are similar to the classical GBM subtype observed in patients. Isogenic astrocytes from these mice showed activation not only of Egfr but also the RTK Axl in response to HBEGF stimulation. Deletion of either Egfr or Axl decreased the tumorigenic properties of HBEGF transformed cells; however only EGFR was able to rescue the phenotype in cells lacking both RTKs indicating that Egfr is required for activation of Axl in this context. Silencing of HBEGF in vivo resulted in tumor regression and significantly increased survival suggesting that HBEGF may be a clinically relevant target.
Collapse
Affiliation(s)
- C H Shin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - J P Robinson
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - J A Sonnen
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| | - A E Welker
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA
| | - D X Yu
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - M W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - S L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT, USA.,Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA 2017; 3:FSO189. [PMID: 28883992 PMCID: PMC5583655 DOI: 10.4155/fsoa-2016-0094] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion - both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed.
Collapse
|
43
|
Peciak J, Stec WJ, Treda C, Ksiazkiewicz M, Janik K, Popeda M, Smolarz M, Rosiak K, Hulas-Bigoszewska K, Och W, Rieske P, Stoczynska-Fidelus E. Low Incidence along with Low mRNA Levels of EGFRvIII in Prostate and Colorectal Cancers Compared to Glioblastoma. J Cancer 2017; 8:146-151. [PMID: 28123609 PMCID: PMC5264051 DOI: 10.7150/jca.16108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/15/2016] [Indexed: 11/17/2022] Open
Abstract
Background: The presence as well as the potential role of EGFRvIII in tumors other than glioblastoma still remains a controversial subject with many contradictory data published. Previous analyses, however, did not consider the level of EGFRvIII mRNA expression in different tumor types. Methods: Appropriately designed protocol for Real-time quantitative reverse-transcription PCR (Real-time qRT-PCR) was applied to analyze EGFRvIII and EGFRWT mRNA expression in 155 tumor specimens. Additionally, Western Blot (WB) analysis was performed for selected samples. Stable cell lines showing EGFRvIII expression (CAS-1 and DK-MG) were analyzed by means of WB, immunocytochemistry (ICC) and fluorescence in situ hybridization (FISH). Results: Our analyses revealed EGFRvIII expression in 27.59% of glioblastomas (8/29), 8.11% of colorectal cancers (3/37), 6.52% of prostate cancers (3/46) and none of breast cancers (0/43). Despite the average relative expression of EGFRvIII varying greatly among tumors of different tissues (approximately 800-fold) or even within the same tissue group (up to 8000-fold for GB), even the marginal expression of EGFRvIII mRNA can be detrimental to cancer progression, as determined by the analysis of stable cell lines endogenously expressing the oncogene. Conclusion: EGFRvIII plays an unquestionable role in glioblastomas with high expression of this oncogene. Our data suggests that EGFRvIII importance should not be underestimated even in tumors with relatively low expression of this oncogene.
Collapse
Affiliation(s)
- Joanna Peciak
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Wojciech J Stec
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Cezary Treda
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Magdalena Ksiazkiewicz
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Marta Popeda
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Maciej Smolarz
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Kamila Rosiak
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | | | - Waldemar Och
- Clinical Department of Neurosurgery, The Voivodal Specialistic Hospital in Olsztyn, Zolnierska 18, 10-561 Olsztyn, Poland
| | - Piotr Rieske
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
44
|
Virbasius JV, Czech MP. Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases. Trends Endocrinol Metab 2016; 27:484-492. [PMID: 27160798 PMCID: PMC4912878 DOI: 10.1016/j.tem.2016.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
Mitogen-activated kinase kinase kinase kinase 4 (Map4k4), originally identified in small interfering (si)RNA screens and characterized by tissue-specific gene deletions, is emerging as a regulator of glucose homeostasis and cardiovascular health. Recent studies have shown that Map4k4 gene ablation or inhibition of its kinase activity attenuates hyperglycemia and plaque formation in mouse models of insulin resistance and atherosclerosis, and suggest roles for Map4k4 in multiple signaling systems, including NFκB activation, small GTPase regulation, the Hippo cascade, and regulation of cell dynamics by FERM domain proteins. This new and promising area of inquiry raises key questions that need to be addressed, such as defining which of the above or other effectors mediate Map4k4 control of metabolic and vascular functions, and identifying upstream activators of Map4k4.
Collapse
Affiliation(s)
- Joseph V Virbasius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
45
|
Wei JW, Cui JQ, Zhou X, Fang C, Tan YL, Chen LY, Yang C, Liu M, Kang CS. F25P preproinsulin abrogates the secretion of pro-growth factors from EGFRvIII cells and suppresses tumor growth in an EGFRvIII/wt heterogenic model. Cancer Lett 2016; 380:1-9. [PMID: 27317648 DOI: 10.1016/j.canlet.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/11/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023]
Abstract
Extensive heterogeneity is a defining hallmark of glioblastoma multiforme (GBM) at the cellular and molecular levels. EGFRvIII, the most common EGFR mutant, is expressed in 24-67% of cases and strongly indicates a poor survival prognosis. By co-expressing EGFRvIII and EGFRwt, we established an EGFRvIII/wt heterogenic model. Using this approach, we confirmed that a mixture of EGFRvIII and EGFRwt at a certain ratio could clearly enhance tumor growth in vitro and in vivo compared with EGFRwt cells, thereby indicating that EGFRvIII cells promote tumor growth. Furthermore, we demonstrated that the EGFRvIII cells could support the growth of EGFRwt cells by secreting growth factors, thus acting as the principal source for maintaining tumor survival. F25P preproinsulin effectively reduced the concentrations of EGF, VEGF, and MMP-9 in the blood of tumor-bearing mice by competitively inhibiting the endoplasmic reticulum signal peptidase and increased the overall survival in orthotopic models. Taken together, our results provided an effective therapy of F25P preproinsulin in the EGFRvIII/wt heterogenic model.
Collapse
Affiliation(s)
- Jian-Wei Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jing-Qiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuan Zhou
- Department of Head & Neck, Tianjin Cancer Institute and Hospital, Tianjin 300060, China
| | - Chuan Fang
- Department of Neurosurgery, The Hospital affiliated to Hebei University, Baoding 071000, China
| | - Yan-Li Tan
- College of Fundamental Medicine, Hebei University, Baoding 071000, China
| | - Lu-Yue Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chun-Sheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| |
Collapse
|
46
|
Treda C, Popeda M, Ksiazkiewicz M, Grzela DP, Walczak MP, Banaszczyk M, Peciak J, Stoczynska-Fidelus E, Rieske P. EGFR Activation Leads to Cell Death Independent of PI3K/AKT/mTOR in an AD293 Cell Line. PLoS One 2016; 11:e0155230. [PMID: 27153109 PMCID: PMC4859505 DOI: 10.1371/journal.pone.0155230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) and its mutations contribute in various ways to tumorigenesis and biology of human cancers. They are associated with tumor proliferation, progression, drug resistance and the process of apoptosis. There are also reports that overexpression and activation of wild-type EGFR may lead to cell apoptosis. To study this phenomenon, we overexpressed in an AD293 cell line two most frequently observed forms of the EGFR receptor: wild-type and the constitutively active mutant–EGFR variant III (EGFRvIII). Then, we compared the effect of EGF stimulation on cell viability and downstream EGFR signaling. AD293 cells overexpressing wild-type EGFR, despite a significant proliferation increase in serum supplemented medium, underwent apoptosis after EGF stimulation in serum free conditions. EGFRvIII expressing cells, however, were unaffected by either serum starvation or EGF treatment. The effect of EGF was completely neutralized by tyrosine kinase inhibitors (TKIs), indicating the specificity of this observation. Moreover, apoptosis was not prevented by inhibiting EGFR downstream proteins (PI3K, AKT and mTOR). Here we showed another EGFR function, dependent on environmental factors, which could be employed in therapy and drug design. We also proposed a new tool for EGFR inhibitor analysis.
Collapse
Affiliation(s)
- Cezary Treda
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- * E-mail:
| | - Marta Popeda
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | | | - Dawid P. Grzela
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | - Maciej P. Walczak
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
| | - Mateusz Banaszczyk
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Joanna Peciak
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Piotr Rieske
- Department of Research and Development, Celther Polska Ltd., Lodz, Poland
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
47
|
D'Asti E, Chennakrishnaiah S, Lee TH, Rak J. Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 2016; 36:383-407. [PMID: 26993504 DOI: 10.1007/s10571-015-0296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
Abstract
Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways also impact the emission rates, types, cargo, and biogenesis of EVs, as reflected by preliminary analyses pointing to differences in profiles of EV-regulating genes (vesiculome) between molecular subtypes of glioblastoma, and in other brain tumors. Molecular regulators of vesiculation can also act as oncogenes. These intimate connections suggest the context-specific roles of different EV subsets in the progression of specific brain tumors. Advanced efforts are underway to capture these events through the use of EVs circulating in biofluids as biomarker reservoirs and to guide diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
- Esterina D'Asti
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
48
|
|
49
|
|
50
|
Nakanishi Y, Mizuno H, Sase H, Fujii T, Sakata K, Akiyama N, Aoki Y, Aoki M, Ishii N. ERK Signal Suppression and Sensitivity to CH5183284/Debio 1347, a Selective FGFR Inhibitor. Mol Cancer Ther 2015; 14:2831-9. [DOI: 10.1158/1535-7163.mct-15-0497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022]
|