1
|
Saleh Al Ward MM, Abdallah AE, Zayed MF, Ayyad RR, Abdelghany TM, Bakhotmah DA, El-Zahabi MA. New immunomodulatory anticancer quinazolinone-based thalidomide analogs: design, synthesis and biological evaluation. Future Med Chem 2024; 16:2523-2533. [PMID: 39530517 PMCID: PMC11622738 DOI: 10.1080/17568919.2024.2419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: The current work is an extension to our previous work for the development of new thalidomide analogs.Materials & methods: Quinazolinone-based molecules carrying a glutarimide moiety have been designed, synthesized and biologically evaluated for immunomodulatory and anticancer activity.Results: Compounds 7d and 12 showed considerable immunomodulatory properties in comparison to thalidomide. 7d and 12 significantly reduced TNF-α levels in HepG-2 cells from 162.5 to 57.4 pg/ml and 49.2 pg/ml, respectively, compared with 53.1 pg/ml reported for thalidomide. Moreover, they caused 69.33 and 77.74% reduction in NF-κB P65, respectively, compared with 60.26% reduction for thalidomide. Similarly, they reduced VEGF from 432.5 to 161.3 pg/ml and 132.8 pg/ml, respectively, in comparison to 153.2 pg/ml reported for thalidomide. The two new derivatives, 7d and 12 also showed about eightfold increases in caspase-8 levels in cells treated with them. These results were slightly better than those of thalidomide. The obtained results revealed that Compound 12 had better immunomodulatory properties than thalidomide, with stronger effects on TNF-α, NF-κB P65, VEGF and caspase-8.Conclusion: This work indicates that compounds 7d and 12 have interesting biological properties that should be further evaluated and modified in order to develop clinically useful thalidomide analogs.
Collapse
Affiliation(s)
- Maged Mohammed Saleh Al Ward
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed F Zayed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- College of Pharmacy, University of Hilla, Babylon, Iraq
| | - Tamer M Abdelghany
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, 11785, Egypt
- Pharmacology & Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | | | - Mohamed Ayman El-Zahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Kruschel RD, Barbosa MG, Almeida MJ, Xavier CPR, Vasconcelos MH, McCarthy FO. Discovery of Potent Isoquinolinequinone N-Oxides to Overcome Cancer Multidrug Resistance. J Med Chem 2024; 67:13909-13924. [PMID: 39093920 PMCID: PMC11345829 DOI: 10.1021/acs.jmedchem.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Multidrug resistance (MDR) of human tumors has resulted in an immediate need to develop appropriate new drugs. This work outlines the development of 20 potent IQQ N-oxide derivatives in two isomeric families, both exhibiting nanomolar GI50 against human tumor cell lines. Preliminary NCI-60 tumor screening sees the C(6) isomers achieve a mean GI50 > 2 times lower than the corresponding C(7) isomers. MDR evaluation of nine selected compounds reveals that each presents lower GI50 concentrations in two MDR tumor cell lines. Four of the series display nanomolar GI50 values against MDR cells, having selectivity ratios up to 2.7 versus the sensitive (parental) cells. The most potent compound 25 inhibits the activity of drug efflux pumps in MDR cells, causes significant ROS accumulation, and potently inhibits cell proliferation, causing alterations in the cell cycle profile. Our findings are confirmed by 3D spheroid models, providing new candidates for studies against MDR cancers.
Collapse
Affiliation(s)
- Ryan D. Kruschel
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| | - Mélanie
A. G. Barbosa
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Maria João Almeida
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - Cristina P. R. Xavier
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
| | - M. Helena Vasconcelos
- i3S−Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto Portugal
- Cancer
Drug Resistance Group, IPATIMUP−Institute of Molecular Pathology
and Immunology, University of Porto, 4200-135 Porto Portugal
- FFUP−Faculty
of Pharmacy of the University of Porto, 4050-313 Porto Portugal
| | - Florence O. McCarthy
- School
of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
3
|
Milunovic MM, Ohui K, Besleaga I, Petrasheuskaya TV, Dömötör O, Enyedy ÉA, Darvasiova D, Rapta P, Barbieriková Z, Vegh D, Tóth S, Tóth J, Kucsma N, Szakács G, Popović-Bijelić A, Zafar A, Reynisson J, Shutalev AD, Bai R, Hamel E, Arion VB. Copper(II) Complexes with Isomeric Morpholine-Substituted 2-Formylpyridine Thiosemicarbazone Hybrids as Potential Anticancer Drugs Inhibiting Both Ribonucleotide Reductase and Tubulin Polymerization: The Morpholine Position Matters. J Med Chem 2024; 67:9069-9090. [PMID: 38771959 PMCID: PMC11181322 DOI: 10.1021/acs.jmedchem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H2L3-H2L6, with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3-6. Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y•) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented.
Collapse
Affiliation(s)
| | - Katerina Ohui
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Iuliana Besleaga
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Tatsiana V. Petrasheuskaya
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Éva A. Enyedy
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Denisa Darvasiova
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Peter Rapta
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Zuzana Barbieriková
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Daniel Vegh
- Institute
of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Judit Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Nóra Kucsma
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Vienna A-1090, Austria
| | - Ana Popović-Bijelić
- Faculty
of Physical Chemistry, University of Belgrade, Belgrade 11158, Serbia
| | - Ayesha Zafar
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School
of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United
Kingdom
| | - Anatoly D. Shutalev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
- Inorganic
Polymers Department, “Petru Poni”
Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
4
|
Radomska D, Szewczyk-Roszczenko OK, Marciniec K, Książek M, Kusz J, Roszczenko P, Szymanowska A, Radomski D, Bielawski K, Czarnomysy R. Evaluation of anticancer activity of novel platinum(II) bis(thiosemicarbazone) complex against breast cancer. Bioorg Chem 2024; 148:107486. [PMID: 38788367 DOI: 10.1016/j.bioorg.2024.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The study aims to synthesize a novel bis(thiosemicarbazone) derivative based on platinum (thioPt) and evaluate its anticancer properties against MFC-7 and MDA-MB-231 breast cancer cells. A new platinum complex was synthesised by reacting K2PtCl4 with 2,2'-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbothioamide) in ethanol in the presence of K2CO3. In the obtained complex, the platinum atom is coordinated by a conjugated system = N-NC-S-The structures of the new compound were characterised using NMR spectroscopy, HR MS, IR, and X-ray structural analysis. The obtained results of the cytotoxicity assay indicate that compound thioPt had potent anticancer activity (MCF-7: 61.03 ± 3.57 µM, MDA-MB-231: 60.05 ± 5.40 µM) with less toxicity against normal MCF-10A breast epithelial cells, even compared to the reference compound (cisplatin). In addition, subsequent experiments found that thioPt induces apoptosis through both an extrinsic (↑caspase 8 activity) and intrinsic (↓ΔΨm) pathway, which ultimately leads to an increase in active caspase 3/7 levels. The induction of autophagy and levels of proteins involved in this process (LC3A/B and Beclin-1) were examined in MCF-7 and MDA-MB-231 breast cancer cells exposed to tested compounds (thio, thioPt, cisPt) at a concentration of 50 µM for 24 h. Based on these results, it can be concluded that thio and thioPt do not significantly affect the autophagy process. This demonstrates their superiority over cisplatin, which can stimulate cancer cell survival through its effect on stimulation of autophagy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | | | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41‑200 Sosnowiec, Poland
| | - Maria Książek
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland.
| |
Collapse
|
5
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
6
|
Lei ZN, Albadari N, Teng QX, Rahman H, Wang JQ, Wu Z, Ma D, Ambudkar SV, Wurpel JND, Pan Y, Li W, Chen ZS. ABCB1-dependent collateral sensitivity of multidrug-resistant colorectal cancer cells to the survivin inhibitor MX106-4C. Drug Resist Updat 2024; 73:101065. [PMID: 38367548 DOI: 10.1016/j.drup.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
AIMS To investigate the collateral sensitivity (CS) of ABCB1-positive multidrug resistant (MDR) colorectal cancer cells to the survivin inhibitor MX106-4C and the mechanism. METHODS Biochemical assays (MTT, ATPase, drug accumulation/efflux, Western blot, RT-qPCR, immunofluorescence, flow cytometry) and bioinformatic analyses (mRNA-sequencing, reversed-phase protein array) were performed to investigate the hypersensitivity of ABCB1 overexpressing colorectal cancer cells to MX106-4C and the mechanisms. Synergism assay, long-term selection, and 3D tumor spheroid test were used to evaluate the anti-cancer efficacy of MX106-4C. RESULTS MX106-4C selectively killed ABCB1-positive colorectal cancer cells, which could be reversed by an ABCB1 inhibitor, knockout of ABCB1, or loss-of-function ABCB1 mutation, indicating an ABCB1 expression and function-dependent mechanism. MX106-4C's selective toxicity was associated with cell cycle arrest and apoptosis through ABCB1-dependent survivin inhibition and activation on caspases-3/7 as well as modulation on p21-CDK4/6-pRb pathway. MX106-4C had good selectivity against ABCB1-positive colorectal cancer cells and retained this in multicellular tumor spheroids. In addition, MX106-4C could exert a synergistic anti-cancer effect with doxorubicin or re-sensitize ABCB1-positive cancer cells to doxorubicin by reducing ABCB1 expression in the cell population via long-term exposure. CONCLUSIONS MX106-4C selectively kills ABCB1-positive MDR colorectal cancer cells via a novel ABCB1-dependent survivin inhibition mechanism, providing a clue for designing CS compound as an alternative strategy to overcome ABCB1-mediated colorectal cancer MDR.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China
| | - Najah Albadari
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA
| | - John N D Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, PR China.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
7
|
Teixeira R, Salaroglio IC, Oliveira NFB, Sequeira JGN, Fontrodona X, Romero I, Machuqueiro M, Tomaz AI, Garcia MH, Riganti C, Valente A. Fighting Multidrug Resistance with Ruthenium-Cyclopentadienyl Compounds: Unveiling the Mechanism of P-gp Inhibition. J Med Chem 2023; 66:14080-14094. [PMID: 37616241 PMCID: PMC10614197 DOI: 10.1021/acs.jmedchem.3c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 08/26/2023]
Abstract
The search for more effective and selective drugs to overcome cancer multidrug resistance is urgent. As such, a new series of ruthenium-cyclopentadienyl ("RuCp") compounds with the general formula [Ru(η5-C5H4R)(4,4'-R'-2,2'-bipy)(PPh3)] were prepared and fully characterized. All compounds were evaluated toward non-small cell lung cancer cells with different degrees of cisplatin sensitivity (A549, NCI-H2228, Calu-3, and NCI-H1975), showing better cytotoxicity than the first-line chemotherapeutic drug cisplatin. Compounds 2 and 3 (R' = -OCH3; R = CHO (2) or CH2OH (3)) further inhibited the activity of P-gp and MRP1 efflux pumps by impairing their catalytic activity. Molecular docking calculations identified the R-site P-gp pocket as the preferred one, which was further validated using site-directed mutagenesis experiments in P-gp. Altogether, our results unveil the first direct evidence of the interaction between P-gp and "RuCp" compounds in the modulation of P-gp activity and establish them as valuable candidates to circumvent cancer MDR.
Collapse
Affiliation(s)
- Ricardo
G. Teixeira
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Nuno F. B. Oliveira
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João G. N. Sequeira
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Xavier Fontrodona
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Isabel Romero
- Departament
de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Miguel Machuqueiro
- BioISI:
Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M. Helena Garcia
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Chiara Riganti
- Department
of Oncology, University of Torino, 10126 Torino, Italy
- Molecular
Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy
| | - Andreia Valente
- Centro
de Química Estrutural, Institute of Molecular Sciences and
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Esam Z, Akhavan M, Mirshafa A, Bekhradnia A. Green synthesis, anti-proliferative evaluation, docking, and MD simulations studies of novel 2-piperazinyl quinoxaline derivatives using hercynite sulfaguanidine-SA as a highly efficient and reusable nanocatalyst. RSC Adv 2023; 13:25229-25245. [PMID: 37622018 PMCID: PMC10445084 DOI: 10.1039/d3ra03305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, the immobilization of sulfaguanidine-SA on the surface of FeAl2O4 (hercynite) MNPs (magnetic nanoparticles) as a novel acid nanocatalyst has been successfully reported for the synthesis of 2-(piperazin-1-yl) quinoxaline derivatives via a one-pot multiple-component reaction under green conditions. The products were characterized by SEM, TEM, TGA, EDS, BET technique, VSM, and FTIR. This series of novel 2-piperazinyl quinoxaline derivatives containing isatin-based thio/semicarbazones and/or Schiff bases of Metformin were evaluated for anticancer activity against both human ovarian and colon-derived tumor cell lines by MTT colorimetric assay. Although most of the investigated hybrid compounds exhibited excellent anti-proliferative activities and high selectivity index (SI) values, the promising compounds N'-[4-(quinoxaline-2-yl)-piperazine-1-yl]methyl-5-chloro-1-H-indole,2,3-dion-3-metformin 4c and N'-[4-(quinoxaline-2-yl)-piperazine-1-yl]methyl-5-bromo-1-H-indole,2,3-dion-3-metformin 4b proved to be the most potent anti-proliferative agents (IC50 values < 1 μM). Molecular docking and dynamics simulation suggest that these hybrid compounds can be wrapped in the catalytic cavity of c-Kit tyrosine kinase receptor and the binding pocket of P-glycoprotein with high scores. Thus, 2-piperazinyl quinoxaline linked isatin-based N-Mannich bases of metformin and/or thio/semicarbazones might be served as suitable candidates for further investigations to develop a new generation of multi-target cancer chemotherapy agents.
Collapse
Affiliation(s)
- Zohreh Esam
- Pharmaceutical Sciences Research Center, Student Research Committee, Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences Sari Iran
| | - Malihe Akhavan
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| | - Atefeh Mirshafa
- Ramsar Campus, Mazandaran University of Medical Sciences Ramsar Iran
| | - Ahmadreza Bekhradnia
- Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences Sari Iran
| |
Collapse
|
9
|
Abdallah AE, Eissa IH, Mehany AB, Sakr H, Atwa A, El-Adl K, El-Zahabi MA. Immunomodulatory quinazoline-based thalidomide analogs: Design, synthesis, apoptosis and anticancer evaluations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Bakadlag R, Limniatis G, Georges G, Georges E. The anti-estrogen receptor drug, tamoxifen, is selectively Lethal to P-glycoprotein-expressing Multidrug resistant tumor cells. BMC Cancer 2023; 23:24. [PMID: 36609245 PMCID: PMC9824978 DOI: 10.1186/s12885-022-10474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND P-glycoprotein (P-gp), a member of the ATP Binding Cassette B1 subfamily (ABCB1), confers resistance to clinically relevant anticancer drugs and targeted chemotherapeutics. However, paradoxically P-glycoprotein overexpressing drug resistant cells are "collaterally sensitive" to non-toxic drugs that stimulate its ATPase activity. METHODS Cell viability assays were used to determine the effect of low concentrations of tamoxifen on the proliferation of multidrug resistant cells (CHORC5 and MDA-Doxo400), expressing P-gp, their parental cell lines (AuxB1 and MDA-MB-231) or P-gp-CRISPR knockout clones of AuxB1 and CHORC5 cells. Western blot analysis was used to estimate P-gp expression in different cell lines. Apoptosis of tamoxifen-induced cell death was estimated by flow cytometry using Annexin-V-FITC stained cells. Oxidative stress of tamoxifen treated cells was determined by measuring levels of reactive oxygen species and reduced thiols using cell-permeant 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and 5,5-dithio-bis-(2-nitrobenzoic acid) DTNB, respectively. RESULTS In this report, we show that P-gp-expressing drug resistant cells (CHORC5 and MDA-Doxo400) are collaterally sensitive to the anti-estrogen tamoxifen or its metabolite (4-hydroxy-tamoxifen). Moreover, P-gp-knockout clones of CHORC5 cells display complete reversal of collateral sensitivity to tamoxifen. Drug resistant cells exposed to low concentrations of tamoxifen show significant rise in reactive oxygen species, drop of reduced cellular thiols and increased apoptosis. Consistent with the latter, CHORC5 cells expressing high levels of human Bcl-2 (CHORC5-Bcl-2) show significant resistance to tamoxifen. In addition, the presence of the antioxidant N-acetylcysteine or P-gp ATPase inhibitor, PSC-833, reverse the collateral sensitivity of resistant cells to tamoxifen. By contrast, the presence of rotenone (specific inhibitor of mitochondria complex I) synergizes with tamoxifen. CONCLUSION This study demonstrates the use of tamoxifen as collateral sensitivity drug that can preferentially target multidrug resistant cells expressing P-gp at clinically achievable concentrations. Given the widespread use of tamoxifen in the treatment of estrogen receptor-positive breast cancers, this property of tamoxifen may have clinical applications in treatment of P-gp-positive drug resistant breast tumors.
Collapse
Affiliation(s)
- Rowa Bakadlag
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Québec, H9X-3V9 Canada
| | - Georgia Limniatis
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Québec, H9X-3V9 Canada
| | - Gabriel Georges
- grid.421142.00000 0000 8521 1798Department of Cardiac Surgery, Quebec Heart & Lung Institute, Université Laval, Québec, Canada
| | - Elias Georges
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Québec, H9X-3V9 Canada
| |
Collapse
|
11
|
Khan T, Raza S, Lawrence AJ. Medicinal Utility of Thiosemicarbazones with Special Reference to Mixed Ligand and Mixed Metal Complexes: A Review. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422600280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Limniatis G, Georges E. Knockout of P-glycoprotein abolish the collateral sensitivity of CHORC5 multidrug resistant cells. Biochem Biophys Res Commun 2022; 608:23-29. [DOI: 10.1016/j.bbrc.2022.03.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 11/02/2022]
|
13
|
Limniatis G, Georges E. Down-regulation of ABCB1 by Collateral Sensitivity Drugs Reverses Multidrug Resistance and Up-regulates Enolase I. J Biochem 2022; 172:37-48. [PMID: 35471238 DOI: 10.1093/jb/mvac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
The emergence of drug resistance remains an obstacle in the clinical treatment of cancer. Recent developments in the studies of drug resistance have identified compounds such as verapamil and tamoxifen that specifically target ABCB1-expressing multidrug resistant (MDR) cells, through an ATP-dependent ROS-generating mechanism. In this report, we demonstrate that treatment of ABCB1-expressing multidrug resistant cells (CHORC5 or MDA-Doxo400) or individual clones of the latter with sub-lethal concentrations of tamoxifen or verapamil down-regulates ABCB1 protein and mRNA expression in surviving clones. Consequently, tamoxifen- and verapamil-treated cells show increased sensitivity to chemotherapeutic drugs (e.g., colchicine and doxorubicin) and decreased sensitivity to collateral sensitivity drugs (e.g., verapamil and tamoxifen). Importantly, we show for the first time that down-regulation of ABCB1 expression resulting from tamoxifen treatment and CRISPR-knockout of ABCB1 expression up-regulate α-enolase (enolase I) protein levels and activity. These findings demonstrate a possible effect of ABCB1 expression on the metabolic homeostasis of MDR cells. Moreover, given the use of tamoxifen to prevent the recurrence of estrogen receptor-positive breast cancer, the findings of this study may be clinically important in modulating activity of other drugs.
Collapse
Affiliation(s)
| | - Elias Georges
- Institute of Parasitology, McGill University, Quebec, Canada
| |
Collapse
|
14
|
Shi L, Esfandiari L. Emerging on-chip electrokinetic based technologies for purification of circulating cancer biomarkers towards liquid biopsy: A review. Electrophoresis 2021; 43:288-308. [PMID: 34791687 DOI: 10.1002/elps.202100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022]
Abstract
Early detection of cancer can significantly reduce mortality and save lives. However, the current cancer diagnosis is highly dependent on costly, complex, and invasive procedures. Thus, a great deal of effort has been devoted to exploring new technologies based on liquid biopsy. Since liquid biopsy relies on detection of circulating biomarkers from biofluids, it is critical to isolate highly purified cancer-related biomarkers, including circulating tumor cells (CTCs), cell-free nucleic acids (cell-free DNA and cell-free RNA), small extracellular vesicles (exosomes), and proteins. The current clinical purification techniques are facing a number of drawbacks including low purity, long processing time, high cost, and difficulties in standardization. Here, we review a promising solution, on-chip electrokinetic-based methods, that have the advantage of small sample volume requirement, minimal damage to the biomarkers, rapid, and label-free criteria. We have also discussed the existing challenges of current on-chip electrokinetic technologies and suggested potential solutions that may be worthy of future studies.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Limniatis G, Georges E. The phenothiazine, trifluoperazine, is selectively lethal to ABCB1-expressing multidrug resistant cells. Biochem Biophys Res Commun 2021; 570:148-153. [PMID: 34284140 DOI: 10.1016/j.bbrc.2021.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
P-glycoprotein, member of the B-subfamily of the ATP-binding cassette (ABC) superfamily (e.g., ABCB1), has been demonstrated to confer resistance to clinically relevant anticancer drugs. Paradoxically, ABCB1-expressing multidrug resistant (MDR) cells are hypersensitivity or collateral sensitivity to non-toxic drugs. In this report, we demonstrate the capacity of trifluoperazine (TFP), a calmodulin inhibitor, to confer a collateral sensitivity onto ABCB1-overexpressing MDR cells. We show TFP-induced collateral sensitivity to be linked to ABCB1 expression and ATPase activity, as such phenotype is abolished in ABCB1-knockout MDR cells (CHORC5ΔABCB1 clones A1-A3) or with inhibitors of ABCB1 ATPase. TFP-induced collateral sensitivity is mediated by apoptotic cell death, due to enhanced oxidative stress. The findings in this study show for first time the use TFP as a collateral sensitivity drug, at clinically relevant concentrations. Moreover, given the use of trifluoperazine in the treatment for symptoms of schizophrenia and the role of ABCB1 transporter in tissue blood barriers and other physiologic functions, the finding in this study may have implications beyond cancer chemotherapy.
Collapse
Affiliation(s)
- Georgia Limniatis
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Québec, Canada
| | - Elias Georges
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Québec, Canada.
| |
Collapse
|
16
|
Yasrebi SA, Mague JT, Takjoo R. Synthesis, Characterization, and Crystal Structure Investigation of a New Uranyl Complex of Isothiosemicarbazone. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Selective Cytotoxicity of Piperine Over Multidrug Resistance Leukemic Cells. Molecules 2021; 26:molecules26040934. [PMID: 33578817 PMCID: PMC7916575 DOI: 10.3390/molecules26040934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022] Open
Abstract
Multidrug resistance (MDR) is the main challenge in the treatment of chronic myeloid leukemia (CML), and P-glycoprotein (P-gp) overexpression is an important mechanism involved in this resistance process. However, some compounds can selectively affect MDR cells, inducing collateral sensitivity (CS), which may be dependent on P-gp. The aim of this study was to investigate the effect of piperine, a phytochemical from black pepper, on CS induction in CML MDR cells, and the mechanisms involved. The results indicate that piperine induced CS, being more cytotoxic to K562-derived MDR cells (Lucena-1 and FEPS) than to K562, the parental CML cell. CS was confirmed by analysis of cell metabolic activity and viability, cell morphology and apoptosis. P-gp was partially required for CS induction. To investigate a P-gp independent mechanism, we analyzed the possibility that poly (ADP-ribose) polymerase-1 (PARP-1) could be involved in piperine cytotoxic effects. It was previously shown that only MDR FEPS cells present a high level of 24 kDa fragment of PARP-1, which could protect these cells against cell death. In the present study, piperine was able to decrease the 24 kDa fragment of PARP-1 in MDR FEPS cells. We conclude that piperine targets selectively MDR cells, inducing CS, through a mechanism that might be dependent or not on P-gp.
Collapse
|
18
|
Relation of Metal-Binding Property and Selective Toxicity of 8-Hydroxyquinoline Derived Mannich Bases Targeting Multidrug Resistant Cancer Cells. Cancers (Basel) 2021; 13:cancers13010154. [PMID: 33466433 PMCID: PMC7796460 DOI: 10.3390/cancers13010154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/25/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Effective treatment of cancer is often limited by the resistance of cancer cells to chemotherapy. A well-described mechanism supporting multidrug resistance (MDR) relies on the efflux of toxic drugs from cancer cells, mediated by P-glycoprotein (Pgp). Circumventing Pgp-mediated resistance is expected to make a significant contribution to improved therapy of malignancies. Interestingly, MDR cells exhibit paradoxical hypersensitivity towards a diverse set of anticancer chelators. In this study we explore the relation of chemical and structural properties influencing metal binding and toxicity of a set of 8-hydroxyquinoline derivatives to reveal key characteristics governing “MDR-selective” activity. We find that subtle changes in the stability and redox activity of the biologically relevant metal complexes significantly influence MDR-selective toxicity. Our results underline the importance of chelation in MDR-selective toxicity, suggesting that the collateral sensitivity of MDR cells may be targeted by preferential iron deprivation or the formation of redox-active copper(II) complexes. Abstract Resistance to chemotherapeutic agents is a major obstacle in cancer treatment. A recently proposed strategy is to target the collateral sensitivity of multidrug resistant (MDR) cancer. Paradoxically, the toxicity of certain metal chelating agents is increased, rather than decreased, by the function of P-glycoprotein (Pgp), which is known to confer resistance by effluxing chemotherapeutic compounds from cancer cells. We have recently characterized and compared the solution’s chemical properties including ligand protonation and the metal binding properties of a set of structurally related 8-hydroxyquinoline derived Mannich bases. Here we characterize the impact of the solution stability and redox activity of their iron(III) and copper(II) complexes on MDR-selective toxicity. Our results show that the MDR-selective anticancer activity of the studied 8-hydroxyquinoline derived Mannich bases is associated with the iron deprivation of MDR cells and the preferential formation of redox-active copper(II) complexes, which undergo intracellular redox-cycling to induce oxidative stress.
Collapse
|
19
|
Singh NK, Kumbhar AA, Pokharel YR, Yadav PN. Anticancer potency of copper(II) complexes of thiosemicarbazones. J Inorg Biochem 2020; 210:111134. [DOI: 10.1016/j.jinorgbio.2020.111134] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
|
20
|
Wu CP, Hung CY, Lusvarghi S, Huang YH, Tseng PJ, Hung TH, Yu JS, Ambudkar SV. Overexpression of ABCB1 and ABCG2 contributes to reduced efficacy of the PI3K/mTOR inhibitor samotolisib (LY3023414) in cancer cell lines. Biochem Pharmacol 2020; 180:114137. [PMID: 32634436 DOI: 10.1016/j.bcp.2020.114137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
LY3023414 (samotolisib) is a promising new dual inhibitor of phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR). Currently, multiple clinical trials are underway to evaluate the efficacy of LY3023414 in patients with various types of cancer. However, the potential mechanisms underlying acquired resistance to LY3023414 in human cancer cells still remain elusive. In this study, we investigated whether the overexpression of ATP-binding cassette (ABC) drug transporters such as ABCB1 and ABCG2, one of the most common mechanisms for developing multidrug resistance, may potentially reduce the efficacy of LY3023414 in human cancer cells. We demonstrated that the intracellular accumulation of LY3023414 in cancer cells was significantly reduced by the drug efflux function of ABCB1 and ABCG2. Consequently, the cytotoxicity and efficacy of LY3023414 for inhibiting the activation of the PI3K pathway and induction of G0/G1 cell-cycle arrest were substantially reduced in cancer cells overexpressing ABCB1 or ABCG2, which could be restored using tariquidar or Ko143, respectively. Furthermore, stimulatory effect of LY3023414 on the ATPase activity of ABCB1 and ABCG2, as well as in silico molecular docking analysis of LY3023414 binding to the substrate-binding pockets of these transporters provided additional insight into the manner in which LY3023414 interacts with both transporters. In conclusion, we report that LY3023414 is a substrate for ABCB1 and ABCG2 transporters implicating their role in the development of resistance to LY3023414, which can have substantial clinical implications and should be further investigated.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Taiwan; Department of Physiology and Pharmacology, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | | | | | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Biochemistry and Molecular Biology, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
21
|
Synthesis and HSA-interaction of a new mixed ligand Cu-isothiosemicarbazonato complex with adenine nucleobase. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Huff LM, Horibata S, Robey RW, Hall MD, Gottesman MM. Mycoplasma Infection Mediates Sensitivity of Multidrug-Resistant Cell Lines to Tiopronin: A Cautionary Tale. J Med Chem 2020; 63:1434-1439. [PMID: 31702923 DOI: 10.1021/acs.jmedchem.9b00484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We previously reported that some, but not all, multidrug-resistant cells that overexpressed various drug-resistance transporters were collaterally sensitive to tiopronin. In recent follow-up studies, we discovered that sensitivity to tiopronin in the original study was mediated by infection of the cells by a human-specific strain of mycoplasma. These results strongly support the need to constantly monitor cells for mycoplasma infection and keep stored samples of all cells that are used for in vitro studies.
Collapse
|
23
|
Ding Z, Zhou M, Zeng C. Recent advances in isatin hybrids as potential anticancer agents. Arch Pharm (Weinheim) 2020; 353:e1900367. [PMID: 31960987 DOI: 10.1002/ardp.201900367] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/06/2022]
Abstract
The isatin framework is a useful template for the development of novel anticancer agents. This is exemplified by the fact that several isatin-based anticancer agents, such as semaxanib, sunitinib, nintedanib, and hesperadin, are already in use or under clinical trials for the treatment of diverse kinds of cancers. Isatin-based hybrids could be obtained by incorporating other anticancer pharmacophores into the isatin skeleton and they have the potential to overcome drug resistance with reduced side effects. Thus, isatin-based hybrids may provide attractive scaffolds for the development of novel anticancer agents. This review covers the recent advances of isatin-based hybrids with anticancer activity, covering articles published between 2001 and 2019. The anticancer activities of these molecules and the structure-activity relationships are also discussed. The purpose of this review article is to set up the direction for the design and development of isatin-based hybrids with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| | - Minfeng Zhou
- Department of General Practice, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Cheng Zeng
- Department of Pharmacy, Bozhou People's Hospital, Bozhou, China
| |
Collapse
|
24
|
Alcaraz R, Muñiz P, Cavia M, Palacios Ó, Samper KG, Gil-García R, Jiménez-Pérez A, García-Tojal J, García-Girón C. Thiosemicarbazone-metal complexes exhibiting cytotoxicity in colon cancer cell lines through oxidative stress. J Inorg Biochem 2020; 206:110993. [PMID: 32088593 DOI: 10.1016/j.jinorgbio.2020.110993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is the third most common type of cancer and has a high incidence in developed countries. At present, specific treatments are being required to allow individualized therapy depending on the molecular alteration on which the drug may act. The aim of this project is to evaluate whether HPTSC and HPTSC* thiosemicarbazones (HPTSC = pyridine-2-carbaldehyde thiosemicarbazone and HPTSC* = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone), and their complexes with different transition metal ions as Cu(II), Fe(III) and Co(III), have antitumor activity in colon cancer cells (HT-29 and SW-480), that have different oncogenic characteristics. Cytotoxicity was evaluated and the involvement of oxidative stress in its mechanism of action was analyzed by quantifying the superoxide dismutase activity, redox state by quantification of the thioredoxin levels and reduced/oxidized glutathione rate and biomolecules damage. The apoptotic effect was evaluated by measurements of the levels of caspase 9 and 3 and the index of histones. All the metal-thiosemicarbazones have antitumor activity mediated by oxidative stress. The HPTSC*-Cu was the compound that showed the best antitumor and apoptotic characteristics for the cell line SW480, that is KRAS gene mutated.
Collapse
Affiliation(s)
- Raquel Alcaraz
- Unidad de Investigación, Hospital Universitario de Burgos, Avd Islas Baleares, 3, 09006 Burgos, Spain.
| | - Pilar Muñiz
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Mónica Cavia
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Óscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Katia G Samper
- Departament de Química, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Rubén Gil-García
- Departamento de Química, Universidad de Burgos, 09001 Burgos, Spain
| | | | | | - Carlos García-Girón
- Servicio de Oncología Médica, Hospital Universitario de Burgos, Avd Islas Baleares, 3, 09006 Burgos, Spain
| |
Collapse
|
25
|
Huseynova M, Farzaliyev V, Medjidov A, Aliyeva M, Taslimi P, Sahin O, Yalçın B. Novel zinc compound with thiosemicarbazone of glyoxylic acid: Synthesis, crystal structure, and bioactivity properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Cserepes M, Türk D, Tóth S, Pape VFS, Gaál A, Gera M, Szabó JE, Kucsma N, Várady G, Vértessy BG, Streli C, Szabó PT, Tovari J, Szoboszlai N, Szakács G. Unshielding Multidrug Resistant Cancer through Selective Iron Depletion of P-Glycoprotein-Expressing Cells. Cancer Res 2019; 80:663-674. [PMID: 31888888 DOI: 10.1158/0008-5472.can-19-1407] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/02/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
Clinical evidence shows that following initial response to treatment, drug-resistant cancer cells frequently evolve and, eventually, most tumors become resistant to all available therapies. We compiled a focused library consisting of >500 commercially available or newly synthetized 8-hydroxyquinoline (8OHQ) derivatives whose toxicity is paradoxically increased rather than decreased by the activity of P-glycoprotein (Pgp), a transporter conferring multidrug resistance (MDR). Here, we deciphered the mechanism of action of NSC297366 that shows exceptionally strong Pgp-potentiated toxicity. Treatment of cells with NSC297366 resulted in changes associated with the activity of potent anticancer iron chelators. Strikingly, iron depletion was more pronounced in MDR cells due to the Pgp-mediated efflux of NSC297366-iron complexes. Our results indicate that iron homeostasis can be targeted by MDR-selective compounds for the selective elimination of multidrug resistant cancer cells, setting the stage for a therapeutic approach to fight transporter-mediated drug resistance. SIGNIFICANCE: Modulation of the MDR phenotype has the potential to increase the efficacy of anticancer therapies. These findings show that the MDR transporter is a "double-edged sword" that can be turned against resistant cancer.
Collapse
Affiliation(s)
- Mihály Cserepes
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Dóra Türk
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika F S Pape
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anikó Gaál
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Melinda Gera
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit E Szabó
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Pál T Szabó
- Instrumentation Centre, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Jozsef Tovari
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | | | - Gergely Szakács
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Yasrebi SA, Takjoo R, Riazi GH. HSA-interaction studies of uranyl complexes of alkyl substituted isothiosemicarbazone. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
29
|
Xiao M, Xue Y, Wu Z, Lei ZN, Wang J, Chen ZS, Li W. Design, synthesis and biological evaluation of selective survivin inhibitors. J Biomed Res 2019; 33:82-100. [PMID: 30174320 PMCID: PMC6477172 DOI: 10.7555/jbr.31.20160173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The differential distribution between cancer cells and normal adult tissues makes survivin a very attractive cancer drug target. We have previously reported a series of novel selective survivin inhibitors with the most potent compound MX106 reaching nanomolar activity in several cancer cell lines. Further optimization of the MX106 scaffold leads to the discovery of more potent and more selective survivin inhibitors. Various structural modifications were synthesized and their anticancer activities were evaluated to determine the structure activity relationships for this MX106 scaffold. In vitro anti-proliferative assays using two human melanoma cell lines showed that several new analogs have improved potency compared to MX106. Very interestingly, these new analogs generally showed significantly higher potency against P-glycoprotein overexpressed cells compared with the corresponding parental cells, suggesting that these compounds may strongly sensitize tumors that have high expressions of the P-glycoprotein drug efflux pumps. Western blotting analysis confirmed that the new MX106 analogs maintained their mechanism of actions by selectively suppressing survivin expression level among major inhibitors of apoptotic proteins and induced strong apoptosis in melanoma tumor cells.
Collapse
Affiliation(s)
- Min Xiao
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yi Xue
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jin Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
30
|
Heffeter P, Pape VFS, Enyedy ÉA, Keppler BK, Szakacs G, Kowol CR. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. Antioxid Redox Signal 2019; 30:1062-1082. [PMID: 29334758 DOI: 10.1089/ars.2017.7487] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE During the past decades, thiosemicarbazones were clinically developed for a variety of diseases, including tuberculosis, viral infections, malaria, and cancer. With regard to malignant diseases, the class of α-N-heterocyclic thiosemicarbazones, and here especially 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), was intensively developed in multiple clinical phase I/II trials. Recent Advances: Very recently, two new derivatives, namely COTI-2 and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) have entered phase I evaluation. Based on the strong metal-chelating/metal-interacting properties of thiosemicarbazones, interference with the cellular iron (and copper) homeostasis is assumed to play an important role in their biological activity. CRITICAL ISSUES In this review, we summarize and analyze the data on the interaction of (α-N-heterocyclic) thiosemicarbazones with iron, with the special aim of bridging the current knowledge on their mode of action from chemistry to (cell) biology. In addition, we highlight the difference to classical iron(III) chelators such as desferrioxamine (DFO), which are used for the treatment of iron overload. FUTURE DIRECTIONS We want to emphasize that thiosemicarbazones are not solely removing iron from the cells/organism. In contrast, they should be considered as iron-interacting drugs influencing diverse biological pathways in a complex and multi-faceted mode of action. Consequently, in addition to the discussion of physicochemical properties (e.g., complex stability, redox activity), this review contains an overview on the diversity of cellular thiosemicarbazone targets and drug resistance mechanisms.
Collapse
Affiliation(s)
- Petra Heffeter
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria
| | - Veronika F S Pape
- 3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary .,4 Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest, Hungary
| | - Éva A Enyedy
- 5 Department of Inorganic and Analytical Chemistry, University of Szeged , Szeged, Hungary
| | - Bernhard K Keppler
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| | - Gergely Szakacs
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christian R Kowol
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| |
Collapse
|
31
|
Yasrebi SA, Takjoo R, Riazi GH, Mague JT. A theoretical and experimental study of six novel new complexes of alkyl substituted isothiosemicarbazone. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Sugisawa N, Ohnuma S, Ueda H, Murakami M, Sugiyama K, Ohsawa K, Kano K, Tokuyama H, Doi T, Aoki J, Ishida M, Kudoh K, Naitoh T, Ambudkar SV, Unno M. Novel Potent ABCB1 Modulator, Phenethylisoquinoline Alkaloid, Reverses Multidrug Resistance in Cancer Cell. Mol Pharm 2018; 15:4021-4030. [PMID: 30052463 DOI: 10.1021/acs.molpharmaceut.8b00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ATP-binding cassette (ABC) transporters, which are concerned with the efflux of anticancer drugs from cancer cells, have a pivotal role in multidrug resistance (MDR). In particular, ABCB1 is a well-known ABC transporter that develops MDR in many cancer cells. Some ABCB1 modulators can reverse ABCB1-mediated MDR; however, no modulators with clinical efficacy have been approved. The aim of this study was to identify novel ABCB1 modulators by using high-throughput screening. Of the 5861 compounds stored at Tohoku University, 13 compounds were selected after the primary screening via a fluorescent plate reader-based calcein acetoxymethylester (AM) efflux assay. These 13 compounds were validated in a flow cytometry-based calcein AM efflux assay. Two isoquinoline derivatives were identified as novel ABCB1 inhibitors, one of which was a phenethylisoquinoline alkaloid, (±)-7-benzyloxy-1-(3-benzyloxy-4-methoxyphenethyl)-1,2,3,4-tetrahydro-6-methoxy-2-methylisoquinoline oxalate. The compound, a phenethylisoquinoline alkaloid, was subsequently evaluated in the cytotoxicity assay and shown to significantly enhance the reversal of ABCB1-mediated MDR. In addition, the compound activated the ABCB1-mediated ATP hydrolysis and inhibited the photolabeling of ABCB1 with [125I]-iodoarylazidoprazosin. Furthermore, the compound also reversed the resistance to paclitaxel without increasing the toxicity in the ABCB1-overexpressing KB-V1 cell xenograft model. Overall, we concluded that the newly identified phenethylisoquinoline alkaloid reversed ABCB1-mediated MDR through direct interaction with the substrate-binding site of ABCB1. These findings may contribute to the development of more potent and less toxic ABCB1 modulators, which could overcome ABCB1-mediated MDR.
Collapse
Affiliation(s)
- Norihiko Sugisawa
- Department of Surgery , Tohoku University Graduate School of Medicine , Sendai 980-8574 , Japan
| | - Shinobu Ohnuma
- Department of Surgery , Tohoku University Graduate School of Medicine , Sendai 980-8574 , Japan
| | - Hirofumi Ueda
- Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Megumi Murakami
- Department of Surgery , Tohoku University Graduate School of Medicine , Sendai 980-8574 , Japan.,Laboratory of Cell Biology, Center for Cancer Research , National Cancer Institute, NIH , Bethesda , Maryland 20892 , United States
| | - Kyoko Sugiyama
- Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Kosuke Ohsawa
- Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences , Tohoku University , Sendai 980-8578 , Japan
| | - Masaharu Ishida
- Department of Surgery , Tohoku University Graduate School of Medicine , Sendai 980-8574 , Japan
| | - Katsuyoshi Kudoh
- Department of Surgery , Tohoku University Graduate School of Medicine , Sendai 980-8574 , Japan
| | - Takeshi Naitoh
- Department of Surgery , Tohoku University Graduate School of Medicine , Sendai 980-8574 , Japan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research , National Cancer Institute, NIH , Bethesda , Maryland 20892 , United States
| | - Michiaki Unno
- Department of Surgery , Tohoku University Graduate School of Medicine , Sendai 980-8574 , Japan
| |
Collapse
|
33
|
Gaál A, Orgován G, Mihucz VG, Pape I, Ingerle D, Streli C, Szoboszlai N. Metal transport capabilities of anticancer copper chelators. J Trace Elem Med Biol 2018; 47:79-88. [PMID: 29544811 DOI: 10.1016/j.jtemb.2018.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
In the present study, several Cu chelators [2,2'-biquinoline, 8-hydroxiquinoline (oxine), ammonium pyrrolidinedithiocarbamate (APDTC), Dp44mT, dithizone, neocuproine] were used to study Cu uptake, depletion and localization in different cancer cell lines. To better understand the concentration dependent fluctuations in the Cu intracellular metal content and Cu-dependent in vitro antiproliferative data, the conditional stability constants of the Cu complex species of the investigated ligands were calculated. Each investigated chelator increased the intracellular Cu content on HT-29 cells causing Cu accumulation depending on the amount of the free Cu(II). Copper accumulation was 159 times higher for Dp44mT compared to the control. Investigating a number of other transition metals, intracellular accumulation of Cd was observed only for two chelators. Intracellular Zn content slightly decreased (cca. 10%) for MCF-7 cells, while a dramatic decrease was observed on MDA-MB-231 ones (cca. 50%). A similar decrease was observed for HCT-116, while Zn depletion for HT-29 corresponded to cca. 20%. The IC50 values were registered for the investigated four cell lines at increasing external Cu(II) concentration, namely, MDA-MB-231 cells had the lowest IC50 values for Dp44mT ranging between 7 and 35 nM. Thus, Zn depletion could be associated with lower IC50 values. Copper depletion was observed for all ligands being less pronounced for Dp44mT and neocuproine. Copper localization and its colocalization with Zn were determined by μ-XRF imaging. Loose correlation (0.57) was observed for the MCF-7 cells independently of the applied chelator. Similarly, a weak correlation (0.47) was observed for HT-29 cells treated with Cu(II) and oxine. Colocalization of Cu and Zn in the nucleus of HT-29 cells was observed for Dp44mT (correlation coefficient of 0.85).
Collapse
Affiliation(s)
- Anikó Gaál
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary
| | - Gábor Orgován
- Department of Pharmaceutical Chemistry, Semmelweis University, H-1092 Budapest, Hőgyes Endre u. 9, Hungary; Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, H-1092 Budapest, Hőgyes Endre u. 9, Hungary
| | - Victor G Mihucz
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary; Hungarian Satellite Trace Elements Institute to UNESCO, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary
| | - Ian Pape
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Dieter Ingerle
- Atominstitut, Technische Universitaet Wien, A-1020 Vienna, Stadionallee 2, Austria
| | - Christina Streli
- Atominstitut, Technische Universitaet Wien, A-1020 Vienna, Stadionallee 2, Austria
| | - Norbert Szoboszlai
- Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary.
| |
Collapse
|
34
|
Jiang P, Sellers WR, Liu XS. Big Data Approaches for Modeling Response and Resistance to Cancer Drugs. Annu Rev Biomed Data Sci 2018; 1:1-27. [PMID: 31342013 DOI: 10.1146/annurev-biodatasci-080917-013350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite significant progress in cancer research, current standard-of-care drugs fail to cure many types of cancers. Hence, there is an urgent need to identify better predictive biomarkers and treatment regimes. Conventionally, insights from hypothesis-driven studies are the primary force for cancer biology and therapeutic discoveries. Recently, the rapid growth of big data resources, catalyzed by breakthroughs in high-throughput technologies, has resulted in a paradigm shift in cancer therapeutic research. The combination of computational methods and genomics data has led to several successful clinical applications. In this review, we focus on recent advances in data-driven methods to model anticancer drug efficacy, and we present the challenges and opportunities for data science in cancer therapeutic research.
Collapse
Affiliation(s)
- Peng Jiang
- Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - William R Sellers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - X Shirley Liu
- Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| |
Collapse
|
35
|
Kim TW, Lee SJ, Kim JT, Kim SJ, Min JK, Bae KH, Jung H, Kim BY, Lim JS, Yang Y, Yoon DY, Choe YK, Lee HG. Kallikrein-related peptidase 6 induces chemotherapeutic resistance by attenuating auranofin-induced cell death through activation of autophagy in gastric cancer. Oncotarget 2018; 7:85332-85348. [PMID: 27863404 PMCID: PMC5356740 DOI: 10.18632/oncotarget.13352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) is a biomarker of gastric cancer associated with poor prognosis. Mechanisms by which KLK6 could be exploited for chemotherapeutic use are unclear. We evaluated auranofin (AF), a compound with cytotoxic effects, in KLK6-deficient cells, and we investigated whether KLK6 expression induces autophagy and acquisition of drug resistance in gastric cancer. Using cultured human cells and a mouse xenograft model, we investigated how KLK6 affects antitumor-reagent-induced cell death and autophagy. Expression levels of KLK6, p53, and autophagy marker LC3B were determined in gastric cancer tissues. We analyzed the effects of knockdown/overexpression of KLK6, LC3B, and p53 on AF-induced cell death in cancer cells. Increased KLK6 expression in human gastric cancer tissues and cells inhibited AF-induced cell motility due to increased autophagy and p53 levels. p53 dependent induction of KLK6 expression increased autophagy and drug resistance, whereas KLK6 silencing decreased the autophagy level and increased drug sensitivity. During AF-induced cell death, KLK6 and LC3B colocalized to autophagosomes, associated with p53, and were then trafficked to the cytosol. In the xenograft model of gastric cancer, KLK6 expression decreased AF-induced cell death and KLK6-induced autophagy increased AF resistance. Taken together, the data suggest that the induction of autophagic processes through KLK6 expression may increase acquisition of resistance to AF. Our findings may contribute to a new paradigm for tumor therapeutics.
Collapse
Affiliation(s)
- Tae Woo Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Korea
| | - Seon-Jin Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Korea
| | - Jong-Tae Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Bo-Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Yong-Kyung Choe
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
36
|
Cell Migration Related to MDR-Another Impediment to Effective Chemotherapy? Molecules 2018; 23:molecules23020331. [PMID: 29401721 PMCID: PMC6017720 DOI: 10.3390/molecules23020331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance, mediated by members of the ATP-binding cassette (ABC) proteins superfamily, has become one of the biggest obstacles in conquering tumour progression. If the chemotherapy outcome is considered successful, when the primary tumour volume is decreased or completely abolished, modulation of ABC proteins activity is one of the best methods to overcome drug resistance. However, if a positive outcome is represented by no metastasis or, at least, elongation of remission-free time, then the positive effect of ABC proteins inhibition should be compared with the several side effects it causes, which may inflict cancer progression and decrease overall patient health. Clinical trials conducted thus far have shown that the tested ABC modulators add limited or no benefits to cancer patients, as some of them are merely toxic and others induce unwanted drug–drug interactions. Moreover, the inhibition of certain ABC members has been recently indicated as potentially responsible for increased fibroblasts migration. A better understanding of the complex role of ABC proteins in relation to cancer progression may offer novel strategies in cancer therapy.
Collapse
|
37
|
Yuan WQ, Zhang RR, Wang J, Ma Y, Li WX, Jiang RW, Cai SH. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression. Oncotarget 2017; 7:31466-83. [PMID: 27129170 PMCID: PMC5058771 DOI: 10.18632/oncotarget.8965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/02/2016] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.
Collapse
Affiliation(s)
- Wei-Qi Yuan
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Rong-Rong Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Jun Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Ma
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Wen-Xue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Shao-Hui Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
38
|
Vittorio O, Le Grand M, Makharza SA, Curcio M, Tucci P, Iemma F, Nicoletta FP, Hampel S, Cirillo G. Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: An in vitro study with dextran-catechin nanohybrids. Eur J Pharm Biopharm 2017; 122:176-185. [PMID: 29129733 DOI: 10.1016/j.ejpb.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Hybrid nanocarrier consisting in nanographene oxide coated by a dextran-catechin conjugate was proposed in the efforts to find more efficient Neuroblastoma treatment with Doxorubicin chemotherapy. The dextran-catechin conjugate was prepared by immobilized laccase catalysis and its peculiar reducing ability exploited for the synthesis of the hybrid carrier. Raman spectra and DSC thermograms were recorded to check the physicochemical properties of the nanohybrid, while DLS measurements, SEM, TEM, and AFM microscopy allowed the determination of its morphological and dimensional features. A pH dependent Doxorubicin release was observed, with 30 and 75% doxorubicin released at pH 7.4 and 5.0, respectively. Viability assays on parental BE(2)C and resistant BE(2)C/ADR cell lines proved that the high anticancer activity of dextran-catechin conjugate (IC50 19.9 ± 0.6 and 18.4 ± 0.7 µg mL-1) was retained upon formation of the nanohybrids (IC50 24.8 ± 0.7 and 22.9 ± 1 µg mL-1). Combination therapy showed a synergistic activity between doxorubicin and either bioconjugate or nanocarrier on BE(2)C. More interestingly, on BE(2)C/ADR we recorded both the reversion of doxorubicin resistance mechanism as a consequence of decreased P-gp expression (Western Blot analysis) and a synergistic effect on cell viability, confirming the proposed nanohybrid as a very promising starting point for further research in neuroblastoma treatment.
Collapse
Affiliation(s)
- Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, NSW, Sydney, Australia
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, NSW, Sydney, Australia
| | - Sami A Makharza
- College of Pharmacy and Medical Sciences, Hebron University, Hebron, Palestine
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Paola Tucci
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
39
|
Zhou XW, Xia YZ, Zhang YL, Luo JG, Han C, Zhang H, Zhang C, Yang L, Kong LY. Tomentodione M sensitizes multidrug resistant cancer cells by decreasing P-glycoprotein via inhibition of p38 MAPK signaling. Oncotarget 2017; 8:101965-101983. [PMID: 29254218 PMCID: PMC5731928 DOI: 10.18632/oncotarget.21949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, we investigated the mechanism by which tomentodione M (TTM), a novel natural syncarpic acid-conjugated monoterpene, reversed multi-drug resistance (MDR) in cancer cells. TTM increased the cytotoxicity of chemotherapeutic drugs such as docetaxel and doxorubicin in MCF-7/MDR and K562/MDR cells in a dose- and time-dependent manner. TTM reduced colony formation and enhanced apoptosis in docetaxel-treated MCF-7/MDR and K562/MDR cells, and it enhanced intracellular accumulation of doxorubicin and rhodamine 123 in MDR cancer cells by reducing drug efflux mediated by P-gp. TTM decreased expression of both P-gp mRNA and protein by inhibiting p38 MAPK signaling. Similarly, the p38 MAPK inhibitor SB203580 reversed MDR in cancer cells by decreasing P-gp expression. Conversely, p38 MAPK-overexpressing MCF-7 and K562 cells showed higher P-gp expression than controls. These observations indicate that TTM reverses MDR in cancer cells by decreasing P-gp expression via p38 MAPK inhibition.
Collapse
Affiliation(s)
- Xu-Wei Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Long Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Bai J, Wang RH, Qiao Y, Wang A, Fang CJ. Schiff base derived from thiosemicarbazone and anthracene showed high potential in overcoming multidrug resistance in vitro with low drug resistance index. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2227-2237. [PMID: 28814831 PMCID: PMC5546733 DOI: 10.2147/dddt.s138371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multidrug resistance (MDR) is a huge obstacle in cancer chemotherapeutics. Overcoming MDR is a great challenge for anticancer drug discovery. Here, DNA binding and cytotoxicity of Schiff base L1 and L2 were explored to assess their efficiency in fighting cancer and overcoming the MDR. L1 and L2 could treat extremely chemoresistant MCF-7/ADR cell as drug-sensitive cell, with drug resistance index (DRI) <2.13, showing high potential in overcoming the MDR. The apoptotic ratio induced by L1 and L2 was low for both MCF-7 and MCF-7/ADR cells. L1 and L2 induced an impairment of cell cycle progression of MCF-7 and MCF-7/ADR cell lines and suppressed cell growth by perturbing progress through the G0/G1 phase, with L2 causing more profound effect, which might account for lower drug resistance after L2 treatment. The molecular docking revealed weak interaction between L1/L2 and P-glycoprotein (P-gp), the most important drug efflux pump and intracellular Rhodamine 123 accumulation indicated that the activity of P-gp was not inhibited by L1 and L2. Combined with the cellular uptake results, it implied that L1 and L2 could bypass P-gp efflux to exert anticancer activity.
Collapse
Affiliation(s)
- Jie Bai
- Department of Chemical Biology, School of Pharmaceutical Sciences, Capital Medical University, Beijing
| | - Rui-Hui Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Capital Medical University, Beijing
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan
| | - Aidong Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui, China
| | - Chen-Jie Fang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Capital Medical University, Beijing
| |
Collapse
|
41
|
Wu CP, Hsiao SH, Murakami M, Lu YJ, Li YQ, Huang YH, Hung TH, Ambudkar SV, Wu YS. Alpha-Mangostin Reverses Multidrug Resistance by Attenuating the Function of the Multidrug Resistance-Linked ABCG2 Transporter. Mol Pharm 2017. [PMID: 28641010 DOI: 10.1021/acs.molpharmaceut.7b00334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ATP-binding cassette (ABC) drug transporter ABCG2 can actively efflux a wide variety of chemotherapeutic agents out of cancer cells and subsequently reduce the intracellular accumulation of these drugs. Therefore, the overexpression of ABCG2 often contributes to the development of multidrug resistance (MDR) in cancer cells, which is one of the major obstacles to successful cancer chemotherapy. Moreover, ABCG2 is highly expressed in various tissues including the intestine and blood-brain barrier (BBB), limiting the absorption and bioavailability of many therapeutic agents. For decades, the task of developing a highly effective synthetic inhibitor of ABCG2 has been hindered mostly by the intrinsic toxicity, the lack of specificity, and complex pharmacokinetics. Alternatively, considering the wide range of diversity and relatively nontoxic nature of natural products, developing potential modulators of ABCG2 from natural sources is particularly valuable. α-Mangostin is a natural xanthone derived from the pericarps of mangosteen (Garcinia mangostana L.) with various pharmacological purposes, including suppressing angiogenesis and inducing cancer cell growth arrest. In this study, we demonstrated that at nontoxic concentrations, α-mangostin effectively and selectively inhibits ABCG2-mediated drug transport and reverses MDR in ABCG2-overexpressing MDR cancer cells. Direct interactions between α-mangostin and the ABCG2 drug-binding site(s) were confirmed by stimulation of ATPase activity and by inhibition of photolabeling of the substrate-binding site(s) of ABCG2 with [125I]iodoarylazidoprazosin. In summary, our findings show that α-mangostin has great potential to be further developed into a promising modulator of ABCG2 for reversing MDR and for its use in combination therapy for patients with MDR tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | | | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20850, United States
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | | | - Yang-Hui Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital , Taipei 105, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20850, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University , Taichung 407, Taiwan
| |
Collapse
|
42
|
Dankó B, Tóth S, Martins A, Vágvölgyi M, Kúsz N, Molnár J, Chang FR, Wu YC, Szakács G, Hunyadi A. Synthesis and SAR Study of Anticancer Protoflavone Derivatives: Investigation of Cytotoxicity and Interaction with ABCB1 and ABCG2 Multidrug Efflux Transporters. ChemMedChem 2017; 12:850-859. [DOI: 10.1002/cmdc.201700225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Balázs Dankó
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Szilárd Tóth
- Institute of Enzymology; Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Ana Martins
- Department of Medical Microbiology and Immunobiology; Faculty of Medicine; University of Szeged; Szeged Hungary
- Current address: Synthetic Systems Biology Unit; Institute of Biochemistry; Biological Research Centre; Temesvári krt. 62 6726 Szeged Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Joseph Molnár
- Department of Medical Microbiology and Immunobiology; Faculty of Medicine; University of Szeged; Szeged Hungary
| | - Fang-Rong Chang
- Graduate Institute of Natural Products; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Cancer Center; Kaohsiung Medical University Hospital; Kaohsiung Taiwan, R.O.C
- R&D Center of Chinese Herbal Medicines & New Drugs, College of Pharmacy; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
| | - Yang-Chang Wu
- Graduate Institute of Natural Products; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Research Center for Natural Products and Drug Development; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Department of Medical Research; Kaohsiung Medical University Hospital; Kaohsiung Taiwan, R.O.C
| | - Gergely Szakács
- Institute of Enzymology; Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
- Institute of Cancer Research; Medical University Vienna; Vienna Austria
| | - Attila Hunyadi
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
- Interdisciplinary Centre for Natural Products; University of Szeged; Szeged Hungary
| |
Collapse
|
43
|
Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes. J Chem Biol 2017; 10:91-104. [PMID: 28684996 DOI: 10.1007/s12154-017-0167-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/09/2017] [Indexed: 01/10/2023] Open
Abstract
2-Butanone thiosemicarbazone ligand was prepared by condensation reaction between thiosemicarbazide and butanone. The ligand was characterized by 1H NMR, 13C NMR, FT-IR, mass spectrometry and UV spectroscopic studies. Docking studies were performed to study inhibitory action against topoisomerase II (Topo II) and ribonucleoside diphosphate reductase (RR) enzymes. Inhibition constants (Ki ) of the ligand were 437.87 and 327.4 μM for the two enzymes, respectively. The ligand was tested for its potential anticancer activity against two cancer cell lines MDA-MB-231 and A549 using MTT assay and was found to exhibit good activity at higher doses with an IC50 = 80 μM against human breast cancer cell line MDA-MB-231. On the other hand, no significant activity was obtained against the lung carcinoma cell line A549. Antibacterial activity of the ligand was tested against Staphylococcus aureus and E. coli using the disc diffusion method. Ligand did not exhibit any significant antibacterial activity. Four complexes of Co(III), Fe(II), Cu(II), and Zn(II) were prepared with the ligand and characterized by various spectroscopic studies. Low molar conductance values were obtained for all complexes displaying non-electrolyte nature except in Co(III) complex. As expected, complexation with metal ions significantly increased the cytotoxicity of the ligand against the tested cell lines viz. IC50 values of <20 μM for Co, Fe, and Zn complexes and approx. 80 μM against MDA cells versus IC50 value of <20 μM for Co and Cu complexes and that of 30 and 50 μM for Fe and Zn complexes, respectively, against A549 cells. The Cu complex was found to be active against E. coli and S. aureus with MIC values in the range of 6-10 mg/mL. Other than Cu, only Co complex was found to possess antibacterial activity with MIC values of 5-10 mg/mL when tested against S. aureus. Bioactivity score and Prediction of Activity Spectra for Substances (PASS) analysis also depicted the drug-like nature of ligand and complexes.
Collapse
|
44
|
Synthesis, characterization and in vitro biological activities of new water-soluble copper(II), zinc(II), and nickel(II) complexes with sulfonato-substituted Schiff base ligand. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Hosseini-Yazdi SA, Mirzaahmadi A, Khandar AA, Eigner V, Dušek M, Mahdavi M, Soltani S, Lotfipour F, White J. Reactions of copper(II), nickel(II), and zinc(II) acetates with a new water-soluble 4-phenylthiosemicarbazone Schiff base ligand: Synthesis, characterization, unexpected cyclization, antimicrobial, antioxidant, and anticancer activities. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Lyu L, Liu F, Wang X, Hu M, Mu J, Cheong H, Liu G, Xing B. Stimulus-Responsive Short Peptide Nanogels for Controlled Intracellular Drug Release and for Overcoming Tumor Resistance. Chem Asian J 2017; 12:744-752. [PMID: 28070974 DOI: 10.1002/asia.201601704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 02/02/2023]
Abstract
Multidrug resistance (MDR) poses a major burden to cancer treatment. As one important factor contributing to MDR, overexpression of P-glycoprotein (P-gp) results in a reduced intracellular drug accumulation. Hence, the ability to effectively block the efflux protein and to accumulate the therapeutics in cancer cells is of great significance in clinical practice. In this work, we successfully developed a smart stimulus-responsive short peptide-assembled system, termed as PD/VER nanogels, which synergistically combined the acid-activatable antitumor prodrug doxorubicin (Dox) with the P-gp inhibitor verapamil (VER) for reversing MDR. Systematic studies demonstrated that such an inhibitor-encapsulated nanogel could effectively enhance the accumulation of Dox in resistant cancer cells, thereby revealing significantly higher antitumor activity compared to free Dox molecules. This work showed that the assembly of bioactive agents with a synergistic effect into nano-drugs could provide a useful strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Linna Lyu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Fang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jing Mu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Haolun Cheong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 117602, Singapore
| |
Collapse
|
47
|
Sun S, Cai J, Yang Q, Zhu Y, Zhao S, Wang Z. Prognostic Value and Implication for Chemotherapy Treatment of ABCB1 in Epithelial Ovarian Cancer: A Meta-Analysis. PLoS One 2016; 11:e0166058. [PMID: 27812204 PMCID: PMC5094734 DOI: 10.1371/journal.pone.0166058] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/21/2016] [Indexed: 11/25/2022] Open
Abstract
Background Chemotherapy resistance is reported to correlate with up-regulation of anti-tumor agent transporter ABCB1 (p-gp) in epithelial ovarian cancer (EOC), but the results remain controversial. To reconcile the results, a systematic review followed by meta-analysis was performed to assess the association between high ABCB1 status or ABCB1 gene variants and overall survival (OS), progression free survival (PFS), and total response rate (TR) in patients with EOC. Materials and Methods Electronic searches were performed using Pubmed, EMBASE, Web of Science and Chinese Wanfang databases from January 1990 to February 2016. Summary hazard ratio (HR), risk ratio (RR) and 95% confidence intervals (CIs) were combined using fixed or random-effects models as appropriate. Results Thirty-eight retrospective studies of 8607 cases qualified for meta-analysis were identified. Our results suggested that ABCB1 over-expression was significantly associated with unfavorable OS (HR = 1.54; 95% CI, 1.25–1.90), PFS (HR = 1.49; 95% CI, 1.22–1.82) and TR (RR = 0.63; 95% CI, 0.54–0.75). After adjustment for age, clinical stage, residual disease, histological type and tumor grade, high ABCB1 status remained to be a significant risk factor for adverse OS and PFS. Patients with recurrent ABCB1 positivity suffered from poorer OS than those with primary ABCB1 positivity. However, stratified by chemotherapy regimen, inverse correlation between high ABCB1 status and poor OS, PFS and TR were only found in patients underwent platinum-based chemotherapy but not in patients received standard platinum/paclitaxel-based chemotherapy. No evidence was found for any association between ABCB1 gene polymorphisms and OS, PFS or TR. Conclusion High ABCB1 status is significantly associated with chemo-resistance and poor prognosis in patients with EOC. Large-scale, prospective studies are needed to assess the clinical value of ABCB1 expression in EOC more accurately.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yapei Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Simei Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
48
|
Füredi A, Tóth S, Szebényi K, Pape VF, Türk D, Kucsma N, Cervenak L, Tóvári J, Szakács G. Identification and Validation of Compounds Selectively Killing Resistant Cancer: Delineating Cell Line–Specific Effects from P-Glycoprotein–Induced Toxicity. Mol Cancer Ther 2016; 16:45-56. [DOI: 10.1158/1535-7163.mct-16-0333-t] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 11/16/2022]
|
49
|
Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:266-275. [PMID: 27717733 DOI: 10.1016/j.bbcan.2016.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
Abstract
Ovarian cancer remains the leading cause of gynecological cancer-related mortality despite the advances in surgical techniques and chemotherapy drugs over the past three decades. Multidrug resistance (MDR) to chemotherapy is the major cause of treatment failure. Previous research has focused mainly on strategies to reverse MDR by targeting the MDR1 gene encoded P-glycoprotein (Pgp) with small molecular compound inhibitors. However, prior Pgp inhibitors have shown very limited clinical success because these agents have relatively low potency and high toxicity. Therefore, identification of more specific and potent new inhibitors would be useful. In addition, emerging evidence suggests that cancer stem cells (CSCs), deregulated non-coding RNA (ncRNA), autophagy, and tumor heterogeneity also contribute significantly to drug sensitivity/resistance in ovarian cancer. This review summarizes these novel mechanisms of MDR and evaluates several new concepts to overcome MDR in the treatment of ovarian cancer. These new strategies include overcoming MDR with more potent and specific Pgp inhibitors, targeting CSCs and ncRNA, modulating autophagy signaling pathway, and targeting tumor heterogeneity.
Collapse
|
50
|
Ibrahim HS, Abou-Seri SM, Abdel-Aziz HA. 3-Hydrazinoindolin-2-one derivatives: Chemical classification and investigation of their targets as anticancer agents. Eur J Med Chem 2016; 122:366-381. [DOI: 10.1016/j.ejmech.2016.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 01/13/2023]
|