1
|
Wang S, Wang M, Li Z, Xu G, Wang D. Discovery of N-(2-Acetamidobenzo[ d]thiazol-6-yl)-2-phenoxyacetamide Derivatives as Novel Potential BCR-ABL1 Inhibitors Through Structure-Based Virtual Screening. Molecules 2025; 30:1065. [PMID: 40076290 PMCID: PMC11901765 DOI: 10.3390/molecules30051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BCR-ABL1 kinase is a critical driver of chronic myeloid leukemia (CML) pathophysiology. The approval of allosteric inhibitor asciminib brings new hope for overcoming drug resistance caused by mutations in the ATP-binding site. To expand the chemical diversity of BCR-ABL1 kinase inhibitors with positive anti-tumor effect with asciminib, structure-based virtual screening and molecular dynamics simulations were employed to discover novel scaffolds. This approach led to the identification of a series of N-(2-acetamidobenzo[d]thiazol-6-yl)-2-phenoxyacetamide derivatives as new BCR-ABL1 inhibitors. The most potent compound, 10m, demonstrated inhibition of BCR-ABL-dependent signaling and showed an anti-tumor effect against K562 cells, with an IC50 value of 0.98 μM. Compound 10m displayed powerful synergistic anti-proliferation and pro-apoptotic effects when combined with asciminib, highlighting its potential as a promising lead for the development of potential BCR-ABL inhibitors.
Collapse
Affiliation(s)
- Shuaixing Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Reference and Research on Influenza, Key Laboratory for Medical Virology and Viral Diseases, National Health Commission, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China; (S.W.); (M.W.); (Z.L.)
| | - Minyi Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Reference and Research on Influenza, Key Laboratory for Medical Virology and Viral Diseases, National Health Commission, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China; (S.W.); (M.W.); (Z.L.)
| | - Zi Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Reference and Research on Influenza, Key Laboratory for Medical Virology and Viral Diseases, National Health Commission, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China; (S.W.); (M.W.); (Z.L.)
| | - Guofeng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China;
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Reference and Research on Influenza, Key Laboratory for Medical Virology and Viral Diseases, National Health Commission, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China; (S.W.); (M.W.); (Z.L.)
| |
Collapse
|
2
|
Quezada Meza CP, Salizzato V, Calistri E, Basso M, Zavatti M, Marmiroli S, Salvi M, Carter BZ, Donella-Deana A, Borgo C, Ruzzene M. Critical role of protein kinase CK2 in chronic myeloid leukemia cells harboring the T315I BCR::ABL1 mutation. Int J Biol Macromol 2025; 286:138305. [PMID: 39631575 DOI: 10.1016/j.ijbiomac.2024.138305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Chronic myeloid leukemia (CML) is characterized by the fusion protein BCR::ABL1, a constitutively active tyrosine kinase. The frontline treatment, represented by tyrosine kinase inhibitors (TKIs), has dramatically improved the clinical outcomes of patients. However, TKI resistance through various mechanisms has been reported. In particular, the BCR::ABL11 T315I mutation is associated with resistance to first- and second-generation TKIs and poor survival outcomes. For patients harboring this mutation, treatments with third generation TKIs are indicated, which are however accompanied by adverse events. Protein kinase CK2 is implicated in several human diseases. Although its role in CML has already been proven, its essentialness in T315I-mediated TKI resistance has yet to be investigated. Here we show that CK2 contributes to the aberrantly high signaling pathways in T315I-cells, and that its pharmacological or genetic targeting diminishes those signals, induces apoptosis, and reduces the proliferation and clonogenic potential of T315I-cells. The effects of CK2 inhibition are also observed in the presence of bone marrow stromal cells and under hypoxic conditions, and, remarkably, in patient-derived cells. Moreover, CK2 inhibition or genetic ablation of the CK2α catalytic subunit sensitizes T315I-cells towards TKIs. Collectively, our results suggest the potential benefit of inhibiting CK2 in CML characterized by T315I-dependent resistance.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Casein Kinase II/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Mutation
- Apoptosis/drug effects
- Apoptosis/genetics
- Protein Kinase Inhibitors/pharmacology
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- Signal Transduction
Collapse
Affiliation(s)
| | | | | | - Marco Basso
- Pharmacy, Veneto Institute of Oncology IOV IRCCS, Padua, Italy
| | - Manuela Zavatti
- Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sandra Marmiroli
- Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Salvi
- Dept. Biomedical Sciences, University of Padova, Padova, Italy
| | - Bing Z Carter
- Dept. Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - Christian Borgo
- Dept. Biomedical Sciences, University of Padova, Padova, Italy; Dept. Medicine, University of Padova, Padova, Italy.
| | - Maria Ruzzene
- Dept. Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Wang Y, Nan X, Duan Y, Wang Q, Liang Z, Yin H. FDA-approved small molecule kinase inhibitors for cancer treatment (2001-2015): Medical indication, structural optimization, and binding mode Part I. Bioorg Med Chem 2024; 111:117870. [PMID: 39128361 DOI: 10.1016/j.bmc.2024.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The dysregulation of kinases has emerged as a major class of targets for anticancer drug discovery given its node roles in the etiology of tumorigenesis, progression, invasion, and metastasis of malignancies, which is validated by the FDA approval of 28 small molecule kinase inhibitor (SMKI) drugs for cancer treatment at the end of 2015. While the preclinical and clinical data of these drugs are widely presented, it is highly essential to give an updated review on the medical indications, design principles and binding modes of these anti-tumor SMKIs approved by the FDA to offer insights for the future development of SMKIs with specific efficacy and safety.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Xiang Nan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China; Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yanping Duan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hanrong Yin
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China.
| |
Collapse
|
4
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Combarel D, Dousset L, Bouchet S, Ferrer F, Tetu P, Lebbe C, Ciccolini J, Meyer N, Paci A. Tyrosine kinase inhibitors in cancers: Treatment optimization - Part I. Crit Rev Oncol Hematol 2024; 199:104384. [PMID: 38762217 DOI: 10.1016/j.critrevonc.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
A multitude of TKI has been developed and approved targeting various oncogenetic alterations. While these have provided improvements in efficacy compared with conventional chemotherapies, resistance to targeted therapies occurs. Mutations in the kinase domain result in the inability of TKI to inactivate the protein kinase. Also, gene amplification, increased protein expression and downstream activation or bypassing of signalling pathways are commonly reported mechanisms of resistance. Improved understanding of mechanisms involved in TKI resistance has resulted in the development of new generations of targeted agents. In a race against time, the search for new, more potent and efficient drugs, and/or combinations of drugs, remains necessary as new resistance mechanisms to the latest generation of TKI emerge. This review examines the various generations of TKI approved to date and their common mechanisms of resistance, focusing on TKI targeting BCR-ABL, epidermal growth factor receptor, anaplastic lymphoma kinase and BRAF/MEK tyrosine kinases.
Collapse
Affiliation(s)
- David Combarel
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris Saclay, Châtenay-Malabry 92 296, France
| | - Léa Dousset
- Dermatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Stéphane Bouchet
- Département de Pharmacologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Florent Ferrer
- Department of Pharmacology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France; SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France
| | - Pauline Tetu
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France
| | - Céleste Lebbe
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France
| | - Joseph Ciccolini
- SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France
| | - Nicolas Meyer
- Université Paul Sabatier-Toulouse III, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037-CRCT, Toulouse, France
| | - Angelo Paci
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris Saclay, Châtenay-Malabry 92 296, France.
| |
Collapse
|
6
|
van Outersterp I, Tasian SK, Reichert CEJ, Boeree A, de Groot-Kruseman HA, Escherich G, Boer JM, den Boer ML. Tyrosine kinase inhibitor response of ABL-class acute lymphoblastic leukemia: the role of kinase type and SH3 domain. Blood 2024; 143:2178-2189. [PMID: 38394665 PMCID: PMC11143520 DOI: 10.1182/blood.2023023120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
ABSTRACT Acute lymphoblastic leukemia (ALL) with fusions of ABL-class tyrosine kinase genes other than BCR::ABL1 occurs in ∼3% of children with ALL. The tyrosine kinase genes involved in this BCR::ABL1-like (Ph-like) subtype include ABL1, PDGFRB, ABL2, and CSF1R, each of which has up to 10 described partner genes. ABL-class ALL resembles BCR::ABL1-positive ALL with a similar gene expression profile, poor response to chemotherapy, and sensitivity to tyrosine kinase inhibitors (TKIs). There is a lack of comprehensive data regarding TKI sensitivity in the heterogeneous group of ABL-class ALL. We observed variability in TKI sensitivity within and among each ABL-class tyrosine kinase gene subgroup. We showed that ALL samples with fusions for any of the 4 tyrosine kinase genes were relatively sensitive to imatinib. In contrast, the PDGFRB-fused ALL samples were less sensitive to dasatinib and bosutinib. Variation in ex vivo TKI response within the subset of samples with the same ABL-class tyrosine kinase gene was not associated with the ALL immunophenotype, 5' fusion partner, presence or absence of Src-homology-2/3 domains, or deletions of IKZF1, PAX5, or CDKN2A/B. In conclusion, the tyrosine kinase gene involved in ABL-class ALL is the main determinant of TKI sensitivity and relevant for specific TKI selection.
Collapse
Affiliation(s)
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Aurélie Boeree
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Gabriele Escherich
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Monique L. den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Kantarjian HM, Jabbour EJ, Lipton JH, Castagnetti F, Brümmendorf TH. A Review of the Therapeutic Role of Bosutinib in Chronic Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:285-297. [PMID: 38278737 DOI: 10.1016/j.clml.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
The development of the BCR::ABL1 tyrosine kinase inhibitors (TKIs) has transformed Philadelphia chromosome (Ph)-positive chronic myeloid leukemia (CML) from a fatal disease to an often-indolent illness that, when managed effectively, can restore a life expectancy close to that of the normal population. Bosutinib is a second-generation TKI approved for adults with Ph-positive CML in chronic phase, accelerated phase, or blast phase that is resistant or intolerant to prior therapy, and for newly diagnosed Ph-positive chronic phase CML. This review details the efficacy of bosutinib for the treatment of CML in the first- and second-line settings, as well as in third- and later-line settings for high-risk patients resistant or intolerant to at least 2 TKIs. It also outlines bosutinib studies that provide evidence for dose-optimization strategies that can be used to improve efficacy and effectively manage adverse events. The studies that provide evidence for specific patient populations benefiting particularly from bosutinib dose-optimization strategies are also discussed. The well-established, long-term side-effect profile and the potential to make dose adjustments with bosutinib make it an appropriate treatment option for patients with CML. Bosutinib has demonstrated a positive impact on health-related quality of life and an important role in the long-term treatment of patients with CML.
Collapse
Affiliation(s)
- Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey H Lipton
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Fausto Castagnetti
- Institute of Hematology 'L. and A. Seràgnoli,' IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Hospital, Aachen, Germany; Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Cologne, Germany
| |
Collapse
|
8
|
Wang Y, Liang ZJ, Gale RP, Liao HZ, Ma J, Gong TJ, Shao YQ, Liang Y. Chronic myeloid leukaemia: Biology and therapy. Blood Rev 2024; 65:101196. [PMID: 38604819 DOI: 10.1016/j.blre.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Chronic myeloid leukaemia (CML) is caused by BCR::ABL1. Tyrosine kinase-inhibitors (TKIs) are the initial therapy. Several organizations have reported milestones to evaluate response to initial TKI-therapy and suggest when a change of TKI should be considered. Achieving treatment-free remission (TFR) is increasingly recognized as the optimal therapy goal. Which TKI is the best initial therapy for which persons and what depth and duration of molecular remission is needed to achieve TFR are controversial. In this review we discuss these issues and suggest future research directions.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Remission Induction
- Biology
Collapse
Affiliation(s)
- Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Jian Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Robert Peter Gale
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Hua-Ze Liao
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Ma
- Harbin Institute of Hematology and Oncology, Harbin First Hospital, Harbin 150010, China
| | - Tie-Jun Gong
- Harbin Institute of Hematology and Oncology, Harbin First Hospital, Harbin 150010, China.
| | - Ying-Qi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
9
|
van Outersterp I, Boer JM, van de Ven C, Reichert CEJ, Boeree A, Kruisinga B, de Groot-Kruseman HA, Escherich G, Sijs-Szabo A, Rijneveld AW, den Boer ML. Tyrosine kinase inhibitor resistance in de novo BCR::ABL1-positive BCP-ALL beyond kinase domain mutations. Blood Adv 2024; 8:1835-1845. [PMID: 38386975 PMCID: PMC11007435 DOI: 10.1182/bloodadvances.2023012162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
ABSTRACT A better understanding of ABL1 kinase domain mutation-independent causes of tyrosine kinase inhibitor (TKI) resistance is needed for BCR::ABL1-positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Although TKIs have dramatically improved outcomes, a subset of patients still experiences relapsed or refractory disease. We aimed to identify potential biomarkers of intrinsic TKI resistance at diagnosis in samples from 32 pediatric and 19 adult patients with BCR::ABL1-positive BCP-ALL. Reduced ex vivo imatinib sensitivity was observed in cells derived from newly diagnosed patients who relapsed after combined TKI and chemotherapy treatment compared with cells derived from patients who remained in continuous complete remission. We observed that ex vivo imatinib resistance was inversely correlated with the amount of (phosphorylated) BCR::ABL1/ABL1 protein present in samples that were taken at diagnosis without prior TKI exposure. This suggests an intrinsic cause of TKI resistance that is independent of functional BCR::ABL1 signaling. Simultaneous deletions of IKZF1 and CDKN2A/B and/or PAX5 (IKZF1plus), as well as deletions of PAX5 alone, were related to ex vivo imatinib resistance. In addition, somatic lesions involving ZEB2, SETD2, SH2B3, and CRLF2 were associated with reduced ex vivo imatinib sensitivity. Our data suggest that the poor prognostic value of IKZF1(plus) deletions is linked to intrinsic mechanisms of TKI resistance other than ABL1 kinase domain mutations in newly diagnosed pediatric and adult BCR::ABL1-positive BCP-ALL.
Collapse
Affiliation(s)
| | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cesca van de Ven
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Aurelie Boeree
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Brian Kruisinga
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Gabriele Escherich
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anita W. Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Monique L. den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Li Y, Jiang M, Aye L, Luo L, Zhang Y, Xu F, Wei Y, Peng D, He X, Gu J, Yu X, Li G, Ge D, Lu C. UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment. Nat Commun 2024; 15:1200. [PMID: 38331898 PMCID: PMC10853547 DOI: 10.1038/s41467-024-45340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The complexity of the tumor microenvironment (TME) is a crucial factor in lung adenocarcinoma (LUAD) progression. To gain deeper insights into molecular mechanisms of LUAD, we perform an integrative single-cell RNA sequencing (scRNA-seq) data analysis of 377,574 cells from 117 LUAD patient samples. By linking scRNA-seq data with bulk gene expression data, we identify a cluster of prognostic-related UPP1high tumor cells. These cells, primarily situated at the invasive front of tumors, display a stronger association with the immunosuppressive components in the TME. Our cytokine array analysis reveals that the upregulation of UPP1 in tumor cells leads to the increased release of various immunosuppressive cytokines, with TGF-β1 being particularly prominent. Furthermore, this UPP1 upregulation also elevates the expression of PD-L1 through the PI3K/AKT/mTOR pathway, which contributes to the suppression of CD8 + T cells. Cytometry by time-of-flight (CyTOF) analysis provides additional evidence of the role of UPP1 in shaping the immunosuppressive nature of the TME. Using patient-derived organoids (PDOs), we discover that UPP1high tumors exhibit relatively increased sensitivity to Bosutinib and Dasatinib. Collectively, our study highlights the immunosuppressive role of UPP1 in LUAD, and these findings may provide insights into the molecular features of LUAD and facilitate the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Ling Aye
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Luo
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yongqi Wei
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dan Peng
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Rea D, Cayssials E, Charbonnier A, Coiteux V, Etienne G, Goldwirt L, Guerci-Bresler A, Huguet F, Legros L, Roy L, Nicolini FE. [Optimizing the use of bosutinib in patients with chronic-phase chronic myeloid leukemia: Recommendations of a panel of experts from the Fi-LMC (French CML working group)]. Bull Cancer 2024; 111:87-96. [PMID: 38087729 DOI: 10.1016/j.bulcan.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 01/22/2024]
Abstract
The treatment of chronic myeloid leukemia relies on orally available tyrosine kinase inhibitors targeting the BCR::ABL1 oncoprotein. Bosutinib is a second generation adenosine triphosphate-competitive inhibitor approved for use in frontline adult chronic phase-chronic myeloid leukemia and all phases-chronic myeloid leukemia in the second line setting or beyond. Its efficacy was demonstrated in several pivotal clinical trials at 400mg once daily in the first line context and at 500mg once daily beyond first line. Bosutinib-related adverse events frequently occur early after treatment initiation and include gastro-intestinal symptoms and cytolytic hepatitis. These drug-related adverse events must be properly managed in order to preserve safety, efficacy and treatment acceptability. The French chronic myeloid leukemia study group gathered a panel of experts in hematology, pharmacology and hepatology in order to elaborate practical recommendations on the management of bosutinib treatment. These recommendations aim at optimizing the short and long-term tolerance and benefit/risk balance of bosutinib, mainly focusing at gastro-intestinal and liver toxicities.
Collapse
Affiliation(s)
- Delphine Rea
- DMU d'hématologie, hôpital universitaire Saint-Louis, Paris, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France.
| | - Emilie Cayssials
- CHU de Poitiers, département d'hématologie, Poitiers, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Aude Charbonnier
- Institut Paoli-Calmettes, hematology department, Marseille, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Valérie Coiteux
- CHU Claude-Huriez, département d'hématologie, Lille, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Gabriel Etienne
- Institut Bergonié, département d'hématologie, Bordeaux, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | | | - Agnès Guerci-Bresler
- CHRU Brabois, service d'hématologie, Vandœuvre-lès-Nancy, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Françoise Huguet
- CHU de Toulouse, institut universitaire du cancer, département d'hématologie, Toulouse, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Laurence Legros
- Hôpital Paul-Brousse, département d'hématologie, Villejuif, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Lydia Roy
- AP-HP, hôpital universitaire Henri-Mondor, université Paris Est Créteil (UPEC), service d'hématologie clinique, Créteil, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Franck Emmanuel Nicolini
- Centre Léon-Bérard, hématologie clinique, Inserm U1052, Lyon, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| |
Collapse
|
12
|
Zhang Y, Wu X, Sun X, Yang J, Liu C, Tang G, Lei X, Huang H, Peng J. The Progress of Small Molecule Targeting BCR-ABL in the Treatment of Chronic Myeloid Leukemia. Mini Rev Med Chem 2024; 24:642-663. [PMID: 37855278 DOI: 10.2174/0113895575218335230926070130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 10/20/2023]
Abstract
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease. According to the American Cancer Society's 2021 cancer data report, new cases of CML account for about 15% of all leukemias. CML is generally divided into three stages: chronic phase, accelerated phase, and blast phase. Nearly 90% of patients are diagnosed as a chronic phase. Allogeneic stem cell transplantation and chemotherapeutic drugs, such as interferon IFN-α were used as the earliest treatments for CML. However, they could generate obvious side effects, and scientists had to seek new treatments for CML. A new era of targeted therapy for CML began with the introduction of imatinib, the first-generation BCR-ABL kinase inhibitor. However, the ensuing drug resistance and mutant strains led by T315I limited the further use of imatinib. With the continuous advancement of research, tyrosine kinase inhibitors (TKI) and BCR-ABL protein degraders with novel structures and therapeutic mechanisms have been discovered. From biological macromolecules to classical target protein inhibitors, a growing number of compounds are being developed to treat chronic myelogenous leukemia. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in CML therapy, including TKIs and BCR-ABL protein degrader. The examples provided herein describe the pharmacology activity of small-molecule drugs. These drugs will provide new enlightenment for future treatment directions.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xin Wu
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xueyan Sun
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Jun Yang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Chang Liu
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Guotao Tang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Honglin Huang
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| | - Junmei Peng
- Department of Pharmacy, School of Pharmacy, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
13
|
Hill J, Jones RM, Crich D. Atypical N-Alkyl to N-Noralkoxy Switch in a Dual cSRC/BCR-ABL1 Kinase Inhibitor Improves Drug Efflux and hERG Affinity. ACS Med Chem Lett 2023; 14:1869-1875. [PMID: 38116407 PMCID: PMC10726475 DOI: 10.1021/acsmedchemlett.3c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
We describe an atypical amine bioisostere, the trisubstituted hydroxylamine, that upon incorporation into an approved dual cSRC/BCR-ABL1 kinase inhibitor yields 9, a compound that retains potent biological activity and couples it with improved drug efflux and hERG affinity at the expense of only a 2 atomic mass unit increase in molecular weight. Contrary to the common expectation for hydroxylamines in medicinal chemistry, 9 is well tolerated in vivo and lacks the mutagenicity and genotoxicity so often ascribed to lesser substituted hydroxylamines. A matched molecular pair (MMP) analysis suggests that the beneficial properties conferred by the N-alkyl to N-noralkoxy switch arises from a reduction in basicity of the piperazine unit. Overall, these results lend additional support to the use of trisubstituted hydroxylamines as bioisosteres of N-alkyl groups that are not involved in key polar interactions.
Collapse
Affiliation(s)
- Jarvis Hill
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Robert M. Jones
- Independent
Researcher, P.O. Box 568, Oakley, Utah 84055-0568, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Niu ZX, Wang YT, Sun JF, Nie P, Herdewijn P. Recent advance of clinically approved small-molecule drugs for the treatment of myeloid leukemia. Eur J Med Chem 2023; 261:115827. [PMID: 37757658 DOI: 10.1016/j.ejmech.2023.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Myeloid leukemia denotes a hematologic malignancy characterized by aberrant proliferation and impaired differentiation of blood progenitor cells within the bone marrow. Despite the availability of several treatment options, the clinical outlook for individuals afflicted with myeloid leukemia continues to be unfavorable, making it a challenging disease to manage. Over the past, substantial endeavors have been dedicated to the identification of novel targets and the advancement of enhanced therapeutic modalities to ameliorate the management of this disease, resulting in the discovery of many clinically approved small-molecule drugs for myeloid leukemia, including histone deacetylase inhibitors, hypomethylating agents, and tyrosine kinase inhibitors. This comprehensive review succinctly presents an up-to-date assessment of the application and synthetic routes of clinically sanctioned small-molecule drugs employed in the treatment of myeloid leukemia. Additionally, it provides a concise exploration of the pertinent challenges and prospects encompassing drug resistance and toxicity. Overall, this review effectively underscores the considerable promise exhibited by clinically endorsed small-molecule drugs in the therapeutic realm of myeloid leukemia, while concurrently shedding light on the prospective avenues that may shape the future landscape of drug development within this domain.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
15
|
El-Damasy AK, Kim HJ, Park JW, Nam Y, Hur W, Bang EK, Keum G. Discovery of 3-((3-amino- 1H-indazol-4-yl)ethynyl)- N-(4-((4-ethylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)benzamide (AKE-72), a potent Pan-BCR-ABL inhibitor including the T315I gatekeeper resistant mutant. J Enzyme Inhib Med Chem 2023; 38:2228515. [PMID: 37470410 PMCID: PMC10360995 DOI: 10.1080/14756366.2023.2228515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
BCR-ABL inhibition is an effective therapeutic approach for the treatment of chronic myeloid leukaemia (CML). Herein, we report the discovery of AKE-72 (5), a diarylamide 3-aminoindazole, as a potent pan-BCR-ABL inhibitor, including the imatinib-resistant mutant T315I. A focussed array of compounds 4a, 4b, and 5 has been designed based on our previously reported indazole I to improve its BCR-ABLT315I inhibitory activity. Replacing the morpholine moiety of I with the privileged tail (4-ethylpiperazin-1-yl)methyl afforded 5 (AKE-72) with IC50 values of < 0.5 nM, and 9 nM against BCR-ABLWT and BCR-ABLT315I, respectively. Moreover, AKE-72 potently inhibited a panel of other clinically important mutants in single-digit nanomolar IC50 values. AKE-72 elicited remarkable anti-leukemic activity against K-562 cell line (GI50 < 10 nM, TGI = 154 nM). In addition, AKE-72 strongly inhibited the proliferation of Ba/F3 cells expressing native BCR-ABL or its T315I mutant. Overall, AKE-72 may serve as a promising candidate for the treatment of CML, including those harbouring T315I mutation.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hyun Ji Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jung Woo Park
- Supercomputing Application Center, Div. of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Yunju Nam
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Wooyoung Hur
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eun-Kyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
16
|
Yakobson A, Neime AE, Abu Saleh O, Al Athamen K, Shalata W. Bullous Pemphigoid Occurring after Stopping Imatinib Therapy of CML: Is a Continuation of Post-Treatment Follow-Up Needed? Clin Pract 2023; 13:1082-1089. [PMID: 37736932 PMCID: PMC10514788 DOI: 10.3390/clinpract13050096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Advancements and the use of tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of Chronic Myeloid Leukemia (CML), achieving unprecedented success rates and expanding their applications to various neoplasms. However, the use of TKIs is not without its drawbacks. Skin, gastrointestinal, and central nervous systems are particularly susceptible to adverse effects, including a higher incidence of autoimmune responses in treated individuals. In this report, we present a unique case of bullous pemphigoid, a rare autoimmune disease, which has not been previously associated with TKI therapy as an adverse effect, particularly appearing after discontinuing Imatinib® treatment.
Collapse
Affiliation(s)
- Alexander Yakobson
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| | - Ala Eddin Neime
- Department of Internal Medicine, Soroka Medical Center & Ben-Gurion University, Beer Sheva 84105, Israel
| | - Omar Abu Saleh
- Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Kayed Al Athamen
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Cancer Center and Dr. Larry Norton Institute, Soroka Medical Center, Ben Gurion University, Beer Sheva 84105, Israel
| |
Collapse
|
17
|
Garrett M, Knight B, Cortes JE, Deininger MW. Population modeling of bosutinib exposure-response in patients with newly diagnosed chronic phase chronic myeloid leukemia. Cancer Med 2023; 12:17981-17992. [PMID: 37553873 PMCID: PMC10524044 DOI: 10.1002/cam4.6439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The BELA and BFORE trials compared bosutinib starting doses of 500 mg once daily (QD) and 400 mg QD, respectively, with imatinib in adults with newly diagnosed chronic phase chronic myeloid leukemia (CP-CML). The B1871048 trial evaluated bosutinib 400 mg QD in Japanese patients with newly diagnosed CP-CML. AIM This analysis assessed the impact of a lower bosutinib starting dose on key efficacy and safety outcomes. MATERIALS & METHODS A pharmacokinetic model was used to estimate metrics of bosutinib exposure, and logistic regression was used to investigate relationships with efficacy (cumulative major molecular response [MMR] and cumulative complete cytogenetic response [CCyR]) and safety outcomes (eight prespecified adverse events). RESULTS Totals of 573 and 574 patients were included in the efficacy and safety endpoint analyses, respectively. Cumulative MMR and CCyR were similar across studies. Log(Ctrough ) and log(Cavg ) were significant predictors of MMR and CCyR, and the probability of achieving MMR or CCyR increased 1.3-fold or 2.7-fold for every 1 unit increase in log(Ctrough ) or log(Cavg ), respectively. An exposure-response relationship was identified between time-to-event and risk of diarrhea, nausea, and vomiting. Significant relationships were also observed between time-to-event and log(Cavg ), Ctrough , and Cavg with diarrhea, nausea, and vomiting, respectively. DISCUSSION A bosutinib exposure-response relationship with safety and efficacy was observed. CONCLUSION Compared with 500 mg QD, a bosutinib starting dose of 400 mg QD improved tolerability in some patients with newly diagnosed CP-CML without compromising efficacy. CLINICALTRIALS gov identifiers: NCT00574873; NCT02130557; NCT03128411.
Collapse
|
18
|
Tsujioka S, Sumino A, Nagasawa Y, Sumikama T, Flechsig H, Puppulin L, Tomita T, Baba Y, Kakuta T, Ogoshi T, Umeda K, Kodera N, Murakoshi H, Shibata M. Imaging single CaMKII holoenzymes at work by high-speed atomic force microscopy. SCIENCE ADVANCES 2023; 9:eadh1069. [PMID: 37390213 PMCID: PMC10313165 DOI: 10.1126/sciadv.adh1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a pivotal role in synaptic plasticity. It is a dodecameric serine/threonine kinase that has been highly conserved across metazoans for over a million years. Despite the extensive knowledge of the mechanisms underlying CaMKII activation, its behavior at the molecular level has remained unobserved. In this study, we used high-speed atomic force microscopy to visualize the activity-dependent structural dynamics of rat/hydra/C. elegans CaMKII with nanometer resolution. Our imaging results revealed that the dynamic behavior is dependent on CaM binding and subsequent pT286 phosphorylation. Among the species studies, only rat CaMKIIα with pT286/pT305/pT306 exhibited kinase domain oligomerization. Furthermore, we revealed that the sensitivity of CaMKII to PP2A in the three species differs, with rat, C. elegans, and hydra being less dephosphorylated in that order. The evolutionarily acquired features of mammalian CaMKIIα-specific structural arrangement and phosphatase tolerance may differentiate neuronal function between mammals and other species.
Collapse
Affiliation(s)
- Shotaro Tsujioka
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Tomita
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
19
|
In Humanized Sickle Cell Mice, Imatinib Protects Against Sickle Cell-Related Injury. Hemasphere 2023; 7:e848. [PMID: 36874380 PMCID: PMC9977487 DOI: 10.1097/hs9.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Drug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression. Here, we show that imatinib, an oral tyrosine kinase inhibitor developed for the treatment of chronic myelogenous leukemia, acts as multimodal therapy targeting signal transduction pathways involved in the pathogenesis of both anemia and inflammatory vasculopathy of humanized murine model for SCD. In addition, imatinib inhibits the platelet-derived growth factor-B-dependent pathway, interfering with the profibrotic response to hypoxia/reperfusion injury, used to mimic acute VOCs. Our data indicate that imatinib might be considered as possible new therapeutic tool for chronic treatment of SCD.
Collapse
|
20
|
Yoshifuji K, Sasaki K. Adverse events and dose modifications of tyrosine kinase inhibitors in chronic myelogenous leukemia. Front Oncol 2022; 12:1021662. [PMID: 36276124 PMCID: PMC9583346 DOI: 10.3389/fonc.2022.1021662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
The prognosis of chronic myelogenous leukemia (CML-CP) in chronic phase has improved dramatically since the introduction of imatinib. In addition to imatinib, second- and third-generation tyrosine kinase inhibitors (TKIs) and a novel allosteric inhibitor, asciminib, are now available. During long-term TKI therapy, the optimal selection of TKI therapy for individual patients requires the understanding of specific patterns of toxicity profile to minimize chronic toxicity and the risk of adverse events, including pulmonary arterial hypertension, pleural effusion, and cardiovascular events. Given the high efficacy of TKI therapy, dose modifications of TKI therapy reduce the risk of toxicities and improves quality of life during therapy. In this review article, we summarize the characteristics and adverse event profile of each TKI and dose modifications in patients with CML-CP and discuss future perspectives in the treatment of CML-CP.
Collapse
Affiliation(s)
- Kota Yoshifuji
- Department of Hematology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
21
|
Min HY, Lee HY. Molecular targeted therapy for anticancer treatment. Exp Mol Med 2022; 54:1670-1694. [PMID: 36224343 PMCID: PMC9636149 DOI: 10.1038/s12276-022-00864-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Since the initial clinical approval in the late 1990s and remarkable anticancer effects for certain types of cancer, molecular targeted therapy utilizing small molecule agents or therapeutic monoclonal antibodies acting as signal transduction inhibitors has served as a fundamental backbone in precision medicine for cancer treatment. These approaches are now used clinically as first-line therapy for various types of human cancers. Compared to conventional chemotherapy, targeted therapeutic agents have efficient anticancer effects with fewer side effects. However, the emergence of drug resistance is a major drawback of molecular targeted therapy, and several strategies have been attempted to improve therapeutic efficacy by overcoming such resistance. Herein, we summarize current knowledge regarding several targeted therapeutic agents, including classification, a brief biology of target kinases, mechanisms of action, examples of clinically used targeted therapy, and perspectives for future development.
Collapse
Affiliation(s)
- Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Pasquale R, Bucelli C, Bellani V, Zappa M, Iurlo A, Cattaneo D. Case report: Pleural effusion during tyrosine-kinase inhibitor treatment in chronic myeloid leukemia: Not only a dasatinib-related adverse event. Front Oncol 2022; 12:1012268. [PMID: 36176390 PMCID: PMC9513037 DOI: 10.3389/fonc.2022.1012268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The spectrum of TKI-related adverse events (AEs) is variable. Pleural effusion (PE) is a frequent AE attributable to dasatinib treatment, while it is only rarely associated with nilotinib. The pathogenetic mechanism leading to PE during nilotinib therapy is still unknown and its management has not yet been defined. To the best of our knowledge, only a limited number of similar case reports have already been reported in the literature so far. Here, we describe the case of a 41-year-old CML patient who developed PE during first-line nilotinib, successfully treated with steroids and nilotinib permanent discontinuation. We highlight the differences among our patient and the others, proposing therapeutic strategies to solve this rare but still possible AE, of which physicians should be aware.
Collapse
Affiliation(s)
- Raffaella Pasquale
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Raffaella Pasquale,
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bellani
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Manuela Zappa
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Teng M, Luskin MR, Cowan-Jacob SW, Ding Q, Fabbro D, Gray NS. The Dawn of Allosteric BCR-ABL1 Drugs: From a Phenotypic Screening Hit to an Approved Drug. J Med Chem 2022; 65:7581-7594. [PMID: 35609336 DOI: 10.1021/acs.jmedchem.2c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is driven by the constitutive activity of the BCR-ABL1 fusion oncoprotein. Despite the great success of drugs that target the BCR-ABL1 ATP-binding site in transforming CML into a manageable disease, emerging resistance point mutations impair inhibitor binding, thereby limiting the effectiveness of these drugs. Recently, allosteric inhibitors that interact with the ABL1 myristate-binding site have been shown to awaken an endogenous regulatory mechanism and reset full-length BCR-ABL1 into an inactive assembled state. The discovery and development of these allosteric inhibitors demonstrates an in-depth understanding of the fundamental regulatory mechanisms of kinases. In this review, we illustrate the structural basis of c-ABL1's dynamic regulation of autoinhibition and activation, discuss the discovery of allosteric inhibitors and the characterization of their mechanism of action, present the therapeutic potential of dual binding to delay the development of mutation-driven acquired resistance, and suggest key lessons learned from this program.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Marlise R Luskin
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Sandra W Cowan-Jacob
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel CH-4056, Switzerland
| | - Qiang Ding
- Allorion Therapeutics, Guangzhou, Guangdong 511300, China
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Shi M, Wang L, Liu K, Chen Y, Hu M, Yang L, He J, Chen L, Xu D. Molecular dynamics simulations of the conformational plasticity in the active pocket of salt-inducible kinase 2 (SIK2) multi-state binding with bosutinib. Comput Struct Biotechnol J 2022; 20:2574-2586. [PMID: 35685353 PMCID: PMC9160496 DOI: 10.1016/j.csbj.2022.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
The kinase domain is highly conserved among protein kinases 'in terms of both sequence and structure. Conformational rearrangements of the kinase domain are affected by the phosphorylation of residues and the binding of kinase inhibitors. Interestingly, the conformational rearrangement of the active pocket plays an important role in kinase activity and can be used to design novel kinase inhibitors. We characterized the conformational plasticity of the active pocket when bosutinib was bound to salt-inducible kinase 2 (SIK2) using homology modeling and molecular dynamics simulations. Ten different initial complex models were constructed using the Morph server, ranging from open to closed conformations of SIK2 binding with bosutinib. Our simulation showed that bosutinib binds SIK2 with up or down conformations of the P-loop and with all the conformations of the activation loop. In addition, the αC-helix conformation was induced by the conformation of the activation loop, and the salt bridge formed only with its open conformation. The binding affinity of the models was also determined using the molecular mechanics generalized Born surface area method. Bosutinib was found to form a strong binding model with SIK2 and hydrophobic interactions were the dominant factor. This discovery may help guide the design of novel SIK2 inhibitors.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kongjun Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengshi Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
25
|
Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults. Cancers (Basel) 2022; 14:cancers14071805. [PMID: 35406576 PMCID: PMC8997772 DOI: 10.3390/cancers14071805] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Outcome of patients with Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ ALL) dramatically improved during the past 20 years with the advent of tyrosine kinase inhibitors and monoclonal antibodies. Their great efficacy in young and fit patients led to question our reliance on chemotherapy and allogeneic hematopoietic stem cell transplantation. Moreover, these well-tolerated treatments can be safely administrated even in the elderly that represent the majority of Ph+ ALL patient. This review will focus on the recent changes of paradigm in the management of Ph+ ALL patients and the development of novel therapeutic strategies. Abstract Philadelphia-chromosome positive acute lymphoblastic leukemia (Ph+ ALL) is the most common subtype of B-ALL in adults and its incidence increases with age. It is characterized by the presence of BCR-ABL oncoprotein that plays a central role in the leukemogenesis of Ph+ ALL. Ph+ ALL patients traditionally had dismal prognosis and long-term survivors were only observed among patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first complete remission (CR1). However, feasibility of allo-HSCT is limited in this elderly population. Fortunately, development of increasingly powerful tyrosine kinase inhibitors (TKIs) from the beginning of the 2000′s dramatically improved the prognosis of Ph+ ALL patients with complete response rates above 90%, deep molecular responses and prolonged survival, altogether with good tolerance. TKIs became the keystone of Ph+ ALL management and their great efficacy led to develop reduced-intensity chemotherapy backbones. Subsequent introduction of blinatumomab allowed going further with development of chemo free strategies. This review will focus on these amazing recent advances as well as novel therapeutic strategies in adult Ph+ ALL.
Collapse
Affiliation(s)
- Khalil Saleh
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
| | - Alexis Fernandez
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
| | - Florence Pasquier
- Department of Hematology, Gustave Roussy, 94805 Villejuif, France; (K.S.); (A.F.)
- INSERM, UMR 1287, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Correspondence:
| |
Collapse
|
26
|
BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction: Challenges to Overcome Resistance in Chronic Myeloid Leukemia. Pharmaceutics 2022; 14:pharmaceutics14010215. [PMID: 35057108 PMCID: PMC8780254 DOI: 10.3390/pharmaceutics14010215] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The constitutively active BCR-ABL1 tyrosine kinase, found in t(9;22)(q34;q11) chromosomal translocation-derived leukemia, initiates an extremely complex signaling transduction cascade that induces a strong state of resistance to chemotherapy. Targeted therapies based on tyrosine kinase inhibitors (TKIs), such as imatinib, dasatinib, nilotinib, bosutinib, and ponatinib, have revolutionized the treatment of BCR-ABL1-driven leukemia, particularly chronic myeloid leukemia (CML). However, TKIs do not cure CML patients, as some develop TKI resistance and the majority relapse upon withdrawal from treatment. Importantly, although BCR-ABL1 tyrosine kinase is necessary to initiate and establish the malignant phenotype of Ph-related leukemia, in the later advanced phase of the disease, BCR-ABL1-independent mechanisms are also in place. Here, we present an overview of the signaling pathways initiated by BCR-ABL1 and discuss the major challenges regarding immunologic/pharmacologic combined therapies.
Collapse
|
27
|
De Santis S, Monaldi C, Mancini M, Bruno S, Cavo M, Soverini S. Overcoming Resistance to Kinase Inhibitors: The Paradigm of Chronic Myeloid Leukemia. Onco Targets Ther 2022; 15:103-116. [PMID: 35115784 PMCID: PMC8800859 DOI: 10.2147/ott.s289306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) play crucial roles in cellular proliferation and survival, hence their deregulation is a common event in the pathogenesis of solid and hematologic malignancies. Targeting PKs has been a promising strategy in cancer treatment, and there are now a variety of approved anticancer drugs targeting PKs. However, the phenomenon of resistance remains an obstacle to be addressed and overcoming resistance is a goal to be achieved. Chronic myeloid leukemia (CML) is the first as well as one of the best examples of a cancer that can be targeted by molecular therapy; hence, it can be used as a model disease for other cancers. This review aims to summarize up-to-date knowledge on the main mechanisms implicated in resistance to PK inhibitory therapies and to outline the main strategies that are being explored to overcome resistance. The importance of molecular diagnostics and disease monitoring in counteracting resistance will also be discussed.
Collapse
Affiliation(s)
- Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- Correspondence: Sara De Santis Insitute of Hematology “Lorenzo e Ariosto Seràgnoli”, Via Massarenti 9, Bologna, 40138, ItalyTel +39 051 2143791Fax +39 051 2144037 Email
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Michele Cavo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| |
Collapse
|
28
|
Pagan FL, Torres‐Yaghi Y, Hebron ML, Wilmarth B, Turner RS, Matar S, Ferrante D, Ahn J, Moussa C. Safety, target engagement, and biomarker effects of bosutinib in dementia with Lewy bodies. ALZHEIMER'S & DEMENTIA: TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2022; 8:e12296. [PMID: 35662832 PMCID: PMC9157583 DOI: 10.1002/trc2.12296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fernando L. Pagan
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - Yasar Torres‐Yaghi
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - Michaeline L. Hebron
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Barbara Wilmarth
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - R. Scott Turner
- Memory Disorders Program Department of Neurology Georgetown University Medical Center Washington DC USA
| | - Sara Matar
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Dalila Ferrante
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Jaeil Ahn
- Department of Biostatistics Bioinformatics and Biomathematics Georgetown University Medical Center Washington DC USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| |
Collapse
|
29
|
Wolfe HR, Rein LAM. The Evolving Landscape of Frontline Therapy in Chronic Phase Chronic Myeloid Leukemia (CML). Curr Hematol Malig Rep 2021; 16:448-454. [PMID: 34661874 DOI: 10.1007/s11899-021-00655-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by uncontrolled proliferation of mature and maturing granulocytes. The disease is characterized by the presence of translocation t(9;22) leading to the abnormal BCR-ABL fusion. Historically, treatment options included hydroxyurea, busulfan, and interferon-α (IFN-α), with allogeneic stem cell transplant being the only potential curative therapy. More recently, the development of tyrosine kinase inhibitors (TKIs) has revolutionized the treatment of CML and turned a once fatal disease into a chronic and manageable disorder. This review aims to discuss the frontline treatment options in chronic-phase CML, provide recommendations for tailoring frontline treatment to the patient, and explore emerging therapies in the field. RECENT FINDINGS The first-generation TKI, imatinib, was FDA approved in 2001 for use in CML. Following the approval and success of imatinib, second- and third-generation TKIs have been developed providing deeper responses, faster responses, and different toxicity profiles. With numerous options available in the frontline setting, choosing the best initial treatment for each individual patient has become a more complex decision. When choosing a frontline therapy for patients with chronic-phase CML, one should consider disease risk, comorbid conditions, and the goal of therapy.
Collapse
Affiliation(s)
- Heather R Wolfe
- Division of Malignant Hematology and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, 27707, USA.
| | - Lindsay A M Rein
- Division of Malignant Hematology and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, 27707, USA
| |
Collapse
|
30
|
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small Molecule Kinase Inhibitor Drugs (1995-2021): Medical Indication, Pharmacology, and Synthesis. J Med Chem 2021; 65:1047-1131. [PMID: 34624192 DOI: 10.1021/acs.jmedchem.1c00963] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.
Collapse
Affiliation(s)
- Cecilia C Ayala-Aguilera
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Stephen Croke
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| |
Collapse
|
31
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
32
|
How I Treat Chronic Phase Chronic Myelogenous Leukemia. Blood 2021; 139:3138-3147. [PMID: 34529784 DOI: 10.1182/blood.2021011722] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
When imatinib, the first tyrosine kinase inhibitor (TKI) developed for use in chronic myelogenous leukemia (CML) was approved in 2001, the treatment of this disease was forever changed. Significant reductions in the molecular burden of disease were seen with the first generation TKI imatinib and with the addition of dasatinib (2006), nilotinib (2007), bosutinib (2012) and ponatinib (2013), deeper and more rapid reductions were noted. Physicians could begin to tailor TKI therapy to individual patients, and patients who did not respond to or could not tolerate first line therapy now had options. Importantly, the number of patients who developed accelerated or blast phase disease decreased dramatically. Research in CML continues to evolve and by presenting illustrative cases, this article will review some of the newer aspects of clinical care in this disease. Updated information regarding bosutinib and asciminib, the latter currently in clinical trials, will be presented; bosutinib is of particular interest as the drug's transit through the United States Food and Drug Administration (FDA) highlights the question of what is considered optimal response to TKI therapy. The challenge of understanding the cardiac safety data of ponatinib and the unique dosing schedule based on individual response will be discussed. Lastly, two cases will focus on features of TKI treatment that -remarkably- have become part of the treatment algorithm: family planning for women with CML and stopping therapy after meeting a specific treatment milestone.
Collapse
|
33
|
Ren Z, Li Q, Shen Y, Meng L. Intrinsic relative preference profile of pan-kinase inhibitor drug staurosporine towards the clinically occurring gatekeeper mutations in Protein Tyrosine Kinases. Comput Biol Chem 2021; 94:107562. [PMID: 34428735 DOI: 10.1016/j.compbiolchem.2021.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
Protein tyrosine kinases (PTKs) have been recognized as the attractive druggable targets of various diseases including cancer. However, many PTKs are clinically observed to establish a gatekeeper mutation in the peripheral hinge section of active site, which plays a primary role in development of acquired drug resistance to kinase inhibitors. The natural product Staurosporine, an ATP-competitive reversible pan-kinase inhibitor, has been found to exhibit wild type-sparing selectivity for some PTK gatekeeper mutants. In this study, totally 23 acquired drug-resistant gatekeeper mutations harbored on 17 PTKs involved in diverse cancers were curated, from which only five amino acid types, namely Thr, Met, Val, Leu and Ile, were observed at both wild-type and mutant residues of these clinically occurring gatekeeper sites. Here, an integrative strategy that combined molecular modeling and kinase assay was described to systematically investigate the relative preference of Staurosporine towards the five gatekeeper amino acid types in real kinase context and in a psendokinase model. A kinase-free, intrinsic relative preference profile of Staurosporine to gatekeeper amino acids was created: (dispreferred) Thr⊳Val⊳Ile⊳Leu⊳Met (preferred). It is found that kinase context has no essential effect on the profile; different kinases and even psendokinase can obtain a consistent conclusion for the preference order. Theoretically, we can use the profile to predict Staurosporine response to any gatekeeper mutation between the five amino acid types in any PTK. Structural and energetic analyses revealed that the multiple-aromatic ring system of Staurosporine can form multiple noncovalent interactions with the weakly polar side chain of Met and can pack tightly or moderately against the nonpolar side chains of Val, Ile and Leu, thus stabilizing the kinase-inhibitor system (ΔU < 0), whereas the polar side chain of Thr may cause unfavorable electronegative and solvent effects with the aromatic electrons of Staurosporine, thus destabilizing the system (ΔU > 0).
Collapse
Affiliation(s)
- Zheng Ren
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Li
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiwen Shen
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ling Meng
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
34
|
Gidaro A, Salvi E, Carraro MC, Rossi RS, Castelli R. Concomitant use of Tyrosine-kinase Inhibitor and Mepolizumab in Asthma secondary to Chronic Myeloid Leukemia with hypereosinophilia. Antiinflamm Antiallergy Agents Med Chem 2021; 20:389-393. [PMID: 34420510 DOI: 10.2174/1871523020999210820091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Asthma and hypereosinophilia have been treated with different therapeutics in the past. Some of them appear to be more effective in symptoms resolution and decreasing eosinophilic count. CASE PRESENTATION We report here an unusual case of asthma with hypereosinophilia secondary to Chronic Myeloid Leukemia (CML) with high prevalence of eosinophilic infiltrate, treated simultaneously with an anti-IL-5 antibody (Mepolizumab) and Tyrosine-kinase Inhibitors (TKI: Imatinib and Bosutinib) for three years. The patient showed a promising reduction of pulmonary exacerbations and good control of CML without developing side effects. CONCLUSION We hope that this finding could inspire further studies on the efficacy and safety of the concomitant use of anti-IL-5 and TKI.
Collapse
Affiliation(s)
- Antonio Gidaro
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan. Italy
| | - Emanuele Salvi
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan. Italy
| | - Maria Cristina Carraro
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan. Italy
| | - Roberta Simona Rossi
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Luigi Sacco Hospital, Milan. Italy
| | - Roberto Castelli
- University of Sassari Department of Medical, Surgical and Experimental Science University Hospital of Sassari. Italy
| |
Collapse
|
35
|
Zhang L, Yang Z, Sang H, Jiang Y, Zhou M, Huang C, Huang C, Wu X, Zhang T, Zhang X, Wan S, Zhang J. Identification of imidazo[4,5-c]pyridin-2-one derivatives as novel Src family kinase inhibitors against glioblastoma. J Enzyme Inhib Med Chem 2021; 36:1541-1552. [PMID: 34238111 PMCID: PMC8274516 DOI: 10.1080/14756366.2021.1948542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumour in the central nervous system (CNS). As the ideal targets for GBM treatment, Src family kinases (SFKs) have attracted much attention. Herein, a new series of imidazo[4,5-c]pyridin-2-one derivatives were designed and synthesised as SFK inhibitors. Compounds 1d, 1e, 1q, 1s exhibited potential Src and Fyn kinase inhibition in the submicromolar range, of which were next tested for their antiproliferative potency on four GBM cell lines. Compound 1s showed effective activity against U87, U251, T98G, and U87-EGFRvIII GBM cell lines, comparable to that of lead compound PP2. Molecular dynamics (MDs) simulation revealed the possible binding patterns of the most active compound 1s in ATP binding site of SFKs. ADME prediction suggested that 1s accord with the criteria of CNS drugs. These results led us to identify a novel SFK inhibitor as candidate for GBM treatment.
Collapse
Affiliation(s)
- Lishun Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Huiting Sang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Ying Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Mingfeng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Chuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Chunhui Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xiaoyun Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Tingting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, PR China
| | - Xingmei Zhang
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
36
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 769] [Impact Index Per Article: 192.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
37
|
Zhang D, Li P, Gao Y, Song Y, Zhu Y, Su H, Yang B, Li L, Li G, Gong N, Lu Y, Shao H, Yu C, Huang H. Discovery of a Candidate Containing an ( S)-3,3-Difluoro-1-(4-methylpiperazin-1-yl)-2,3-dihydro-1 H-inden Scaffold as a Highly Potent Pan-Inhibitor of the BCR-ABL Kinase Including the T315I-Resistant Mutant for the Treatment of Chronic Myeloid Leukemia. J Med Chem 2021; 64:7434-7452. [PMID: 34011155 DOI: 10.1021/acs.jmedchem.1c00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BCR-ABL kinase inhibition is an effective strategy for the treatment of chronic myeloid leukemia (CML). Herein, we report compound 3a-P1, bearing a difluoro-indene scaffold, as a novel potent pan-inhibitor against BCR-ABL mutants, including the most refractory T315I mutant. As the privileged (S)-isomer compared to its (R)-isomer 3a-P2, 3a-P1 exhibited potent antiproliferative activities against K562 and Ku812 CML cells and BCR-ABL and BCR-ABLT315I BaF3 cells, with IC50 values of 0.4, 0.1, 2.1, and 4.7 nM, respectively. 3a-P1 displayed a good safety profile in a battery of assays, including single-dose toxicity, hERG K+, and genotoxicity. It also showed favorable mice pharmacokinetic properties with a good oral bioavailability (32%), a reasonable half-life (4.61 h), and a high exposure (1386 h·ng/mL). Importantly, 3a-P1 demonstrated a higher potency than ponatinib in a mice xenograft model of BaF3 harboring BCR-ABLT315I. Overall, the results indicate that 3a-P1 is a promising drug candidate for the treatment of CML to overcome the imatinib-resistant T315I BCR-ABL mutation.
Collapse
Affiliation(s)
- Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Peng Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yongxin Gao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yaoyao Song
- College of Life Sciences, Shaanxi Normal University, 620 Xi Chang An Street, Xi'an 710119, P. R. China
| | - Yaqin Zhu
- College of Life Sciences, Shaanxi Normal University, 620 Xi Chang An Street, Xi'an 710119, P. R. China
| | - Hong Su
- College of Life Sciences, Shaanxi Normal University, 620 Xi Chang An Street, Xi'an 710119, P. R. China
| | - Beibei Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Li Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Gang Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Ningbo Gong
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Huanjie Shao
- College of Life Sciences, Shaanxi Normal University, 620 Xi Chang An Street, Xi'an 710119, P. R. China
| | - Chunrong Yu
- Taizhou Astar BioTechnology Co. Ltd, Kou Tai Road, Taizhou 225300, P. R. China
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
38
|
Target spectrum of the BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia. Int J Hematol 2021; 113:632-641. [PMID: 33772728 DOI: 10.1007/s12185-021-03126-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 01/22/2023]
Abstract
BCR-ABL1 plays a key role in the pathogenesis of chronic myeloid leukemia (CML), and it has been investigated as a druggable target of tyrosine kinase inhibitors (TKIs) over two decades. Since imatinib, the first TKI for anti-cancer therapy, was successfully applied in CML therapy, further generation TKIs and a novel allosteric inhibitor targeting the myristate binding site have been developed as alternative options for CML management. However, significant concerns regarding toxicity profiles, especially in long-term treatment, have emerged from TKI clinical data. Efforts to reduce adverse events and serious complications are warranted not only for survival, but also quality of life in CML patients. A better understanding of the mechanism of action will help to identify on- and off-target effects of TKIs, and guide personalized TKI drug selection in each individual CML patient. Herein, this review summarizes the biologic mechanism of BCR-ABL1 inhibition and differential target spectra, and related off-target effects of each TKI.
Collapse
|
39
|
Takakuwa T, Sakai R, Koh S, Okamura H, Nanno S, Nakashima Y, Nakane T, Koh H, Hino M, Nakamae H. High-grade B-cell lymphoma developed during the treatment of chronic myeloid leukemia with bosutinib. Clin Case Rep 2021; 9:1344-1349. [PMID: 33768841 PMCID: PMC7981704 DOI: 10.1002/ccr3.3770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Tyrosine kinase inhibitor (TKI) can help to increase the survival time in chronic myeloid leukemia (CML) patients; however, the risk of secondary malignancies due to TKIs is a growing concern. Only few reports showed clinical course of patients who developed lymphoma during TKI therapies. Herein, we report a case of high-grade B-cell lymphoma diagnosed in the course of CML treatment with bosutinib. The 75-year-old male patient had been diagnosed with CML 25 years ago. After receiving TKIs (imatinib, nilotinib, and bosutinib), he achieved a major molecular response. Over 3 years after starting bosutinib, he was diagnosed with a high-grade B-cell lymphoma. A total of six courses of DA-EPOCH-R therapy brought complete remission of the lymphoma. Moreover, BCR-ABL1 transcript copies remained undetectable by RT-PCR, 8 months after stopping bosutinib. The risk of secondary malignancy due to TKI has been controversial. It is reported that TKI induces irreversible chromosomal abnormalities or chromosome aberrations and inhibits the proliferation or function of T cells, B cells, and NK cells. These mechanisms of TKI may contribute to the development of secondary malignancy. There remains no consensus on the management of secondary lymphoma during TKI therapies. At present, the only alternative is to observe patients receiving TKI treatment cautiously and to treat secondary lymphoma in the same manner as de novo lymphoma.
Collapse
Affiliation(s)
- Teruhito Takakuwa
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Ryota Sakai
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Shiro Koh
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Hiroshi Okamura
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Satoru Nanno
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Yasuhiro Nakashima
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Takahiko Nakane
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Hideo Koh
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Masayuki Hino
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| | - Hirohisa Nakamae
- Department of Hematology Graduate School of Medicine Osaka City University Osaka Japan
| |
Collapse
|
40
|
Sampaio MM, Santos MLC, Marques HS, Gonçalves VLDS, Araújo GRL, Lopes LW, Apolonio JS, Silva CS, Santos LKDS, Cuzzuol BR, Guimarães QES, Santos MN, de Brito BB, da Silva FAF, Oliveira MV, Souza CL, de Melo FF. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol 2021; 12:69-94. [PMID: 33680875 PMCID: PMC7918527 DOI: 10.5306/wjco.v12.i2.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm and was the first neoplastic disease associated with a well-defined genotypic anomaly - the presence of the Philadelphia chromosome. The advances in cytogenetic and molecular assays are of great importance to the diagnosis, prognosis, treatment, and monitoring of CML. The discovery of the breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) 1 fusion oncogene has revolutionized the treatment of CML patients by allowing the development of targeted drugs that inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (known as TKIs) are the standard therapy for CML and greatly increase the survival rates, despite adverse effects and the odds of residual disease after discontinuation of treatment. As therapeutic alternatives, the subsequent TKIs lead to faster and deeper molecular remissions; however, with the emergence of resistance to these drugs, immunotherapy appears as an alternative, which may have a cure potential in these patients. Against this background, this article aims at providing an overview on CML clinical management and a summary on the main targeted drugs available in that context.
Collapse
Affiliation(s)
- Mariana Miranda Sampaio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | | | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Mariana Novaes Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
41
|
Yüzbaşıoğlu MB, Eşkazan AE. Bosutinib - related pleural effusion in patients with chronic myeloid leukemia. Expert Opin Drug Saf 2021; 20:379-381. [PMID: 33339467 DOI: 10.1080/14740338.2021.1867103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mebrure Burçak Yüzbaşıoğlu
- Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
42
|
Sobhia ME, Kumar GS, Mallick A, Singh H, Kumar K, Chaurasiya M, Singh M, Gera N, Deverakonda S, Baghel V. Computational and Biological Investigations on Abl1 Tyrosine Kinase: A Review. Curr Drug Targets 2020; 22:38-51. [PMID: 33050861 DOI: 10.2174/1389450121999201013152513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022]
Abstract
Abl1 tyrosine kinase is a validated target for the treatment of chronic myeloid leukemia. It is a form of cancer that is difficult to treat and much research is being done to identify new molecular entities and to tackle drug resistance issues. In recent years, drug resistance of Abl1 tyrosine kinase has become a major healthcare concern. Second and third-generation TKI reported better responses against the resistant forms; still they had no impact on long-term survival prolongation. New compounds derived from natural products and organic small molecule inhibitors can lay the foundation for better clinical therapies in the future. Computational methods, experimental and biological studies can help us understand the mechanism of drug resistance and identify novel molecule inhibitors. ADMET parameters analysis of reported drugs and novel small molecule inhibitors can also provide valuable insights. In this review, available therapies, point mutations, structure-activity relationship and ADMET parameters of reported series of Abl1 tyrosine kinase inhibitors and drugs are summarised. We summarise in detail recent computational and molecular biology studies that focus on designing drug molecules, investigation of natural product compounds and organic new chemical entities. Current ongoing research suggests that selective targeting of Abl1 tyrosine kinase at the molecular level to combat drug resistance in chronic myeloid leukemia is promising.
Collapse
Affiliation(s)
- Masilamani Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - G Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Antara Mallick
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Harmanpreet Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Kranthi Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Meenakshi Chaurasiya
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Monica Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Narendra Gera
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Sindhuja Deverakonda
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Vinay Baghel
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| |
Collapse
|
43
|
Inoue A, Imamura CK, Shimada H, Katayama D, Urabe K, Suzuki R, Takitani K, Ashida A. Pharmacokinetics, Efficacy and Safety of Bosutinib in a Pediatric Patient With Chronic Myeloid Leukemia. J Pediatr Pharmacol Ther 2020; 25:742-745. [PMID: 33214787 DOI: 10.5863/1551-6776-25.8.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 11/11/2022]
Abstract
Bosutinib is a second-generation tyrosine kinase inhibitor indicated for treatment of chronic myeloid leukemia (CML) in adult patients. The safety and efficacy of bosutinib in patients younger than 18 years of age have not been established. We here report the case of a 4-year-old male with CML who was treated with bosutinib during coordination of human leukocyte antigen-matched unrelated bone-marrow transplantation because of insufficient responses to imatinib and dasatinib. The patient achieved a complete cytogenetic response immediately after starting bosutinib at 180 mg/day (290 mg/m2/day). Because toxicity was tolerable, the dose was increased to 200 mg/day (330 mg/m2/day). A complete cytogenetic response was maintained, but a major molecular response was not achieved 6 months after initiation of treatment with bosutinib. At steady state, maximum plasma concentration, minimum plasma concentration, and area under the plasma concentration-time curve were 89.2 ng/mL, 16.7 ng/mL, and 1017.4 ng·hr/mL, respectively, at 290 mg/m2/day; and 141.1 ng/mL, 18.9 ng/mL, and 1278.5 ng·hr/mL, respectively, at 330 mg/m2/day. To the best of our knowledge, this is the first case report to show the pharmacokinetics of bosutinib with efficacy and safety in a pediatric patient with CML. This rare case in a very young child with CML can also be valuable reference for clinical practice.
Collapse
Affiliation(s)
- Akiko Inoue
- Department of Pediatrics, Osaka Medical College (AI, DK, KU, RS, KT, AA), Osaka, Japan
| | - Chiyo K Imamura
- Department of Clinical Pharmacokinetics and Pharmacodynamics (CKI), Keio University School of Medicine, Tokyo, Japan.,Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan (CKI)
| | - Hiroyuki Shimada
- Department of Pediatrics (HS), Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Katayama
- Department of Pediatrics, Osaka Medical College (AI, DK, KU, RS, KT, AA), Osaka, Japan
| | - Keisuke Urabe
- Department of Pediatrics, Osaka Medical College (AI, DK, KU, RS, KT, AA), Osaka, Japan
| | - Ryo Suzuki
- Department of Pediatrics, Osaka Medical College (AI, DK, KU, RS, KT, AA), Osaka, Japan
| | - Kimitaka Takitani
- Department of Pediatrics, Osaka Medical College (AI, DK, KU, RS, KT, AA), Osaka, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical College (AI, DK, KU, RS, KT, AA), Osaka, Japan
| |
Collapse
|
44
|
Liu J, Zhang Y, Huang H, Lei X, Tang G, Cao X, Peng J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem Biol Drug Des 2020; 97:649-664. [PMID: 33034143 DOI: 10.1111/cbdd.13801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
BCR-ABL is a gene produced by the fusion of the bcr gene and the c-abl proto-oncogene and is considered to be the main cause of chronic myelogenous leukemia (CML) production. Therefore, the development of selective Bcr-Abl kinase inhibitors is an attractive strategy for the treatment of CML. However, in the treatment of CML with a Bcr-Abl kinase inhibitor, the T315I gatekeeper mutant disrupts the important contact interaction between the inhibitor and the enzyme, resistant to the first- and second-generation drugs currently approved, such as imatinib, bosutinib, nilotinib, and dasatinib. In order to overcome this special resistance, several different strategies have been explored, and many molecules have been studied to effectively inhibit Bcr-Abl T315I. Some of these molecules are still under development, and some are being studied preclinically, and still others are in clinical research. Herein, this review reports some of the major examples of third-generation Bcr-Abl inhibitors against the T315I mutation.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Pharmacy Department of Yiyang Central Hospital, Yiyang, China
| | - Yuan Zhang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Honglin Huang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
45
|
Pulmonary Arterial Hypertension Worsened by Bosutinib in Patient With Previous Dasatinib Treatment. Am J Ther 2020; 28:e704-e706. [PMID: 32947343 DOI: 10.1097/mjt.0000000000001156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia Chromosome-Positive Leukemia in the Lymphoid Lineage-Similarities and Differences with the Myeloid Lineage and Specific Vulnerabilities. Int J Mol Sci 2020; 21:E5776. [PMID: 32806528 PMCID: PMC7460962 DOI: 10.3390/ijms21165776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Philadelphia chromosome (Ph) results from a translocation between the breakpoint cluster region (BCR) gene on chromosome 9 and ABL proto-oncogene 1 (ABL1) gene on chromosome 22. The fusion gene, BCR-ABL1, is a constitutively active tyrosine kinase which promotes development of leukemia. Depending on the breakpoint site within the BCR gene, different isoforms of BCR-ABL1 exist, with p210 and p190 being the most prevalent. P210 isoform is the hallmark of chronic myeloid leukemia (CML), while p190 isoform is expressed in majority of Ph-positive B cell acute lymphoblastic leukemia (Ph+ B-ALL) cases. The crucial component of treatment protocols of CML and Ph+ B-ALL patients are tyrosine kinase inhibitors (TKIs), drugs which target both BCR-ABL1 isoforms. While TKIs therapy is successful in great majority of CML patients, Ph+ B-ALL often relapses as a drug-resistant disease. Recently, the high-throughput genomic and proteomic analyses revealed significant differences between CML and Ph+ B-ALL. In this review we summarize recent discoveries related to differential signaling pathways mediated by different BCR-ABL1 isoforms, lineage-specific genetic lesions, and metabolic reprogramming. In particular, we emphasize the features distinguishing Ph+ B-ALL from CML and focus on potential therapeutic approaches exploiting those characteristics, which could improve the treatment of Ph+ B-ALL.
Collapse
Affiliation(s)
- Lukasz Komorowski
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St, 02-091 Warsaw, Poland
| | - Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Trojdena 2a St, 02-091 Warsaw, Poland
| | - Elżbieta Patkowska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Indiry Gandhi 14, 02-776 Warsaw, Poland;
| | - Malgorzata Firczuk
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5 St, 02-097 Warsaw, Poland; (L.K.); (K.F.)
| |
Collapse
|
47
|
Cirotti C, Contadini C, Barilà D. SRC Kinase in Glioblastoma News from an Old Acquaintance. Cancers (Basel) 2020; 12:cancers12061558. [PMID: 32545574 PMCID: PMC7352599 DOI: 10.3390/cancers12061558] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most recalcitrant brain tumors characterized by a tumor microenvironment (TME) that strongly supports GBM growth, aggressiveness, invasiveness, and resistance to therapy. Importantly, a common feature of GBM is the aberrant activation of receptor tyrosine kinases (RTKs) and of their downstream signaling cascade, including the non-receptor tyrosine kinase SRC. SRC is a central downstream intermediate of many RTKs, which triggers the phosphorylation of many substrates, therefore, promoting the regulation of a wide range of different pathways involved in cell survival, adhesion, proliferation, motility, and angiogenesis. In addition to the aforementioned pathways, SRC constitutive activity promotes and sustains inflammation and metabolic reprogramming concurring with TME development, therefore, actively sustaining tumor growth. Here, we aim to provide an updated picture of the molecular pathways that link SRC to these events in GBM. In addition, SRC targeting strategies are discussed in order to highlight strengths and weaknesses of SRC inhibitors in GBM management, focusing our attention on their potentialities in combination with conventional therapeutic approaches (i.e., temozolomide) to ameliorate therapy effectiveness.
Collapse
Affiliation(s)
- Claudia Cirotti
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.C.); (C.C.)
- Laboratory of Signal Transduction, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
| | - Claudia Contadini
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.C.); (C.C.)
- Laboratory of Signal Transduction, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
| | - Daniela Barilà
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.C.); (C.C.)
- Laboratory of Signal Transduction, IRCCS-Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: ; Tel.: +39-065-0170-3168
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW HIV-1 infection is incurable due to the existence of latent reservoirs that persist in the face of cART. In this review, we describe the existence of multiple HIV-1 reservoirs, the mechanisms that support their persistence, and the potential use of tyrosine kinase inhibitors (TKIs) to block several pathogenic processes secondary to HIV-1 infection. RECENT FINDINGS Dasatinib interferes in vitro with HIV-1 persistence by two independent mechanisms. First, dasatinib blocks infection and potential expansion of the latent reservoir by interfering with the inactivating phosphorylation of SAMHD1. Secondly, dasatinib inhibits the homeostatic proliferation induced by γc-cytokines. Since homeostatic proliferation is thought to be the main mechanism behind the maintenance of the latent reservoir, we propose that blocking this process will gradually reduce the size of the reservoir. TKIs together with cART will interfere with HIV-1 latent reservoir persistence, favoring the prospect for viral eradication.
Collapse
|
49
|
Hamid AB, Petreaca RC. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040927. [PMID: 32283832 PMCID: PMC7226513 DOI: 10.3390/cancers12040927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary resistant mutations in cancer cells arise in response to certain small molecule inhibitors. These mutations inevitably cause recurrence and often progression to a more aggressive form. Resistant mutations may manifest in various forms. For example, some mutations decrease or abrogate the affinity of the drug for the protein. Others restore the function of the enzyme even in the presence of the inhibitor. In some cases, resistance is acquired through activation of a parallel pathway which bypasses the function of the drug targeted pathway. The Catalogue of Somatic Mutations in Cancer (COSMIC) produced a compendium of resistant mutations to small molecule inhibitors reported in the literature. Here, we build on these data and provide a comprehensive review of resistant mutations in cancers. We also discuss mechanistic parallels of resistance.
Collapse
|
50
|
Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer 2020; 20:158-173. [PMID: 31907378 DOI: 10.1038/s41568-019-0230-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Abstract
For two decades, leukaemia stem cells (LSCs) in chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) have been advanced paradigms for the cancer stem cell field. In CML, the acquisition of the fusion tyrosine kinase BCR-ABL1 in a haematopoietic stem cell drives its transformation to become a LSC. In AML, LSCs can arise from multiple cell types through the activity of a number of oncogenic drivers and pre-leukaemic events, adding further layers of context and genetic and cellular heterogeneity to AML LSCs not observed in most cases of CML. Furthermore, LSCs from both AML and CML can be refractory to standard-of-care therapies and persist in patients, diversify clonally and serve as reservoirs to drive relapse, recurrence or progression to more aggressive forms. Despite these complexities, LSCs in both diseases share biological features, making them distinct from other CML or AML progenitor cells and from normal haematopoietic stem cells. These features may represent Achilles' heels against which novel therapies can be developed. Here, we review many of the similarities and differences that exist between LSCs in CML and AML and examine the therapeutic strategies that could be used to eradicate them.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Disease Management
- Disease Susceptibility
- Drug Development
- History, 20th Century
- History, 21st Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Research/history
- Research/trends
Collapse
Affiliation(s)
- David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|