1
|
Melis M, Marino R, Tian J, Johnson C, Sethi R, Oertel M, Fox IJ, Locker J. Mechanism and Effect of HNF4α Decrease in a Rat Model of Cirrhosis and Liver Failure. Cell Mol Gastroenterol Hepatol 2023; 17:453-479. [PMID: 37993018 PMCID: PMC10837635 DOI: 10.1016/j.jcmgh.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND & AIMS HNF4α, a master regulator of liver development and the mature hepatocyte phenotype, is down-regulated in chronic and inflammatory liver disease. We used contemporary transcriptomics and epigenomics to study the cause and effects of this down-regulation and characterized a multicellular etiology. METHODS Progressive changes in the rat carbon tetrachloride model were studied by deep RNA sequencing and genome-wide chromatin immunoprecipitation sequencing analysis of transcription factor (TF) binding and chromatin modification. Studies compared decompensated cirrhosis with liver failure after 26 weeks of treatment with earlier compensated cirrhosis and with additional rat models of chronic fibrosis. Finally, to resolve cell-specific responses and intercellular signaling, we compared transcriptomes of liver, nonparenchymal, and inflammatory cells. RESULTS HNF4α was significantly lower in 26-week cirrhosis, part of a general reduction of TFs that regulate metabolism. Nevertheless, increased binding of HNF4α contributed to strong activation of major phenotypic genes, whereas reduced binding to other genes had a moderate phenotypic effect. Decreased Hnf4a expression was the combined effect of STAT3 and nuclear factor kappa B (NFκB) activation, which similarly reduced expression of other metabolic TFs. STAT/NFκB also induced de novo expression of Osmr by hepatocytes to complement induced expression of Osm by nonparenchymal cells. CONCLUSIONS Liver decompensation by inflammatory STAT3 and NFκB signaling was not a direct consequence of progressive cirrhosis. Despite significant reduction of Hnf4a expression, residual levels of this abundant TF still stimulated strong new gene expression. Reduction of HNF4α was part of a broad hepatocyte transcriptional response to inflammation.
Collapse
Affiliation(s)
- Marta Melis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca Marino
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianmin Tian
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carla Johnson
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rahil Sethi
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ira J Fox
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Mio C, Baldan F, Damante G. NK2 homeobox gene cluster: Functions and roles in human diseases. Genes Dis 2023; 10:2038-2048. [PMID: 37492711 PMCID: PMC10363584 DOI: 10.1016/j.gendis.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 07/27/2023] Open
Abstract
NK2 genes (NKX2 gene cluster in humans) encode for homeodomain-containing transcription factors that are conserved along the phylogeny. According to the most detailed classifications, vertebrate NKX2 genes are classified into two distinct families, NK2.1 and NK2.2. The former is constituted by NKX2-1 and NKX2-4 genes, which are homologous to the Drosophila scro gene; the latter includes NKX2-2 and NKX2-8 genes, which are homologous to the Drosophila vnd gene. Conservation of these genes is not only related to molecular structure and expression, but also to biological functions. In Drosophila and vertebrates, NK2 genes share roles in the development of ventral regions of the central nervous system. In vertebrates, NKX2 genes have a relevant role in the development of several other organs such as the thyroid, lung, and pancreas. Loss-of-function mutations in NKX2-1 and NKX2-2 are the monogenic cause of the brain-lung-thyroid syndrome and neonatal diabetes, respectively. Alterations in NKX2-4 and NKX2-8 genes may play a role in multifactorial diseases, autism spectrum disorder, and neural tube defects, respectively. NKX2-1, NKX2-2, and NKX2-8 are expressed in various cancer types as either oncogenes or tumor suppressor genes. Several data indicate that evaluation of their expression in tumors has diagnostic and/or prognostic value.
Collapse
Affiliation(s)
- Catia Mio
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
| | - Federica Baldan
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Giuseppe Damante
- Dipartimento di Area Medica, Università degli Studi di Udine, Udine 33100, Italy
- Istituto di Genetica Medica, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| |
Collapse
|
3
|
Nkx2.9 Contributes to Mid-Hindbrain Patterning by Regulation of mdDA Neuronal Cell-Fate and Repression of a Hindbrain-Specific Cell-Fate. Int J Mol Sci 2021; 22:ijms222312663. [PMID: 34884468 PMCID: PMC8658040 DOI: 10.3390/ijms222312663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nkx2.9 is a member of the NK homeobox family and resembles Nkx2.2 both in homology and expression pattern. However, while Nkx2.2 is required for development of serotonergic neurons, the role of Nkx2.9 in the mid-hindbrain region is still ill-defined. We have previously shown that Nkx2.9 expression is downregulated upon loss of En1 during development. Here, we determined whether mdDA neurons require Nkx2.9 during their development. We show that Nkx2.9 is strongly expressed in the IsO and in the VZ and SVZ of the embryonic midbrain, and the majority of mdDA neurons expressed Nkx2.9 during their development. Although the expression of Dat and Cck are slightly affected during development, the overall development and cytoarchitecture of TH-expressing neurons is not affected in the adult Nkx2.9-depleted midbrain. Transcriptome analysis at E14.5 indicated that genes involved in mid- and hindbrain development are affected by Nkx2.9-ablation, such as Wnt8b and Tph2. Although the expression of Tph2 extends more rostral into the isthmic area in the Nkx2.9 mutants, the establishment of the IsO is not affected. Taken together, these data point to a minor role for Nkx2.9 in mid-hindbrain patterning by repressing a hindbrain-specific cell-fate in the IsO and by subtle regulation of mdDA neuronal subset specification.
Collapse
|
4
|
Di Carlo E, Cipollone G, Mucilli F, Sorrentino C. Clinical impact of the lung tissue transcriptome in a teenager with multifocal invasive mucinous adenocarcinoma-a case report. Transl Lung Cancer Res 2020; 9:793-802. [PMID: 32676340 PMCID: PMC7354110 DOI: 10.21037/tlcr-20-177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transcriptional profiling of cancer and normal tissues harboring cancer can be a clinical and discovery tool, especially for the study of rare tumors. Invasive mucinous adenocarcinoma (IMA) is a rare lung cancer histotype, which mostly affects the elderly and commonly has a poor prognosis. We investigated the exceptional case of a teenager, exposed to passive smoke and chemical carcinogens, who developed a multifocal IMA with bilateral involvement. The malignancy was asymptomatic and was diagnosed occasionally during hospitalization for acute abdominal pain due to adnexitis. The young patient underwent video-assisted thoracoscopic surgery and lung samples were analysed by RNA-Sequencing. The transcriptome of patient’s normal and neoplastic lung tissues was compared with matched healthy controls and IMA signature cases, using Gene Set Enrichment Analyses, Gene Ontology and Genotype Tissue Expression database. Compared to healthy controls, the patient’s lung tissue lacked the expression of lymphocyte and humoral-mediated immune response genes, whereas genes driving the response to stimulus, chemical and organic substances, primarily, CXCL8, ACKR1, RAB7B, HOXC9, HOXD9, KLF5 and NKX2-8 were overexpressed. Genes driving extracellular structure organization, cell adhesion, cell movement, metabolic and apoptotic processes were down-modulated in patient’s lung tissue. When compared to IMA signature cases, the patient’s IMA revealed a prevalent expression of genes regulating the response to stimulus, myeloid and neutrophil activation and immune system processes, primarily CD1a and CXCL13/BCA1, whereas stemness genes and proto-oncogenes, such as SOX4, HES1, IER3 and SERPINH1 were downmodulated. These transcriptional signature associated with a favorable clinical course, since the patient was healthy five years after initial diagnosis. The transcriptome of the normal tissues bearing tumor provides meaningful information on the gene pathways driving tumor histogenesis, with a prospective impact on early diagnosis. Unlike the tumor histotype-related transcriptional signature, the individual patient’s signature enables tailored treatment and accurate prognosis.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Cipollone
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,General and Thoracic Surgery, "SS Annunziata" Hospital, Chieti, Italy
| | - Felice Mucilli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,General and Thoracic Surgery, "SS Annunziata" Hospital, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Zhu J, Wu G, Song L, Cao L, Tan Z, Tang M, Li Z, Shi D, Zhang S, Li J. NKX2-8 deletion-induced reprogramming of fatty acid metabolism confers chemoresistance in epithelial ovarian cancer. EBioMedicine 2019; 43:238-252. [PMID: 31047858 PMCID: PMC6562195 DOI: 10.1016/j.ebiom.2019.04.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 01/04/2023] Open
Abstract
Background Aberrant fatty acid (FA) metabolism is a unique vulnerability of cancer cells and may present a promising target for cancer therapy. Our study aims to elucidate the molecular mechanisms by which NKX2–8 deletion reprogrammed FA metabolism-induced chemoresistance in epithelial ovarian cancer (EOC). Methods The deletion frequency and expression of NKX2–8 in 144 EOC specimens were assayed using Fluorescence in situ hybridization and immunochemical assays. The effects of NKX2–8 deletion and the fatty acid oxidation (FAO) antagonist Perhexiline on chemoresistance were examined by Annexin V and colony formation in vitro, and via an intraperitoneal tumor model in vivo. The mechanisms of NKX2–8 deletion in reprogrammed FA metabolism was determined using Chip-seq, metabolomic analysis, FAO assays and immunoprecipitation assays. Findings NKX2–8 deletion was correlated with the overall and relapse-free survival of EOC patients. NKX2–8 inhibited the FAO pathway by epigenetically suppressing multiple key components of the FAO cascade, including CPT1A and CPT2. Loss of NKX2–8 resulted in reprogramming of FA metabolism of EOC cells in an adipose microenvironment and leading to platinum resistance. Importantly, pharmacological inhibition of FAO pathway using Perhexiline significantly counteracted NKX2–8 deletion-induced chemoresistance and enhanced platinum's therapeutic efficacy in EOC. Interpretation Our results demonstrate that NKX2–8 deletion-reprogrammed FA metabolism contributes to chemoresistance and Perhexiline might serve as a potential tailored treatment for patients with NKX2–8-deleted EOC. Fund This work was supported by Natural Science Foundation of China; Guangzhou Science and Technology Plan Projects; Natural Science Foundation of Guangdong Province; The Fundamental Research Funds for the Central Universities.
Collapse
Affiliation(s)
- Jinrong Zhu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Geyan Wu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Lixue Cao
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Zhanyao Tan
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Ziwen Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dongni Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
6
|
Fang Z, Yang S, Zhu L, Li Y, Chen Y, Jin Y, Zhao X, Zhao H, Chen X, Zhao Y, Shen C, Yao Y. Association study of IGFBP1 and IGFBP3 polymorphisms with hypertension and cardio-cerebral vascular diseases in a Chinese Han population. Oncotarget 2017; 8:77836-77845. [PMID: 29100429 PMCID: PMC5652818 DOI: 10.18632/oncotarget.20839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/17/2017] [Indexed: 01/25/2023] Open
Abstract
Previous studies have showed that insulin-like growth factor (IGF) axis is involved in the development of hypertension. It is unclear whether genetic variants in the IGF-binding proteins (IGFBPs) contribute to the susceptibility to hypertension. Three single-nucleotide polymorphisms (SNPs) in IGFBP1 and four SNPs in IGFBP3 were selected for genotyping in 2,012 hypertension cases and 2,210 healthy controls and 4,128 subjects were followed up for a median of 5.01 years. Multiple logistic regression and Cox regression were performed to evaluate the association of these seven SNPs with hypertension and cardio-cerebral vascular disease (CCVD). In the case-control study, rs2132572 and rs3110697 at IGFBP3 were significantly associated with hypertension, and the odds ratios (ORs) of rs2132572 (CT+TT vs. CC) and rs3110697 (GA+AA vs. GG) were 1.235 (P=0.002) and 1.176 (P=0.013), respectively (PFDR<0.05). The association of rs2132572 (TT vs. CT+CC) with hypertension was further replicated in the follow-up population, with a hazard ratio (HR) of 1.694 (P=0.014). rs1874479 at IGFBP1 was significantly associated with CCVD, particularly with stroke, and the HRs of the additive model were 1.310 (P=0.007) and 1.372 (P=0.015). Moreover, the hypertension cases presented with lower serum IGFBP1 levels than the controls (P=0.011). The serum levels of IGFBP1 significantly varied among the genotypes of rs1065780, rs2854843 and rs13223993, both in the controls and in the hypertension cases (P<0.05). These findings suggest that the genetic variants of IGFBP1 and IGFBP3 were associated with an increased risk of stroke and hypertension, respectively. Lower serum IGFBP1 levels may predict an increased risk of hypertension.
Collapse
Affiliation(s)
- Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Ying Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Yuelong Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Hailong Zhao
- Central Laboratory, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Xiaotian Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanping Zhao
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing 214200, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingshui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
7
|
Mu D. The complexity of thyroid transcription factor 1 with both pro- and anti-oncogenic activities. J Biol Chem 2013; 288:24992-25000. [PMID: 23818522 PMCID: PMC3757165 DOI: 10.1074/jbc.r113.491647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
After the original identification of thyroid transcription factor 1 (TTF-1 or NKX2-1) biochemical activity as a transcriptional regulator of thyroglobulin in 1989, the bulk of the ensuing research has concentrated on elucidating the roles of NKX2-1 in the development of lung and thyroid tissues. Motivated by its specific expression pattern, pathologists adopted the NKX2-1 immunoreactivity to distinguish pulmonary from nonpulmonary nonthyroid adenocarcinomas. Interestingly, the concept of NKX2-1 as an active participant in lung tumorigenesis did not take hold until 2007. This minireview contrasts the recent advancements of NKX2-1-related observations primarily in the realm of pulmonary malignancies.
Collapse
Affiliation(s)
- David Mu
- From the Leroy T. Canoles Jr. Cancer Research Center and the Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23501.
| |
Collapse
|
8
|
Lin C, Song L, Gong H, Liu A, Lin X, Wu J, Li M, Li J. Nkx2-8 Downregulation Promotes Angiogenesis and Activates NF-κB in Esophageal Cancer. Cancer Res 2013; 73:3638-48. [DOI: 10.1158/0008-5472.can-12-4028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Kang SM, Lee HJ, Cho JY. MicroRNA-365 regulates NKX2-1, a key mediator of lung cancer. Cancer Lett 2013; 335:487-94. [PMID: 23507558 DOI: 10.1016/j.canlet.2013.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
MicroRNAs constitute a class of small noncoding RNAs that play roles in tumorigenesis. We found that NKX2-1 protein levels were generally high in the lung cancer tissues whereas miRNA-365 expression levels were downregulated. Ectopic miR-365 expression decreased NKX2-1 expression in lung cancer cell lines. Transfection of a miR-365 mimic led to reduced proliferation of lung cancer cells; conversely, a miR-365 inhibitor slightly increased cell proliferation. The NKX2-1 overexpression significantly increased the cell proliferation by overcoming the suppressive effect of miR-365. Our data suggest that miR-365 is an important regulator of NKX2-1 and can be a target for lung cancer therapies.
Collapse
Affiliation(s)
- Sung-Min Kang
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | |
Collapse
|
10
|
Maeda Y, Tsuchiya T, Hao H, Tompkins DH, Xu Y, Mucenski ML, Du L, Keiser AR, Fukazawa T, Naomoto Y, Nagayasu T, Whitsett JA. Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. J Clin Invest 2012; 122:4388-400. [PMID: 23143308 DOI: 10.1172/jci64048] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022] Open
Abstract
Mucinous adenocarcinoma of the lung is a subtype of highly invasive pulmonary tumors and is associated with decreased or absent expression of the transcription factor NK2 homeobox 1 (NKX2-1; also known as TTF-1). Here, we show that haploinsufficiency of Nkx2-1 in combination with oncogenic Kras(G12D), but not with oncogenic EGFR(L858R), caused pulmonary tumors in transgenic mice that were phenotypically similar to human mucinous adenocarcinomas. Gene expression patterns distinguished tumor goblet (mucous) cells from nontumorigenic airway and intestinal goblet cells. Expression of NKX2-1 inhibited urethane and oncogenic Kras(G12D)-induced tumorigenesis in vivo. Haploinsufficiency of Nkx2-1 enhanced Kras(G12D)-mediated tumor progression, but reduced EGFR(L858R)-mediated progression. Genome-wide analysis of gene expression demonstrated that a set of genes induced in mucinous tumors was shared with genes induced in a nontumorigenic chronic lung disease, while a distinct subset of genes was specific to mucinous tumors. ChIP with massively parallel DNA sequencing identified a direct association of NKX2-1 with the genes induced in mucinous tumors. NKX2-1 associated with the AP-1 binding element as well as the canonical NKX2-1 binding element. NKX2-1 inhibited both AP-1 activity and tumor colony formation in vitro. These data demonstrate that NKX2-1 functions in a context-dependent manner in lung tumorigenesis and inhibits Kras(G12D)-driven mucinous pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Yutaka Maeda
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
12
|
Bravo-Ambrosio A, Mastick G, Kaprielian Z. Motor axon exit from the mammalian spinal cord is controlled by the homeodomain protein Nkx2.9 via Robo-Slit signaling. Development 2012; 139:1435-46. [PMID: 22399681 PMCID: PMC3308178 DOI: 10.1242/dev.072256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2012] [Indexed: 01/11/2023]
Abstract
Mammalian motor circuits control voluntary movements by transmitting signals from the central nervous system (CNS) to muscle targets. To form these circuits, motor neurons (MNs) must extend their axons out of the CNS. Although exit from the CNS is an indispensable phase of motor axon pathfinding, the underlying molecular mechanisms remain obscure. Here, we present the first identification of a genetic pathway that regulates motor axon exit from the vertebrate spinal cord, utilizing spinal accessory motor neurons (SACMNs) as a model system. SACMNs are a homogeneous population of spinal MNs with axons that leave the CNS through a discrete lateral exit point (LEP) and can be visualized by the expression of the cell surface protein BEN. We show that the homeodomain transcription factor Nkx2.9 is selectively required for SACMN axon exit and identify the Robo2 guidance receptor as a likely downstream effector of Nkx2.9; loss of Nkx2.9 leads to a reduction in Robo2 mRNA and protein within SACMNs and SACMN axons fail to exit the spinal cord in Robo2-deficient mice. Consistent with short-range interactions between Robo2 and Slit ligands regulating SACMN axon exit, Robo2-expressing SACMN axons normally navigate through LEP-associated Slits as they emerge from the spinal cord, and fail to exit in Slit-deficient mice. Our studies support the view that Nkx2.9 controls SACMN axon exit from the mammalian spinal cord by regulating Robo-Slit signaling.
Collapse
Affiliation(s)
- Arlene Bravo-Ambrosio
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Grant Mastick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
13
|
Yu C, Zhang Z, Liao W, Zhao X, Liu L, Wu Y, Liu Z, Li Y, Zhong Y, Chen K, Li J, Zhou F, Song L. The tumor-suppressor gene Nkx2.8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway. Carcinogenesis 2012; 33:678-86. [PMID: 22223847 DOI: 10.1093/carcin/bgr321] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Invasive bladder cancer is a lethal disease for which effective prognostic markers as well as potential therapy targets are still lacking. Nkx2.8 (Nk2 homeobox 8), a novel member of the NK-2 gene family, was reported to play an important role in the development and progression of human cancer. Herein, we reported that Nkx2.8 was markedly reduced in bladder cancer tissues compared with matched adjacent normal urothelial tissues. Nkx2.8 levels were inversely correlated with advanced T classification, N classification, tumor multiplicity, high proliferation index (Ki-67) and poor survival of patients. Furthermore, we found that overexpression of Nkx2.8 in bladder cancer cells significantly inhibited cell proliferation in vitro and in vivo, whereas silencing Nkx2.8 dramatically enhanced cell proliferation. Moreover, we demonstrated that overexpression of Nkx2.8 resulted in G(1)/S phase arrest, accompanied by upregulation of p27(Kip1), downregulation of cyclin D1 and p-FOXO3a and inhibition of MEK/ERK pathway activity. Meanwhile, silencing Nkx2.8 led to acceleration of G(1)/S transition, downregulation of p27(Kip1), upregulation of cyclin D1 and p-FOXO3a and increase of MEK/ERK pathway activity. These findings suggest that Nkx2.8 plays a potential tumor suppressor role in bladder cancer progression and represents a valuable clinical prognostic marker of this disease.
Collapse
Affiliation(s)
- Chunping Yu
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Torgyekes E, Shanske AL, Anyane-Yeboa K, Nahum O, Pirzadeh S, Blumfield E, Jobanputra V, Warburton D, Levy B. The proximal chromosome 14q microdeletion syndrome: Delineation of the phenotype using high resolution SNP oligonucleotide microarray analysis (SOMA) and review of the literature. Am J Med Genet A 2011; 155A:1884-96. [DOI: 10.1002/ajmg.a.34090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/04/2011] [Indexed: 01/20/2023]
|
15
|
Neal JW, Shaw AT. One allele's loss is another's gain: alterations of NKX2-8 in non-small cell lung cancer. Clin Cancer Res 2011; 17:638-9. [PMID: 21163872 PMCID: PMC3045701 DOI: 10.1158/1078-0432.ccr-10-3081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large-scale genetic changes such as loss or gain of chromosomes are important drivers of solid tumor carcinogenesis. Recent technological advances in genomic profiling have allowed quantitative detection of gene copy numbers, leading to identification of the 14q13.3 gene locus as functionally important in non-small cell lung cancers.
Collapse
Affiliation(s)
- Joel W Neal
- Stanford Cancer Center, Stanford, California, USA
| | | |
Collapse
|
16
|
Tang X, Kadara H, Behrens C, Liu DD, Xiao Y, Rice D, Gazdar AF, Fujimoto J, Moran C, Varella-Garcia M, Lee JJ, Hong WK, Wistuba II. Abnormalities of the TITF-1 lineage-specific oncogene in NSCLC: implications in lung cancer pathogenesis and prognosis. Clin Cancer Res 2011; 17:2434-43. [PMID: 21257719 DOI: 10.1158/1078-0432.ccr-10-1412] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Emerging evidence suggests that aberrant expression of oncogenes contributes to development of lung malignancy. The thyroid transcription factor 1 (TITF-1) gene functions as a lineage survival gene abnormally expressed in a significant fraction of non-small cell lung cancers (NSCLC), in particular lung adenocarcinomas. EXPERIMENTAL DESIGN To better characterize TITF-1 abnormality patterns in NSCLC, we studied TITF-1's gene copy number using FISH and quantitative PCR, as well as its protein expression by immunohistochemistry analysis in a tissue microarray comprising surgically resected NSCLC (N = 321) including 204 adenocarcinomas and 117 squamous cell carcinomas (SCC). TITF-1 copy number and protein expression were correlated with patients' clinicopathologic characteristics, and in a subset of adenocarcinomas with EGFR and KRAS mutation status. RESULTS We found that increased TITF-1 protein expression was prevalent in lung adenocarcinomas only and was significantly associated with female gender (P < 0.001), never-smokers (P = 0.004), presence of EGFR mutations (P = 0.05), and better overall survival (all stages, P = 0.0478; stages I and II, P = 0.002). TITF-1 copy number gain(CNG) was detected by FISH analysis in both adenocarcinomas (18.9%; high CNG, 8.3%) and SCCs (20.1%; high CNG, 3.0%), and correlated significantly with the protein product (P = 0.004) and presence of KRAS mutations (P = 0.008) in lung adenocarcinomas. Moreover, multivariate analysis revealed that TITF-1 copy number gain was an independent predictor of poor survival of NSCLC (P = 0.039). CONCLUSIONS Our integrative study demonstrates that the protein versus genomic patterns of TITF-1 have opposing roles in lung cancer prognosis and may occur preferentially in different subsets of NSCLC patients with distinct oncogene mutations.
Collapse
Affiliation(s)
- Ximing Tang
- Departmentsof Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Harris T, Pan Q, Sironi J, Lutz D, Tian J, Sapkar J, Perez-Soler R, Keller S, Locker J. Both gene amplification and allelic loss occur at 14q13.3 in lung cancer. Clin Cancer Res 2010; 17:690-9. [PMID: 21148747 DOI: 10.1158/1078-0432.ccr-10-1892] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Because loss of Nkx2-8 increases lung cancer in the mouse, we studied suppressive mechanisms in human lung cancer. EXPERIMENTAL DESIGN NKX2-8 is located within 14q13.3, adjacent to its close relative TTF1/NKX2-1. We first analyzed LOH of 14q13.3 in forty-five matched human lung cancer and control specimens. DNA from tumors with LOH was then analyzed with high-density single-nucleotide polymorphism (SNP) arrays. For correlation with this genetic analysis, we quantified expression of Nkx2-8 and TTF1 mRNA in tumors. Finally, suppressive function of Nkx2-8 was assessed via colony formation assays in five lung cancer cell lines. RESULTS Thirteen of forty-five (29%) tumors had LOH. In six tumors, most adenocarcinomas, LOH was caused by gene amplification. The 0.8-Mb common region of amplification included MBIP, SFTA, TTF1, NKX2-8, and PAX9. In 4 squamous or adenosquamous cancers, LOH was caused by deletion. In three other tumors, LOH resulted from whole chromosome mechanisms (14(-), 14(+), or aneuploidy). The 1.2-Mb common region of deletion included MBIP, SFTA, TTF1, NKX2-8, PAX9, SLC25A21, and MIPOL1. Most tumors had low expression of Nkx2-8. Nevertheless, sequencing did not show NKX2-8 mutations that could explain the low expression. TTF1 overexpression, in contrast, was common and usually independent of Nkx2-8 expression. Finally, stable transfection of Nkx2-8 selectively inhibited growth of H522 lung cancer cells. CONCLUSIONS 14q13.3, which contains NKX2-8, is subject to both amplification and deletion in lung cancer. Most tumors have low expression of Nkx2-8, and its expression can inhibit growth of some lung cancer cells.
Collapse
Affiliation(s)
- Thomas Harris
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res 2010; 156:188-205. [PMID: 20801416 PMCID: PMC4201367 DOI: 10.1016/j.trsl.2010.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
Cell-based therapies with embryonic or adult stem cells, including induced pluripotent stem cells, have emerged as potential novel approaches for several devastating and otherwise incurable lung diseases, including emphysema, pulmonary fibrosis, pulmonary hypertension, and the acute respiratory distress syndrome. Although initial studies suggested engraftment of exogenously administered stem cells in lung, this is now generally felt to be a rare occurrence of uncertain physiologic significance. However, more recent studies have demonstrated paracrine effects of administered cells, including stimulation of angiogenesis and modulation of local inflammatory and immune responses in mouse lung disease models. Based on these studies and on safety and initial efficacy data from trials of adult stem cells in other diseases, groundbreaking clinical trials of cell-based therapy have been initiated for pulmonary hypertension and for chronic obstructive pulmonary disease. In parallel, the identity and role of endogenous lung progenitor cells in development and in repair from injury and potential contribution as lung cancer stem cells continue to be elucidated. Most recently, novel bioengineering approaches have been applied to develop functional lung tissue ex vivo. Advances in each of these areas will be described in this review with particular reference to animal models.
Collapse
Key Words
- aec, alveolar epithelial cell
- ali, acute lung injury
- ards, acute respiratory distress syndrome
- basc, bronchioalveolar stem cell
- ccsp, clara cell secretory protein
- cf, cystic fibrosis
- cftr, cystic fibrosis transmembrane conductance regulator
- clp, cecal ligation and puncture
- copd, chronic obstructive pulmonary disease
- enos, endothelial nitric oxide synthetase
- epc, endothelial progenitor cell
- esc, embryonic stem cell
- fev1, forced expiratory volume in 1 second
- fvc, forced vital capacity
- gfp, green fluorescent protein
- hsc, hematopoietic stem cell
- ipf, idiopathic pulmonary fibrosis
- kgf, keratinocyte growth factor
- lps, lipopolysaccharide
- mct, monocrotaline
- mhc, major histocompatibility complex
- msc, mesenchymal stromal (stem) cell
- ph, pulmonary hypertension
- pro-spc, pro-surfactant protein c
- sca-1, stem cell antigen-1
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Critical Care and Allergy, Department of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
19
|
Lu Y, Liu P, James M, Vikis HG, Liu H, Wen W, Franklin A, You M. Genetic variants cis-regulating Xrn2 expression contribute to the risk of spontaneous lung tumor. Oncogene 2009; 29:1041-9. [PMID: 19915612 DOI: 10.1038/onc.2009.396] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gene expression variation is an important mechanism underlying susceptibility to complex disease. In comparison with tobacco-related lung carcinogenesis, lung cancer in nonsmokers may involve important and etiologically distinct causal pathways. In this study, we conducted a genome-wide association study on spontaneous lung tumor incidence in inbred mice and identified a major susceptibility locus on mouse chromosome 2 (rs27328255, P=6.68 x 10(-7)). We then evaluated the correlations of polymorphisms with the transcription of positional candidate genes in normal lungs. Single-nucleotide polymorphism rs27328255 was consistently and strongly associated (P=7.42 x 10(-9)) in cis with transcript levels of Xrn2. We further showed that Xrn2 promotes proliferation and inhibits squamous differentiation in human lung epithelial cells and polymorphisms in human homolog XRN2 are associated with human lung cancer (rs2025811, P=1.90 x 10(-3), OR=1.20). We conclude that genetic variants regulating Xrn2 expression in cis are determinants of spontaneous lung tumor susceptibility in mice and have genetic equivalents in lung cancer susceptibility in human beings. Identifying Xrn2 as a major candidate for spontaneous lung cancer has important implications for the diagnosis and treatment of lung cancer as well as delineation of the mechanisms underlying the genesis of lung cancer in nonsmokers.
Collapse
Affiliation(s)
- Y Lu
- Department of Surgery and the Alvin J Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stem cells and cell therapies in lung biology and lung diseases. Ann Am Thorac Soc 2008; 5:637-67. [PMID: 18625757 DOI: 10.1513/pats.200804-037dw] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K, Lee J, Choi YL, Sato M, Wang P, Hernandez-Boussard T, Gazdar AF, Petersen I, Minna JD, Pollack JR. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 2008; 27:3635-40. [PMID: 18212743 DOI: 10.1038/sj.onc.1211012] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer is a leading cause of cancer death, where the amplification of oncogenes contributes to tumorigenesis. Genomic profiling of 128 lung cancer cell lines and tumors revealed frequent focal DNA amplification at cytoband 14q13.3, a locus not amplified in other tumor types. The smallest region of recurrent amplification spanned the homeobox transcription factor TITF1 (thyroid transcription factor 1; also called NKX2-1), previously linked to normal lung development and function. When amplified, TITF1 exhibited increased expression at both the RNA and protein levels. Small interfering RNA (siRNA)-mediated knockdown of TITF1 in lung cancer cell lines with amplification led to reduced cell proliferation, manifested by both decreased cell-cycle progression and increased apoptosis. Our findings indicate that TITF1 amplification and overexpression contribute to lung cancer cell proliferation rates and survival and implicate TITF1 as a lineage-specific oncogene in lung cancer.
Collapse
Affiliation(s)
- K A Kwei
- Department of Pathology, Stanford University, Stanford, CA 94305-5176, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|