1
|
RNA editing enzyme ADAR1 controls miR-381-3p-mediated expression of multidrug resistance protein MRP4 via regulation of circRNA in human renal cells. J Biol Chem 2022; 298:102184. [PMID: 35753353 PMCID: PMC9293778 DOI: 10.1016/j.jbc.2022.102184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance–associated protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is highly expressed in the kidneys of mammals and is responsible for renal elimination of numerous drugs. Adenosine deaminase acting on RNA 1 (ADAR1) has been reported to regulate gene expression by catalyzing adenosine-to-inosine RNA editing reactions; however, potential roles of ADAR1 in the regulation of MRP4 expression have not been investigated. In this study, we found that downregulation of ADAR1 increased the expression of MRP4 in human renal cells at the posttranscriptional level. Luciferase reporter assays and microarray analysis revealed that downregulation of ADAR1 reduced the levels of microRNA miR-381-3p, which led to the corresponding upregulation of MPR4 expression. Circular RNAs (circRNAs) are a type of closed-loop endogenous noncoding RNAs that play an essential role in gene expression by acting as miRNA sponges. We demonstrate that ADAR1 repressed the biogenesis of circRNA circHIPK3 through its adenosine-to-inosine RNA editing activity, which altered the secondary structure of the precursor of circHIPK3. Furthermore, in silico analysis suggested that circHIPK3 acts as a sponge of miR-381-3p. Indeed, we found overexpression of circHIPK3 induced the expression of MRP4 through its interference with miR-381-3p. Taken together, our study provides novel insights into regulation of the expression of xenobiotic transporters through circRNA expression by the RNA editing enzyme ADAR1.
Collapse
|
2
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Changes in Gene Expression Profiling and Phenotype in Aged Multidrug Resistance Protein 4-Deficient Mouse Retinas. Antioxidants (Basel) 2021; 10:antiox10030455. [PMID: 33804096 PMCID: PMC7999859 DOI: 10.3390/antiox10030455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4) is an energy-dependent membrane transporter responsible for cellular efflux of a broad range of xenobiotics and physiological substrates. In this trial, we aimed to investigate the coeffects of aging and MRP4 deficiency using gene expression microarray and morphological and electrophysiological analyses of mouse retinas. Mrp4-knockout (null) mice and wild-type (WT) mice were reared in the same conditions to 8–12 weeks (young) or 45–55 weeks (aged). Microarray analysis identified 186 differently expressed genes from the retinas of aged Mrp4-null mice as compared to aged WT mice, and subsequent gene ontology and KEGG pathway analyses showed that differently expressed genes were related to lens, eye development, vision and transcellular barrier functions that are involved in metabolic pathways or viral infection pathways. No significant change in thickness was observed for each retinal layer among young/aged WT mice and young/aged Mrp4-null mice. Moreover, immunohistochemical analyses of retinal cell type did not exhibit an overt change in the cellular morphology or distribution among the four age/genotype groups, and the electroretinogram responses showed no significant differences in the amplitude or the latency between aged WT mice and aged Mrp4-null mice. Aging would be an insufficient stress to cause some damage to the retina in the presence of MRP4 deficiency.
Collapse
|
4
|
Nethathe B, Abera A, Naidoo V. Expression and phylogeny of multidrug resistance protein 2 and 4 in African white backed vulture (Gyps africanus). PeerJ 2020; 8:e10422. [PMID: 33344079 PMCID: PMC7718797 DOI: 10.7717/peerj.10422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Diclofenac toxicity in old world vultures is well described in the literature by both the severity of the toxicity induced and the speed of death. While the mechanism of toxicity remains unknown at present, the necropsy signs of gout suggests primary renal involvement at the level of the uric acid excretory pathways. From information in the chicken and man, uric acid excretion is known to be a complex process that involves a combination of glomerular filtration and active tubular excretion. For the proximal convoluted tubules excretion occurs as a two-step process with the basolateral cell membrane using the organic anion transporters and the apical membrane using the multidrug resistant protein to transport uric acid from the blood into the tubular fluid. With uric acid excretion seemingly inhibited by diclofenac, it becomes important to characterize these transporter mechanism at the species level. With no information being available on the molecular characterization/expression of MRPs of Gyps africanus, for this study we used next generation sequencing, and Sanger sequencing on the renal tissue of African white backed vulture (AWB), as the first step to establish if the MRPs gene are expressed in AWB. In silico analysis was conducted using different software to ascertain the function of the latter genes. The sequencing results revealed that the MRP2 and MRP4 are expressed in AWB vultures. Phylogeny of avian MRPs genes confirms that vultures and eagles are closely related, which could be attributed to having the same ancestral genes and foraging behavior. In silico analysis confirmed the transcribed proteins would transports anionic compounds and glucose.
Collapse
Affiliation(s)
- Bono Nethathe
- Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa.,Department of Food Science and Technology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Aron Abera
- Inqaba Biotechnology, Sunnyside, Pretoria, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| |
Collapse
|
5
|
Diurnal expression of MRP4 in bone marrow cells underlies the dosing-time dependent changes in the oxaliplatin-induced myelotoxicity. Sci Rep 2020; 10:13484. [PMID: 32778717 PMCID: PMC7417537 DOI: 10.1038/s41598-020-70321-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
The expression and function of some xenobiotic transporters varies according to the time of day, causing the dosing time-dependent changes in drug disposition and toxicity. Multidrug resistance-associated protein-4 (MRP4), an ATPbinding cassette (ABC) efflux transporter encoded by the Abcc4 gene, is highly expressed in bone marrow cells (BMCs) and protects them against xenobiotics, including chemotherapeutic drugs. In this study, we demonstrated that MRP4 was responsible for the extrusion of oxaliplatin (L-OHP), a platinum (Pt)-based chemotherapeutic drug, from BMCs of mice, and that the efflux transporter expression exhibited significant diurnal variation. Therefore, we investigated the relevance of the diurnal expression of MRP4 in BMCs for L-OHP-induced myelotoxicity in mice maintained under standardized light/dark cycle conditions. After intravenous injection of L-OHP, the Pt content in BMCs varied according to the injection time. Lower Pt accumulation in BMCs was detected in mice after injection of L-OHP at the mid-dark phase, during which the expression levels of MRP4 increased. Consistent with these observations, the myelotoxic effects of L-OHP were attenuated when mice were injected with L-OHP during the dark phase. This dosing schedule also alleviated the L-OHP-induced reduction of the peripheral white blood cell count. The present results suggest that the myelotoxicity of L-OHP is attenuated by optimizing the dosing schedule. Diurnal expression of MRP4 in BMCs is associated with the dosing time-dependent changes in L-OHP-induced myelotoxicity.
Collapse
|
6
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Abdelgaffar H, Tague ED, Castro Gonzalez HF, Campagna SR, Jurat-Fuentes JL. Midgut metabolomic profiling of fall armyworm (Spodoptera frugiperda) with field-evolved resistance to Cry1F corn. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:1-9. [PMID: 30630033 DOI: 10.1016/j.ibmb.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Populations of the fall armyworm (Spodoptera frugiperda) have developed resistance to transgenic corn producing the Cry1F insecticidal protein from the bacterium Bacillus thuringiensis (Bt). Resistance in S. frugiperda from Puerto Rico is genetically linked to a mutation in an ATP Binding Cassette subfamily C2 gene (SfABCC2) that results in a truncated, non-functional Cry1F toxin receptor protein. Since ABCC2 proteins are involved in active export of xenobiotics and other metabolites from the cell, we hypothesized that Cry1F-resistant fall armyworm with a non-functional SfABCC2 protein would display altered gut metabolome composition when compared to susceptible insects. Mass spectrometry and multivariate statistical analyses identified 126 unique metabolites from larval guts, of which 7 were found to display statistically significant altered levels between midguts from susceptible and Cry1F-resistant S. frugiperda larvae when feeding on meridic diet. Among these 7 differentially present metabolites, 6 were found to significantly accumulate (1.3-3.5-fold) in midguts from Cry1F-resistant larvae, including nucleosides, asparagine, and carbohydrates such as trehalose 6-phosphate and sedoheptulose 1/7-phosphate. In contrast, metabolomic comparisons of larvae fed on non-transgenic corn identified 5 metabolites with statistically significant altered levels and only 2 of them, 2-isopropylmalate and 3-phosphoserine, that significantly accumulated (2.3- and 3.5-fold, respectively) in midguts from Cry1F-resistant compared to susceptible larvae. These results identify a short list of candidate metabolites that may be transported by SfABCC2 and that may have the potential to be used as resistance markers.
Collapse
Affiliation(s)
- Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, 37996, USA
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA
| | - Hector F Castro Gonzalez
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA; Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, 37996, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA; Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, 37996, USA
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
8
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS JOURNAL 2017; 19:1317-1331. [PMID: 28664465 DOI: 10.1208/s12248-017-0110-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) separate the brain and cerebrospinal fluid (CSF) from the systemic circulation and represent a barrier to the uptake of both endogenous compounds and xenobiotics into the brain. For compounds whose passive diffusion is limited due to their ionization or hydrophilicity, membrane transporters can facilitate their uptake across the BBB or BCSFB. Members of the solute carrier (SLC) and ATP-binding case (ABC) families are present on these barriers. Differences exist in the localization and expression of transport proteins between the BBB and BCSFB, resulting in functional differences in transport properties. This review focuses on the expression, membrane localization, and different isoforms present at each barrier. Diseases that affect the central nervous system including brain tumors, HIV, Alzheimer's disease, Parkinson's disease, and stroke affect the integrity and expression of transporters at the BBB and BCSFB and will be briefly reviewed.
Collapse
Affiliation(s)
- Marilyn E Morris
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA.
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Ave, Stockton, California, 95211, USA
| |
Collapse
|
10
|
Kanamitsu K, Kusuhara H, Schuetz JD, Takeuchi K, Sugiyama Y. Investigation of the Importance of Multidrug Resistance-Associated Protein 4 (Mrp4/Abcc4) in the Active Efflux of Anionic Drugs Across the Blood-Brain Barrier. J Pharm Sci 2017; 106:2566-2575. [PMID: 28456721 DOI: 10.1016/j.xphs.2017.04.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
The importance of multidrug resistance-associated protein 4 (Mrp4/Abcc4) in limiting the penetration of Mrp4 substrate compounds into the central nervous system across the blood-brain barrier was investigated using Mrp4-/- mice. Significant adenosine triphosphate-dependent uptake by MRP4 was observed for ochratoxin A, pitavastatin, raltitrexed (Km = 43.7 μM), pravastatin, cyclic guanosine monophosphate, 2,4-dichlorophenoxyacetate, and urate. The defect in the Mrp4 gene did not affect the brain-to-plasma ratio (Kp,brain) of quinidine and dantrolene. Following intravenous infusion in wild-type and Mrp4-/- mice, the plasma concentrations of the tested compounds (cefazolin, cefmetazole, ciprofloxacin, cyclophosphamide, furosemide, hydrochlorothiazide, methotrexate, pitavastatin, pravastatin, and raltitrexed) were identical; however, Mrp4-/- mice showed a significantly higher (1.9- to 2.5-fold) Kp,brain than wild-type mice for methotrexate, raltitrexed, and cyclophosphamide. GF120918, a dual inhibitor of P-gp and Bcrp, significantly decreased Kp,cortex and Kp,cerebellum only in Mrp4-/- mice. Methotrexate and raltitrexed are also substrates of multispecific organic anion transporters such as Oatp1a4 and Oat3. GF120918 showed an inhibition potency against Oatp1a4, but not against Oat3. These results suggest that Mrp4 limits the penetration of methotrexate and raltitrexed into the brain across the blood-brain barrier, which is likely to be facilitated by some uptake transporters.
Collapse
Affiliation(s)
- Kayoko Kanamitsu
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Tokushima Research Institute, Otsuka Pharmaceutical Company, Ltd., Tokushima, Japan
| | - Hiroyuki Kusuhara
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan.
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Kenji Takeuchi
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Tokushima Research Institute, Otsuka Pharmaceutical Company, Ltd., Tokushima, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan
| |
Collapse
|
11
|
Liu W, Song H, Chen Q, Xu C, Zhang W, Liu Y, Wang B, Xu D, Lu M, Yang D, Zheng X. Multidrug resistance protein 4 is a critical protein associated with the antiviral efficacy of nucleos(t)ide analogues. Liver Int 2016; 36:1284-94. [PMID: 26931636 DOI: 10.1111/liv.13104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Multidrug resistance protein 4 (MRP4) has been associated with nucleos(t)ide analogue (NA) antiretroviral therapy failure, though is unclear if MRP4 is also correlated with the failure of anti-hepatitis B virus (HBV) therapy. METHODS Multidrug resistance protein 4 expression in human peripheral blood mononuclear cells (PBMCs), liver tissues and human hepatoma cell lines was detected by real-time polymerase chain reaction (PCR), western blotting and immunohistochemistry assays. Supernatant and intracellular HBV DNA levels of MRP4-overexpressing or silenced HepG2.4D14 (wild-type) and HepG2.A64 (entecavir-resistant mutant) cells were measured by quantitative PCR. NA concentrations and HBV mutational analysis were assessed by liquid chromatography/mass spectrometry assays and DNA sequencing. Multivariate analysis was used to assess predictive factors for treatment failure. RESULTS High expression of MRP4 was found in hepatoma cell lines and PBMCs, and up- or down-regulation of MRP4 expression altered the susceptibility of cells to NAs. MRP inhibitors increased NA intracellular accumulation and decreased extracellular levels. Moreover, MRP4 expression in PBMCs was correlated with that in paired liver tissues. Furthermore, multivariate analysis showed MRP4 mRNA expression to be an independent predictor of NA treatment failure. CONCLUSIONS Multidrug resistance protein 4 is a critical protein associated with the antiviral efficacy of NAs, and combination therapy of NA and MRP inhibitors could reduce the dosage for long-term NA use. This is the first report to demonstrate that MRP4 expression is an important factor predicting treatment failure in chronic hepatitis B patients and will provide a potential therapeutic target against HBV.
Collapse
Affiliation(s)
- Wei Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxuan Song
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunli Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongping Xu
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
13
|
Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updat 2016; 26:1-9. [PMID: 27180306 DOI: 10.1016/j.drup.2016.03.001] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Rebekka T Williams
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle J Henderson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia.
| |
Collapse
|
14
|
Hahn A, Fukuda T, Hahn D, Mizuno T, Frenck RW, Vinks AA. Pharmacokinetics and pharmacogenomics of β-lactam-induced neutropenia. Pharmacogenomics 2016; 17:547-59. [PMID: 27045542 DOI: 10.2217/pgs-2015-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Determine if individuals with β-lactam induced neutropenia have polymorphisms that impair function of MRP4 or OAT1/OAT3. METHODS Subjects with β-lactam induced neutropenia were compared to controls for the presence of MRP4 and OAT1/OAT3 polymorphisms, estimated plasma trough concentrations and area under the curve. RESULTS Subjects with a homozygous polymorphism at MRP4 3348 A to G were 5.3 times more likely to develop neutropenia (p = 0.171). No statistical differences were noted in pharmacokinetic parameters. Contingency analysis of children greater than 5 years of age showed neutropenia in subjects who were homozygous wild type at MRP4 3348 A to G was significantly associated with standard or high dosing (p = 0.03). CONCLUSION MRP4 3348 A to G should be further studied for potential contribution to the development of β-lactam induced neutropenia.
Collapse
Affiliation(s)
- Andrea Hahn
- Division of Infectious Disease, Children's National Medical Center, Washington, DC 200102, USA.,Department of Pediatrics, George Washington University School of Medicine, Washington, DC 200523, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 452294, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 452215, USA
| | - David Hahn
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 452294, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 452294, USA
| | - Robert W Frenck
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 452215, USA.,Division of Infectious Disease, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 452294, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 452215, USA
| |
Collapse
|
15
|
Drenberg CD, Hu S, Li L, Buelow DR, Orwick SJ, Gibson AA, Schuetz JD, Sparreboom A, Baker SD. ABCC4 Is a Determinant of Cytarabine-Induced Cytotoxicity and Myelosuppression. Clin Transl Sci 2016; 9:51-9. [PMID: 26842729 PMCID: PMC4905720 DOI: 10.1111/cts.12366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/01/2015] [Indexed: 12/20/2022] Open
Abstract
Resistance to cytarabine remains a major challenge in the treatment of acute myeloid leukemia (AML). Based on previous studies implicating ABCC4/MRP4 in the transport of nucleosides, we hypothesized that cytarabine is sensitive to ABCC4‐mediated efflux, thereby decreasing its cytotoxic response against AML blasts. The uptake of cytarabine and its monophosphate metabolite was found to be facilitated in ABCC4‐expressing vesicles and intracellular retention was significantly impaired by overexpression of human ABCC4 or mouse Abcc4 (P < 0.05). ABCC4 was expressed highly in AML primary blasts and cell lines, and cytotoxicity of cytarabine in cells was increased in the presence of the ABCC4 inhibitors MK571 or sorafenib, as well as after ABCC4 siRNA. In Abcc4‐null mice, cytarabine‐induced hematological toxicity was enhanced and ex vivo colony‐forming assays showed that Abcc4‐deficiency sensitized myeloid progenitors to cytarabine. Collectively, these studies demonstrate that ABCC4 plays a protective role against cytarabine‐mediated insults in leukemic and host myeloid cells.
Collapse
Affiliation(s)
- C D Drenberg
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio, USA
| | - S Hu
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio, USA
| | - L Li
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - D R Buelow
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio, USA
| | - S J Orwick
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio, USA
| | - A A Gibson
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio, USA
| | - J D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Sparreboom
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio, USA
| | - S D Baker
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Proctor WR, Ming X, Bourdet D, Han T(K, Everett RS, Thakker DR. Why Does the Intestine Lack Basolateral Efflux Transporters for Cationic Compounds? A Provocative Hypothesis. J Pharm Sci 2016; 105:484-496. [DOI: 10.1016/j.xphs.2015.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 01/11/2023]
|
17
|
Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. J Pharmacol Exp Ther 2015; 354:358-75. [PMID: 26148856 DOI: 10.1124/jpet.115.225656] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| |
Collapse
|
18
|
Alfirevic A, Durocher J, Elati A, León W, Dickens D, Rädisch S, Box H, Siccardi M, Curley P, Xinarianos G, Ardeshana A, Owen A, Zhang JE, Pirmohamed M, Alfirevic Z, Weeks A, Winikoff B. Misoprostol-induced fever and genetic polymorphisms in drug transporters SLCO1B1 and ABCC4 in women of Latin American and European ancestry. Pharmacogenomics 2015; 16:919-28. [PMID: 26122863 DOI: 10.2217/pgs.15.53] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM Misoprostol, a prostaglandin analogue used for the treatment of postpartum hemorrhage and termination of pregnancy, can cause high fevers. Genetic susceptibility may play a role in misoprostol-induced fever. SUBJECTS & METHODS Body temperature of women treated with misoprostol for termination of pregnancy in the UK (n = 107) and for postpartum hemorrhage in Ecuador (n = 50) was measured. Genotyping for 33 single nucleotide polymorphisms in 15 candidate genes was performed. Additionally, we investigated the transport of radiolabeled misoprostol acid across biological membranes in vitro. RESULTS The ABCC4 single nucleotide polymorphism rs11568658 was associated with misoprostol-induced fever. Misoprostol acid was transported across a blood-brain barrier model by MRP4 and SLCO1B1. CONCLUSION Genetic variability in ABCC4 may contribute to misoprostol-induced fever in pregnant women. Original submitted 21 January 2015; Revision submitted 24 April 2015.
Collapse
Affiliation(s)
- Ana Alfirevic
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | | | - Anisa Elati
- Department of Women's & Children's Health, University of Liverpool, Liverpool Women's Hospital, Liverpool, UK
| | - Wilfrido León
- Hospital Gineco-Obstétrico Isidro Ayora, Av Colombia N14-66 y Sodiro Quito, Ecuador
| | - David Dickens
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - Steffen Rädisch
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - Helen Box
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - Marco Siccardi
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - Paul Curley
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - George Xinarianos
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - Arjun Ardeshana
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - Andrew Owen
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - J Eunice Zhang
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - Munir Pirmohamed
- The Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Block A, Waterhouse Buildings, 1-5 Brownlow Street, Ashton Street, Liverpool, L69 3GL, UK
| | - Zarko Alfirevic
- Department of Women's & Children's Health, University of Liverpool, Liverpool Women's Hospital, Liverpool, UK
| | - Andrew Weeks
- Department of Women's & Children's Health, University of Liverpool, Liverpool Women's Hospital, Liverpool, UK
| | | |
Collapse
|
19
|
Shin N, Oh JH, Lee YJ. Role of drug transporters: an overview based on knockout animal model studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Cheung L, Yu DM, Neiron Z, Failes TW, Arndt GM, Fletcher JI. Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen. Biochem Pharmacol 2015; 93:380-8. [DOI: 10.1016/j.bcp.2014.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/24/2022]
|
21
|
Huang H, Lu-Bo Y, Haddad GG. A Drosophila ABC transporter regulates lifespan. PLoS Genet 2014; 10:e1004844. [PMID: 25474322 PMCID: PMC4256198 DOI: 10.1371/journal.pgen.1004844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2014] [Indexed: 01/08/2023] Open
Abstract
MRP4 (multidrug resistance-associated protein 4) is a member of the MRP/ABCC subfamily of ATP-binding cassette (ABC) transporters that are essential for many cellular processes requiring the transport of substrates across cell membranes. Although MRP4 has been implicated as a detoxification protein by transport of structurally diverse endogenous and xenobiotic compounds, including antivirus and anticancer drugs, that usually induce oxidative stress in cells, its in vivo biological function remains unknown. In this study, we investigate the biological functions of a Drosophila homolog of human MRP4, dMRP4. We show that dMRP4 expression is elevated in response to oxidative stress (paraquat, hydrogen peroxide and hyperoxia) in Drosophila. Flies lacking dMRP4 have a shortened lifespan under both oxidative and normal conditions. Overexpression of dMRP4, on the other hand, is sufficient to increase oxidative stress resistance and extend lifespan. By genetic manipulations, we demonstrate that dMRP4 is required for JNK (c-Jun NH2-terminal kinase) activation during paraquat challenge and for basal transcription of some JNK target genes under normal condition. We show that impaired JNK signaling is an important cause for major defects associated with dMRP4 mutations, suggesting that dMRP4 regulates lifespan by modulating the expression of a set of genes related to both oxidative resistance and aging, at least in part, through JNK signaling. The drug transporters are often known for their ability to transport different physiological-related compounds across cell membranes. Although the abnormal up-regulation of some these transporters is believed to be the common cause of the clinic problem called drug resistance, the biological functions of these transporters remain largely unknown. Here we show that a Drosophila homolog of the mammalian drug transporter plays a role in lifespan regulation. Mutations of this gene increase the sensitivity to oxidative stress and reduce lifespan, while overexpression of this gene increases resistance to oxidative stress and extends lifespan. By molecular and genetic analyses, we have linked functions of this gene to a key signaling transduction pathway that has been known to be important in lifespan regulation.
Collapse
Affiliation(s)
- He Huang
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
| | - Ying Lu-Bo
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
| | - Gabriel G. Haddad
- Department of Pediatrics (Division of Respiratory Medicine), University of California San Diego, La Jolla, California, United States of America
- Rady Children's Hospital San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Cheung L, Flemming CL, Watt F, Masada N, Yu DMT, Huynh T, Conseil G, Tivnan A, Polinsky A, Gudkov AV, Munoz MA, Vishvanath A, Cooper DMF, Henderson MJ, Cole SPC, Fletcher JI, Haber M, Norris MD. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4). Biochem Pharmacol 2014; 91:97-108. [PMID: 24973542 DOI: 10.1016/j.bcp.2014.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022]
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application.
Collapse
Affiliation(s)
- Leanna Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Claudia L Flemming
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Fujiko Watt
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Nanako Masada
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Denise M T Yu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Tony Huynh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Gwenaëlle Conseil
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Amanda Tivnan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Andrei V Gudkov
- Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Marcia A Munoz
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Anasuya Vishvanath
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Michelle J Henderson
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Susan P C Cole
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Jamie I Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| |
Collapse
|
24
|
Kodaira H, Kusuhara H, Fuse E, Ushiki J, Sugiyama Y. Quantitative investigation of the brain-to-cerebrospinal fluid unbound drug concentration ratio under steady-state conditions in rats using a pharmacokinetic model and scaling factors for active efflux transporters. Drug Metab Dispos 2014; 42:983-9. [PMID: 24644297 DOI: 10.1124/dmd.113.056606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A pharmacokinetic model was constructed to explain the difference in brain- and cerebrospinal fluid (CSF)-to-plasma and brain-to-CSF unbound drug concentration ratios (Kp,uu,brain, Kp,uu,CSF, and Kp,uu,CSF/brain, respectively) of drugs under steady-state conditions in rats. The passive permeability across the blood-brain barrier (BBB), PS1, was predicted by two methods using log(D/molecular weight(0.5)) for PS1(1) or the partition coefficient in octanol/water at pH 7.4 (LogD), topologic van der Waals polar surface area, and van der Waals surface area of the basic atoms for PS1(2). The coefficients of each parameter were determined using previously reported in situ rat BBB permeability. Active transport of drugs by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) measured in P-gp- and Bcrp-overexpressing cells was extrapolated to in vivo by introducing scaling factors. Brain- and CSF-to-plasma unbound concentration ratios (Kp,uu,brain and Kp,uu,CSF, respectively) of 19 compounds, including P-gp and Bcrp substrates (daidzein, dantrolene, flavopiridol, genistein, loperamide, quinidine, and verapamil), were simultaneously fitted to the equations in a three-compartment model comprising blood, brain, and CSF compartments. The calculated Kp,uu,brain and Kp,uu,CSF of 17 compounds were within a factor of three of experimental values. Kp,uu,CSF values of genistein and loperamide were outliers of the prediction, and Kp,uu,brain of dantrolene also became an outlier when PS1(2) was used. Kp,uu,CSF/brain of the 19 compounds was within a factor of three of experimental values. In conclusion, the Kp,uu,CSF/brain of drugs, including P-gp and Bcrp substrates, could be successfully explained by a kinetic model using scaling factors combined with in vitro evaluation of P-gp and Bcrp activities.
Collapse
Affiliation(s)
- Hiroshi Kodaira
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo (H.Ko., H.Ku.); Pharmacokinetic Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd., Shizuoka (H.Ko., E.F., J.U.); and Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Research Cluster for Innovation, RIKEN (Y.S.), Kanagawa, Japan
| | | | | | | | | |
Collapse
|
25
|
Sane R, Wu SP, Zhang R, Gallo JM. The effect of ABCG2 and ABCC4 on the pharmacokinetics of methotrexate in the brain. Drug Metab Dispos 2014; 42:537-40. [PMID: 24464805 DOI: 10.1124/dmd.113.055228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Methotrexate (MTX) is the cornerstone of chemotherapy for primary central nervous system lymphoma, yet how the blood-brain barrier (BBB) efflux transporters ABCG2 and ABCC4 influence the required high-dose therapy is unknown. To evaluate their role, we used four mouse strains, C57BL/6 (wild-type; WT), Abcg2(-/-), Abcc4(-/-), and Abcg2(-/-);Abcc4(-/-) (double knockout; DKO) to conduct brain microdialysis studies after single intravenous MTX doses of 50 mg/kg. When the area under the concentration-time curve for plasma (AUC(plasma)) was used to assess systemic exposure to MTX, the rank order was Abcc4(-/-) < WT < Abcg2(-/-) < Abcg2(-/-)Abcc4(-/-). Only the DKO exposure was significantly higher than that of the WT group (P < 0.01), a reflection of the role of Abcg2 in biliary excretion and Abcc4 in renal excretion. MTX brain interstitial fluid concentrations obtained by microdialysis were used to calculate the area under the concentration-time curve for the brain (AUC(brain)), which found the rank order of exposure to be WT < Abcc4(-/-) < Abcg2(-/-) < Abcg2(-/-)Abcc4(-/-) with the largest difference being 4-fold: 286.13 ± 130 μg*min/ml (DKO) versus 66.85 ± 26 (WT). Because the transporters affected the systemic disposition of MTX, particularly in the DKO group, the ratio of the AUC(brain)/AUC(plasma) or the brain/plasma partition coefficient Kp was calculated, revealing that the DKO strain had a significantly higher value (0.23 ± 0.09) than the WT strain (0.11 ± 0.05). Both Abcg2 and Abcc4 limited BBB penetration of MTX; however, only when both drug efflux pumps were negated did the brain accumulation of MTX significantly increase. These findings indicate a contributory role of both ABCG2 and ABCC4 to limiting MTX distribution in patients.
Collapse
Affiliation(s)
- Ramola Sane
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | | | | | | |
Collapse
|
26
|
Tiwari AK, Zhang R, Gallo JM. Overlapping functions of ABC transporters in topotecan disposition as determined in gene knockout mouse models. Mol Cancer Ther 2013; 12:1343-55. [PMID: 23635651 DOI: 10.1158/1535-7163.mct-13-0100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is established that efflux transporters of the ATP-binding cassette (ABC) superfamily can affect the pharmacokinetics of drugs through mechanisms pertaining to drug absorption, elimination, and distribution. To characterize the role of multiple transporters in topotecan's pharmacokinetics, total (lactone+carboxylate) and lactone forms were measured by liquid chromatography/tandem mass spectrometry (LC/MS-MS) in plasma, bile, urine, and feces following intravenous administration at doses of 1 and 4 mg/kg to eight mouse strains: C57BL/6 [wild-type (WT)], Abcb1(-/-), Abcc2(-/-), Abcc4(-/-), Abcg2(-/-), Abcc2;Abcb1(-/-), Abcc2;Abcg2(-/-), and Abcc4;Abcg2(-/-). Compared with WT mice and at both dose levels, the plasma areas under the curve for topotecan lactone were not significantly different in the Abcc2(-/-), Abcc4(-/-), and Abcb1(-/-) strains, whereas significant differences were found in Abcg2(-/-), Abcc2;Abcb1(-/-) (only at the high dose), Abcc4;Abcg2(-/-), and Abcc2;Abcg2(-/-) mice and ranged from 2.1- to 3.3-fold higher. Consistent with these changes, the fecal and biliary excretion of topotecan was reduced, whereas renal elimination was elevated in Abcg2(-/-)-based strains. Similarly, the Abcc2;Abcb1(-/-) strain also had elevated renal elimination and reduced fecal excretion of topotecan lactone. This was more pronounced at the 4 mg/kg dose level, suggesting possible saturation of Abcg2. The Abcc4 transporter was found not to be a major determinant of topotecan pharmacokinetics. It is concluded that Abcg2 has the most significant effect on topotecan elimination, whereas both Abcb1 and Abcc2 have overlapping functions with Abcg2. As such it is relevant to examine how polymorphisms in these transporters influence topotecan activity in patients and whether coadministration of transport modulators could positively affect efficacy without increasing toxicity.
Collapse
Affiliation(s)
- Amit K Tiwari
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
27
|
Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang SM, Liu X, Smith QR, Zhang LK, Zamek-Gliszczynski MJ. Why Clinical Modulation of Efflux Transport at the Human Blood–Brain Barrier Is Unlikely: The ITC Evidence-Based Position. Clin Pharmacol Ther 2013; 94:80-94. [DOI: 10.1038/clpt.2013.34] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Li L, Agarwal S, Elmquist WF. Brain efflux index to investigate the influence of active efflux on brain distribution of pemetrexed and methotrexate. Drug Metab Dispos 2013; 41:659-67. [PMID: 23297298 DOI: 10.1124/dmd.112.049254] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antifolates, in particular methotrexate (MTX), have been widely used in the treatment of primary and secondary tumors of the central nervous system (CNS). Pemetrexed (PMX) is a novel antifolate that also exhibits potent antitumor activity against CNS malignancies. Studies have shown that brain distribution of both antifolates is significantly restricted, possible due to active efflux transport at the blood-brain barrier (BBB). This study characterizes the brain-to-blood transport of PMX and MTX and examines the role of several efflux transporters in brain distribution of the antifolates by use of the intracerebral microinjection technique (brain efflux index). The results from this study show that both PMX and MTX undergo saturable efflux transport across the BBB, with elimination half-lives of approximately 39 minutes and 29 minutes, respectively. Of the various efflux transporters this study investigated, multidrug resistance-associated protein 2 (Mrp2) does not play an important role in the brain distribution of the two antifolate drugs. Interestingly, breast-cancer resistance protein (Bcrp) makes a significant contribution to the brain elimination of MTX but not PMX. In addition, the brain-to-blood transport of both antifolates was inhibited by probenecid and benzylpenicillin, suggesting the involvement of organic anion transporters in the efflux of these compounds from the brain, with organic anion transporter 3 (Oat3) being a possibility. Our results suggest that one of the underlying mechanisms behind the limited brain distribution of PMX and MTX is active efflux transport processes at the BBB, including a benzylpenicillin-sensitive transport system and/or the active transporter Bcrp.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
29
|
Ashraf T, Kis O, Banerjee N, Bendayan R. Drug Transporters At Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-4711-5_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Huynh T, Norris MD, Haber M, Henderson MJ. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma. Front Oncol 2012; 2:178. [PMID: 23267433 PMCID: PMC3526013 DOI: 10.3389/fonc.2012.00178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/09/2012] [Indexed: 02/03/2023] Open
Abstract
Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC) transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together, these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.
Collapse
Affiliation(s)
- Tony Huynh
- Experimental Therapeutics Program, Lowy Cancer Research Centre, Children's Cancer Institute Australia for Medical Research, University of New South Wales and Sydney Children's Hospital Sydney, NSW, Australia
| | | | | | | |
Collapse
|
31
|
Takeuchi K, Shibata M, Kashiyama E, Umehara K. Expression levels of multidrug resistance-associated protein 4 (MRP4) in human leukemia and lymphoma cell lines, and the inhibitory effects of the MRP-specific inhibitor MK-571 on methotrexate distribution in rats. Exp Ther Med 2012. [PMID: 23181130 PMCID: PMC3503844 DOI: 10.3892/etm.2012.627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the development of anti-blood cancer drugs, the chronic myelocytic leukemia (KU812), acute myelocytic leukemia (KG-1) and lymphoma (U937) cell lines are commonly used in preclinical pharmacology studies as human cancer xenograft models in mice. In the present study, mRNA expression levels of typical human ATP-binding cassette (ABC) transporters in these human blood cancer cell lines were analyzed by real-time polymerase chain reaction (RT-PCR). Based on the results, the expression level of multidrug resistance-associated protein 4 (MRP4) was found to be extremely high in KU812 cells compared with those of other transporters. Additionally, MRP4 expression levels were found to be relatively high in U937, KG-1 and a blood cell line derived from a healthy subject (RPMI 1788). In addition, to elucidate the contribution of MRP4 to the methotrexate (MTX) distribution in normal blood cells and tissues, [3H]MTX was intravenously (i.v.) administered to two groups of rats. Animals in one group received [3H]MTX only; the other group was concomitantly administered i.v. MK-571, a typical inhibitor of MRP transporters. No marked difference was observed between the two groups; the Kp values (tissue concentration/plasma concentration) of the concomitant group showed slightly higher values compared with those of the MTX alone group in erythrocytes (1.4 times, P<0.001), spleen (1.3 times, P<0.05) and thymus (1.2 times, P<0.05), respectively. Although in the present study we could not evaluate the direct involvement of MRP4 in blood cancer cells in which MRP4 expression was excessively high, these results suggest a possible functional role of MRP4 in blood cancer cells and albeit only slightly in normal blood cells/tissues.
Collapse
Affiliation(s)
- Kenji Takeuchi
- Department of Drug Metabolism, Drug Safety Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Kawauchi-cho, Tokushima 771-0192, Japan
| | | | | | | |
Collapse
|
32
|
Effects of 1α,25-dihydroxyvitamin D3 on transport and metabolism of adefovir dipivoxil and its metabolites in Caco-2 cells. Eur J Pharm Sci 2012; 46:149-66. [PMID: 22387228 DOI: 10.1016/j.ejps.2012.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 11/23/2022]
Abstract
Effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), natural ligand of the VDR, on the fates of adefovir dipivoxil (P-gp substrate) and its metabolites, mono(POM)-PMEA and adefovir (MRP4 substrate), were investigated in Caco-2 cells. After 1,25(OH)2D3-treatment, higher apical efflux of adefovir was observed after a 60 min incubation of adefovir divipoxil. Changes in these washout studies were predicted by a catenary model for the Caco-2 monolayer that described a higher MRP4 activity with 1,25(OH)2D3 treatment, as confirmed by Western blotting. Moreover, 1,25(OH)2D3 treatment (100 nM for 3 days) resulted in increased basolateral (B) to apical (A) (B-to-A) transport of adefovir dipivoxil but an unchanged A-to-B flux, rendering an elevated efflux ratio (EfR) (from 1.97 to 3.19). The EfR values in control and 1,25(OH)2D3-treated groups in these transport studies were reduced to 1.32 and 1.57, respectively, in the presence of verapamil (50 μM), the P-gp inhibitor. The B-to-A transport of the metabolite, adefovir, was increased in 1,25(OH)2D3-treated cells in the presence of verapamil, whereas the A-to-B and B-to-A transport of mono(POM)-PMEA remained unchanged. But the verapamil and 1,25(OH)2D3 treatments failed to alter rates of sequential metabolism of adefovir dipivoxil in cell lysate. The composite data established that 1,25(OH)2D3 treatment increased both P-gp and MRP4 transport activities without affecting the metabolism of adefovir dipivoxil by esterases. Moreover, an asymmetric appearance of metabolites, being higher with apical application, was observed. According to the catenary model, the asymmetry is suggestive that esterases are predominantly localized on the apical membrane and within the cell.
Collapse
|
33
|
Marquez B, Ameye G, Vallet CM, Tulkens PM, Poirel HA, Van Bambeke F. Characterization of Abcc4 gene amplification in stepwise-selected mouse J774 macrophages resistant to the topoisomerase II inhibitor ciprofloxacin. PLoS One 2011; 6:e28368. [PMID: 22162766 PMCID: PMC3230599 DOI: 10.1371/journal.pone.0028368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
Exposure of J774 mouse macrophages to stepwise increasing concentrations of ciprofloxacin, an antibiotic inhibiting bacterial topoisomerases, selects for resistant cells that overexpress the efflux transporter Abcc4 (Marquez et al. [2009] Antimicrob. Agents Chemother. 53: 2410-2416), encoded by the Abcc4 gene located on Chromosome 14qE4. In this study, we report the genomic alterations occurring along the selection process. Abcc4 expression progressively increased upon selection rounds, with exponential changes observed between cells exposed to 150 and 200 µM of ciprofloxacin, accompanied by a commensurate decrease in ciprofloxacin accumulation. Molecular cytogenetics experiments showed that this overexpression is linked to Abcc4 gene overrepresentation, grading from a partial trisomy of Chr 14 at the first step of selection (cells exposed to 100 µM ciprofloxacin), to low-level amplifications (around three copies) of Abcc4 locus on 1 or 2 Chr 14 (cells exposed to 150 µM ciprofloxacin), followed by high-level amplification of Abcc4 as homogeneous staining region (hsr), inserted on 3 different derivative Chromosomes (cells exposed to 200 µM ciprofloxacin). In revertant cells obtained after more than 60 passages of culture without drug, the Abcc4 hsr amplification was lost in approx. 70% of the population. These data suggest that exposing cells to sufficient concentrations of an antibiotic with low affinity for eukaryotic topoisomerases can cause major genomic alterations that may lead to the overexpression of the transporter responsible for its efflux. Gene amplification appears therefore as a mechanism of resistance that can be triggered by non-anticancer agents but contribute to cross-resistance, and is partially and slowly reversible.
Collapse
Affiliation(s)
- Béatrice Marquez
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Geneviève Ameye
- Université catholique de Louvain, Cliniques universitaires Saint-Luc, Centre de Génétique humaine, Brussels, Belgium
| | - Coralie M. Vallet
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Paul M. Tulkens
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Hélène A. Poirel
- Université catholique de Louvain, Cliniques universitaires Saint-Luc, Centre de Génétique humaine, Brussels, Belgium
| | - Françoise Van Bambeke
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
- * E-mail:
| |
Collapse
|
34
|
Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y. Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J Pharmacol Exp Ther 2011; 339:935-44. [PMID: 21934030 DOI: 10.1124/jpet.111.180398] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study investigated the impact of the active efflux mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) at the blood-brain barrier (BBB) on the predictability of the unbound brain concentration (C(u,brain)) by the concentration in the cerebrospinal fluid (CSF) (C(u,CSF)) in rats. C(u,brain) is obtained as the product of the total brain concentration and unbound fraction in the brain (f(u,brain)) determined in vitro in brain slices. Twenty-five compounds, including P-gp and/or Bcrp substrates, were given a constant intravenous infusion, and their plasma, brain, and CSF concentrations were determined. P-gp and/or Bcrp substrates, such as verapamil, loperamide, flavopiridol, genistein, quinidine, dantrolene, daidzein, cimetidine, and pefloxacin, showed a higher CSF-to-brain unbound concentration ratio (K(p,uu,CSF/brain)) compared with non-P-gp and non-Bcrp substrates. K(p,uu,CSF/brain) values of P-gp-specific (quinidine and verapamil) and Bcrp-specific (daidzein and genistein) substrates were significantly decreased in Mdr1a/1b(-/-) and Bcrp(-/-) mice, respectively. Furthermore, consistent with the contribution of P-gp and Bcrp to the net efflux at the BBB, K(p,uu,CSF/brain) values of the common substrates (flavopiridol and erlotinib) were markedly decreased in Mdr1a/1b(-/-)/Bcrp(-/-) mice, but only moderately or weakly in Mdr1a/1b(-/-) mice and negligibly in Bcrp(-/-) mice. In conclusion, predictability of C(u,brain) by C(u,CSF) decreases along with the net transport activities by P-gp and Bcrp at the BBB. C(u,CSF) of non-P-gp and non-Bcrp substrates can be a reliable surrogate of C(u,brain) for lipophilic compounds.
Collapse
Affiliation(s)
- Hiroshi Kodaira
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Li Y, Revalde JL, Reid G, Paxton JW. Interactions of dietary phytochemicals with ABC transporters: possible implications for drug disposition and multidrug resistance in cancer. Drug Metab Rev 2011; 42:590-611. [PMID: 20433315 DOI: 10.3109/03602531003758690] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common foods, such as fruits and vegetables, contain a large variety of secondary metabolites known as phytochemicals, many of which have been associated with health benefits. However, there is a limited knowledge of the processes by which these, mainly charged, phytochemicals (and/or their metabolites) are absorbed into the body, reach their biological target, and how they are eliminated. Recent studies have indicated that some of these phytochemicals are substrates and modulators of specific members of the superfamily of ABC transporting proteins. In this review, we present the reported interactions between the different classes of phytochemicals and ABC transporters and the mechanism by which they modulate the activity of these transporters. We also discuss the implications that such interactions may have on the pharmacokinetics of xenobiotics and the possible role of phytochemicals in the reversal of multidrug resistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
36
|
Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011:299-323. [PMID: 21103974 DOI: 10.1007/978-3-642-14541-4_8] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nine multidrug resistance proteins (MRPs) represent the major part of the 12 members of the MRP/CFTR subfamily belonging to the 48 human ATP-binding cassette (ABC) transporters. Cloning, functional characterization, and cellular localization of most MRP subfamily members have identified them as ATP-dependent efflux pumps with a broad substrate specificity for the transport of endogenous and xenobiotic anionic substances localized in cellular plasma membranes. Prototypic substrates include glutathione conjugates such as leukotriene C(4) for MRP1, MRP2, and MRP4, bilirubin glucuronosides for MRP2 and MRP3, and cyclic AMP and cyclic GMP for MRP4, MRP5, and MRP8. Reduced glutathione (GSH), present in living cells at millimolar concentrations, modifies the substrate specificities of several MRPs, as exemplified by the cotransport of vincristine with GSH by MRP1, or by the cotransport of GSH with bile acids or of GSH with leukotriene B(4) by MRP4.The role of MRP subfamily members in pathophysiology may be illustrated by the MRP-mediated release of proinflammatory and immunomodulatory mediators such as leukotrienes and prostanoids. Pathophysiological consequences of many genetic variants leading to a lack of functional MRP protein in the plasma membrane are observed in the hereditary MRP2 deficiency associated with conjugated hyperbilirubinemia in Dubin-Johnson syndrome, in pseudoxanthoma elasticum due to mutations in the MRP6 (ABCC6) gene, or in the type of human earwax and osmidrosis determined by single nucleotide polymorphisms in the MRP8 (ABCC8) gene. The hepatobiliary and renal elimination of many drugs and their metabolites is mediated by MRP2 in the hepatocyte canalicular membrane and by MRP4 as well as MRP2 in the luminal membrane of kidney proximal tubules. Therefore, inhibition of these efflux pumps affects pharmacokinetics, unless compensated by other ATP-dependent efflux pumps with overlapping substrate specificities.
Collapse
|
37
|
Renga B, Migliorati M, Mencarelli A, Cipriani S, D'Amore C, Distrutti E, Fiorucci S. Farnesoid X receptor suppresses constitutive androstane receptor activity at the multidrug resistance protein-4 promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:157-65. [PMID: 21296199 DOI: 10.1016/j.bbagrm.2011.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 12/20/2022]
Abstract
Multidrug resistance protein-4 (MRP4) is a member of the multidrug resistance associated gene family that is expressed on the basolateral membrane of hepatocytes and undergoes adaptive up-regulation in response to cholestatic injury or bile acid feeding. In this study we demonstrate that farnesoid X receptor (FXR) regulates MRP4 in vivo and in vitro. In vivo deletion of FXR induces MRP4 gene expression. In vitro treatment of HepG2 cells with FXR ligands, chenodeoxycholic acid (CDCA), cholic acid (CA) and the synthetic ligand GW-4064 suppresses basal mRNA level of the MRP4 gene as well as the co-treatment with CDCA and 6-(4-Chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO), an activator of constitutive androstane receptor (CAR). We found in the human MRP4 promoter a CAR responsive element (CARE) embedded within an FXR responsive element (FXRE). We cloned this region and found that FXR suppresses CAR activity in luciferase assay. Finally, we demonstrated that FXR competes with CAR for binding to this overlapping binding site. Our results support the view that FXR activation in obstructive cholestasis might worsen liver injury by hijacking a protective mechanism regulated by CAR and provides a new molecular explanation to the pathophysiology of cholestasis.
Collapse
Affiliation(s)
- Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Via E dal Pozzo, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Tagami M, Kusuhara S, Imai H, Uemura A, Honda S, Tsukahara Y, Negi A. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells. Biochem Biophys Res Commun 2010; 400:593-8. [DOI: 10.1016/j.bbrc.2010.08.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/25/2010] [Indexed: 01/04/2023]
|
39
|
Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y. Kinetic Analysis of the Cooperation of P-Glycoprotein (P-gp/Abcb1) and Breast Cancer Resistance Protein (Bcrp/Abcg2) in Limiting the Brain and Testis Penetration of Erlotinib, Flavopiridol, and Mitoxantrone. J Pharmacol Exp Ther 2010; 333:788-96. [DOI: 10.1124/jpet.109.162321] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
40
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 568] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
41
|
Ming X, Thakker DR. Role of basolateral efflux transporter MRP4 in the intestinal absorption of the antiviral drug adefovir dipivoxil. Biochem Pharmacol 2010; 79:455-62. [DOI: 10.1016/j.bcp.2009.08.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 01/17/2023]
|
42
|
Aszalos A, Taylor BJ. Flow cytometric evaluation of multidrug resistance proteins. Methods Mol Biol 2010; 596:123-39. [PMID: 19949923 PMCID: PMC7325859 DOI: 10.1007/978-1-60761-416-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
There are several ways to detect proteins on cells. One quite frequently used method is flow cytometry. This method needs fluorescently labeled antibodies that can attach selectively to the protein to be investigated for flow cytometric detection. Flow cytometry scans individual cells, virtually without their surrounding liquid, and can scan many cells in a very short time. Because of this advantage of flow cytometry, it was adapted to investigate transport proteins on normal and cancerous human cells and cell lines. These transport proteins play important roles in human metabolism. Absorption in the intestine, excretion at the kidney, protection of the CNS compartment and the fetus from xenobiotics, and other vital functions depend on these transporters. However, several transporters are overexpressed in cancer cells. These overexpressed transporters pump out anticancer drugs from the cells and prevent their curative effects. The detection and quantitation of these types of transporters in cancer cells is important for this reason. Here, we review literature on flow cytometric detection of the three most studied transporters: P-glycoprotein, multidrug resistance-associated proteins, and breast cancer resistance protein.
Collapse
Affiliation(s)
- Adorjan Aszalos
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
43
|
Increased levels and defective glycosylation of MRPs in ovarian carcinoma cells resistant to oxaliplatin. Biochem Pharmacol 2009; 79:1108-17. [PMID: 20005867 DOI: 10.1016/j.bcp.2009.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 12/15/2022]
Abstract
Pt compounds still represent the mainstay of the treatment of ovarian carcinoma. The aim of the present study was to investigate the molecular bases of resistance to Pt drugs using an oxaliplatin-resistant ovarian carcinoma cell model IGROV-1/OHP. These cells exhibited high levels of resistance to oxaliplatin, cross-resistance to cisplatin and topotecan and displayed a marked accumulation defect of Pt drugs. This feature was associated with increased expression and altered N-linked glycosylation of ATP binding cassette transporters MRP1 and MRP4. Pre-treatment with tunicamycin, which inhibits the biosynthesis of N-linked oligosaccharides, decreased the accumulation of Pt in sensitive cells exposed to oxaliplatin or cisplatin and increased the electrophoretic mobility of MRP1 and MRP4, reproducing the association between decreased glycosylation of MRP1 and MRP4 and decreased Pt accumulation observed in the resistant IGROV-1/OHP cells. The observed N-glycosylation defect of oxaliplatin-resistant cells was linked to reduced levels of N-acetylglucosamine-1-phosphotransferase (GNPTG) and mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-glucosaminyltransferase (MGAT5). This feature, observed in IGROV-1/OHP cells, was associated with decreased retention of Pt drugs. In addition, the overexpression of fully glycosylated MRP1 or MRP4 in tumor cell line of ovarian origin was associated with resistance to oxaliplatin and cisplatin. Our findings, showing that development of resistance to oxaliplatin results in up-regulation of MRPs, support that patients with oxaliplatin-refractory ovarian carcinomas may benefit from non-Pt-based regimens which do not contain MRP1 and MRP4 substrates.
Collapse
|
44
|
Kusuhara H, Sugiyama Y. In vitro-in vivo extrapolation of transporter-mediated clearance in the liver and kidney. Drug Metab Pharmacokinet 2009; 24:37-52. [PMID: 19252335 DOI: 10.2133/dmpk.24.37] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transporters govern drug movement into and out of tissues, thereby playing an important role in drug disposition in plasma and to the site of action. The molecular cloning of such transporters has clarified the importance of members of the solute carrier family, such as OATP/SLCO, OCT/SLC22, OAT/SLC22, and MATE/SLC47, and the ATP-binding cassette transporters, such as P-glycoprotein/ABCB1, MRPs/ABCC, and BCRP/ABCG2. Elucidation of molecular characteristics of transporters has allowed the identification of transporters as mechanisms for drug-drug interactions, and of interindividual differences in drug dispositions and responses. Cumulative studies have highlighted the cooperative roles of uptake transporters and metabolic enzymes/efflux transporters. In this way, the concept of a rate-limiting process in hepatic/renal elimination across epithelial cells has developed. This review illustrates the concept of the rate-limiting step in the hepatic elimination mediated by transporters, and describes the prediction of the in vivo pharmacokinetics of drugs whose disposition is determined by transporters, based on in vitro experiments using pravastatin as an example. This review also illustrates the transporters regulating the peripheral drug concentrations.
Collapse
|
45
|
van de Ven R, de Groot J, Reurs AW, Wijnands PG, van de Wetering K, Schuetz JD, de Gruijl TD, Scheper RJ, Scheffer GL. Unimpaired immune functions in the absence of Mrp4 (Abcc4). Immunol Lett 2009; 124:81-7. [DOI: 10.1016/j.imlet.2009.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/26/2009] [Accepted: 04/20/2009] [Indexed: 12/19/2022]
|
46
|
Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther 2009; 123:80-104. [PMID: 19393264 DOI: 10.1016/j.pharmthera.2009.03.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/20/2009] [Indexed: 12/24/2022]
Abstract
There is considerable interest in the therapeutic and adverse outcomes of drug interactions at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). These include altered efficacy of drugs used in the treatment of CNS disorders, such as AIDS dementia and malignant tumors, and enhanced neurotoxicity of drugs that normally penetrate poorly into the brain. BBB- and BCSFB-mediated interactions are possible because these interfaces are not only passive anatomical barriers, but are also dynamic in that they express a variety of influx and efflux transporters and drug metabolizing enzymes. Based on studies in rodents, it has been widely postulated that efflux transporters play an important role at the human BBB in terms of drug delivery. Furthermore, it is assumed that chemical inhibition of transporters or their genetic ablation in rodents is predictive of the magnitude of interaction to be expected at the human BBB. However, studies in humans challenge this well-established paradigm and claim that such drug interactions will be lesser in magnitude but yet may be clinically significant. This review focuses on current known mechanisms of drug interactions at the blood-brain and blood-CSF barriers and the potential impact of such interactions in humans. We also explore whether such drug interactions can be predicted from preclinical studies. Defining the mechanisms and the impact of drug-drug interactions at the BBB is important for improving efficacy of drugs used in the treatment of CNS disorders while minimizing their toxicity as well as minimizing neurotoxicity of non-CNS drugs.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
47
|
Oostendorp RL, Beijnen JH, Schellens JH. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev 2009; 35:137-47. [DOI: 10.1016/j.ctrv.2008.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/17/2008] [Accepted: 09/20/2008] [Indexed: 11/27/2022]
|
48
|
Kato S, Ito K, Kato Y, Wakayama T, Kubo Y, Iseki S, Tsuji A. Involvement of multidrug resistance-associated protein 1 in intestinal toxicity of methotrexate. Pharm Res 2009; 26:1467-76. [PMID: 19288182 DOI: 10.1007/s11095-009-9858-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/17/2009] [Indexed: 12/21/2022]
Abstract
PURPOSE Methotrexate (MTX) causes dose-limiting gastrointestinal toxicity due to exposure of intestinal tissues, and is a substrate of the multidrug resistance-associated protein (MRP) 1. Here we examine the involvement of MRP1, which is reported to be highly expressed in the proliferative crypt compartment of the small intestine, in the gastrointestinal toxicity of MTX. METHODS MTX was intraperitoneally administered to mrp1 gene knockout (mrp1 ((-/-))) and wild-type (mrp1 ((+/+))) mice. Body weight, food and water intake were monitored, intestinal histological studies and pharmacokinetics of MTX were examined. RESULTS mrp1 ((-/-)) mice more severely decreased body weight, food and water intake than mrp1 ((+/+)) mice. Almost complete loss of villi throughout the small intestine in mrp1 ((-/-)) mice was observed, whereas the damage was only partial in mrp1 ((+/+)) mice. Plasma concentration and biliary excretion profiles of MTX were similar in mrp1 ((-/-)) and mrp1 ((+/+)) mice, though accumulation of MTX in immature proliferative cells isolated from mrp1 ((-/-)) mice was much higher compared to mrp1 ((+/+)) mice. Immunostaining revealed localization of Mrp1 in plasma membrane of the intestinal crypt compartment in mrp1 ((+/+)) mice, but not in mrp1 ((-/-)) mice. CONCLUSION Mrp1 determines the exposure of proliferative cells in the small intestine to MTX, followed by gastrointestinal toxicity.
Collapse
Affiliation(s)
- Sayaka Kato
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, Pollack GM. Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood-brain barrier. Drug Metab Dispos 2009; 37:1251-8. [PMID: 19273529 DOI: 10.1124/dmd.108.025064] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Expression of breast cancer resistance protein (Bcrp) at the blood-brain barrier (BBB) has been revealed recently. To investigate comprehensively the potential role of Bcrp at the murine BBB, a chemically diverse set of model compounds (cimetidine, alfuzosin, dipyridamole, and LY2228820) was evaluated using a multiexperimental design. Bcrp1 stably transfected MDCKII cell monolayer transport studies demonstrated that each compound had affinity for Bcrp and that polarized transport by Bcrp was abolished completely by the Bcrp inhibitor chrysin. However, none of the compounds differed in brain uptake between Bcrp wild-type and knockout mice under either an in situ brain perfusion or a 24-h subcutaneous osmotic minipump continuous infusion experimental paradigm. In addition, alfuzosin and dipyridamole were shown to undergo transport by P-glycoprotein (P-gp) in an MDCKII-MDR1 cell monolayer model. Alfuzosin brain uptake was 4-fold higher in mdr1a(-/-) mice than in mdr1a(+/+) mice in in situ and in vivo studies, demonstrating for the first time that it undergoes P-gp-mediated efflux at the BBB. In contrast, P-gp had no effect on dipyridamole brain penetration in situ or in vivo. In fact, in situ BBB permeability of these solutes appeared to be primarily dependent on their lipophilicity in the absence of efflux transport, and in situ brain uptake clearance correlated with the intrinsic transcellular passive permeability from in vitro transport and cellular accumulation studies. In summary, Bcrp mediates in vitro transport of various compounds, but seems to play a minimal role at the BBB in vivo.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hopper-Borge E, Xu X, Shen T, Shi Z, Chen ZS, Kruh GD. Human multidrug resistance protein 7 (ABCC10) is a resistance factor for nucleoside analogues and epothilone B. Cancer Res 2009; 69:178-84. [PMID: 19118001 PMCID: PMC2745904 DOI: 10.1158/0008-5472.can-08-1420] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multidrug resistance protein 7 (MRP7; ABCC10) is an ATP-binding cassette transporter which is able to transport amphipathic anions and confer resistance to docetaxel and, to a lesser extent, vincristine and paclitaxel. Whereas some detail on the resistance profile of MRP7 is known, the activities of the pump have not been completely determined. Here, it is shown by the analysis of MRP7-transfected HEK293 cells that, in addition to natural product agents, MRP7 is also able to confer resistance to nucleoside-based agents, such as the anticancer agents cytarabine (Ara-C) and gemcitabine, and the antiviral agents 2',3'-dideoxycytidine and PMEA. Consistent with the operation of an efflux pump, expression of MRP7 reduced the accumulation of Ara-C and PMEA. In addition, MRP7 is also able to confer resistance to the microtubule-stabilizing agent epothilone B. Ectopic expression of MRP7 in mouse embryo fibroblasts deficient in P-glycoprotein and Mrp1 revealed that MRP7 has a broad resistance profile for natural product agents. In this drug-sensitive cellular background, MRP7 conferred high levels of resistance to docetaxel (46-fold), paclitaxel (116-fold), SN-38 (65-fold), daunorubicin (7.5-fold), etoposide (11-fold), and vincristine (56-fold). Buthionine sulfoximine did not attenuate MRP7-conferred resistance to docetaxel or Ara-C. These experiments indicate that the resistance capabilities of MRP7 include nucleoside-based agents and a range of natural product anticancer agents that includes nontaxane antimicrotubule agents that are not susceptible to P-glycoprotein-mediated transport and that, unlike MRP1 and MRP2, MRP7-mediated drug transport does not involve glutathione.
Collapse
Affiliation(s)
- Elizabeth Hopper-Borge
- Medical and Basic Science Divisions, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|