1
|
Cai WQ, Zeng LS, Wang LF, Wang YY, Cheng JT, Zhang Y, Han ZW, Zhou Y, Huang SL, Wang XW, Peng XC, Xiang Y, Ma Z, Cui SZ, Xin HW. The Latest Battles Between EGFR Monoclonal Antibodies and Resistant Tumor Cells. Front Oncol 2020; 10:1249. [PMID: 32793499 PMCID: PMC7393266 DOI: 10.3389/fonc.2020.01249] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor involved in homeostatic regulation of normal cells and carcinogenesis of epithelial malignancies. With rapid development of the precision medicine era, a series of new therapies targeting EGFR are underway. Four EGFR monoclonal antibody drugs (cetuximab, panitumumab, nimotuzumab, and necitumumab) are already on the market, and a dozen other EGFR monoclonal antibodies are in clinical trials. Here, we comprehensively review the newly identified biological properties and anti-tumor mechanisms of EGFR monoclonal antibodies. We summarize recently completed and ongoing clinical trials of the classic and new EGFR monoclonal antibodies. More importantly, according to our new standard, we re-classify the complex evolving tumor cell resistance mechanisms, including those involving exosomes, non-coding RNA and the tumor microenvironment, against EGFR monoclonal antibodies. Finally, we analyzed the limitations of EGFR monoclonal antibody therapy, and discussed the current strategies overcoming EGFR related drug resistance. This review will help us better understand the latest battles between EGFR monoclonal antibodies and resistant tumor cells, and the future directions to develop anti-tumor EGFR monoclonal antibodies with durable effects.
Collapse
Affiliation(s)
- Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Li-Si Zeng
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li-Feng Wang
- Department of Gynaecology and Obstetrics, Lianjiang People's Hospital, Lianjiang, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Ying Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Shao-Li Huang
- Department of Clinical laboratory, Lianjiang People's Hospital, Lianjiang, China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Laboratory Medicine, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Pathophysiology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,Department of Biochemistry and Molecular Biology, Health Science Center, School of Basic Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Seshacharyulu P, Ponnusamy MP, Rachagani S, Lakshmanan I, Haridas D, Yan Y, Ganti AK, Batra SK. Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget 2016; 6:5164-81. [PMID: 25686822 PMCID: PMC4467140 DOI: 10.18632/oncotarget.3286] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022] Open
Abstract
Transmembrane proteins MUC4, EGFR and HER2 are shown to be critical in invasion and metastasis of pancreatic cancer. Besides, we and others have demonstrated de novo expression of MUC4 in ~70-90% of pancreatic cancer patients and its stabilizing effects on HER2 downstream signaling in pancreatic cancer. Here, we found that use of canertinib or afatinib resulted in reduction of MUC4 and abrogation of in vitro and in vivo oncogenic functions of MUC4 in pancreatic cancer cells. Notably, silencing of EGFR family member in pancreatic cancer cells decreased MUC4 expression through reduced phospho-STAT1. Furthermore, canertinib and afatinib treatment also inhibited proliferation, migration and survival of pancreatic cancer cells by attenuation of signaling events including pERK1/2 (T202/Y204), cyclin D1, cyclin A, pFAK (Y925) and pAKT (Ser473). Using in vivo bioluminescent imaging, we demonstrated that canertinib treatment significantly reduced tumor burden (P=0.0164) and metastasis to various organs. Further, reduced expression of MUC4 and EGFR family members were confirmed in xenografts. Our results for the first time demonstrated the targeting of EGFR family members along with MUC4 by using pan-EGFR inhibitors. In conclusion, our studies will enhance the translational acquaintance of pan-EGFR inhibitors for combinational therapies to combat against lethal pancreatic cancer.
Collapse
Affiliation(s)
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhanya Haridas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Yan
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Apar K Ganti
- Department of Internal Medicine, VA Nebraska-Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol 2016; 8:57-84. [PMID: 26753006 DOI: 10.1177/1758834015614530] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. This is in spite of widespread, effective measures of preventive screening, and also major advances in treatment options. Despite advances in cytotoxic and targeted therapy, resistance to chemotherapy remains one of the greatest challenges in long-term management of incurable metastatic disease and eventually contributes to death as tumors accumulate means of evading treatment. We performed a comprehensive literature search on the data available through PubMed, Medline, Scopus, and the ASCO Annual Symposium abstracts through June 2015 for the purpose of this review. We discuss the current state of knowledge of clinically relevant mechanisms of resistance to cytotoxic and targeted therapies now in use for the treatment of CRC.
Collapse
Affiliation(s)
- William A Hammond
- Division of Hematology/ Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Abhisek Swaika
- Division of Hematology/ Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Kabir Mody
- Division of Hematology/ Oncology, Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| |
Collapse
|
4
|
Zhang J, Saba NF, Chen GZ, Shin DM. Targeting HER (ERBB) signaling in head and neck cancer: An essential update. Mol Aspects Med 2015; 45:74-86. [PMID: 26163475 DOI: 10.1016/j.mam.2015.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
HNC (head and neck cancer) remains the 6th most common carcinoma worldwide. The suboptimal survival and toxicities observed with conventional approaches warrant exploration of novel therapeutic strategies such as targeted therapies. Although targeting EGFR (epidermal growth factor receptor) with cetuximab demonstrated clinical promise, HER (human epidermal growth factor receptor) or ERBB (erythroblastic leukemia viral oncogene homolog) targeted therapy in HNC has overall been suboptimal to date in clinical settings. Overcoming the resistance as well as identifying new strategies therefore remains a significant challenge. In this review, we will discuss the emerging roles of HER members besides EGFR. A comprehensive "three-dimensional" view of HER signaling pathway from the importance of EGFR nuclear translocation to our maturing concept of receptors' "spatial regulation", as well as the interdependence and interaction among different HER members will also be addressed to complete an essential update of HER signaling in HNC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, NE, Atlanta, GA 30322, USA; Department of Internal Medicine, Division of Hematology, Oncology and Blood & Marrow Transplantation, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, NE, Atlanta, GA 30322, USA
| | - Georgia Zhuo Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, NE, Atlanta, GA 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, NE, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Deeken JF, Wang H, Subramaniam D, He AR, Hwang J, Marshall JL, Urso CE, Wang Y, Ramos C, Steadman K, Pishvaian MJ. A phase 1 study of cetuximab and lapatinib in patients with advanced solid tumor malignancies. Cancer 2015; 121:1645-53. [PMID: 25641763 PMCID: PMC4424139 DOI: 10.1002/cncr.29224] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Acquired resistance to antiepidermal growth factor receptor (anti-EGFR) therapy may be caused by EGFR-v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ErbB2) heterodimerization and pathway reactivation. In preclinical studies, inhibiting ErbB2 blocked this resistance mechanism and resensitized cells to anti-EGFR therapy. Cetuximab targets EGFR, whereas lapatinib inhibits both EGFR and ErbB2. The objective of this phase 1 trial was to assess the safety, dose-limiting toxicities (DLTs), and maximum tolerated doses (MTDs) of cetuximab and lapatinib in patients with solid tumors. METHODS Patients received standard weekly cetuximab with escalating lapatinib doses of 750 mg, 1000 mg, or 1250 mg daily in 3-week cycles. DLTs were monitored through the end of cycle 2. Pretreatment and post-treatment tumor biopsies and germline DNA samples were obtained for correlative studies. RESULTS Twenty-two patients were enrolled, and 18 patients each were evaluable for toxicity and response. Fifty-nine percent of patients had received prior anti-EGFR therapy. Common toxicities included rash and diarrhea. No patient experienced a DLT at the highest dose level, and no grade 4 toxicity was observed. Response included no complete responses, 3 partial responses, 9 patients with stable disease, and 6 patients with disease progression, for an overall response rate of 17% and a clinical benefit rate of 67%. The clinical benefit rate in patients who had previously received anti-EGFR therapy was 70%. The mean treatment duration was 4.7 cycles (range, 1-14 cycles). Decreased expression of EGFR/ErbB2 pathway components after treatment was correlated with response, whereas increased expression in the PI3K, Jak/Stat, and MAPK pathways occurred in nonresponders. CONCLUSIONS The combination of cetuximab and lapatinib was well tolerated, had the expected toxicities, and exhibited notable clinical activity, including in patients who had received previous anti-EGFR therapy. Further clinical study of this combination is warranted.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Anus Neoplasms/drug therapy
- Biopsy
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Squamous Cell/drug therapy
- Cetuximab
- Colorectal Neoplasms/drug therapy
- Diarrhea/chemically induced
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Eruptions/etiology
- ErbB Receptors/genetics
- Female
- Genetic Variation
- Genotype
- Head and Neck Neoplasms/drug therapy
- Humans
- Lapatinib
- Lung Neoplasms/drug therapy
- Male
- Maximum Tolerated Dose
- Middle Aged
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Pharmacogenetics
- Quinazolines/administration & dosage
- Quinazolines/adverse effects
- Quinazolines/pharmacokinetics
- Receptor, ErbB-2/genetics
- Signal Transduction/drug effects
- Treatment Outcome
Collapse
Affiliation(s)
- John F Deeken
- Inova Comprehensive Cancer and Research Institute, Falls Church, Virginia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Younis S, Javed Q, Blumenberg M. Transcriptional changes associated with resistance to inhibitors of epidermal growth factor receptor revealed using metaanalysis. BMC Cancer 2015; 15:369. [PMID: 25948104 PMCID: PMC4430867 DOI: 10.1186/s12885-015-1337-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/22/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND EGFR is important in maintaining metabolic homeostasis in healthy cells, but in tumors it activates downstream signaling pathways, causing proliferation, angiogenesis, invasion and metastasis. Consequently, EGFR is targeted in cancers using reversible, irreversible or antibody inhibitors. Unfortunately, tumors develop inhibitor resistance by mutations or overexpressing EGFR, or its ligand, or activating secondary, EGFR-independent pathways. METHODS Here we present a global metaanalysis comparing transcriptional profiles from matched pairs of EGFR inhibitor-sensitive vs. -resistant cell lines, using 15 datasets comprising 274 microarrays. We also analyzed separately pairs of cell lines derived using reversible, irreversible or antibody inhibitors. RESULTS The metaanalysis identifies commonalities in cell lines resistant to EGFR inhibitors: in sensitive cell lines, the ontological categories involving the ErbB receptors pathways, cell adhesion and lipid metabolism are overexpressed; however, resistance to EGFR inhibitors is associated with overexpression of genes for ErbB receptors-independent oncogenic pathways, regulation of cell motility, energy metabolism, immunity especially inflammatory cytokines biosynthesis, cell cycle and responses to exogenous and endogenous stimuli. Specifically in Gefitinib-resistant cell lines, the immunity-associated genes are overexpressed, whereas in Erlotinib-resistant ones so are the mitochondrial genes and processes. Unexpectedly, lines selected using EGFR-targeting antibodies overexpress different gene ontologies from ones selected using kinase inhibitors. Specifically, they have reduced expression of genes for proliferation, chemotaxis, immunity and angiogenesis. CONCLUSIONS This metaanalysis suggests that 'combination therapies' can improve cancer treatment outcomes. Potentially, use of mitochondrial blockers with Erlotinib, immunity blockers with Gefitinib, tyrosine kinase inhibitors with antibody inhibitors, may have better chance of avoiding development of resistance.
Collapse
Affiliation(s)
- Sidra Younis
- The R.O.Perelman Department of Dermatology, New York, USA. .,Department of Biochemistry and Molecular Pharmacology, New York, USA. .,NYU Cancer Institute, NYU Langone Medical Center, New York, USA. .,Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Qamar Javed
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Miroslav Blumenberg
- The R.O.Perelman Department of Dermatology, New York, USA. .,Department of Biochemistry and Molecular Pharmacology, New York, USA. .,NYU Cancer Institute, NYU Langone Medical Center, New York, USA. .,NYU School of Medicine, 455 First Avenue, New York, 10016, USA.
| |
Collapse
|
7
|
Differential regulation of antagonistic pleiotropy in synthetic and natural populations suggests its role in adaptation. G3-GENES GENOMES GENETICS 2015; 5:699-709. [PMID: 25711830 PMCID: PMC4426359 DOI: 10.1534/g3.115.017020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antagonistic pleiotropy (AP), the ability of a gene to show opposing effects in different phenotypes, has been identified in various life history traits and complex disorders, indicating its fundamental role in balancing fitness over the course of evolution. It is intuitive that natural selection might maintain AP to allow organisms phenotypic flexibility in different environments. However, despite several attempts, little evidence exists for its role in adaptation. We performed a meta-analysis in yeast to identify the genetic basis of AP in bi-parental segregants, natural isolates, and a laboratory strain genome-wide deletion collection, by comparing growth in favorable and stress conditions. We found that whereas AP was abundant in the synthetic populations, it was absent in the natural isolates. This finding indicated resolution of trade-offs, i.e., mitigation of trade-offs over evolutionary history, probably through accumulation of compensatory mutations. In the deletion collection, organizational genes showed AP, suggesting ancient resolutions of trade-offs in the basic cellular pathways. We find abundant AP in the segregants, greater than estimated in the deletion collection or observed in previous studies, with IRA2, a negative regulator of the Ras/PKA signaling pathway, showing trade-offs across diverse environments. Additionally, IRA2 and several other Ras/PKA pathway genes showed balancing selection in isolates of S. cerevisiae and S. paradoxus, indicating that multiple alleles maintain AP in this pathway in natural populations. We propose that during AP resolution, retaining the ability to vary signaling pathways such as Ras/PKA, may provide organisms with phenotypic flexibility. However, with increasing organismal complexity AP resolution may become difficult. A partial resolution of AP could manifest as complex human diseases, and the inability to resolve AP may play a role in speciation. Our findings suggest that testing a universal phenomenon like AP across multiple experimental systems may elucidate mechanisms underlying its regulation and evolution.
Collapse
|
8
|
Gurtner K, Ebert N, Pfitzmann D, Eicheler W, Zips D, Baumann M, Krause M. Effect of combined irradiation and EGFR/Erb-B inhibition with BIBW 2992 on proliferation and tumour cure in cell lines and xenografts. Radiat Oncol 2014; 9:261. [PMID: 25444177 PMCID: PMC4271482 DOI: 10.1186/s13014-014-0261-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/12/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE In previous experiments an enhanced anti-proliterative effect of the EGFR/ErbB tyrosine kinase inhibitor (TKI) BIBW 2992 with single dose irradiation was observed in FaDu tumour xenografts. Aim of the present experiment was to determine if this effect can also be seen in combination with a fractionated radiotherapy. Secondly we investigate the efficacy of BIBW 2992 on local tumour control for UT-SCC-15. MATERIAL AND METHODS Tumour pieces of FaDu, UT-SCC-14, A431, UT-SCC-15 (squamous cell carcinomas) and A7 (glioma) tumour models were transplanted onto the right hind leg of NMRI (nu/nu) nude mice. For evaluation of tumour growth mice were either treated daily orally with BIBW 2992 (30 mg/kg body weight), or carrier up to a final tumour size of 15 mm or with a fractionated radiotherapy (15f/15d, 30 Gy) with simultaneous application of BIBW 2992 or carrier. For local tumour control UT-SCC-15 tumours were treated with a fractionated radiotherapy (30f/6weeks) or received 30f/6 weeks in combination with daily orally BIBW 2992 (22.5 mg/kg b.w.) during RT. RESULTS A significant effect on tumour growth time was observed in all tumour models for BIBW 2992 application alone. However, substantial intertumoural heterogeneity could be seen. In the UT-SCC-14, UT-SCC-15 and A431 tumour models a total regression of the tumours and no recurrence during treatment time (73 days) were determined where as for the A7 tumour only a slight effect was noticeable. For the combined treatment of fractionated radiotherapy (15f/15d) and BIBW 2992 administration a significant effect on tumour growth time was seen compared to irradiation alone for A7, UT-SCC-15 and A431 (ER 1.2 - 3.7), this advantage could not be demonstrated for FaDu and UT-SCC-14. However, the local tumour control was not altered for the UT-SCC-15 tumour model when adding BIBW 2992 to fractionated irradiation (30f/6weeks). CONCLUSION A heterogeneous effect on tumour growth time of BIBW 2992 alone as well as in combination with fractionated irradiation could be demonstrated for all tumour models. However, the significant effect on tumour growth time did not translate into an improvement of local tumour control for the UT-SCC-15 tumour model.
Collapse
Affiliation(s)
- Kristin Gurtner
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
| | - Nadja Ebert
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
| | - Dorothee Pfitzmann
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
| | - Wolfgang Eicheler
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.
| | - Michael Baumann
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany. .,German Cancer consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany. .,Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
| | - Mechthild Krause
- Department of Radiation Oncology, UniversityHospital C.G. Carus, Fetscherstr. 74, 01307, Dresden, Germany. .,OncoRay - National Centerfor Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TechnischeUniversität and Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany. .,German Cancer consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany. .,Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
| |
Collapse
|
9
|
Leiphrakpam PD, Rajput A, Mathiesen M, Agarwal E, Lazenby AJ, Are C, Brattain MG, Chowdhury S. Ezrin expression and cell survival regulation in colorectal cancer. Cell Signal 2014; 26:868-79. [PMID: 24462708 PMCID: PMC3974425 DOI: 10.1016/j.cellsig.2014.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the second largest cause of cancer deaths in the United States. A key barrier that prevents better outcomes for this type of cancer as well as other solid tumors is the lack of effective therapies against the metastatic disease. Thus there is an urgent need to fill this gap in cancer therapy. We utilized a 2D-DIGE proteomics approach to identify and characterize proteins that are differentially regulated between primary colon tumor and liver metastatic deposits of the IGF1R-dependent GEO human CRC xenograft, orthotopically implanted in athymic nude mice that may serve as potential therapeutic targets against CRC metastasis. We observed increased expression of ezrin in liver metastasis in comparison to the primary colonic tumor. Increased ezrin expression was further confirmed by western blot and microarray analyses. Ezrin, a cytoskeletal protein belonging to Ezrin-Radixin-Moesin (ERM) family plays important roles in cell motility, invasion and metastasis. However, its exact function in colorectal cancer is not well characterized. Establishment of advanced GEO cell lines with enhanced liver-metastasizing ability showed a significant increase in ezrin expression in liver metastasis. Increased phosphorylation of ezrin at the T567 site (termed here as p-ezrin T567) was observed in liver metastasis. IHC studies of human CRC patient specimens showed an increased expression of p-ezrin T567 in liver metastasis compared to the primary tumors of the same patient. Ezrin modulation by siRNA, inhibitors and T567A/D point mutations significantly downregulated inhibitors of apoptosis (IAP) proteins XIAP and survivin that have been linked to increased aberrant cell survival and metastasis and increased cell death. Inhibition of the IGF1R signaling pathway by humanized recombinant IGF1R monoclonal antibody MK-0646 in athymic mouse subcutaneous xenografts resulted in inhibition of p-ezrin T567 indicating ezrin signaling is downstream of the IGF1R signaling pathway. We identified increased expression of p-ezrin T567 in CRC liver metastasis in both orthotopically implanted GEO tumors as well as human patient specimens. We report for the first time that p-ezrin T567 is downstream of the IGF1R signaling and demonstrate that ezrin regulates cell survival through survivin/XIAP modulation.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Ashwani Rajput
- Department of Surgery, University of New Mexico Health Science Center, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| | - Michelle Mathiesen
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Ekta Agarwal
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States
| | - Audrey J Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983515 Nebraska Medical Center, Omaha, NE 68198-3135, United States
| | - Chandrakanth Are
- Department of Surgical Oncology, University of Nebraska Medical Center, 984533 Nebraska Medical Center, Omaha, NE 68198-4533, United States
| | - Michael G Brattain
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States.
| | - Sanjib Chowdhury
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, United States.
| |
Collapse
|
10
|
Bossi P, Locati LD, Licitra L. Biological agents in head and neck cancer. Expert Rev Anticancer Ther 2014; 7:1643-50. [DOI: 10.1586/14737140.7.11.1643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BIOMED RESEARCH INTERNATIONAL 2013; 2013:546318. [PMID: 23986907 PMCID: PMC3748428 DOI: 10.1155/2013/546318] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Despite significant improvements in diagnosis, surgical techniques, and advancements in general patient care, the majority of deaths from cancer are caused by the metastases. There is an urgent need for an improved understanding of the cellular and molecular factors that promote cancer metastasis. The process of cancer metastasis depends on multiple interactions between cancer cells and host cells. Studies investigating the TGF α-EGFR signaling pathways that promote the growth and spread of cancer cells. Moreover, the signaling activates not only tumor cells, but also tumor-associated endothelial cells. TGF α-EGFR signaling in colon cancer cells creates a microenvironment that is conducive for metastasis, providing a rationale for efforts to inhibit EGFR signaling in TGF α-positive cancers. In this review, we describe the recent advances in our understanding of the molecular basis of cancer metastasis.
Collapse
|
12
|
Establishment and Validation of an Orthotopic Metastatic Mouse Model of Colorectal Cancer. ISRN HEPATOLOGY 2013; 2013:206875. [PMID: 27340651 PMCID: PMC4907346 DOI: 10.1155/2013/206875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/17/2013] [Indexed: 12/24/2022]
Abstract
Metastases are largely responsible for cancer deaths in solid tumors due to the lack of effective therapies against disseminated disease, and there is an urgent need to fill this gap. This study demonstrates an orthotopic colorectal cancer (CRC) mouse model system to develop spontaneous metastasis in vivo and compare its reproducibility against human CRC. IGF1R-dependent GEO human CRC cells were used to study metastatic colonization using orthotopic transplantation procedures and demonstrated robust liver metastasis. Cell proliferation assays were performed both in the orthotopic primary colon and liver metastatic tumors, and human CRC patient's specimen and similar patterns in H&E and Ki67 staining were observed between the orthotopically generated primary and liver metastatic tumors and human CRC specimens. Microarray analysis was performed to generate gene signatures, compared with deposited human CRC gene expression data sets, analyzed by Oncomine, and revealed similarity in gene signatures with increased aggressive markers expression associated with CRC in orthotopically generated liver metastasis. Thus, we have developed an orthotopic mouse model that reproduces human CRC metastasis. This model system can be effective in developing new therapeutic strategies against disseminated disease and could be implemented for identifying genes that regulate the development and/or maintenance of established metastasis.
Collapse
|
13
|
Chowdhury S, Ongchin M, Wan G, Sharratt E, Brattain MG, Rajput A. Restoration of PTEN activity decreases metastases in an orthotopic model of colon cancer. J Surg Res 2013; 184:755-60. [PMID: 23623571 DOI: 10.1016/j.jss.2013.03.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND Mutational loss of tumor suppressor phosphatase and tensin homologue deleted on chromosome ten (PTEN) is associated with malignant progression in many cancers, including colorectal cancer (CRC). PTEN is involved in negatively regulating the phosphatidylinositol 3-kinase/AKT oncogenic signaling pathway and has been implicated in the metastatic colonization process. Few in vivo models are available to study CRC metastasis. The purpose of this study was to determine the effect of restoring PTEN activity on metastases in an orthotopic murine model. METHODS Green fluorescent protein labeled TENN, a highly metastatic human colon cancer cell line with mutational loss of PTEN gene and TENN clones (with restoration of PTEN gene) tumors were orthotopically implanted onto the colons of BALB/c nude mice and allowed to develop primary and metastatic tumors. Seven weeks post-implantation, mice were euthanized and organs extracted for examination. RESULTS Both TENN and TENN clone cell lines demonstrated 100% primary invasion. However, compared with the parental TENN cells, which demonstrated 62% metastases to both lungs and liver, TENN clone cells showed an approximately 50% reduction in metastasis, with only 31.6% liver metastasis and no metastasis to the lungs (P = 0.02). CONCLUSIONS Our study shows that reactivation of PTEN tumor suppressor pathway leads to a 50% reduction in CRC metastasis without affecting primary tumor formation. Importantly, PTEN restoration also changed the organotropic homing from liver and lung metastasis to liver metastasis only. This in vivo study demonstrates that PTEN might act specifically as a metastasis suppressor and, thus, efforts to target the phosphatidylinositol 3-kinase/PTEN pathway are legitimate.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | |
Collapse
|
14
|
Chowdhury S, Ongchin M, Sharratt E, Dominguez I, Wang J, Brattain MG, Rajput A. Intra-tumoral heterogeneity in metastatic potential and survival signaling between iso-clonal HCT116 and HCT116b human colon carcinoma cell lines. PLoS One 2013; 8:e60299. [PMID: 23560089 PMCID: PMC3613369 DOI: 10.1371/journal.pone.0060299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/25/2013] [Indexed: 02/02/2023] Open
Abstract
Background Colorectal cancer (CRC) metastasis is a leading cause of cancer-related deaths in the United States. The molecular mechanisms underlying this complex, multi-step pathway are yet to be completely elucidated. Recent reports have stressed the importance of intra-tumoral heterogeneity in the development of a metastatic phenotype. The purpose of this study was to characterize the intra-tumoral phenotypic heterogeneity between two iso-clonal human colon cancer sublines HCT116 and HCT116b on their ability to undergo metastatic colonization and survive under growth factor deprivation stress (GFDS). Materials and Methods HCT116 and HCT116b cells were transfected with green fluorescence protein and subcutaneously injected into BALB/c nude male mice. Once xenografts were established, they were excised and orthotopically implanted into other male BALB/c nude mice using microsurgical techniques. Animal tissues were studied for metastases using histochemical techniques. Microarray analysis was performed to generate gene signatures associated with each subline. In vitro assessment of growth factor signaling pathway was performed under GFDS for 3 and 5 days. Results Both HCT116 and HCT116b iso-clonal variants demonstrated 100% primary tumor growth, invasion and peritoneal spread. However, HCT116 was highly metastatic with 68% metastasis observed in liver and/or lungs compared to 4% in HCT116b. Microarray analysis revealed an upregulation of survival and metastatic genes in HCT116 cells compared to HCT116b cells. In vitro analysis showed that HCT116 upregulated survival and migratory signaling proteins and downregulated apoptotic agents under GFDS. However, HCT116b cells effectively showed the opposite response under stress inducing cell death. Conclusions We demonstrate the importance of clonal variation in determining metastatic potential of colorectal cancer cells using the HCT116/HCT116b iso-clonal variants in an orthotopic metastatic mouse model. Determination of clonal heterogeneity in patient tumors can serve as useful tools to identify clinically relevant biomarkers for diagnostic and therapeutic assessment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (AR); (SC)
| | - Melanie Ongchin
- Department of Surgery, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Elizabeth Sharratt
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Ivan Dominguez
- Department of Surgery, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jing Wang
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael G. Brattain
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ashwani Rajput
- Division of Surgical Oncology, Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail: (AR); (SC)
| |
Collapse
|
15
|
TGF-Beta suppresses VEGFA-mediated angiogenesis in colon cancer metastasis. PLoS One 2013; 8:e59918. [PMID: 23536895 PMCID: PMC3607554 DOI: 10.1371/journal.pone.0059918] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/20/2013] [Indexed: 12/28/2022] Open
Abstract
The FET cell line, derived from an early stage colon carcinoma, is non-tumorigenic in athymic nude mice. Engineered FET cells that express TGF-α (FETα) display constitutively active EGFR/ErbB signaling. These cells readily formed xenograft tumors in athymic nude mice. Importantly, FETα cells retained their response to TGF-beta-mediated growth inhibition, and, like the parental FET cells, expression of a dominant negative TGF-beta type II receptor (DNRII) in FETα cells (FETα/DNRII) abrogated responsiveness to TGF-beta-induced growth inhibition and apoptosis under stress conditions in vitro and increased metastatic potential in an orthotopic model in vivo, which indicates metastasis suppressor activity of TGF-beta signaling in this model. Cancer angiogenesis is widely regarded as a key attribute for tumor formation and progression. Here we show that TGF-beta signaling inhibits expression of vascular endothelial growth factor A (VEGFA) and that loss of autocrine TGF-beta in FETα/DNRII cells resulted in increased expression of VEGFA. Regulation of VEGFA expression by TGF-beta is not at the transcriptional level but at the post-transcriptional level. Our results indicate that TGF-beta decreases VEGFA protein stability through ubiquitination and degradation in a PKA- and Smad3-dependent and Smad2-independent pathway. Immunohistochemical (IHC) analyses of orthotopic tumors showed significantly reduced TGF-beta signaling, increased CD31 and VEGFA staining in tumors of FETα/DNRII cells as compared to those of vector control cells. These results indicate that inhibition of TGF-beta signaling increases VEGFA expression and angiogenesis, which could potentially contribute to enhanced metastasis of those cells in vivo. IHC studies performed on human colon adenocarcinoma specimens showed that TGF-beta signaling is inversely correlated with VEGFA expression, indicating that TGF-beta-mediated suppression of VEGFA expression exists in colon cancer patients.
Collapse
|
16
|
Simms NAK, Rajput A, Sharratt EA, Ongchin M, Teggart CA, Wang J, Brattain MG. Transforming growth factor-β suppresses metastasis in a subset of human colon carcinoma cells. BMC Cancer 2012; 12:221. [PMID: 22672900 PMCID: PMC3517326 DOI: 10.1186/1471-2407-12-221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Background TGFβ signaling has typically been associated with suppression of tumor initiation while the role it plays in metastasis is generally associated with progression of malignancy. However, we present evidence here for an anti-metastatic role of TGFβ signaling. Methods To test the importance of TGFβ signaling to cell survival and metastasis we compared human colon carcinoma cell lines that are either non-tumorigenic with TGFβ response (FET), or tumorigenic with TGFβ response (FETα) or tumorigenic with abrogated TGFβ response via introduction of dominant negative TGFβRII (FETα/DN) and their ability to metastasize. Metastatic competency was assessed by orthotopic transplantation. Metastatic colony formation was assessed histologically and by imaging. Results Abrogation of TGFβ signaling through introduction of a dominant negative TGFβ receptor II (TGFβRII) in non-metastatic FETα human colon cancer cells permits metastasis to distal organs, but importantly does not reduce invasive behavior at the primary site. Loss of TGFβ signaling in FETα-DN cells generated enhanced cell survival capabilities in response to cellular stress in vitro. We show that enhanced cellular survival is associated with increased AKT phosphorylation and cytoplasmic expression of inhibitor of apoptosis (IAP) family members (survivin and XIAP) that elicit a cytoprotective effect through inhibition of caspases in response to stress. To confirm that TGFβ signaling is a metastasis suppressor, we rescued TGFβ signaling in CBS metastatic colon cancer cells that had lost TGFβ receptor expression due to epigenetic repression. Restoration of TGFβ signaling resulted in the inhibition of metastatic colony formation in distal organs by these cells. These results indicate that TGFβ signaling has an important role in the suppression of metastatic potential in tumors that have already progressed to the stage of an invasive carcinoma. Conclusions The observations presented here indicate a metastasis suppressor role for TGFβ signaling in human colon cancer cells. This raises the concern that therapies targeting inhibition of TGFβ signaling may be imprudent in some patient populations with residual TGFβ tumor suppressor activity.
Collapse
Affiliation(s)
- Neka A K Simms
- Eppley Institute for Research in Cancer and Allied Diseases, University at Nebraska Medical Center, Omaha, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Qin CF, Hao K, Tian XD, Xie XH, Yang YM. Combined effects of EGFR and Hedgehog signaling pathway inhibition on the proliferation and apoptosis of pancreatic cancer cells. Oncol Rep 2012; 28:519-26. [PMID: 22581058 DOI: 10.3892/or.2012.1808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/12/2012] [Indexed: 12/26/2022] Open
Abstract
In the present study, we established a new experimental model to investigate the effects of EGFR targeting by RNAi, and the synergistic actions between the hedgehog (Hh) and EGFR signaling pathways on the proliferation and apoptosis in pancreatic cancer cells. Three human pancreatic cancer cell lines expressing EGFR shRNA were established, and gene expression inhibition was assessed in these lines using RT-PCR and western blot analysis. The effects of EGFR RNAi and Hh inhibition on cell proliferation and apoptosis were explored in vitro and in vivo. We observed that EGFR RNAi notably inhibited cell proliferation and colony formation, induced apoptosis and markedly decreased xenograft tumor growth. Furthermore, EGFR RNAi significantly enhanced cyclopamine sensitivity both in vitro and in vivo, and a synergistic decrease of both AKT and ERK phosphorylation was observed. The present study demonstrates that combined inhibition of both EGFR and Hh signaling pathways could establish a more promising antitumor approach than inhibiting each singly, and that there is a possible synergistic effect for Hh and EGFR signaling pathways on ERK and AKT phosphorylation.
Collapse
Affiliation(s)
- Chang-Fu Qin
- Department of General Surgery, Peking University First Hospital, Beijing 100034, PR China
| | | | | | | | | |
Collapse
|
18
|
Djerf Severinsson EA, Trinks C, Gréen H, Abdiu A, Hallbeck AL, Stål O, Walz TM. The pan-ErbB receptor tyrosine kinase inhibitor canertinib promotes apoptosis of malignant melanoma in vitro and displays anti-tumor activity in vivo. Biochem Biophys Res Commun 2011; 414:563-8. [PMID: 21982771 DOI: 10.1016/j.bbrc.2011.09.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/20/2022]
Abstract
The ErbB receptor family has been suggested to constitute a therapeutic target for tumor-specific treatment of malignant melanoma. Here we investigate the effect of the pan-ErbB tyrosine kinase inhibitor canertinib on cell growth and survival in human melanoma cells in vitro and in vivo. Canertinib significantly inhibited growth of cultured melanoma cells, RaH3 and RaH5, in a dose-dependent manner as determined by cell counting. Half-maximum growth inhibitory dose (IC(50)) was approximately 0.8 μM and by 5 μM both cell lines were completely growth-arrested within 72 h of treatment. Incubation of exponentially growing RaH3 and RaH5 with 1 μM canertinib accumulated the cells in the G(1)-phase of the cell cycle within 24h of treatment without induction of apoptosis as determined by flow cytometry. Immunoblot analysis showed that 1 μM canertinib inhibited ErbB1-3 receptor phosphorylation with a concomitant decrease of Akt-, Erk1/2- and Stat3 activity in both cell lines. In contrast to the cytostatic effect observed at doses ≤ 5μM canertinib, higher concentrations induced apoptosis as demonstrated by the Annexin V method and Western blot analysis of PARP cleavage. Furthermore, canertinib significantly inhibited growth of RaH3 and RaH5 melanoma xenografts in nude mice. Pharmacological targeting of the ErbB receptors may prove successful in the treatment of patients with metastatic melanoma.
Collapse
Affiliation(s)
- Emelie A Djerf Severinsson
- Division of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S, Li YC, Hart J, Goss K, Fichera A, Joseph L, Bissonnette M. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res 2011; 9:960-75. [PMID: 21653642 PMCID: PMC3819602 DOI: 10.1158/1541-7786.mcr-10-0531] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidermal growth factor receptors (EGFR) contribute to colonic tumorigenesis in experimental models of colon cancer. We previously showed that EGFR was also required for colonic tumor promotion by Western diet. The goal of this study was to identify EGFR-regulated microRNAs that contribute to diet-promoted colonic tumorigenesis. Murine colonic tumors from Egfr(wt) and hypomorphic Egfr(wa2) mice were screened using micro RNA (miRNA) arrays and miR-143 and miR-145 changes confirmed by Northern, real-time PCR, and in situ analysis. Rodent and human sporadic and ulcerative colitis (UC)-associated colon cancers were examined for miR-143 and miR-145. Effects of EGFR on miR-143 and miR-145 expression were assessed in murine and human colonic cells and their putative targets examined in vitro and in vivo. miR-143 and miR-145 were readily detected in normal colonocytes and comparable in Egfr(wt) and Egfr(wa2) mice. These miRNAs were downregulated in azoxymethane and inflammation-associated colonic tumors from Egfr(wt) mice but upregulated in Egfr(wa2) tumors. They were also reduced in human sporadic and UC colon cancers. EGFR signals suppressed miR-143 and miR-145 in human and murine colonic cells. Transfected miR-143 and miR-145 inhibited HCT116 cell growth in vitro and in vivo and downregulated G(1) regulators, K-Ras, MYC, CCND2, cdk6, and E2F3, putative or established targets of these miRNAs. miRNA targets Ras and MYC were increased in colonic tumors from Egfr(wt) but not Egfr(wa2) mice fed a Western diet. EGFR suppresses miR-143 and miR-145 in murine models of colon cancer. Furthermore, Western diet unmasks the tumor suppressor roles of these EGFR-regulated miRNAs.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Azoxymethane/pharmacology
- Cetuximab
- Colitis, Ulcerative/complications
- Colitis, Ulcerative/metabolism
- Colonic Neoplasms/etiology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Dextran Sulfate/pharmacology
- Diet/adverse effects
- Down-Regulation
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- G1 Phase/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- HCT116 Cells
- Humans
- Mice
- MicroRNAs/genetics
- Neoplasms, Experimental/etiology
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Rats
- Signal Transduction
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Marc Bissonnette
- To Whom Correspondence Should be Addressed: Marc Bissonnette, M.D, Department of Medicine, University of Chicago Hospitals and Clinics, 900 East 57 Street, Chicago, IL 60637; Telephone: (773) 702-8597 FAX: (773) 702-2281
| |
Collapse
|
20
|
Chowdhury S, Howell GM, Rajput A, Teggart CA, Brattain LE, Weber HR, Chowdhury A, Brattain MG. Identification of a novel TGFβ/PKA signaling transduceome in mediating control of cell survival and metastasis in colon cancer. PLoS One 2011; 6:e19335. [PMID: 21559296 PMCID: PMC3086924 DOI: 10.1371/journal.pone.0019335] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/27/2011] [Indexed: 12/30/2022] Open
Abstract
Background Understanding drivers for metastasis in human cancer is important for potential development of therapies to treat metastases. The role of loss of TGFβ tumor suppressor activities in the metastatic process is essentially unknown. Methodology/Principal Findings Utilizing in vitro and in vivo techniques, we have shown that loss of TGFβ tumor suppressor signaling is necessary to allow the last step of the metastatic process - colonization of the metastatic site. This work demonstrates for the first time that TGFβ receptor reconstitution leads to decreased metastatic colonization. Moreover, we have identified a novel TGFβ/PKA tumor suppressor pathway that acts directly on a known cell survival mechanism that responds to stress with the survivin/XIAP dependent inhibition of caspases that effect apoptosis. The linkage between the TGFβ/PKA transduceome signaling and control of metastasis through induction of cell death was shown by TGFβ receptor restoration with reactivation of the TGFβ/PKA pathway in receptor deficient metastatic colon cancer cells leading to control of aberrant cell survival. Conclusion/Significance This work impacts our understanding of the possible mechanisms that are critical to the growth and maintenance of metastases as well as understanding of a novel TGFβ function as a metastatic suppressor. These results raise the possibility that regeneration of attenuated TGFβ signaling would be an effective target in the treatment of metastasis. Our work indicates the clinical potential for developing anti-metastasis therapy based on inhibition of this very important aberrant cell survival mechanism by the multifaceted TGFβ/PKA transduceome induced pathway. Development of effective treatments for metastatic disease is a pressing need since metastases are the major cause of death in solid tumors.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Gillian M. Howell
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ashwani Rajput
- Department of Surgery, The University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Carol A. Teggart
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lisa E. Brattain
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hannah R. Weber
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aparajita Chowdhury
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael G. Brattain
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
21
|
Expression of pERK and pAKT in human astrocytomas: correlation with IDH1-R132H presence, vascular endothelial growth factor, microvascular characteristics and clinical outcome. Virchows Arch 2011; 458:749-59. [DOI: 10.1007/s00428-011-1074-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 03/25/2011] [Accepted: 03/30/2011] [Indexed: 12/20/2022]
|
22
|
Oliveras-Ferraros C, Massaguer Vall-Llovera A, Carrion Salip D, Vazquez-Martin A, Cufí S, Queralt B, Martin-Castillo B, Brunet J, de Llorens R, Menendez JA. Evolution of the predictive markers amphiregulin and epiregulin mRNAs during long-term cetuximab treatment of KRAS wild-type tumor cells. Invest New Drugs 2010; 30:846-52. [PMID: 21161326 DOI: 10.1007/s10637-010-9612-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/30/2010] [Indexed: 01/05/2023]
Abstract
Molecular mechanisms other than activating KRAS mutations should underlie the occurrence of weaker versus stronger responses to cetuximab (CTX) in EGFR-dependent carcinomas with either an intact KRAS signaling or in which KRAS mutations do not predict CTX efficacy. We hypothesized that KRAS wild-type (WT) tumor cell-line models chronically adapted to grow in the presence of CTX could be interrogated to establish if the positive predictive value of the mRNAs coding for the EGFR ligands amphiregulin (AR) and epiregulin (EPI) could be significantly altered during and/or after treatment with CTX. Gene expression analyses using real-time (kinetic) RT-PCR were performed to monitor the transcriptional evolution of EGFR ligands EGF, TGFα, AR, BTC, EPI, NRG and HB-EGF in experimental modes induced to exhibit acquired resistance to the mono-HER1 inhibitor CTX, the mono-HER2 inhibitor trastuzumab (Tzb) or the dual HER1/HER2 inhibitor lapatinib (LPT). Gene expression signatures for EGFR ligands distinctively related to the occurrence of unresponsiveness to CTX, Tzb or LPT, with minimal overlap between them. CTX's molecular functioning largely depended on the overproduction of the mRNAs coding for the EGFR ligands AR and EPI. Thus, a dramatic down-regulation of AR/EPI mRNA expression occurred upon loss of CTX efficacy in EGFR-positive tumor cells with an intact regulation of RAS signaling. Unlike KRAS mutations, which are informative of unresponsiveness to CTX solely in mCRC, our hypothesis-generating data suggest that expression status of AR and EPI mRNAs might be evaluated as dynamic predictors of response in KRAS WT patients receiving any CTX-based therapy.
Collapse
|
23
|
Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 2010; 7:493-507. [PMID: 20551942 PMCID: PMC2929287 DOI: 10.1038/nrclinonc.2010.97] [Citation(s) in RCA: 508] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. Following ligand binding, EGFR stimulates downstream cell signaling cascades that influence cell proliferation, apoptosis, migration, survival and complex processes, including angiogenesis and tumorigenesis. EGFR has been strongly implicated in the biology of human epithelial malignancies, with therapeutic applications in cancers of the colon, head and neck, lung, and pancreas. Accordingly, targeting EGFR has been intensely pursued, with the development of a series of promising molecular inhibitors for use in clinical oncology. As is common in cancer therapy, challenges with respect to treatment resistance emerge over time. This situation is certainly true of EGFR inhibitor therapies, where intrinsic and acquired resistance is now well recognized. In this Review, we provide a brief overview regarding the biology of EGFR, preclinical and clinical development of EGFR inhibitors, and molecular mechanisms that underlie the development of treatment resistance. A greater understanding of the mechanisms that lead to EGFR resistance may provide valuable insights to help design new strategies that will enhance the impact of this promising class of inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Deric L Wheeler
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison, WI 53705, USA.
| | | | | |
Collapse
|
24
|
Are C, Simms N, Rajupt A, Brattain M, Brattain M. The role of transforming growth factor-beta in suppression of hepatic metastasis from colon cancer. HPB (Oxford) 2010; 12:498-506. [PMID: 20815859 PMCID: PMC3030759 DOI: 10.1111/j.1477-2574.2010.00219.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of transforming growth factor-beta (TGF-beta) in the development of hepatic metastasis from colon cancer is not clearly elucidated. The aim of this study was to determine the role of TGF-beta in the development of such metastasis. METHODS Two human colon cancer cell lines were utilized: FET-alpha cells (intact TGF-beta inhibitory response), and CBS cells (defects in TGF-beta inhibitory response caused by a deficiency in type II receptor activity). The ability of these cell lines to metastasize was analysed in an orthotopic colon cancer mouse model. RESULTS FET-alpha cells did not metastasize to the liver, but showed lung metastasis in 10% of the animals, whereas CBS cells gave rise to metastasis in 65%. Following the elimination of TGF-beta activity by transfection and overexpression of dominant negative type II receptor, FET-alpha cells demonstrated liver and lung metastasis in 70% of the animals. Similarly, after the restoration of type II receptor activity by ectopic expression, CBS cells formed metastasis in fewer (10%) animals. CONCLUSIONS The results of our study demonstrate for the first time that TGF-beta displays selective metastasis suppressor activity. These abnormal pathways can serve as selective targets for future development of targeted therapies.
Collapse
Affiliation(s)
- Chandrakanth Are
- Division of Surgical Oncology, Department of SurgeryOmaha, NE, USA,Eppley Cancer Center, University of Nebraska Medical CenterOmaha, NE, USA
| | - Neka Simms
- Eppley Cancer Center, University of Nebraska Medical CenterOmaha, NE, USA
| | - Ashwani Rajupt
- Department of Surgery, Division of Surgical Oncology, University of New Mexico Health Science CenterAlbuquerque, NM, USA
| | - Michael Brattain
- Eppley Cancer Center, University of Nebraska Medical CenterOmaha, NE, USA
| | | |
Collapse
|
25
|
Fischgräbe J, Götte M, Michels K, Kiesel L, Wülfing P. Targeting endothelin A receptor enhances anti-proliferative and anti-invasive effects of the HER2 antibody trastuzumab in HER2-overexpressing breast cancer cells. Int J Cancer 2010; 127:696-706. [PMID: 19960438 DOI: 10.1002/ijc.25076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is frequently overexpressed in human breast cancers. It is known to drive tumor growth and progression and represents a prominent target in breast cancer therapy. The endothelin (ET) system, in particular ET-1 and its receptor ET(A)R, is of major relevance for breast cancer growth and invasion. Having previously demonstrated coexpression of ET(A)R and HER2 in breast tumors, this study was designed to investigate molecular interactions of HER2 (including the epidermal growth factor receptor EGFR as its major coreceptor) and ET signaling, and the potential benefit of a combined anti-HER2/ET(A)R treatment in human breast cancer cells. Dual HER2-ET(A)R targeting utilizing trastuzumab (monoclonal anti-HER2 antibody) and the ET(A)R antagonist atrasentan was superior to each agent alone in inhibiting basal and EGF-induced proliferation and invasion of HER2-overexpressing BT-474 and SK-BR-3 cells. EGF-induced invasion was partially inhibited by atrasentan alone, suggesting the involvement of ET(A)R in EGF receptor mediated invasion of breast cancer cells. Moreover, secretion of the pro-invasive ET-1 was shown to be induced by EGF via EGFR and HER2, including MAPK-dependent signaling. In turn, an ET-1/ET(A)R-dependent regulation of EGFR protein expression and phosphorylation (at Tyr845) was observed, which may contribute to the additional anti-proliferative and anti-invasive effects of atrasentan on trastuzumab treated cells; reconfirming, atrasentan failed to enhance inhibitory effects of EGFR-targeted agents. This study suggests complex interactions between HER2/EGFR and ET pathways in breast cancer and supports the hypothesis that dual HER2-ET(A)R targeting may represent a highly effective approach in breast cancer treatment.
Collapse
Affiliation(s)
- Jeanett Fischgräbe
- Department of Obstetrics and Gynecology, University of Münster, Münster, Germany
| | | | | | | | | |
Collapse
|
26
|
Mechanisms of resistance to HER family targeting antibodies. Exp Cell Res 2010; 316:1083-100. [PMID: 20064507 DOI: 10.1016/j.yexcr.2010.01.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/08/2009] [Accepted: 01/05/2010] [Indexed: 12/22/2022]
Abstract
The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.
Collapse
|
27
|
Krause M, Gurtner K, Deuse Y, Baumann M. Heterogeneity of tumour response to combined radiotherapy and EGFR inhibitors: Differences between antibodies and TK inhibitors. Int J Radiat Biol 2009; 85:943-54. [DOI: 10.3109/09553000903232835] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 2009; 28:3801-13. [PMID: 19684613 DOI: 10.1038/onc.2009.234] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase involved in the etiology of several human cancers. Cetuximab is an EGFR-blocking antibody that has been approved for the treatment of patients with head and neck squamous cell carcinoma and metastatic colorectal cancer. Previous reports have shown that EGFR translocation to the nucleus is associated with cell proliferation. Here we investigated mechanisms of acquired resistance to cetuximab using a model derived from the non-small cell lung cancer line H226. We demonstrated that cetuximab-resistant cells overexpress HER family ligands including epidermal growth factor (EGF), amphiregulin, heparin-binding EGF and beta-cellulin. Overexpression of these ligands is associated with the nuclear translocation of the EGFR and this process was mediated by the Src family kinases (SFK). Treatment of cetuximab-resistant cells with the SFK inhibitor, dasatinib, resulted in loss of nuclear EGFR, increased membrane expression of the EGFR and resensitization to cetuximab. In addition, expression of a nuclear localization sequence-tagged EGFR in cetuximab-sensitive cells increased resistance to cetuximab both in vitro and in mouse xenografts. Collectively, these data suggest that nuclear expression of EGFR may be an important molecular determinant of resistance to cetuximab therapy and provides a rationale for investigating nuclear EGFR as a biomarker for cetuximab response. Further, these data suggest a rationale for the design of clinical trials that examine the value of treating patients with cetuximab-resistant tumors with inhibitors of SFKs in combination with cetuximab.
Collapse
Affiliation(s)
- C Li
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
29
|
The effects of epidermal growth factor receptor activation and attenuation of the TGFbeta pathway in an orthotopic model of colon cancer. J Surg Res 2009; 156:250-6. [PMID: 19524264 DOI: 10.1016/j.jss.2009.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 01/09/2009] [Accepted: 02/03/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Colorectal cancer is the second leading cause of cancer related mortality, with a majority of deaths resulting from metastases. Few in vivo models allow for the study of the complex process of metastasis. The purpose of this study was to determine the effects of epidermal growth factor receptor activation and TGFbeta pathway attenuation in FET, a weakly tumorigenic human colon cancer cell line, in an orthotopic model. METHODS AND RESULTS Using FET, FETalpha, FETalphaDNRII, and FETDNRII cells were constructed. Tumors were orthotopically implanted onto the colons of BALB/c nude mice. After 7 wk, the mice were euthanized and organs extracted for examination. All cell lines demonstrated primary invasion. FETalpha was weakly metastatic compared with FETalphaDNRII and FETDNRII, which demonstrated metastases to the lung and liver, respectively. CONCLUSION Epidermal growth factor receptor (EGFR) activation transforms a nontumorigenic cell line into a tumorigenic but not metastatic one. The tumorigenic line becomes metastatic with the attenuation of TGFbeta signaling. Loss of EGFR activation in the TGFbeta inhibited line results in a decreased metastatic burden, but importantly, changes the organotropic homing from lung to liver. Thus, these in vivo studies demonstrate that EGFR activation and TGFbeta signaling pathways play a role in tumorigenicity and in pattern of metastases.
Collapse
|
30
|
Sirica AE. Role of ErbB family receptor tyrosine kinases in intrahepatic cholangiocarcinoma. World J Gastroenterol 2008; 14:7033-58. [PMID: 19084911 PMCID: PMC2776834 DOI: 10.3748/wjg.14.7033] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression and signaling of epidermal growth factor receptor (ErbB) family receptor tyrosine kinases, most notably that of ErbB2 and ErbB1, have been implicated in the molecular pathogenesis of intrahepatic cholangiocarcinoma. Constitutive overexpression of ErbB2 and/or ErbB1 in malignant cholangiocytes has raised interest in the possibility that agents which selectively target these receptors could potentially be effective in cholangiocarcinoma therapy. However, current experience with such ErbB-directed therapies have at best produced only modest responses in patients with biliary tract cancers. This review provides a comprehensive and critical analysis of both preclinical and clinical studies aimed at assessing the role of altered ErbB2 and/or ErbB1 expression, genetic modifications, and dysregulated signaling on cholangiocarcinoma development and progression. Specific limitations in experimental approaches that have been used to assess human cholangiocarcinoma specimens for ErbB2 and/or ErbB1 overexpression and gene amplification are discussed. In addition, current rodent models of intrahepatic cholangiocarcinogenesis associated with constitutive ErbB2 overexpression are reviewed. Select interactive relationships between ErbB2 or ErbB1 with other relevant molecular signaling pathways associated with intrahepatic cholangiocarcinoma development and progression are also detailed, including those linking ErbB receptors to bile acid, cyclooxygenase-2, interleukin-6/gp130, transmembrane mucins, hepatocyte growth factor/Met, and vascular endothelial growth factor signaling. Lastly, various factors that can limit therapeutic efficacy of ErbB-targeted agents against cholangiocarcinoma are considered.
Collapse
|
31
|
Jiang SX, Yamashita K, Yamamoto M, Piao CJ, Umezawa A, Saegusa M, Yoshida T, Katagiri M, Masuda N, Hayakawa K, Okayasu I. EGFR genetic heterogeneity of nonsmall cell lung cancers contributing to acquired gefitinib resistance. Int J Cancer 2008; 123:2480-6. [PMID: 18785203 DOI: 10.1002/ijc.23868] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gefitinib is dramatically effective for nonsmall cell lung cancers (NSCLCs) with activating mutations of the epidermal growth factor receptor (EGFR) gene, but these tumors eventually develop drug resistance, attributable to a secondary T790M mutation or acquired MET amplification in some relapsed tumors. We analyzed EGFR mutations in matched pre- and post-therapeutic tumors of 6 gefitinib-responding lung cancers. With conventional PCR-based sequencing, classic mutations were detected in pretreatment samples of each case. The same mutations were readily confirmed in treated lesions of 4 cases, but were absent in those of Cases 1 and 2. Subsequent mutant-enriched peptide-nucleic-acid-mediated PCR clamping and subcloning assays detected the mutation in minor cells of treated lesions of Case 1, but still failed to detect a mutation in Case 2. We thus performed microdissection-based cell cluster mutation analysis of pretreatment tumors, and found that 3, including the first 2, concurrently contained tumor cells with either mutant or wild-type EGFR, although the latter was only a minor fraction. These findings suggest that some NSCLCs are genetically heterogeneous with regard to EGFR mutations; gefitinib-sensitive mutants decrease or vanish while wild clones selectively survive with gefitinib treatment. In addition, T790M was detected in a small fraction of treated lesions of 3 cases, and MET amplification was revealed in 3 treated tumors of Case 2. Thus, our results suggest that multiple mechanisms underlie acquired gefitinib resistance, and selection on a background of EGFR genetic heterogeneity also contributes to acquisition of resistance in a proportion of NSCLCs.
Collapse
Affiliation(s)
- Shi-Xu Jiang
- Department of Pathology, Kitasato University School of Medicine, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
INTRODUCTION Tumor response and duration of patient survival after treatment with inhibitors of the epidermal growth factor receptor (EGFR) varies considerably between different kinds of EGFR inhibitors, different combination schedules, but also between individual patients. DISCUSSION Development and introduction of biomarkers into clinical practice is necessary to predict treatment response and thereby to individualize cancer therapy. Due to specific interactions of EGFR inhibitors with biological effects of irradiation, biomarkers are expected to differ for radiation oncology compared to application of the drugs alone or within chemotherapy treatment schedules and therefore need to be established and tested separately. OBJECTIVES The review summarizes the current status of potential predictors for the effect of EGFR inhibitors used as single agents or in combination with chemotherapy. CONCLUSION Based on this knowledge and on preclinical radiotherapy data, candidate biomarkers and further research strategies for radiation oncology are discussed.
Collapse
|
33
|
Sasaki T, Nakamura T, Rebhun RB, Cheng H, Hale KS, Tsan RZ, Fidler IJ, Langley RR. Modification of the primary tumor microenvironment by transforming growth factor alpha-epidermal growth factor receptor signaling promotes metastasis in an orthotopic colon cancer model. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:205-16. [PMID: 18583324 PMCID: PMC2438298 DOI: 10.2353/ajpath.2008.071147] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The transforming growth factor alpha (TGFalpha)/epidermal growth factor receptor (EGFR) signaling pathway appears to play a critical role in colon cancer progression, but the cellular and molecular mechanisms that contribute to metastasis remain unknown. KM12C colon cancer cell clones expressing high (C9) or negligible (C10) levels of TGFalpha were implanted into the cecal walls of nude mice. C9 tumors formed autocrine and paracrine EGFR networks, whereas C10 tumors were unable to signal through EGFR. The tumor microenvironment of C9, but not C10, contained cells enriched in vascular endothelial growth factor (VEGF) A, interleukin-8, and matrix metalloproteinases-2 and -9 and had a high vascular surface area. C9 tumors recruited a macrophage population that co-expressed F4/80 and lymphatic vessel endothelial hyaluronic acid receptor and produced VEGFC. The mean lymphatic density of C9 tumors was threefold higher than that of C10 tumors. C9, but not C10, tumor cells metastasized to regional lymph nodes in all mice and to the liver in 5 of 10 mice. Forced expression of TGFalpha in C10 tumor cells led to the generation of autocrine and paracrine EGFR signaling, macrophage recruitment, enhanced blood and lymphatic vascular surface areas, and increased lymphatic metastasis. Collectively, these data show that activation of TGFalpha-EGFR signaling in colon cancer cells creates a microenvironment that is conducive for metastasis, providing a rationale for efforts to inhibit EGFR signaling in TGFalpha-positive colon cancers.
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Phosphorylated epidermal growth factor receptor on tumor-associated endothelial cells is a primary target for therapy with tyrosine kinase inhibitors. Neoplasia 2008; 10:489-500. [PMID: 18472966 DOI: 10.1593/neo.08200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 02/20/2008] [Accepted: 02/22/2008] [Indexed: 11/18/2022] Open
Abstract
We determined whether phosphorylated epidermal growth factor receptor (EGFR) expressed on tumor-associated endothelial cells is a primary target for therapy with EGFR tyrosine kinase inhibitors (TKIs). Human colon cancer cells SW620CE2 (parental) that do not express EGFR or human epidermal growth factor receptor 2 (HER2) but express transforming growth factor alpha (TGF-alpha) were transduced with a lentivirus carrying nontargeting small hairpin RNA (shRNA) or TGF-alpha shRNA. The cell lines were implanted into the cecum of nude mice. Two weeks later, treatment began with saline, 4-[R]-phenethylamino-6-[hydroxyl] phenyl-7H-pyrrolo [2,3-D]-pyrimidine (PKI166), or irinotecan. Endothelial cells in parental and nontargeting shRNA tumors expressed phosphorylated EGFR. Therapy with PKI166 alone or with irinotecan produced apoptosis of these endothelial cells and necrosis of the EGFR-negative tumors. Endothelial cells in tumors that did not express TGF-alpha did not express EGFR, and these tumors were resistant to treatment with PKI166. The response of neoplasms to EGFR antagonists has been correlated with EGFR mutations, HER2 expression, Akt activation, and EGFR gene copy number. Our present data using colon cancer cells that do not express EGFR or HER2 suggest that the expression of TGF-alpha by tumor cells leading to the activation of EGFR in tumor-associated endothelial cells is a major determinant for the susceptibility of neoplasms to therapy by specific EGFR-TKI.
Collapse
|
35
|
Wang J, Yang L, Yang J, Kuropatwinski K, Wang W, Liu XQ, Hauser J, Brattain MG. Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells. Cancer Res 2008; 68:3152-60. [PMID: 18451140 DOI: 10.1158/0008-5472.can-07-5348] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FET cells, derived from an early-stage colon carcinoma, are nontumorigenic in athymic mice. Stable transfection of a dominant-negative transforming growth factor beta (TGFbeta) type II receptor (DNRII) into FET cells that express autocrine TGFbeta shows loss of TGFbeta signaling and increased tumorigenicity in vivo indicating tumor suppressor activity of TGFbeta signaling in this model. The ability of tumorigenic cells to withstand growth factor and nutrient deprivation stress (GFDS) is widely regarded as a key attribute for tumor formation and progression. We hypothesized that increased tumorigenicity of FET/DNRII cells was due to loss of participation of autocrine TGFbeta in a "fail-safe" mechanism to generate cell death in response to this stress. Here, we document that loss of autocrine TGFbeta in FET/DNRII cells resulted in greater endogenous cell survival in response to GFDS due to activation of the phosphoinositide 3-kinase (PI3K)/Akt/survivin pathway. Treatment of FET DNRII cells with a PI3K inhibitor (LY294002) inhibited Akt phosphorylation and reduced survivin expression resulting in increased apoptosis in FET/DNRII cells. We also show that exogenous TGFbeta increased apoptosis in FET cells through repression of the PI3K/Akt/survivin pathway during GFDS. These results indicate that the PI3K/Akt/survivin pathway is blocked by TGFbeta signaling and that loss of autocrine TGFbeta leads to increased cell survival during GFDS through the novel linkage of TGFbeta-mediated repression of survivin expression. Inhibition of survivin function by dominant-negative approaches showed that this inhibitor of apoptosis family member is critical to cell survival in the FET/DNRII cells, thus indicating the importance of this target for TGFbeta-mediated apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Guo XN, Rajput A, Rose R, Hauser J, Beko A, Kuropatwinski K, LeVea C, Hoffman RM, Brattain MG, Wang J. Mutant PIK3CA-bearing colon cancer cells display increased metastasis in an orthotopic model. Cancer Res 2007; 67:5851-8. [PMID: 17575153 DOI: 10.1158/0008-5472.can-07-0049] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the PIK3CA gene are common in human cancers, including colon cancer. We compared two pairs of colon cancer cells (HCT116 and DLD1) bearing only the wild-type (WT) or mutant (MUT) PIK3CA allele for their survival capacity under stress conditions in vitro as well as their metastatic properties in an in vivo orthotopic model. When subjected to growth factor deprivation stress (GFDS), the MUT PIK3CA cells displayed resistance to GFDS-induced apoptosis relative to the WT cells. Phosphatidylinositol 3-kinase (PI3K) and its downstream effector AKT were constitutively activated during stress conditions in the MUT PIK3CA cells but not in the WT cells. The MUT cells showed hypersensitivity to PI3K inhibition. Moreover, the proapoptotic protein Bax was expressed at a very high level in the WT PIK3CA cells, whereas it was almost undetectable in the MUT cells. Inhibition of Bax expression by small interfering RNA protected the WT PIK3CA cells from GFDS-induced apoptosis, suggesting an important role of Bax in GFDS-induced apoptosis. These results indicated that the MUT PI3K confers resistance to GFDS-induced apoptosis and that the MUT cells are more dependent on the PI3K pathway for survival. In vivo studies showed that the MUT PIK3CA-bearing cells were more metastatic than the WT cells in an orthotopic model of colon cancer. Taken together, these results suggest that MUT PI3K imparts a more aggressive phenotype in colon cancer cells and could be a potential therapeutic target for treatment of colon cancer patients bearing PIK3CA mutations.
Collapse
Affiliation(s)
- Xiao-Ning Guo
- Department of Pharmacology and Therapeutics, Surgical Oncology, and Pathology, Roswell Park Cancer Institute, NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 2007; 117:2051-8. [PMID: 17671639 PMCID: PMC1934579 DOI: 10.1172/jci32278] [Citation(s) in RCA: 399] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic origin of cancer at the molecular level has facilitated the development of novel targeted therapies. Aberrant activation of the ErbB family of receptors is implicated in many human cancers and is already the target of several anticancer therapeutics. The use of mAbs specific for the extracellular domain of ErbB receptors was the first implementation of rational targeted therapy. The cytoplasmic tyrosine kinase domain is also a preferred target for small compounds that inhibit the kinase activity of these receptors. However, current therapy has not yet been optimized, allowing for opportunities for optimization of the next generation of targeted therapy, particularly with regards to inhibiting heteromeric ErbB family receptor complexes.
Collapse
Affiliation(s)
- Hongtao Zhang
- Department of Pathology and Laboratory Medicine and
Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alan Berezov
- Department of Pathology and Laboratory Medicine and
Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qiang Wang
- Department of Pathology and Laboratory Medicine and
Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Geng Zhang
- Department of Pathology and Laboratory Medicine and
Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeffrey Drebin
- Department of Pathology and Laboratory Medicine and
Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramachandran Murali
- Department of Pathology and Laboratory Medicine and
Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine and
Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Baumann M, Krause M, Dikomey E, Dittmann K, Dörr W, Kasten-Pisula U, Rodemann HP. EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother Oncol 2007; 83:238-48. [PMID: 17502118 DOI: 10.1016/j.radonc.2007.04.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Preclinical and clinical results indicate that the EGFR can mediate radioresistance in different solid human tumours. Combination of radiotherapy and EGFR inhibitors can improve local tumour control compared to irradiation alone and has been introduced into clinical radiotherapy practice. So far several mechanisms have been identified in preclinical studies to contribute to improved local tumour control after radiation combined with EGFR inhibitors. These include direct kill of cancer stem cells by EGFR inhibitors, cellular radiosensitization through modified signal transduction, inhibition of repair of DNA damage, reduced repopulation and improved reoxygenation during fractionated radiotherapy. Effects and mechanisms may differ for different classes of EGFR inhibitors, for different tumours and for normal tissues. The mechanisms underlying this heterogeneity are currently poorly understood, and predictive assays are not available yet. Importantly, mechanisms and predictors for the combined effects of radiation with EGFR inhibitors appear to be considerably different to those for application of EGFR inhibitors alone or in combination with chemotherapy. Therefore to further evaluate the efficacy and mechanisms of EGFR-inhibition in combined treatments, radiotherapy-specific preclinical research strategies, which include in vivo experiments using local tumour control as an endpoint, as well as animal studies on normal tissue toxicity are needed.
Collapse
Affiliation(s)
- Michael Baumann
- Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, University of Technology, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lévi F, Filipski E, Iurisci I, Li XM, Innominato P. Cross-talks between circadian timing system and cell division cycle determine cancer biology and therapeutics. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:465-75. [PMID: 18419306 DOI: 10.1101/sqb.2007.72.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The circadian clock orchestrates cellular functions over 24 hours, including cell divisions, a process that results from the cell cycle. The circadian clock and cell cycle interact at the level of genes, proteins, and biochemical signals. The disruption or the reinforcement of the host circadian timing system, respectively, accelerates or slows down cancer growth through modifications of host and tumor circadian clocks. Thus, cancer cells not only display mutations of cell cycle genes but also exhibit severe defects in clock gene expression levels or 24-hour patterns, which can in turn favor abnormal proliferation. Most of the experimental research actively ongoing in this field has been driven by the original demonstration that cancer patients with poor circadian rhythms had poor quality of life and poor survival outcome independently of known prognostic factors. Further basic research on the gender dependencies in circadian properties is now warranted, because a large clinical trial has revealed that gender can largely affect the survival outcome of cancer patients on chronotherapeutic delivery. Mathematical models further show that the therapeutic index of chemotherapeutic drugs can be optimized through distinct delivery profiles, depending on the initial host/tumor status and variability in circadian entrainment and/or cell cycle length. Clinical trials and systems-biology approaches in cancer chronotherapeutics raise novel issues to be addressed experimentally in the field of biological clocks. The challenge ahead is to therapeutically harness the circadian timing system to concurrently improve quality of life and down-regulate malignant growth.
Collapse
Affiliation(s)
- F Lévi
- INSERM, U776 Rythmes biologiques et cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
| | | | | | | | | |
Collapse
|