1
|
Kawai Y, Nagayama A, Miyao K, Takeuchi M, Yokoe T, Kameyama T, Wang X, Seki T, Takahashi M, Hayashida T, Kitagawa Y. A genome-wide CRISPR/Cas9 knockout screen identifies SEMA3F gene for resistance to cyclin-dependent kinase 4 and 6 inhibitors in breast cancer. Breast Cancer 2025; 32:120-131. [PMID: 39352623 DOI: 10.1007/s12282-024-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Palbociclib is a cell-cycle targeted small molecule agent used as one of the standards of care in combination with endocrine therapy for patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer. Although several gene alterations such as loss of Rb gene and amplification of p16 gene are known to be conventional resistance mechanisms to cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, the comprehensive landscape of resistance is not yet fully elucidated. The purpose of this study is to identify the novel resistant genes to the CDK4/6 inhibitors in HR-positive HER2-negative breast cancer. METHODS The whole genome knockout screen using CRISPR/Cas9 genome editing was conducted in MCF7 to identify resistant genes to palbociclib. The candidate genes for resistance were selected by NGS analysis and GSEA analysis and validated by cell viability assay and mouse xenograft models. RESULTS We identified eight genes including RET, TIRAP, GNRH1, SEMA3F, SEMA5A, GATA4, NOD1, SSTR1 as candidate genes from the whole genome knockout screen. Among those, knockdown of SEMA3F by siRNA significantly and consistently increased the cell viability in the presence of CDK4/6 inhibitors in vitro and in vivo. Furthermore, the level of p-Rb was maintained in the palbociclib treated SEMA3F-downregulated cells, indicating that the resistance is driven by increased activity of cyclin kinases. CONCLUSION Our observation provided the first evidence of SEMA3F as a regulator of sensitivity to CDK4/6 inhibitors in breast cancer. The detailed mechanisms of resistance deserve further functional studies to develop the better strategy to overcome resistance in CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Yuko Kawai
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Aiko Nagayama
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| | - Kazuhiro Miyao
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Makoto Takeuchi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Takamichi Yokoe
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tomoe Kameyama
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Xinyue Wang
- Department of Surgery, Keio University Graduate School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tomoko Seki
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Maiko Takahashi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
2
|
Wang M, Zeng R, Zheng S, Qian Y. Retinoic acid receptor-related orphan receptor alpha and synthetic RORα agonist against invasion and metastasis in tongue squamous cell carcinoma. Biochem Biophys Res Commun 2024; 733:150421. [PMID: 39047426 DOI: 10.1016/j.bbrc.2024.150421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Retinoic acid receptor-related orphan receptor alpha (RORα), an essential tumor suppressor in a range of human malignancies, is classified as a member of the orphan nuclear receptor family. The most prevalent form of oral cancer, tongue squamous cell carcinoma (TSCC) is characterized by its severe malignancy and unfavorable prognosis. However, the extent to which its tumorigenesis mechanisms are associated with RORα expression levels is still not fully understood. The objective of this study was to examine the molecular mechanisms by which RORα is involved in TSCC. Through the use of immunohistochemistry (IHC), it was discovered that the expression level of RORα was significantly downregulated in TSCC tissues when compared to adjacent normal tissues in this study. To further investigate the role of RORα in TSCC, we activated the expression of RORα in human TSCC cell line (SCC9 cells) by transfecting RORα cDNA and using the selective RORα agonist SR1078. The results show that RORα can significantly inhibit the invasion, migration, proliferation, and adhesion of TSCC cells and induce cell apoptosis. In addition, xenograft models confirmed the conclusion that stable activation or treatment with SR1078 to increase RORα content significantly inhibited tumor growth and development. Taken together, this study provides solid evidence for the inhibitory role of RORα in the progression of TSCC. In addition, the preliminary application results of SR1078 in TSCC show that SR1078 is expected to be a potential therapeutic medication for TSCC. These findings provide innovative perspectives on the development of potential biomarkers and agents for TSCC therapy. The objective is to introduce novel strategy and alternatives for the prevention and treatment of TSCC.
Collapse
MESH Headings
- Humans
- Tongue Neoplasms/pathology
- Tongue Neoplasms/metabolism
- Tongue Neoplasms/genetics
- Tongue Neoplasms/drug therapy
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/agonists
- Animals
- Cell Line, Tumor
- Neoplasm Invasiveness
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/drug therapy
- Mice, Nude
- Cell Movement/drug effects
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Mice
- Mice, Inbred BALB C
- Xenograft Model Antitumor Assays
- Neoplasm Metastasis
- Antineoplastic Agents/pharmacology
- Female
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Benzamides
- Fluorocarbons
Collapse
Affiliation(s)
- Mohan Wang
- School of Stomatology, Hainan Medical University, Hainan, China
| | - Ran Zeng
- School of Stomatology, Hainan Medical University, Hainan, China
| | - Shuang Zheng
- School of Stomatology, Hainan Medical University, Hainan, China
| | - Yong Qian
- Department of Head and Neck Surgery, Affiliated Cancer Hospital of Hainan Medical University, Hainan, China.
| |
Collapse
|
3
|
Knipper K, Lyu SI, Jung JO, Alich N, Popp FC, Schröder W, Fuchs HF, Bruns CJ, Quaas A, Nienhueser H, Schmidt T. Semaphorin 3F (SEMA3F) influences patient survival in esophageal adenocarcinoma. Sci Rep 2024; 14:20589. [PMID: 39232098 PMCID: PMC11375056 DOI: 10.1038/s41598-024-71616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
In esophageal adenocarcinoma, the presence of lymph node metastases predicts patients' survival even after curative resection. Currently, there is no highly accurate marker for detecting the presence of lymph node metastasis. The SEMA3F/NRP2 axis was initially characterized in axon guidance and recent evidence has revealed its significant involvement in lymphangiogenesis, angiogenesis, and carcinogenesis. Hence, the objective of this study was to elucidate the roles of SEMA3F and its receptor NRP2 in esophageal adenocarcinoma. We conducted an immunohistochemical evaluation of SEMA3F and NRP2 protein expression in 776 patients with esophageal adenocarcinoma who underwent Ivor-Lewis esophagectomy at the University Hospital of Cologne. Total and positive cancer cell counts were digitally analyzed using QuPath and verified by experienced pathologists to ensure accuracy. Positive expression was determined as a cell percentage exceeding the 50th percentile threshold. In our cohort, patients exhibiting SEMA3F positive expression experience significantly lower pT- and pN-stages. In contrast, positive NRP2 expression is associated with the presence of lymph node metastases. Survival analyses showed that the expression status of NRP2 had no impact on patient survival. However, SEMA3F positivity was associated with a favorable patient survival outcome (median OS: 38.9 vs. 26.5 months). Furthermore, SEMA3F could be confirmed as an independent factor for better patient survival in patients with early tumor stage (pT1N0-3: HR = 0.505, p = 0.014, pT1-4N0: HR = 0.664, p = 0.024, pT1N0: HR = 0.483, p = 0.040). In summary, SEMA3F emerges as an independent predictor for a favorable prognosis in patients with early-stage esophageal adenocarcinoma. Additionally, NRP2 expression is linked to a higher risk of lymph node metastases occurrence. We hypothesize that low SEMA3F expression could identify patients with early-stage tumors who might benefit from more aggressive treatment options or intensified follow-up. Furthermore, SEMA3F and its associated pathways should be explored as potential tumor-suppressing agents.
Collapse
Affiliation(s)
- Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| | - Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Jin-On Jung
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Niklas Alich
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Felix C Popp
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Hans F Fuchs
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Henrik Nienhueser
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Moragas N, Fernandez-Nogueira P, Recalde-Percaz L, Inman JL, López-Plana A, Bergholtz H, Noguera-Castells A, Del Burgo PJ, Chen X, Sorlie T, Gascón P, Bragado P, Bissell M, Carbó N, Fuster G. The SEMA3F-NRP1/NRP2 axis is a key factor in the acquisition of invasive traits in in situ breast ductal carcinoma. Breast Cancer Res 2024; 26:122. [PMID: 39138514 PMCID: PMC11320849 DOI: 10.1186/s13058-024-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND A better understanding of ductal carcinoma in situ (DCIS) is urgently needed to identify these preinvasive lesions as distinct clinical entities. Semaphorin 3F (SEMA3F) is a soluble axonal guidance molecule, and its coreceptors Neuropilin 1 (NRP1) and NRP2 are strongly expressed in invasive epithelial BC cells. METHODS We utilized two cell line models to represent the progression from a healthy state to the mild-aggressive or ductal carcinoma in situ (DCIS) stage and, ultimately, to invasive cell lines. Additionally, we employed in vivo models and conducted analyses on patient databases to ensure the translational relevance of our results. RESULTS We revealed SEMA3F as a promoter of invasion during the DCIS-to-invasive ductal carcinoma transition in breast cancer (BC) through the action of NRP1 and NRP2. In epithelial cells, SEMA3F activates epithelialmesenchymal transition, whereas it promotes extracellular matrix degradation and basal membrane and myoepithelial cell layer breakdown. CONCLUSIONS Together with our patient database data, these proof-of-concept results reveal new SEMA3F-mediated mechanisms occurring in the most common preinvasive BC lesion, DCIS, and represent potent and direct activation of its transition to invasion. Moreover, and of clinical and therapeutic relevance, the effects of SEMA3F can be blocked directly through its coreceptors, thus preventing invasion and keeping DCIS lesions in the preinvasive state.
Collapse
MESH Headings
- Humans
- Neuropilin-1/metabolism
- Neuropilin-1/genetics
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Neuropilin-2/metabolism
- Neuropilin-2/genetics
- Neoplasm Invasiveness
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Cell Line, Tumor
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Epithelial-Mesenchymal Transition/genetics
- Animals
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Gene Expression Regulation, Neoplastic
- Signal Transduction
Collapse
Affiliation(s)
- Núria Moragas
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Patricia Fernandez-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona (UB), 08036, Barcelona, Spain
| | - Leire Recalde-Percaz
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Anna López-Plana
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Aleix Noguera-Castells
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Barcelona, Catalonia, Spain
| | - Pedro J Del Burgo
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Xieng Chen
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Therese Sorlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450, Oslo, Norway
| | - Pere Gascón
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Mina Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona (UB), 08028, Barcelona, Spain.
- Institute of Biomedicine of the Universitat de Barcelona (IBUB), Barcelona, Spain.
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), UVIC-UCC, Vic, Spain.
| |
Collapse
|
5
|
Tong M, Bai Y, Han X, Kong L, Ren L, Zhang L, Li X, Yao J, Yan B. Single-cell profiling transcriptomic reveals cellular heterogeneity and cellular crosstalk in choroidal neovascularization model. Exp Eye Res 2024; 242:109877. [PMID: 38537669 DOI: 10.1016/j.exer.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Choroidal neovascularization (CNV) is a hallmark of neovascular age-related macular degeneration (nAMD) and a major contributor to vision loss in nAMD cases. However, the identification of specific cell types associated with nAMD remains challenging. Herein, we performed single-cell sequencing to comprehensively explore the cellular diversity and understand the foundational components of the retinal pigment epithelium (RPE)/choroid complex. We unveiled 10 distinct cell types within the RPE/choroid complex. Notably, we observed significant heterogeneity within endothelial cells (ECs), fibroblasts, and macrophages, underscoring the intricate nature of the cellular composition in the RPE/choroid complex. Within the EC category, four distinct clusters were identified and EC cluster 0 was tightly associated with choroidal neovascularization. We identified five clusters of fibroblasts actively involved in the pathogenesis of nAMD, influencing fibrotic responses, angiogenic effects, and photoreceptor function. Additionally, three clusters of macrophages were identified, suggesting their potential roles in regulating the progression of nAMD through immunomodulation and inflammation regulation. Through CellChat analysis, we constructed a complex cell-cell communication network, revealing the role of EC clusters in interacting with fibroblasts and macrophages in the context of nAMD. These interactions were found to govern angiogenic effects, fibrotic responses, and inflammatory processes. In summary, this study reveals noteworthy cellular heterogeneity in the RPE/choroid complex and provides valuable insights into the pathogenesis of CNV. These findings will open up potential avenues for deep understanding and targeted therapeutic interventions in nAMD.
Collapse
Affiliation(s)
- Ming Tong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ling Ren
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Linyu Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Jin Yao
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
6
|
Chen N, Xia X, Hanif Q, Zhang F, Dang R, Huang B, Lyu Y, Luo X, Zhang H, Yan H, Wang S, Wang F, Chen J, Guan X, Liu Y, Li S, Jin L, Wang P, Sun L, Zhang J, Liu J, Qu K, Cao Y, Sun J, Liao Y, Xiao Z, Cai M, Mu L, Siddiki AZ, Asif M, Mansoor S, Babar ME, Hussain T, Silva GLLP, Gorkhali NA, Terefe E, Belay G, Tijjani A, Zegeye T, Gebre MG, Ma Y, Wang Y, Huang Y, Lan X, Chen H, Migliore NR, Colombo G, Semino O, Achilli A, Sinding MHS, Lenstra JA, Cheng H, Lu W, Hanotte O, Han J, Jiang Y, Lei C. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing. Nat Commun 2023; 14:7803. [PMID: 38016956 PMCID: PMC10684552 DOI: 10.1038/s41467-023-43626-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle.
Collapse
Affiliation(s)
- Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Fengwei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment Science, Yunnan University, Kunming, 650500, China
| | - Huixuan Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shikang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiwen Guan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangkai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shuang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liangliang Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Pengfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Luyang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, China
| | - Yanhong Cao
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Junli Sun
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, 530001, China
| | - Zhengzhong Xiao
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Lan Mu
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, 650224, China
| | - Amam Zonaed Siddiki
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, 4225, Bangladesh
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Masroor Ellahi Babar
- The University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, 29050, Pakistan
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Islamabad, 44100, Pakistan
| | | | - Neena Amatya Gorkhali
- National Animal Breeding and Genetics Centre, National Animal Science Research Institute, Nepal Agriculture Research Council, Khumaltar, Lalitpur, 45200, Nepal
| | - Endashaw Terefe
- College of Agriculture and Environmental Science, Department of Animal Science, Arsi University, Asella, Ethiopia
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia
| | - Gurja Belay
- College of Natural and Computational Sciences, The School of Graduate Studies, Addis Ababa University, 1000, Addis Ababa, Ethiopia
| | - Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Tsadkan Zegeye
- Mekelle Agricultural Research Center, P.O. Box 258, 7000, Mekelle, Tigray, Ethiopia
| | - Mebrate Genet Gebre
- School of Animal and Rangeland Science, College of Agriculture, Haramaya University, 2040, Haramaya, Oromia, Ethiopia
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, 750000, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giulia Colombo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-1350, Copenhagen, Denmark
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Wenfa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China.
- Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100, Nairobi, Kenya.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Qu X, Wang Y, Jiang Q, Ren T, Guo C, Hua K, Qiu J. Interactions of Indoleamine 2,3-dioxygenase-expressing LAMP3 + dendritic cells with CD4 + regulatory T cells and CD8 + exhausted T cells: synergistically remodeling of the immunosuppressive microenvironment in cervical cancer and therapeutic implications. Cancer Commun (Lond) 2023; 43:1207-1228. [PMID: 37794698 PMCID: PMC10631485 DOI: 10.1002/cac2.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the fourth most common cancer in women worldwide. Although immunotherapy has been applied in clinical practice, its therapeutic efficacy remains far from satisfactory, necessitating further investigation of the mechanism of CC immune remodeling and exploration of novel treatment targets. This study aimed to investigate the mechanism of CC immune remodeling and explore potential therapeutic targets. METHODS We conducted single-cell RNA sequencing on a total of 17 clinical specimens, including normal cervical tissues, high-grade squamous intraepithelial lesions, and CC tissues. To validate our findings, we conducted multicolor immunohistochemical staining of CC tissues and constructed a subcutaneous tumorigenesis model in C57BL/6 mice using murine CC cell lines (TC1) to evaluate the effectiveness of combination therapy involving indoleamine 2,3-dioxygenase 1 (IDO1) inhibition and immune checkpoint blockade (ICB). We used the unpaired two-tailed Student's t-test, Mann-Whitney test, or Kruskal-Wallis test to compare continuous data between two groups and one-way ANOVA with Tukey's post hoc test to compare data between multiple groups. RESULTS Malignant cervical epithelial cells did not manifest noticeable signs of tumor escape, whereas lysosomal-associated membrane protein 3-positive (LAMP3+ ) dendritic cells (DCs) in a mature state with immunoregulatory roles were found to express IDO1 and affect tryptophan metabolism. These cells interacted with both tumor-reactive exhausted CD8+ T cells and CD4+ regulatory T cells, synergistically forming a vicious immunosuppressive cycle and mediating CC immune escape. Further validation through multicolor immunohistochemical staining showed co-localization of neoantigen-reactive T cells (CD3+ , CD4+ /CD8+ , and PD-1+ ) and LAMP3+ DCs (CD80+ and PD-L1+ ). Additionally, a combination of the IDO1 inhibitor with an ICB agent significantly reduced tumor volume in the mouse model of CC compared with an ICB agent alone. CONCLUSIONS Our study suggested that a combination treatment consisting of targeting IDO1 and ICB agent could improve the therapeutic efficacy of current CC immunotherapies. Additionally, our results provided crucial insights for designing drugs and conducting future clinical trials for CC.
Collapse
Affiliation(s)
- Xinyu Qu
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Yumeng Wang
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Qian Jiang
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Tingting Ren
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Chenyan Guo
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Keqin Hua
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| | - Junjun Qiu
- Department of GynecologyObstetrics and Gynecology HospitalFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiP. R. China
| |
Collapse
|
8
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
9
|
Wang C, Song D, Huang Q, Liu Q. Advances in SEMA3F regulation of clinically high-incidence cancers. Cancer Biomark 2023; 38:131-142. [PMID: 37599522 DOI: 10.3233/cbm-230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Cancer has become a leading cause of morbidity and mortality in recent years. Its high prevalence has had a severe impact on society. Researchers have achieved fruitful results in the causative factors, pathogenesis, treatment strategies, and cancer prevention. Semaphorin 3F (SEMA3F), a member of the signaling family, was initially reported in the literature to inhibit the growth, invasion, and metastasis of cancer cells in lung cancer. Later studies showed it has cancer-inhibiting effects in malignant tumors such as breast, colorectal, ovarian, oral squamous cell carcinoma, melanoma, and head and neck squamous carcinoma. In contrast, recent studies have reported that SEMA3F is expressed more in hepatocellular carcinoma than in normal tissue and promotes metastasis of hepatocellular carcinoma. We chose lung, breast, colorectal, and hepatocellular carcinomas with high clinical prevalence to review the roles and molecular mechanisms of SEMA3F in these four carcinomas. We concluded with an outlook on clinical interventions for patients targeting SEMA3F.
Collapse
Affiliation(s)
- Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Dezhi Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Neuropilin-2 promotes lineage plasticity and progression to neuroendocrine prostate cancer. Oncogene 2022; 41:4307-4317. [PMID: 35986103 PMCID: PMC9464715 DOI: 10.1038/s41388-022-02437-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer, is characterized by loss of AR signaling and resulting resistance to AR-targeted therapy during neuroendocrine transdifferentiation, for which the molecular mechanisms remain unclear. Here, we report that neuropilin 2 (NRP2) is upregulated in both de novo and therapy-induced NEPC, which induces neuroendocrine markers, neuroendocrine cell morphology, and NEPC cell aggressive behavior. NRP2 silencing restricted NEPC tumor xenograft growth. Mechanistically, NRP2 engages in reciprocal crosstalk with AR, where NRP2 is transcriptionally inhibited by AR, and in turn suppresses AR signaling by downregulating the AR transcriptional program and confers resistance to enzalutamide. Moreover, NRP2 physically interacts with VEGFR2 through the intracellular SEA domain to activate STAT3 phosphorylation and subsequently SOX2, thus driving NEPC differentiation and growth. Collectively, these results characterize NRP2 as a driver of NEPC and suggest NRP2 as a potential therapeutic target in NEPC.
Collapse
|
11
|
Islam R, Mishra J, Bodas S, Bhattacharya S, Batra SK, Dutta S, Datta K. Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev 2022; 41:771-787. [PMID: 35776228 PMCID: PMC9247951 DOI: 10.1007/s10555-022-10048-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/16/2022] [Indexed: 12/12/2022]
Abstract
Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
12
|
Valentini E, Di Martile M, Del Bufalo D, D'Aguanno S. SEMAPHORINS and their receptors: focus on the crosstalk between melanoma and hypoxia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:131. [PMID: 33858502 PMCID: PMC8050914 DOI: 10.1186/s13046-021-01929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Hypoxia, a condition of oxygen deprivation, is considered a hallmark of tumor microenvironment regulating several pathways and promoting cancer progression and resistance to therapy. Semaphorins, a family of about 20 secreted, transmembrane and GPI-linked glycoproteins, and their cognate receptors (plexins and neuropilins) play a pivotal role in the crosstalk between cancer and stromal cells present in the tumor microenvironment. Many studies reported that some semaphorins are involved in the development of a permissive tumor niche, guiding cell-cell communication and, consequently, the development and progression, as well as the response to therapy, of different cancer histotypes, including melanoma. In this review we will summarize the state of art of semaphorins regulation by hypoxic condition in cancer with different origin. We will also describe evidence about the ability of semaphorins to affect the expression and activity of transcription factors activated by hypoxia, such as hypoxia-inducible factor-1. Finally, we will focus our attention on findings reporting the role of semaphorins in melanocytes transformation, melanoma progression and response to therapy. Further studies are necessary to understand the mechanisms through which semaphorins induce their effect and to shed light on the possibility to use semaphorins or their cognate receptors as prognostic markers and/or therapeutic targets in melanoma or other malignancies.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy.
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| |
Collapse
|
13
|
Xie Z, Li T, Huang B, Liu S, Zhang L, Zhang Q. Semaphorin 3F Serves as a Tumor Suppressor in Esophageal Squamous Cell Carcinoma and is Associated With Lymph Node Metastasis in Disease Progression. Technol Cancer Res Treat 2021; 19:1533033820928117. [PMID: 32441221 PMCID: PMC7249561 DOI: 10.1177/1533033820928117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Esophageal squamous cell carcinoma is one of the leading aggressive malignancies with
high mortality. Semaphorin 3F has been reported to be involved in lymphangiogenesis by
interacting the vascular endothelial growth factor C/neuropilin 2 axis. This study aimed
to assess the clinical and functional role of semaphorin 3F and preliminarily evaluate
the relationship between semaphorin 3F and lymph node metastasis in esophageal squamous
cell carcinoma. Methods: The messenger RNA expression of semaphorin 3F was analyzed using quantitative real-time
polymerase chain reaction. The expression differences of semaphorin 3F between patients
having esophageal squamous cell carcinoma with and without lymph node metastasis were
assessed, and the correlation of semaphorin 3F with vascular endothelial growth factor C
and neuropilin 2 was estimated. The prognostic value of semaphorin 3F was evaluated
using Kaplan-Meier survival curves and Cox regression analysis. Gain- and
loss-functional cell experiments were performed to explore the biological function of
semaphorin 3F, vascular endothelial growth factor C, and neuropilin 2. Results: The messenger RNA expression of semaphorin 3F was reduced in esophageal squamous cell
carcinoma tissues compared with normal tissues, and lower semaphorin 3F expression was
observed in patients having esophageal squamous cell carcinoma with positive lymph node
metastasis. Semaphorin 3F expression was associated with lymph node metastasis and
negatively correlated with vascular endothelial growth factor C and neuropilin 2. Lower
semaphorin 3F expression was related to a poor overall survival of esophageal squamous
cell carcinoma and served as an independent prognostic indicator. In esophageal squamous
cell carcinoma cells, semaphorin 3F messenger RNA expression was also decreased compared
with normal cells, and the overexpression of semaphorin 3F could significantly inhibit
cell proliferation, migration, and invasion. The downregulation of vascular endothelial
growth factor C and neuropilin 2 could inhibit cell proliferation, migration, and
invasion of esophageal squamous cell carcinoma cells. Conclusion: All data indicate that semaphorin 3F serves as a potential prognostic biomarker and
tumor suppressor of esophageal squamous cell carcinoma and may be involved in the lymph
node metastasis development through regulating neuropilin 2.
Collapse
Affiliation(s)
- Zhen Xie
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Tianyue Li
- Department of Medical Examination, Binzhou Medical University Hospital, Binzhou, China
| | - Bingtao Huang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Shuai Liu
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Lianguo Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Qingguang Zhang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
14
|
Ye K, Ouyang X, Wang Z, Yao L, Zhang G. SEMA3F Promotes Liver Hepatocellular Carcinoma Metastasis by Activating Focal Adhesion Pathway. DNA Cell Biol 2020; 39:474-483. [PMID: 31968181 DOI: 10.1089/dna.2019.4904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that semaphorin-3F (SEMA3F) functions as a tumor suppressor in several tumor types. However, the role of SEMA3F in the metastasis and prognosis of liver hepatocellular carcinoma (LIHC) remains unknown. In this study, by performing bioinformatics analysis on the transcriptome profiles from The Cancer Genome Atlas (TCGA), we demonstrated that SEMA3F was significantly upregulated in LIHC tissues, compared with normal controls. Moreover, the expression value of SEMA3F was positively correlated with patients' pathological stages and tumor metastasis, predicting a poor overall survival. Besides, SEMA3F expression level was negatively correlated with its methylation level, but positively correlated with its gene copy number. Differential expression analysis of LIHC samples with high or low SEMA3F expression values suggested that 983 genes were differentially expressed, among which 723 genes were upregulated and 260 genes were downregulated. Furthermore, enrichment analysis of differentially expressed genes revealed that SEMA3F was involved in the activation of focal adhesion pathway, which induced tumor metastasis. Taken together, our results suggested that the oncogenic function of SEMA3F promoted hepatocellular carcinoma metastasis by activating focal adhesion pathway.
Collapse
Affiliation(s)
- Ke Ye
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| | - Xiwu Ouyang
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| | - Zhiming Wang
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| | - Lei Yao
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| | - Gewen Zhang
- Department of General Surgery, Central South University, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
15
|
Gioelli N, Maione F, Camillo C, Ghitti M, Valdembri D, Morello N, Darche M, Zentilin L, Cagnoni G, Qiu Y, Giacca M, Giustetto M, Paques M, Cascone I, Musco G, Tamagnone L, Giraudo E, Serini G. A rationally designed NRP1-independent superagonist SEMA3A mutant is an effective anticancer agent. Sci Transl Med 2019; 10:10/442/eaah4807. [PMID: 29794061 DOI: 10.1126/scitranslmed.aah4807] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Vascular normalizing strategies, aimed at ameliorating blood vessel perfusion and lessening tissue hypoxia, are treatments that may improve the outcome of cancer patients. Secreted class 3 semaphorins (SEMA3), which are thought to directly bind neuropilin (NRP) co-receptors that, in turn, associate with and elicit plexin (PLXN) receptor signaling, are effective normalizing agents of the cancer vasculature. Yet, SEMA3A was also reported to trigger adverse side effects via NRP1. We rationally designed and generated a safe, parenterally deliverable, and NRP1-independent SEMA3A point mutant isoform that, unlike its wild-type counterpart, binds PLXNA4 with nanomolar affinity and has much greater biochemical and biological activities in cultured endothelial cells. In vivo, when parenterally administered in mouse models of pancreatic cancer, the NRP1-independent SEMA3A point mutant successfully normalized the vasculature, inhibited tumor growth, curbed metastatic dissemination, and effectively improved the supply and anticancer activity of chemotherapy. Mutant SEMA3A also inhibited retinal neovascularization in a mouse model of age-related macular degeneration. In summary, mutant SEMA3A is a vascular normalizing agent that can be exploited to treat cancer and, potentially, other diseases characterized by pathological angiogenesis.
Collapse
Affiliation(s)
- Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Federica Maione
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Chiara Camillo
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Noemi Morello
- Department of Neuroscience, University of Torino School of Medicine, 10126 Torino, Italy
| | - Marie Darche
- Growth, Reparation and Tissue Regeneration Laboratory, ERL-CNRS 9215, University of Paris-Est, 94000 Créteil, France
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Gabriella Cagnoni
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Yaqi Qiu
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Maurizio Giustetto
- Department of Neuroscience, University of Torino School of Medicine, 10126 Torino, Italy.,National Institute of Neuroscience-Italy, 10126 Torino, Italy
| | - Michel Paques
- Vision Institute, Sorbonne University, UPMC University of Paris 06, INSERM, CNRS, 75012 Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, 75012 Paris, France
| | - Ilaria Cascone
- Growth, Reparation and Tissue Regeneration Laboratory, ERL-CNRS 9215, University of Paris-Est, 94000 Créteil, France
| | - Giovanna Musco
- Biomolecular NMR Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Luca Tamagnone
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy. .,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy. .,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| |
Collapse
|
16
|
Tan G. Inhibitory effects of Semaphorin 3F as an alternative candidate to anti-VEGF monoclonal antibody on angiogenesis. In Vitro Cell Dev Biol Anim 2019; 55:756-765. [DOI: 10.1007/s11626-019-00392-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
|
17
|
Class-3 Semaphorins and Their Receptors: Potent Multifunctional Modulators of Tumor Progression. Int J Mol Sci 2019; 20:ijms20030556. [PMID: 30696103 PMCID: PMC6387194 DOI: 10.3390/ijms20030556] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Semaphorins are the products of a large gene family containing 28 genes of which 21 are found in vertebrates. Class-3 semaphorins constitute a subfamily of seven vertebrate semaphorins which differ from the other vertebrate semaphorins in that they are the only secreted semaphorins and are distinguished from other semaphorins by the presence of a basic domain at their C termini. Class-3 semaphorins were initially characterized as axon guidance factors, but have subsequently been found to regulate immune responses, angiogenesis, lymphangiogenesis, and a variety of additional physiological and developmental functions. Most class-3 semaphorins transduce their signals by binding to receptors belonging to the neuropilin family which subsequently associate with receptors of the plexin family to form functional class-3 semaphorin receptors. Recent evidence suggests that class-3 semaphorins also fulfill important regulatory roles in multiple forms of cancer. Several class-3 semaphorins function as endogenous inhibitors of tumor angiogenesis. Others were found to inhibit tumor metastasis by inhibition of tumor lymphangiogenesis, by direct effects on the behavior of tumor cells, or by modulation of immune responses. Notably, some semaphorins such as sema3C and sema3E have also been found to potentiate tumor progression using various mechanisms. This review focuses on the roles of the different class-3 semaphorins in tumor progression.
Collapse
|
18
|
Nakayama H, Kusumoto C, Nakahara M, Fujiwara A, Higashiyama S. Semaphorin 3F and Netrin-1: The Novel Function as a Regulator of Tumor Microenvironment. Front Physiol 2018; 9:1662. [PMID: 30532711 PMCID: PMC6265511 DOI: 10.3389/fphys.2018.01662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Axon guidance molecules play an important role in regulating proper neuronal networking during neuronal development. They also have non-neuronal properties, which include angiogenesis, inflammation, and tumor development. Semaphorin 3F (SEMA3F), a member of the class 3 semaphorins, was initially identified as an axon guidance factor, that repels axons and collapses growth cones. However, SEMA3F has similar effects on endothelial cells (ECs) and tumor cells. In this review, we discuss the novel molecular mechanisms underlying SEMA3F activity in vascular and tumor biology. Recent evidence suggests that SEMA3F functions as a PI3K-Akt-mTOR inhibitor in mammalian cells, including T cells, ECs, and tumor cells. Therefore, SEMA3F may have broad therapeutic implications. We also discuss the key role of axon guidance molecules as regulators of the tumor microenvironment. Netrin-1, a chemoattractant factor in the neuronal system, promotes tumor progression by enhancing angiogenesis and metastasis. Moreover, our recent studies demonstrate that netrin-1/neogenin interactions augment CD4+ T cell chemokinesis and elicit pro-inflammatory responses, suggesting that netrin-1 plays a key role in modulating the function of a tumor and its surrounding cells in the tumor microenvironment. Overall, this review focuses on SEMA3F and netrin-1 signaling mechanisms to understand the diverse biological functions of axon guidance molecules.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Akira Fujiwara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
19
|
CDK8 regulates the angiogenesis of pancreatic cancer cells in part via the CDK8-β-catenin-KLF2 signal axis. Exp Cell Res 2018; 369:304-315. [PMID: 29856990 DOI: 10.1016/j.yexcr.2018.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND CDK8 is associated with the transcriptional Mediator complex and has been shown to regulate several transcription factors implicated in cancer. As a pancreatic cancer oncogene, the role of CDK8 in cancer angiogenesis remains unclear. Here, we investigated the contribution of CDK8 in pancreatic cancer angiogenesis and examined the underlying molecular mechanisms. METHODS CDK8 expression was evaluated via immunohistochemistry, western blotting, and qRT-PCR in relation to the clinicopathological characteristics of pancreatic cancer patients. The effects of silencing or overexpressing CDK8 on cancer angiogenesis were assessed in vitro by western blotting assays in pancreatic cancer cell lines and in vivo with nude mice xenograft models. RESULTS Compared with adjacent normal tissues, pancreatic cancer tissues showed upregulation of CDK8 expression, which was inversely correlated with T grade, liver metastasis, size, lymph node metastasis and poor survival. CDK8 overexpression promoted angiogenesis in pancreatic cancer via activation of the CDK8-β-catenin-KLF2 signaling axis, as demonstrated by the upregulation and downregulation of signals representing the rate-limiting steps in angiogenesis. Silencing CDK8 inhibited angiogenesis in pancreatic cancer in vitro. Additionally, these results were confirmed in nude mice xenograft models in vivo. CONCLUSIONS CDK8 promotes angiogenesis in pancreatic cancer via activation of the CDK8-β-catenin-KLF2 signaling axis, thus providing valid targets for the treatment of pancreatic cancer.
Collapse
|
20
|
Genetic status of KRAS modulates the role of Neuropilin-1 in tumorigenesis. Sci Rep 2017; 7:12877. [PMID: 29018205 PMCID: PMC5635066 DOI: 10.1038/s41598-017-12992-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropilin-1 (NRP1), a non-tyrosine kinase receptor, is overexpressed in many cancers including pancreatic and lung cancers. Inhibition of NRP1 expression, however, has differing pro-tumor vs. anti-tumor effects, depending on the cancer types. To understand the differential role of NRP1 in tumorigenesis process, we utilized cells from two different cancer types, pancreatic and lung, each containing either wild type KRAS (KRAS wt) or mutant KRAS (KRAS mt). Inhibition of NRP1 expression by shRNA in both pancreatic and lung cancer cells containing dominant active KRAS mt caused increased cell viability and tumor growth. On the contrary, inhibition of NRP1, in the tumor cells containing KRAS wt showed decreased tumor growth. Importantly, concurrent inhibition of KRAS mt and NRP1 in the tumor cells reverses the increased viability and leads to tumor inhibition. We found that NRP1 shRNA expressing KRAS mt tumor cells caused increased cell viability by decreasing SMAD2 phosphorylation. Our findings demonstrate that the effects of NRP1 knockdown in cancer cells are dependent on the genetic status of KRAS.
Collapse
|
21
|
Increased semaphorin 3c expression promotes tumor growth and metastasis in pancreatic ductal adenocarcinoma by activating the ERK1/2 signaling pathway. Cancer Lett 2017; 397:12-22. [PMID: 28315433 DOI: 10.1016/j.canlet.2017.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Pancreatic cancer is characterized by neural alterations and aberrant expression of neural-specific factors. Semaphorins have been recognized as key contributors in axon guidance, the immune response and tumor progression. Recent studies have suggested the involvement of Semaphorin 3c (sema3c) in tumorigenesis and metastasis in numerous types of cancer, however, the clinical significance of sema3c and its role in the growth and metastasis of pancreatic ductal adenocarcinoma (PDAC) remain unclear. In this study, we found that aberrant sema3c expression was positively associated with a particular tumor stage and correlated with poor survival of PDAC patients. Knockdown of sema3c attenuated proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in a pancreatic cancer cell line and reduced PDAC cell tumorigenesis upon xenotransplantation into NOD/SCID mice. Overexpression of sema3c produced the opposite effects and promoted the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Overall, our findings demonstrate that aberrant expression of sema3c is correlated with poor prognosis of PDAC patients and promotes tumor growth and metastasis by activating ERK1/2 signaling pathway.
Collapse
|
22
|
Bollard J, Massoma P, Vercherat C, Blanc M, Lepinasse F, Gadot N, Couderc C, Poncet G, Walter T, Joly MO, Hervieu V, Scoazec JY, Roche C. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors. Oncotarget 2017; 6:36731-45. [PMID: 26447612 PMCID: PMC4742207 DOI: 10.18632/oncotarget.5481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022] Open
Abstract
Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs. SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways. This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy.
Collapse
Affiliation(s)
- Julien Bollard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Patrick Massoma
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Cécile Vercherat
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Martine Blanc
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Florian Lepinasse
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France
| | - Nicolas Gadot
- Université Lyon 1, Fédération de Recherche Santé Lyon-Est, ANIPATH, Faculté Laennec, F-69372 Lyon, France
| | - Christophe Couderc
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| | - Gilles Poncet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, F-69437 Lyon, France
| | - Thomas Walter
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, F-69437 Lyon, France
| | - Marie-Odile Joly
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Valérie Hervieu
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Jean-Yves Scoazec
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et de Cytologie Pathologiques, F-69437 Lyon, France.,Université Lyon 1, Fédération de Recherche Santé Lyon-Est, ANIPATH, Faculté Laennec, F-69372 Lyon, France.,Université de Lyon, Université Lyon 1, F-69622 Villeurbanne, France
| | - Colette Roche
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Equipe «Différenciation endocrine et tumorigenèse», Faculté Laënnec, F-69372 Lyon, France
| |
Collapse
|
23
|
Gemmill RM, Nasarre P, Nair-Menon J, Cappuzzo F, Landi L, D'Incecco A, Uramoto H, Yoshida T, Haura EB, Armeson K, Drabkin HA. The neuropilin 2 isoform NRP2b uniquely supports TGFβ-mediated progression in lung cancer. Sci Signal 2017; 10:10/462/eaag0528. [PMID: 28096505 DOI: 10.1126/scisignal.aag0528] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuropilins (NRP1 and NRP2) are co-receptors for heparin-binding growth factors and class 3 semaphorins. Different isoforms of NRP1 and NRP2 are produced by alternative splicing. We found that in non-small cell lung cancer (NSCLC) cell lines, transforming growth factor-β (TGFβ) signaling preferentially increased the abundance of NRP2b. NRP2b and NRP2a differ only in their carboxyl-terminal regions. Although the presence of NRP2b inhibited cultured cell proliferation and primary tumor growth, NRP2b enhanced cellular migration, invasion into Matrigel, and tumorsphere formation in cultured cells in response to TGFβ signaling and promoted metastasis in xenograft mouse models. These effects of overexpressed NRP2b contrast with the effects of overexpressed NRP2a. Hepatocyte growth factor (HGF)-induced phosphorylation of the kinase AKT was specifically promoted by NRP2b, whereas inhibiting the HGF receptor MET attenuated NRP2b-dependent cell migration. Unlike NRP2a, NRP2b did not bind the PDZ domain scaffolding protein GAIP carboxyl terminus-interacting protein (GIPC1) and only weakly recruited phosphatase and tensin homolog (PTEN), potentially explaining the difference between NRP2b-mediated and NRP2a-mediated effects. Analysis of NSCLC patient tumors showed that NRP2b abundance correlated with that of the immune cell checkpoint receptor ligand PD-L1 as well as with epithelial-to-mesenchymal transition (EMT) phenotypes in the tumors, acquired resistance to epidermal growth factor receptor (EGFR) inhibitors, disease progression, and poor survival in patients. NRP2b knockdown attenuated the acquisition of resistance to the EGFR inhibitor gefitinib in cultured NSCLC cells. Thus, in NSCLC, NRP2b contributed to the oncogenic response to TGFβ and correlated with tumor progression in patients.
Collapse
Affiliation(s)
- Robert M Gemmill
- Division of Hematology/Oncology, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick Nasarre
- Division of Hematology/Oncology, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joyce Nair-Menon
- Division of Hematology/Oncology, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Lorenza Landi
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile di Livorno, Viale Alfieri 36, Leghorn 57100, Italy
| | - Armida D'Incecco
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile di Livorno, Viale Alfieri 36, Leghorn 57100, Italy
| | - Hidetaka Uramoto
- Division of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada 920-0293, Japan
| | - Takeshi Yoshida
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Eric B Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kent Armeson
- Department of Public Health Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Harry A Drabkin
- Division of Hematology/Oncology, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
24
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
25
|
Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam KC, Muñoz-Antonia T, Qu X, Eschrich S, Uramoto H, Tanaka F, Nasarre P, Gemmill RM, Roche J, Drabkin HA, Haura EB. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS One 2016; 11:e0147344. [PMID: 26789630 PMCID: PMC4720447 DOI: 10.1371/journal.pone.0147344] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 01/01/2016] [Indexed: 01/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Kim C. Ohaegbulam
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Teresita Muñoz-Antonia
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Xiaotao Qu
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Steven Eschrich
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Hidetaka Uramoto
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Patrick Nasarre
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Robert M. Gemmill
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joëlle Roche
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Harry A. Drabkin
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
26
|
Regulation of mTOR Signaling by Semaphorin 3F-Neuropilin 2 Interactions In Vitro and In Vivo. Sci Rep 2015; 5:11789. [PMID: 26156437 PMCID: PMC4496725 DOI: 10.1038/srep11789] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022] Open
Abstract
Semaphorin 3F (SEMA3F) provides neuronal guidance cues via its ability to bind neuropilin 2 (NRP2) and Plexin A family molecules. Recent studies indicate that SEMA3F has biological effects in other cell types, however its mechanism(s) of function is poorly understood. Here, we analyze SEMA3F-NRP2 signaling responses in human endothelial, T cell and tumor cells using phosphokinase arrays, immunoprecipitation and Western blot analyses. Consistently, SEMA3F inhibits PI-3K and Akt activity, and responses are associated with the disruption of mTOR/rictor assembly and mTOR-dependent activation of the RhoA GTPase. We also find that the expression of vascular endothelial growth factor, as well as mTOR-inducible cellular activation responses and cytoskeleton stability are inhibited by SEMA3F-NRP2 interactions in vitro. In vivo, local and systemic overproduction of SEMA3F reduces tumor growth in NRP2-expressing xenografts. Taken together, SEMA3F regulates mTOR signaling in diverse human cell types, suggesting that it has broad therapeutic implications.
Collapse
|
27
|
Zhou ZH, Rao J, Yang J, Wu F, Tan J, Xu SL, Ding Y, Zhan N, Hu XG, Cui YH, Zhang X, Dong W, Liu XD, Bian XW. SEMA3F prevents metastasis of colorectal cancer by PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. J Pathol 2015; 236:467-78. [PMID: 25866254 DOI: 10.1002/path.4541] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 11/11/2022]
Abstract
Semaphorin-3F (SEMA3F), an axonal repulsant in nerve development, has been shown to inhibit the progression of human colorectal cancer (CRC); however, the underlying mechanism remains elusive. In this study we found a negative correlation between the levels of SEMA3F and CXCR4 in CRC specimens from 85 patients, confirmed by bioinformatics analysis of gene expression in 229 CRC samples from the Cancer Genome Atlas. SEMA3F(high) /CXCR4(low) patients showed the lowest frequency of lymph node and distant metastasis and the longest survival. Mechanistically, SEMA3F inhibited the invasion and metastasis of CRC cells through PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. Specifically, ASCL2 enhanced the invasion and metastasis of CRC cells in vitro and expression of ASCL2 correlated with distant metastasis, tumour size and poor overall survival in CRC patients. Treatment of CRC cells with the CXCR4 antagonist AMD3100 attenuated SEMA3F knockdown-induced invasion and metastasis of CRC cells in vitro and in vivo. Our study thus demonstrates that SEMA3F functions as a suppressor of CRC metastasis via down-regulating the ASCL2-CXCR4 axis.
Collapse
Affiliation(s)
- Zhi-hang Zhou
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Jun Rao
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Jing Yang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Feng Wu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Juan Tan
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Sen-lin Xu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Na Zhan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xu-gang Hu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - You-hong Cui
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xin-dong Liu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.,Key Laboratory of Tumour Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Rao J, Zhou ZH, Yang J, Shi Y, Xu SL, Wang B, Ping YF, Chen L, Cui YH, Zhang X, Wu F, Bian XW. Semaphorin-3F suppresses the stemness of colorectal cancer cells by inactivating Rac1. Cancer Lett 2014; 358:76-84. [PMID: 25529012 DOI: 10.1016/j.canlet.2014.12.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022]
Abstract
Tumor cell stemness has been recognized as a key contributor to tumor initiation, progression and recurrence. Our previous studies have found that semaphorin-3F (SEMA3F), an axon guidance molecule in the development of central nervous system, inhibited the growth and metastasis of colorectal cancer (CRC). However, a possible role for SEMA3F in regulating cancer cell stemness remains unknown. Here, we report a novel mechanism of the acquirement of stemness of CRC cells regulated by SEMA3F. Knockdown of SEMA3F significantly promoted the self-renewal and tumorigenicity of CRC cells, and increased the expression of stemness-associated genes, while overexpressing SEMA3F reduced the stemness of CRC cells. Mechanistically, GTP-Rac1 was involved in SEMA3F mediated regulation of CRC cell stemness by targeting the Wnt/β-catenin pathway. Clinically, GTP-Rac1 expression was inversely correlated with SEMA3F levels in CRC samples and patients with SEMA3F(low)/GTP-Rac1(high) CRC showed poorer prognosis. Our findings demonstrate the ability of SEMA3F to inhibit the stemness of human CRC cells by suppressing Rac1 activation, which suggests a novel therapeutic approach for CRC.
Collapse
Affiliation(s)
- Jun Rao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Zhi-Hang Zhou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Jing Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Sen-Lin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Bin Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Lu Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Feng Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
29
|
Mishra R, Kumar D, Tomar D, Chakraborty G, Kumar S, Kundu GC. The potential of class 3 semaphorins as both targets and therapeutics in cancer. Expert Opin Ther Targets 2014; 19:427-42. [PMID: 25434284 DOI: 10.1517/14728222.2014.986095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Semaphorins have been originally identified as a family of evolutionary conserved soluble or membrane-associated proteins involved in diverse developmental phenomena. This family of proteins profoundly influences numerous pathophysiological processes, including organogenesis, cardiovascular development and immune response. Apart from steering the neural networking process, these are implicated in a broad range of biological operations including regulation of tumor progression and angiogenesis. AREAS COVERED Members of class 3 semaphorin family are known to modulate various cellular processes involved in malignant transformation. Some of the family members trigger diverse signaling processes involved in tumor progression and angiogenesis by binding with plexin and neuropilin. A better understanding of the various signaling mechanisms by which semaphorins modulate tumor progression and angiogenesis may serve as crucial tool in crafting new semaphorin-based anticancer therapy. These include treatment with recombinant tumor suppressive semaphorins or inhibition of tumor-promoting semaphorins by their specific siRNAs, small-molecule inhibitors or specific receptors using neutralizing antibodies or blocking peptides that might serve as novel strategies for effective management of cancers. EXPERT OPINION This review focuses on all the possible avenues to explore various members of class 3 semaphorin family to serve as therapeutics for combating cancer.
Collapse
Affiliation(s)
- Rosalin Mishra
- Loboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science (NCCS) , Pune 411007 , India
| | | | | | | | | | | |
Collapse
|
30
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
31
|
Migliozzi MT, Mucka P, Bielenberg DR. Lymphangiogenesis and metastasis--a closer look at the neuropilin/semaphorin3 axis. Microvasc Res 2014; 96:68-76. [PMID: 25087623 DOI: 10.1016/j.mvr.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding how the lymphatic system responds to its environment and local stimuli may lead to therapies to combat metastasis and other lymphatic-associated diseases. This review compares lymphatic vessels and blood vessels, discusses markers of lymphatic vasculature, and elucidates some of the signaling motifs involved in lymphangiogenesis. Recent progress implicating the neuropilin and semaphorin axes in this process is discussed.
Collapse
Affiliation(s)
- Matthew T Migliozzi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Aghajanian H, Choi C, Ho VC, Gupta M, Singh MK, Epstein JA. Semaphorin 3d and semaphorin 3e direct endothelial motility through distinct molecular signaling pathways. J Biol Chem 2014; 289:17971-9. [PMID: 24825896 DOI: 10.1074/jbc.m113.544833] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Class 3 semaphorins were initially described as axonal growth cone guidance molecules that signal through plexin and neuropilin coreceptors and since then have been established to be regulators of vascular development. Semaphorin 3e (Sema3e) has been shown previously to repel endothelial cells and is the only class 3 semaphorin known to be capable of signaling via a plexin receptor without a neuropilin coreceptor. Sema3e signals through plexin D1 (Plxnd1) to regulate vascular patterning by modulating the cytoskeleton and focal adhesion structures. We showed recently that semaphorin 3d (Sema3d) mediates endothelial cell repulsion and pulmonary vein patterning during embryogenesis. Here we show that Sema3d and Sema3e affect human umbilical vein endothelial cells similarly but through distinct molecular signaling pathways. Time-lapse imaging studies show that both Sema3d and Sema3e can inhibit cell motility and migration, and tube formation assays indicate that both can impede tubulogenesis. Endothelial cells incubated with either Sema3d or Sema3e demonstrate a loss of actin stress fibers and focal adhesions. However, the addition of neuropilin 1 (Nrp1)-blocking antibody or siRNA knockdown of Nrp1 inhibits Sema3d-mediated, but not Sema3e-mediated, cytoskeletal reorganization, and siRNA knockdown of Nrp1 abrogates Sema3d-mediated, but not Sema3e-mediated, inhibition of tubulogenesis. On the other hand, endothelial cells deficient in Plxnd1 are resistant to endothelial repulsion mediated by Sema3e but not Sema3d. Unlike Sema3e, Sema3d incubation results in phosphorylation of Akt in human umbilical vein endothelial cells, and inhibition of the PI3K/Akt pathway blocks the endothelial guidance and cytoskeletal reorganization functions of Sema3d but not Sema3e.
Collapse
Affiliation(s)
- Haig Aghajanian
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Connie Choi
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Vivienne C Ho
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mudit Gupta
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Manvendra K Singh
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jonathan A Epstein
- From the Department of Cell and Developmental Biology and the Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
|
34
|
Payet LA, Kadri L, Giraud S, Norez C, Berjeaud JM, Jayle C, Mirval S, Becq F, Vandebrouck C, Ferreira T. Cystic fibrosis bronchial epithelial cells are lipointoxicated by membrane palmitate accumulation. PLoS One 2014; 9:e89044. [PMID: 24586495 PMCID: PMC3929646 DOI: 10.1371/journal.pone.0089044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/14/2014] [Indexed: 12/11/2022] Open
Abstract
The F508del-CFTR mutation, responsible for Cystic Fibrosis (CF), leads to the retention of the protein in the endoplasmic reticulum (ER). The mistrafficking of this mutant form can be corrected by pharmacological chaperones, but these molecules showed limitations in clinical trials. We therefore hypothesized that important factors in CF patients may have not been considered in the in vitro assays. CF has also been associated with an altered lipid homeostasis, i. e. a decrease in polyunsaturated fatty acid levels in plasma and tissues. However, the precise fatty acyl content of membrane phospholipids from human CF bronchial epithelial cells had not been studied to date. Since the saturation level of phospholipids can modulate crucial membrane properties, with potential impacts on membrane protein folding/trafficking, we analyzed this parameter for freshly isolated bronchial epithelial cells from CF patients. Interestingly, we could show that Palmitate, a saturated fatty acid, accumulates within Phosphatidylcholine (PC) in CF freshly isolated cells, in a process that could result from hypoxia. The observed PC pattern can be recapitulated in the CFBE41o(-) cell line by incubation with 100 µM Palmitate. At this concentration, Palmitate induces an ER stress, impacts calcium homeostasis and leads to a decrease in the activity of the corrected F508del-CFTR. Overall, these data suggest that bronchial epithelial cells are lipointoxicated by hypoxia-related Palmitate accumulation in CF patients. We propose that this phenomenon could be an important bottleneck for F508del-CFTR trafficking correction by pharmacological agents in clinical trials.
Collapse
Affiliation(s)
- Laurie-Anne Payet
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Linette Kadri
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Sébastien Giraud
- Service de Biochimie, CHU Poitiers, Poitiers, France
- Inserm U1082, Poitiers, France
- Faculté de Médecine et de Pharmacie Université de Poitiers, Poitiers, France
| | - Caroline Norez
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Jean Marc Berjeaud
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Sandra Mirval
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Thierry Ferreira
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
35
|
Nasarre P, Gemmill RM, Potiron VA, Roche J, Lu X, Barón AE, Korch C, Garrett-Mayer E, Lagana A, Howe PH, Drabkin HA. Neuropilin-2 Is upregulated in lung cancer cells during TGF-β1-induced epithelial-mesenchymal transition. Cancer Res 2013; 73:7111-21. [PMID: 24121493 DOI: 10.1158/0008-5472.can-13-1755] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET), are fundamental processes involved in tumor cell invasion and metastasis. SEMA3F is a secreted semaphorin and tumor suppressor downregulated by TGF-β1 and ZEB1-induced EMT. Here, we report that neuropilin (NRP)-2, the high-affinity receptor for SEMA3F and a coreceptor for certain growth factors, is upregulated during TGF-β1-driven EMT in lung cancer cells. Mechanistically, NRP2 upregulation was TβRI dependent and SMAD independent, occurring mainly at a posttranscriptional level involving increased association of mRNA with polyribosomes. Extracellular signal-regulated kinase (ERK) and AKT inhibition blocked NRP2 upregulation, whereas RNA interference-mediated attenuation of ZEB1 reduced steady-state NRP2 levels. In addition, NRP2 attenuation inhibited TGF-β1-driven morphologic transformation, migration/invasion, ERK activation, growth suppression, and changes in gene expression. In a mouse xenograft model of lung cancer, NRP2 attenuation also inhibited locally invasive features of the tumor and reversed TGF-β1-mediated growth inhibition. In support of these results, human lung cancer specimens with the highest NRP2 expression were predominantly E-cadherin negative. Furthermore, the presence of NRP2 staining strengthened the association of E-cadherin loss with high-grade tumors. Together, our results demonstrate that NRP2 contributes significantly to TGF-β1-induced EMT in lung cancer.
Collapse
Affiliation(s)
- Patrick Nasarre
- Authors' Affiliations: Division of Hematology-Oncology, Department of Public Health Sciences, Department of Biochemistry, The Hollings Cancer Center and Medical University of South Carolina, Charleston, South Carolina; Department of Biostatistics and informatics; Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and Department of Molecular Virology, Immunology, and Medical Genetics, School of Medicine, The Ohio State University, Columbus, Ohio
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Clarhaut J, Fraineau S, Guilhot J, Peraudeau E, Tranoy-Opalinski I, Thomas M, Renoux B, Randriamalala E, Bois P, Chatelier A, Monvoisin A, Cronier L, Papot S, Guilhot F. A galactosidase-responsive doxorubicin-folate conjugate for selective targeting of acute myelogenous leukemia blasts. Leuk Res 2013; 37:948-55. [PMID: 23726264 DOI: 10.1016/j.leukres.2013.04.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 04/24/2013] [Accepted: 04/28/2013] [Indexed: 11/26/2022]
Abstract
Cytarabine combined with an anthracycline or an anthracenedione represents the usual intensive induction therapy for the treatment of AML. However, this protocol induces severe side effects and treatment-related mortality due to the lack of selectivity of these cytotoxic agents. In this paper, we present the study of the first galactosidase-responsive molecular "Trojan Horse" programmed for the delivery of doxorubicin exclusively inside AML blasts over-expressing the folate receptor (FR). This targeting system allows the selective killing of AML blasts without affecting normal endothelial, cardiac or hematologic cells from healthy donors suggesting that FDC could reduce adverse events usually recorded with anthracyclines.
Collapse
|
37
|
Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol 2013; 24:179-89. [PMID: 23099250 DOI: 10.1016/j.semcdb.2012.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023]
Abstract
The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding "normal" cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.
Collapse
Affiliation(s)
- Michael Rehman
- Institute for Cancer Research at Candiolo (IRC@C), University of Torino-Dept. of Oncology, 10060 Candiolo, Italy
| | | |
Collapse
|
38
|
Raimondi C, Ruhrberg C. Neuropilin signalling in vessels, neurons and tumours. Semin Cell Dev Biol 2013; 24:172-8. [PMID: 23319134 DOI: 10.1016/j.semcdb.2013.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
The neuropilins NRP1 and NRP2 are transmembrane proteins that regulate many different aspects of vascular and neural development. Even though they were originally identified as adhesion molecules, they are most commonly studied as co-receptors for secreted signalling molecules of the class 3 semaphorin (SEMA) and vascular endothelial growth factor (VEGF) families. During nervous system development, both classes of ligands control soma migration, axon patterning and synaptogenesis in the central nervous system, and they additionally help to guide the neural crest cell precursors of neurons and glia in the peripheral nervous system. Both classes of neuropilin ligands also control endothelial cell behaviour, with NRP1 acting as a VEGF-A isoform receptor in blood vascular endothelium and as a semaphorin receptor in lymphatic valve endothelium, and NRP2 promoting lymphatic vessel growth induced by VEGF-C. Here we provide an overview of neuropilin function in neurons and neural crest cells, discuss current knowledge of neuropilin signalling in the vasculature and conclude with a summary of neuropilin roles in cancer.
Collapse
Affiliation(s)
- Claudio Raimondi
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
39
|
Du J, Xu R. RORα, a potential tumor suppressor and therapeutic target of breast cancer. Int J Mol Sci 2012; 13:15755-66. [PMID: 23443091 PMCID: PMC3546659 DOI: 10.3390/ijms131215755] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 12/29/2022] Open
Abstract
The function of the nuclear receptor (NR) in breast cancer progression has been investigated for decades. The majority of the nuclear receptors have well characterized natural ligands, but a few of them are orphan receptors for which no ligand has been identified. RORα, one member of the retinoid orphan nuclear receptor (ROR) subfamily of orphan receptors, regulates various cellular and pathological activities. RORα is commonly down-regulated and/or hypoactivated in breast cancer compared to normal mammary tissue. Expression of RORα suppresses malignant phenotypes in breast cancer cells, in vitro and in vivo. Activity of RORα can be categorized into the canonical and non-canonical nuclear receptor pathways, which in turn regulate various breast cancer cellular function, including cell proliferation, apoptosis and invasion. This information suggests that RORα is a potent tumor suppressor and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jun Du
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; E-Mail:
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; E-Mail:
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40536, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-859-323-7889; Fax: +1-859-257-6030
| |
Collapse
|
40
|
Abstract
Solid tumors not only comprise malignant cells but also other nonmalignant cell types, forming a unique microenvironment that can strongly influence the behavior of tumor cells. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins. In fact, semaphorins form a family of molecular signals known to guide and control cell migration during embryo development and in adults. Tumor cells express semaphorins as well as their receptors, plexins and neuropilins. It has been shown that semaphorin signaling can regulate tumor cell behavior. Moreover, semaphorins are important regulators of tumor angiogenesis. Conversely, very little is known about the functional relevance of semaphorin signals for tumor-infiltrating stromal cells, such as leukocytes. In this chapter, we review the current knowledge on the functional role of semaphorins in cancer progression, and we focus on the emerging role of semaphorins in mediating the cross talk between tumor cells and different tumor stromal cells.
Collapse
Affiliation(s)
- Claudia Muratori
- University of Torino Medical School, Institute for Cancer Research (IRCC), Candiolo, Turin, Italy
| | | |
Collapse
|
41
|
Yeganeh B, Xia C, Movassagh H, Koziol-White C, Chang Y, Al-Alwan L, Bourke JE, Oliver BGG. Emerging mediators of airway smooth muscle dysfunction in asthma. Pulm Pharmacol Ther 2012; 26:105-11. [PMID: 22776693 DOI: 10.1016/j.pupt.2012.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/26/2022]
Abstract
Phenotypic changes in airway smooth muscle are integral to the pathophysiological changes that constitute asthma - namely inflammation, airway wall remodelling and bronchial hyperresponsiveness. In vitro and in vivo studies have shown that the proliferative, secretory and contractile functions of airway smooth muscle are dysfunctional in asthma. These functions can be modulated by various mediators whose levels are altered in asthma, derived from inflammatory cells or produced by airway smooth muscle itself. In this review, we describe the emerging roles of the CXC chemokines (GROs, IP-10), Th17-derived cytokines (IL-17, IL-22) and semaphorins, as well as the influence of viral infection on airway smooth muscle function, with a view to identifying new opportunities for therapeutic intervention in asthma.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Khapare N, Kundu ST, Sehgal L, Sawant M, Priya R, Gosavi P, Gupta N, Alam H, Karkhanis M, Naik N, Vaidya MM, Dalal SN. Plakophilin3 loss leads to an increase in PRL3 levels promoting K8 dephosphorylation, which is required for transformation and metastasis. PLoS One 2012; 7:e38561. [PMID: 22701666 PMCID: PMC3368841 DOI: 10.1371/journal.pone.0038561] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/08/2012] [Indexed: 12/13/2022] Open
Abstract
The desmosome anchors keratin filaments in epithelial cells leading to the formation of a tissue wide IF network. Loss of the desmosomal plaque protein plakophilin3 (PKP3) in HCT116 cells, leads to an increase in neoplastic progression and metastasis, which was accompanied by an increase in K8 levels. The increase in levels was due to an increase in the protein levels of the Phosphatase of Regenerating Liver 3 (PRL3), which results in a decrease in phosphorylation on K8. The increase in PRL3 and K8 protein levels could be reversed by introduction of an shRNA resistant PKP3 cDNA. Inhibition of K8 expression in the PKP3 knockdown clone S10, led to a decrease in cell migration and lamellipodia formation. Further, the K8 PKP3 double knockdown clones showed a decrease in colony formation in soft agar and decreased tumorigenesis and metastasis in nude mice. These results suggest that a stabilisation of K8 filaments leading to an increase in migration and transformation may be one mechanism by which PKP3 loss leads to tumor progression and metastasis.
Collapse
Affiliation(s)
- Nileema Khapare
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Samrat T. Kundu
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Lalit Sehgal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Mugdha Sawant
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Rashmi Priya
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Prajakta Gosavi
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Neha Gupta
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Hunain Alam
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Madhura Karkhanis
- Pharmacology Department, Piramal Life Sciences Ltd., Mumbai, Maharashtra, India
| | - Nishigandha Naik
- Pharmacology Department, Piramal Life Sciences Ltd., Mumbai, Maharashtra, India
| | - Milind M. Vaidya
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| | - Sorab N. Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai, Maharashtra, India
| |
Collapse
|
43
|
Jia B, Liu H, Kong Q, Li B. Overexpression of ZEB1 associated with metastasis and invasion in patients with gastric carcinoma. Mol Cell Biochem 2012; 366:223-9. [PMID: 22466758 DOI: 10.1007/s11010-012-1299-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 03/17/2012] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the expression of ZEB1 in gastric carcinoma, its correlation with the clinicopathology of gastric carcinoma, and the role of ZEB1 in invasion and metastasis in gastric carcinoma. ZEB1 expression was analyzed by immunohistochemistry and Western blot in 45 gastric carcinoma tissue samples that contained the adjacent gastric mucosa. The correlation between ZEB1 expression, the occurrence and development of gastric cancer, and clinical pathology was investigated. ZEB1 expression in the human gastric carcinoma cell line AGS was downregulated by RNA interference, and changes in ZEB1 expression corresponded with changes in the invasive and metastatic ability of AGS cells. Immunohistochemistry revealed that ZEB1 protein expression in gastric carcinoma tissues was significantly higher than in normal gastric mucosa tissues (p < 0.001). A lower degree of differentiation of gastric cancer (p = 0.009), a higher TNM (tumor, node, and metastasis) stage (p = 0.010), and a larger scope of invasion were correlated with higher expression of ZEB1 (p = 0.041, 0.002). However, the expression of ZEB1 in gastric carcinoma tissue was independent of gender, age, and tumor size (p > 0.05). Western blot results also showed that ZEB1 protein expression was significantly higher in gastric carcinoma tissue than in the adjacent normal gastric mucosa tissue (p = 0.008). A lower degree of differentiation of the gastric carcinoma correlated with a higher TNM stage, and a larger scope of invasion correlated with increased ZEB1 expression (p = 0.023). Transfection of ZEB1 siRNA in AGS cells significantly decreased the expression level of ZEB1 protein (p = 0.035). Furthermore, the number of cells that could pass through the Transwell chamber was significantly lower in the transfected group than in the non-transfected control group (p = 0.039), indicating that the suppression of ZEB1 expression could significantly reduce the invasive and metastatic ability of AGS cells (p = 0.005). Concluding, in gastric carcinoma tissue, overexpression of ZEB1 may be related to the occurrence and development as well as invasion and metastasis of gastric carcinoma.
Collapse
Affiliation(s)
- Baoqing Jia
- Department of Surgical Oncology, General Hospital of Chinese People's Liberation Army, No. 28, Fuxing Rd, Beijing 100853, People's Republic of China.
| | | | | | | |
Collapse
|
44
|
Xiong G, Wang C, Evers BM, Zhou BP, Xu R. RORα suppresses breast tumor invasion by inducing SEMA3F expression. Cancer Res 2012; 72:1728-39. [PMID: 22350413 DOI: 10.1158/0008-5472.can-11-2762] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inactivation of tumor suppressors and inhibitory microenvironmental factors is necessary for breast cancer invasion; therefore, identifying those suppressors and factors is crucial not only to advancing our knowledge of breast cancer, but also to discovering potential therapeutic targets. By analyzing gene expression profiles of polarized and disorganized human mammary epithelial cells in a physiologically relevant three-dimensional (3D) culture system, we identified retinoid orphan nuclear receptor alpha (RORα) as a transcription regulator of semaphorin 3F (SEMA3F), a suppressive microenvironmental factor. We showed that expression of RORα was downregulated in human breast cancer tissue and cell lines, and that reduced mRNA levels of RORα and SEMA3F correlated with poor prognosis. Restoring RORα expression reprogrammed breast cancer cells to form noninvasiveness structures in 3D culture and inhibited tumor growth in nude mice, accompanied by enhanced SEMA3F expression. Inactivation of RORα in nonmalignant human mammary epithelial cells inhibited SEMA3F transcription and impaired polarized acinar morphogenesis. Using chromatin immunoprecipitation and luciferase reporter assays, we showed that transcription of SEMA3F is directly regulated by RORα. Knockdown of SEMA3F in RORα-expressing cancer cells rescued the aggressive 3D phenotypes and tumor invasion. These findings indicate that RORα is a potential tumor suppressor and inhibits tumor invasion by inducing suppressive cell microenvironment.
Collapse
Affiliation(s)
- Gaofeng Xiong
- Markey Cancer Center, and the Department of Molecular and Biomedical Pharmacology, Surgery, and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
45
|
Neufeld G, Sabag AD, Rabinovicz N, Kessler O. Semaphorins in angiogenesis and tumor progression. Cold Spring Harb Perspect Med 2012; 2:a006718. [PMID: 22315716 PMCID: PMC3253028 DOI: 10.1101/cshperspect.a006718] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The semaphorins were initially described as axon guidance factors, but have recently been implicated in a variety of physiological and developmental functions, including regulation of immune response, angiogenesis, and migration of neural crest cells. The semaphorin family contains more than 30 genes divided into seven subfamilies, all of which are characterized by the presence of a sema domain. The semaphorins transduce their signals by binding to one of the nine receptors belonging to the plexin family, or, in the case of the class 3 semaphorins, by binding to one of the two neuropilin receptors. Additional receptors, which form complexes with these primary semaphorin receptors, are also frequently involved in semaphorin signaling. Recent evidence suggests that some semaphorins can act as antiangiogenic and/or antitumorigenic agents whereas other semaphorins promote tumor progression and/or angiogenesis. Furthermore, loss of endogenous inhibitory semaphorin expression or function on one hand, and overexpression of protumorigenic semaphorins on the other hand, is associated with the progression of some tumor types.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer and Vascular Biology Research Center, Rappaport Research Institute in the Medical Sciences, Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel.
| | | | | | | |
Collapse
|
46
|
Abstract
Angiogenesis, the formation of new blood vessels from preexisting vasculature, is essential for many physiological processes, and aberrant angiogenesis contributes to some of the most prevalent human diseases, including cancer. Angiogenesis is controlled by delicate balance between pro- and anti-angiogenic signals. While pro-angiogenic signaling has been extensively investigated, how developmentally regulated, naturally occurring anti-angiogenic molecules prevent the excessive growth of vascular and lymphatic vessels is still poorly understood. In this review, we summarize the current knowledge on how semaphorins and their receptors, plexins and neuropilins, control normal and pathological angiogenesis, with an emphasis on semaphorin-regulated anti-angiogenic signaling circuitries in vascular and lymphatic endothelial cells. This emerging body of information may afford the opportunity to develop novel anti-angiogenic therapeutic strategies.
Collapse
|
47
|
The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. Clin Exp Metastasis 2011; 29:111-22. [PMID: 22080401 DOI: 10.1007/s10585-011-9434-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/01/2011] [Indexed: 01/20/2023]
Abstract
For decades, cancer was associated with gap-junction defects. However, more recently it appeared that the gap junction proteins (connexins) could be re-expressed and participate to cancer cell dissemination during the late stages of tumor progression. Since primary tumors of prostate cancer (PCa) are known to be connexin deficient, it was interesting to verify whether their bone-targeted metastatic behaviour could be influenced by the re-expression of the connexin type (connexin43) which is originally present in prostate tissue and highly expressed in bone where it participates to the differentiation of osteoblastic cells. Thus, we investigated the effect of the increased Cx43 expression, by retroviral infection, on the metastatic behaviour of two well-characterized cell lines (PC-3 and LNCaP) representing different stages of PCa progression. It appeared that Cx43 differently behaved in those cell lines and induced different phenotypes. In LNCaP, Cx43 was functional, localized at the plasma membrane and its high expression was correlated with a more aggressive phenotype both in vitro and in vivo. In particular, those Cx43-expressing LNCaP cells exhibited a high incidence of osteolytic metastases generated by bone xenografts in mice. Interestingly, LNCaP cells were also able to decrease the proliferation of cocultured osteoblastic cells. In contrast, the increased expression of Cx43 in PC-3 cells led to an unfunctional, cytoplasmic localization of the protein and was correlated with a reduction of proliferation, adhesion and invasion of the cells. In conclusion, the localization and the functionality of Cx43 may govern the ability of PCa cells to metastasize in bones.
Collapse
|
48
|
Angiogenesis inhibitors. J Thorac Oncol 2011; 6:S1801-2. [PMID: 22005536 DOI: 10.1097/01.jto.0000407564.91781.ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Nguyen H, Ivanova VS, Kavandi L, Rodriguez GC, Maxwell GL, Syed V. Progesterone and 1,25-Dihydroxyvitamin D3 Inhibit Endometrial Cancer Cell Growth by Upregulating Semaphorin 3B and Semaphorin 3F. Mol Cancer Res 2011; 9:1479-92. [DOI: 10.1158/1541-7786.mcr-11-0213] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
|