1
|
Liu M, Wang J, Liu M. Lysyl oxidase inhibitors in colorectal cancer progression. Transl Oncol 2025; 52:102233. [PMID: 39675250 PMCID: PMC11713484 DOI: 10.1016/j.tranon.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
The lysine oxidase (LOX) family, consisting of LOX and LOX-like-1-4 (LOXL1-LOXL4), catalyses the cross-linking reaction of collagen and elastin in the extracellular matrix (ECM). Numerous studies have demonstrated that LOX family members are dysregulated in a variety of cancers, including colorectal cancer (CRC), and play a key role in cancer cell migration, proliferation, invasion and metastasis. Targeting LOX family proteins with specific inhibitors has therefore been developed as a new therapeutic strategy for cancer. In this paper, we review the role of LOX enzymes in the development and progression of CRC. In addition, we address recent advances in the development of LOX/LOXL inhibitors, highlighting the potential use of this inhibitor as an effective and complementary treatment for CRC.
Collapse
Affiliation(s)
- Muxian Liu
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China
| | - Jie Wang
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China
| | - Meihong Liu
- Department of Gastroenterology, Dongguan Tungwah Hospital, Dongguan City 523000, Guangdong, China.
| |
Collapse
|
2
|
Jasmer KJ, Shanbhag VC, Forti KM, Woods LT, Gudekar NS, Weisman GA, Petris MJ. Pulmonary lysyl oxidase expression and its role in seeding Lewis lung carcinoma cells. Clin Exp Metastasis 2024; 42:7. [PMID: 39714512 DOI: 10.1007/s10585-024-10325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Copper promotes tumor growth and metastasis through a variety of mechanisms, most notably as a cofactor within the lysyl oxidase (LOX) family of secreted cuproenzymes. Members of this family, which include LOX and LOX-like enzymes LOXL1-4, catalyze the copper-dependent crosslinking of collagens and elastin within the extracellular matrix (ECM). Elevated LOX expression is associated with higher incidence and worse prognosis in multiple cancers, including colorectal, breast, pancreatic, and head and neck. In this study, we demonstrated that elevated LOX expression correlates with decreased overall survival and shorter median time to first progression in patients with lung cancer. Previous studies have demonstrated that LOX secreted from tumors is critical for pre-metastatic niche formation by promoting ECM remodeling and the recruitment of immune cells and endothelial precursors. Here, we demonstrated that ablation of the LOX gene in Lewis lung carcinoma (LLC) cells diminishes tumor growth and metastasis compared to wild-type LLC cells in a syngeneic mouse model. Although the role of tumor-derived LOX in tumor formation and metastasis is well established, little is known regarding the possible contribution of LOX produced by the parenchymal tissue of metastatic organs. Thus, this report describes our findings that host-derived LOX produced by the lung contributes to the pulmonary metastasis of LLC cells in mice. The suppression of pulmonary lysyl oxidase expression reduces the metastatic potential of Lewis Lung Carcinoma cells in mice, revealing a previously unknown influence of LOX expression in the parenchymal tissue of metastatic target organs on the seeding of tumor cells.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA.
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Vinit C Shanbhag
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Nikita S Gudekar
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Michael J Petris
- Christopher S. Bond Life Sciences Center 540F, University of Missouri, 1201 E Rollins, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Adewale AT, Sharma S, Mouawad JE, Nguyen XX, Bradshaw AD, Feghali-Bostwick C. IGF-II regulates lysyl oxidase propeptide and mediates its effects in part via basic helix-loop-helix E40. Matrix Biol 2024; 132:24-33. [PMID: 38852924 PMCID: PMC11329355 DOI: 10.1016/j.matbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pulmonary fibrosis (PF) is a clinically severe and commonly fatal complication of Systemic Sclerosis (SSc). Our group has previously reported profibrotic roles for Insulin-like Growth Factor II (IGF-II) and Lysyl Oxidase (LOX) in SSc-PF. We sought to identify downstream regulatory mediators of IGF-II. In the present work, we show that SSc lung tissues have higher baseline levels of the total (N-glycosylated/unglycosylated) LOX-Propeptide (LOX-PP) than control lung tissues. LOX-PP-mediated changes were consistent with the extracellular matrix (ECM) deregulation implicated in SSc-PF progression. Furthermore, Tolloid-like 1 (TLL1) and Bone Morphogenetic Protein 1 (BMP1), enzymes that can cleave ProLOX to release LOX-PP, were increased in SSc lung fibrosis and the bleomycin (BLM)-induced murine lung fibrosis model, respectively. In addition, IGF-II regulated the levels of ProLOX, active LOX, LOX-PP, BMP1, and isoforms of TLL1. The Class E Basic Helix-Loop-Helix protein 40 (BHLHE40) transcription factor localized to the nucleus in response to IGF-II. BHLHE40 silencing downregulated TLL1 isoforms and LOX-PP, and restored features of ECM deregulation triggered by IGF-II. Our findings indicate that IGF-II, BHLHE40, and LOX-PP may serve as targets of therapeutic intervention to halt SSc-PF progression.
Collapse
Affiliation(s)
- Adegboyega Timothy Adewale
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Shailza Sharma
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| | - Joe E Mouawad
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Xinh-Xinh Nguyen
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Amy D Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| |
Collapse
|
4
|
Wu X, Li X, Wang L, Bi X, Zhong W, Yue J, Chin YE. Lysine Deacetylation Is a Key Function of the Lysyl Oxidase Family of Proteins in Cancer. Cancer Res 2024; 84:652-658. [PMID: 38194336 DOI: 10.1158/0008-5472.can-23-2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Mammalian members of the lysyl oxidase (LOX) family of proteins carry a copper-dependent monoamine oxidase domain exclusively within the C-terminal region, which catalyzes ε-amine oxidation of lysine residues of various proteins. However, recent studies have demonstrated that in LOX-like (LOXL) 2-4 the C-terminal canonical catalytic domain and N-terminal scavenger receptor cysteine-rich (SRCR) repeats domain exhibit lysine deacetylation and deacetylimination catalytic activities. Moreover, the N-terminal SRCR repeats domain is more catalytically active than the C-terminal oxidase domain. Thus, LOX is the third family of lysine deacetylases in addition to histone deacetylase and sirtuin families. In this review, we discuss how the LOX family targets different cellular proteins for deacetylation and deacetylimination to control the development and metastasis of cancer.
Collapse
Affiliation(s)
- Xingxing Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xue Li
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Luwei Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Xianxia Bi
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jicheng Yue
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
5
|
Peymanfar Y, Mahjour F, Shrestha N, de la Cueva A, Chen Y, Huang S, Kirsch KH, Han X, Trackman PC. The Lysyl Oxidase G473A Polymorphism Exacerbates Oral Cancer Development in Humans and Mice. Int J Mol Sci 2023; 24:9407. [PMID: 37298359 PMCID: PMC10254048 DOI: 10.3390/ijms24119407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Oral cancer is primarily squamous-cell carcinoma with a 5-year survival rate of approximately 50%. Lysyl oxidase (LOX) participates in collagen and elastin maturation. The propeptide of LOX is released as an 18 kDa protein (LOX-PP) in the extracellular environment by procollagen C-proteinases and has tumor-inhibitory properties. A polymorphism in the propeptide region of LOX (rs1800449, G473A) results in a single amino acid substitution of Gln for Arg. Here we investigated the frequency of rs1800449 in OSCC employing TCGA database resources and determined the kinetics and severity of precancerous oral lesion development in wildtype and corresponding knockin mice after exposure to 4-nitroquinoline oxide (4 NQO) in drinking water. Data show that the OSCC is more common in humans carrying the variant compared to the wildtype. Knockin mice are more susceptible to lesion development. The immunohistochemistry of LOX in mouse tissues and in vitro studies point to a negative feedback pathway of wildtype LOX-PP on LOX expression that is deficient in knockin mice. Data further demonstrate modulations of T cell phenotype in knockin mice toward a more tumor-permissive condition. Data provide initial evidence for rs1800449 as an oral cancer susceptibility biomarker and point to opportunities to better understand the functional mechanism of LOX-PP cancer inhibitory activity.
Collapse
Affiliation(s)
- Yaser Peymanfar
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; (Y.P.); (Y.C.)
| | - Faranak Mahjour
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA 02118, USA; (F.M.); (N.S.)
| | - Neha Shrestha
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA 02118, USA; (F.M.); (N.S.)
| | - Ana de la Cueva
- Department of Biochemistry, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; (A.d.l.C.); (K.H.K.)
| | - Ying Chen
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; (Y.P.); (Y.C.)
| | - Shengyuan Huang
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.H.); (X.H.)
| | - Kathrin H. Kirsch
- Department of Biochemistry, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; (A.d.l.C.); (K.H.K.)
| | - Xiaozhe Han
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.H.); (X.H.)
| | - Philip C. Trackman
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; (Y.P.); (Y.C.)
- Department of Translational Dental Medicine, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA 02118, USA; (F.M.); (N.S.)
| |
Collapse
|
6
|
Lysyl Oxidase Family Proteins: Prospective Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:ijms232012270. [PMID: 36293126 PMCID: PMC9602794 DOI: 10.3390/ijms232012270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The lysyl oxidase (LOX) family, consisting of LOX and LOX-like proteins 1–4 (LOXL1–4), is responsible for the covalent crosslinking of collagen and elastin, thus maintaining the stability of the extracellular matrix (ECM) and functioning in maintaining connective tissue function, embryonic development, and wound healing. Recent studies have found the aberrant expression or activity of the LOX family occurs in various types of cancer. It has been proved that the LOX family mainly performs tumor microenvironment (TME) remodeling function and is extensively involved in tumor invasion and metastasis, immunomodulation, proliferation, apoptosis, etc. With relevant translational research in progress, the LOX family is expected to be an effective target for tumor therapy. Here, we review the research progress of the LOX family in tumor progression and therapy to provide novel insights for future exploration of relevant tumor mechanism and new therapeutic targets.
Collapse
|
7
|
Liburkin-Dan T, Nir-Zvi I, Razon H, Kessler O, Neufeld G. Knock-Out of the Five Lysyl-Oxidase Family Genes Enables Identification of Lysyl-Oxidase Pro-Enzyme Regulated Genes. Int J Mol Sci 2022; 23:ijms231911322. [PMID: 36232621 PMCID: PMC9570307 DOI: 10.3390/ijms231911322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The five lysyl-oxidase genes share similar enzymatic activities and contribute to tumor progression. We have knocked out the five lysyl-oxidase genes in MDA-MB-231 breast cancer cells using CRISPR/Cas9 in order to identify genes that are regulated by LOX but not by other lysyl-oxidases and in order to study such genes in more mechanistic detail in the future. Re-expression of the full-length cDNA encoding LOX identified four genes whose expression was downregulated in the knock-out cells and rescued following LOX re-expression but not re-expression of other lysyl-oxidases. These were the AGR2, STOX2, DNAJB11 and DNAJC3 genes. AGR2 and STOX2 were previously identified as promoters of tumor progression. In addition, we identified several genes that were not downregulated in the knock-out cells but were strongly upregulated following LOX or LOXL3 re-expression. Some of these, such as the DERL3 gene, also promote tumor progression. There was very little proteolytic processing of the re-expressed LOX pro-enzyme in the MDA-MB-231 cells, while in the HEK293 cells, the LOX pro-enzyme was efficiently cleaved. We introduced point mutations into the known BMP-1 and ADAMTS2/14 cleavage sites of LOX. The BMP-1 mutant was secreted but not cleaved, while the LOX double mutant dmutLOX was not cleaved or secreted. However, even in the presence of the irreversible LOX inhibitor β-aminoproprionitrile (BAPN), these point-mutated LOX variants induced the expression of these genes, suggesting that the LOX pro-enzyme has hitherto unrecognized biological functions.
Collapse
|
8
|
Fuller AM, Eisinger-Mathason TSK. Context Matters: Response Heterogeneity to Collagen-Targeting Approaches in Desmoplastic Cancers. Cancers (Basel) 2022; 14:cancers14133132. [PMID: 35804902 PMCID: PMC9264969 DOI: 10.3390/cancers14133132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common feature of tumor types such as breast cancer, prostate cancer, pancreatic cancer, and soft-tissue sarcoma is the deposition of collagen-rich tissue called desmoplasia. However, efforts to control tumor growth by disrupting desmoplasia, collectively known as “collagen-targeting approaches”, have had mixed and contradictory results, sometimes even within the same cancer type. We believe that this phenomenon may be due—at least partially—to the fact that “collagen” is not a single molecule, but rather a diverse molecular family composed of 28 unique collagen types. Therefore, in this review, we discuss the diversity of collagen molecules in normal and cancer tissue, and explore how collagen heterogeneity relates to the mixed efficacy of collagen-targeting approaches for cancer therapy. Abstract The deposition of collagen-rich desmoplastic tissue is a well-documented feature of the solid tumor microenvironment (TME). However, efforts to target the desmoplastic extracellular matrix (ECM) en masse, or collagen molecules more specifically, have been met with mixed and sometimes paradoxical results. In this review, we posit that these discrepancies are due—at least in part—to the incredible diversity of the collagen superfamily. Specifically, whereas studies of “collagen-targeting” approaches frequently refer to “collagen” as a single molecule or relatively homogeneous molecular family, 28 individual collagens have been identified in mammalian tissues, each with a unique structure, supramolecular assembly pattern, tissue distribution, and/or function. Moreover, some collagen species have been shown to exert both pro- and anti-neoplastic effects in the desmoplastic TME, even within the same cancer type. Therefore, herein, we describe the diversity of the collagen family in normal tissues and highlight the context-specific roles of individual collagen molecules in desmoplastic tumors. We further discuss how this heterogeneity relates to the variable efficacy of “collagen-targeting” strategies in this setting and provide guidance for future directions in the field.
Collapse
|
9
|
Liburkin-Dan T, Toledano S, Neufeld G. Lysyl Oxidase Family Enzymes and Their Role in Tumor Progression. Int J Mol Sci 2022; 23:6249. [PMID: 35682926 PMCID: PMC9181702 DOI: 10.3390/ijms23116249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
The five genes of the lysyl oxidase family encode enzymes that covalently cross-link components of the extracellular matrix, such as various types of collagen and elastin, and, thus, promote the stabilization of extracellular matrixes. Several of these genes, in particular lysyl oxidase (LOX) and lysyl oxidase like-2 (LOXL2) were identified as genes that are upregulated by hypoxia, and promote tumor cells invasion and metastasis. Here, we focus on the description of the diverse molecular mechanisms by which the various lysyl oxidases affect tumor progression. We also describe attempts that have been made, and are still on-going, that focus on the development of efficient lysyl oxidase inhibitors for the treatment of various forms of cancer, and of diseases associated with abnormal fibrosis.
Collapse
Affiliation(s)
| | | | - Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel; (T.L.-D.); (S.T.)
| |
Collapse
|
10
|
Liu S, Medina-Perez P, Ha-Thi MC, Wieland A, Stecklum M, Hoffmann J, Tchernitsa O, Sers C, Schäfer R. Rapid testing of candidate oncogenes and tumour suppressor genes in signal transduction and neoplastic transformation. Adv Biol Regul 2021; 83:100841. [PMID: 34866037 DOI: 10.1016/j.jbior.2021.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
The COSMIC database (version 94) lists 576 genes in the Cancer Gene Census which have a defined function as drivers of malignancy (oncogenes) or as tumour suppressors (Tier 1). In addition, there are 147 genes with similar functions, but which are less well characterised (Tier 2). Furthermore, next-generation sequencing projects in the context of precision oncology activities are constantly discovering new ones. Since cancer genes differ from their wild-type precursors in numerous molecular and biochemical properties and exert significant differential effects on downstream processes, simple assays that can uncover oncogenic or anti-oncogenic functionality are desirable and may precede more sophisticated analyses. We describe simple functional assays for PTPN11 (protein-tyrosine phosphatase, non-receptor-type 11)/SHP2 mutants, which are typically found in RASopathies and exhibit potential oncogenic activity. We have also designed a functional test for lysyl oxidase (LOX), a prototypical class II tumour suppressor gene whose loss of function may contribute to neoplastic transformation by RAS oncogenes. Moreover, we applied this test to analyse three co-regulated, RAS-responsive genes for transformation-suppressive activity. The integration of these tests into systems biology studies will contribute to a better understanding of cellular networks in cancer.
Collapse
Affiliation(s)
- Sha Liu
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Paula Medina-Perez
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Minh-Cam Ha-Thi
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Anja Wieland
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, D-13125, Berlin-Buch, Germany
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Robert-Rössle-Str. 10, D-13125, Berlin-Buch, Germany
| | - Oleg Tchernitsa
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Reinhold Schäfer
- Laboratory of Molecular Tumour Pathology and Cancer Systems Biology, Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany; Charité Comprehensive Cancer Center Berlin, Germany.
| |
Collapse
|
11
|
Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front Med (Lausanne) 2021; 8:593874. [PMID: 34095157 PMCID: PMC8172798 DOI: 10.3389/fmed.2021.593874] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.
Collapse
Affiliation(s)
- Ceylan Onursal
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
12
|
Altuntaş OM, Süslü N, Güler Tezel YG, Tatlı Doğan H, Yılmaz T. Lysyl Oxidase Like-4 (LOXL4) as a tumor marker and prognosticator in advanced stage laryngeal cancer. Braz J Otorhinolaryngol 2021; 88:968-974. [PMID: 33757755 PMCID: PMC9615536 DOI: 10.1016/j.bjorl.2021.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/06/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Lysyl oxidase-like 4 is an amine oxidase from the lysyl oxidase family that was previously shown to be overexpressed in head and neck cancer and upregulated in response to hypoxia. The possible role of lysyl oxidase-like 4 as a tumor marker in advanced stage larynx cancer was investigated. Objective To investigate the expression of lysyl Oxidase-Like 4 protein in advanced stage laryngeal cancer and elucidate its possible role as a tumor marker, predictor of treatment response and prognosticator. Methods Diagnostic specimens of 72 patients treated for stage III–IV laryngeal squamous cell carcinoma were evaluated for lysyl oxidase-like 4 expression by immunohistochemistry. Results Lysyl oxidase-like 4 expression was correlated with advanced tumor stage (p = 0.041) and better differentiation (p = 0.025) but was independent of tumor diameter (p = 0.456). Response to induction chemotherapy or the need for salvage laryngectomy were not affected by lysyl oxidase-like 4 expression (p = 0.999, p = 0.070 respectively). Increased lysyl oxidase-like 4 expression was associated with better 2 year overall survival in both univariate (p = 0.036) and multivariate analyses (p = 0.014). Conclusion Lysyl oxidase-like 4 expression emerges with advancing stages, is lost with worsening differentiation, and may have tumor suppressive properties in larynx cancer.
Collapse
Affiliation(s)
- Ozan Muzaffer Altuntaş
- Koç University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey.
| | - Nilda Süslü
- Hacettepe University, Faculty of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| | | | | | - Taner Yılmaz
- Hacettepe University, Faculty of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| |
Collapse
|
13
|
|
14
|
Targeting Lysyl Oxidase Family Meditated Matrix Cross-Linking as an Anti-Stromal Therapy in Solid Tumours. Cancers (Basel) 2021; 13:cancers13030491. [PMID: 33513979 PMCID: PMC7865543 DOI: 10.3390/cancers13030491] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary To improve efficacy of solid cancer treatment, efforts have shifted towards targeting both the cancer cells and the surrounding tumour tissue they grow in. The lysyl oxidase (LOX) family of enzymes underpin the fibrotic remodeling of the tumour microenvironment to promote both cancer growth, spread throughout the body and modulate response to therapies. This review examines how the lysyl oxidase family is involved in tumour development, how they can be targeted, and their potential as diagnostic and prognostic biomarkers in solid tumours. Abstract The lysyl oxidase (LOX) family of enzymes are a major driver in the biogenesis of desmoplastic matrix at the primary tumour and secondary metastatic sites. With the increasing interest in and development of anti-stromal therapies aimed at improving clinical outcomes of cancer patients, the Lox family has emerged as a potentially powerful clinical target. This review examines how lysyl oxidase family dysregulation in solid cancers contributes to disease progression and poor patient outcomes, as well as an evaluation of the preclinical landscape of LOX family targeting therapeutics. We also discuss the suitability of the LOX family as a diagnostic and/or prognostic marker in solid tumours.
Collapse
|
15
|
Hu L, Wang J, Wang Y, Wu L, Wu C, Mao B, Maruthi Prasad E, Wang Y, Chin YE. LOXL1 modulates the malignant progression of colorectal cancer by inhibiting the transcriptional activity of YAP. Cell Commun Signal 2020; 18:148. [PMID: 32912229 PMCID: PMC7488294 DOI: 10.1186/s12964-020-00639-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blotting and real-time PCR. In vitro, colony formation, wound healing, migration and invasion assays were performed to investigate the effects of LOXL1 on cell proliferation, migration and invasion. In vivo, metastasis models and mouse xenografts were used to assess tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms by which LOXL1 modulates the Hippo pathway. Results LOXL1 was highly expressed in normal colon tissues compared with cancer tissues. In vitro, silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 exerted the opposite effects. The results of the in vivo experiments demonstrated that the overexpression of LOXL1 in CRC cell lines drastically inhibited metastatic progression and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) by interacting with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulation of YAP activity. Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Lin Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jing Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yunliang Wang
- Department of General surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linpeng Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chao Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Bo Mao
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - E Maruthi Prasad
- Department of Cell Biology and Genetics, Shenzhen key of Laboratory of Translational medicine of Tumor, Shenzhen University Health science center, Shenzhen, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
LOXL1 confers antiapoptosis and promotes gliomagenesis through stabilizing BAG2. Cell Death Differ 2020; 27:3021-3036. [PMID: 32424143 PMCID: PMC7557908 DOI: 10.1038/s41418-020-0558-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The lysyl oxidase (LOX) family is closely related to the progression of glioma. To ensure the clinical significance of LOX family in glioma, The Cancer Genome Atlas (TCGA) database was mined and the analysis indicated that higher LOXL1 expression was correlated with more malignant glioma progression. The functions of LOXL1 in promoting glioma cell survival and inhibiting apoptosis were studied by gain- and loss-of-function experiments in cells and animals. LOXL1 was found to exhibit antiapoptotic activity by interacting with multiple antiapoptosis modulators, especially BAG family molecular chaperone regulator 2 (BAG2). LOXL1-D515 interacted with BAG2-K186 through a hydrogen bond, and its lysyl oxidase activity prevented BAG2 degradation by competing with K186 ubiquitylation. Then, we discovered that LOXL1 expression was specifically upregulated through the VEGFR-Src-CEBPA axis. Clinically, the patients with higher LOXL1 levels in their blood had much more abundant BAG2 protein levels in glioma tissues. Conclusively, LOXL1 functions as an important mediator that increases the antiapoptotic capacity of tumor cells, and approaches targeting LOXL1 represent a potential strategy for treating glioma. In addition, blood LOXL1 levels can be used as a biomarker to monitor glioma progression.
Collapse
|
17
|
Gong R, Lin W, Gao A, Liu Y, Li J, Sun M, Chen X, Han S, Men C, Sun Y, Liu J. Forkhead box C1 promotes metastasis and invasion of non-small cell lung cancer by binding directly to the lysyl oxidase promoter. Cancer Sci 2019; 110:3663-3676. [PMID: 31597217 PMCID: PMC6890438 DOI: 10.1111/cas.14213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that human forkhead box C1 (FOXC1) plays important roles in tumor development and metastasis. However, the underlying molecular mechanism of FOXC1 in non–small cell lung cancer (NSCLC) metastasis remains unclear. Here, we identified FOXC1 as an independent prognostic factor in NSCLC and showed clear biological implications in invasion and metastasis. FOXC1 overexpression enhanced the proliferation, migration and invasion of NSCLC cells, whereas FOXC1 silencing impaired the effects both in vitro and in vivo. Importantly, we found a positive correlation between FOXC1 expression and lysyl oxidase (LOX) expression in NSCLC cells and patient samples. Downregulation of LOX or LOX activity inhibition in NSCLC cells inhibited the FOXC1‐driven effects on cellular migration and invasion. Xenograft models showed that inhibition of LOX activity by β‐aminopropionitrile monofumarate decreased the number of lung metastases. Mechanistically, we demonstrated a novel FOXC1‐LOX mechanism that was involved in the invasion and metastasis of NSCLC. Dual‐luciferase assay and ChIP identified that FOXC1 bound directly in the LOX promoter region and activated its transcription. Collectively, the present study offered new insight into FOXC1 in the mediation of NSCLC metastasis through interaction with the LOX promoter and further revealed that targeted inhibition of LOX protein activity could prevent lung metastasis in murine xenograft models. These data implicated FOXC1 as a potential therapeutic strategy for the treatment of NSCLC metastasis.
Collapse
Affiliation(s)
- Rumei Gong
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanli Liu
- Provincial Key Laboratory of Radio-Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Juan Li
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaozheng Chen
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuyi Han
- Genetic and Molecular Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Chengsong Men
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
18
|
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, Rieder F. Pathogenesis of fibrostenosing Crohn's disease. Transl Res 2019; 209:39-54. [PMID: 30981697 DOI: 10.1016/j.trsl.2019.03.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease, which could affect any part of the gastrointestinal tract. A severe complication of CD is fibrosis-associated strictures, which can cause bowel obstruction. Unfortunately, there is no specific antifibrotic therapy available. More than 80% of the patients with CD will have to undergo at least 1 surgery in their life and recurrence of strictures after surgery is common. Investigations on the mechanism of fibrostenosing CD have revealed that fibrosis is mainly driven by expansion of mesenchymal cells including fibroblasts, myofibroblasts, and smooth muscle cells. Being exposed to a pro-fibrotic milieu, these cells increase the secretion of extracellular matrix, as well as crosslinking enzymes, which drive tissue stiffness and remodeling. Fibrogenesis can become independent of inflammation in later stages of disease, which offers unique therapeutic potential. Exciting new evidence suggests smooth muscle cell hyperplasia as a strong contributor to luminal narrowing in fibrostenotic CD. Approval of new drugs in other fibrotic diseases, such as idiopathic pulmonary fibrosis, as well as new targets associated with fibrosis found in CD, such as cadherins or specific integrins, shed light on the development of novel antifibrotic approaches in CD.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Satya Kurada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
19
|
Kielosto M, Eriksson J, Nummela P, Yin M, Hölttä E. Divergent roles of lysyl oxidase family members in ornithine decarboxylase- and RAS-transformed mouse fibroblasts and human melanoma cells. Oncotarget 2018; 9:37733-37752. [PMID: 30701028 PMCID: PMC6340875 DOI: 10.18632/oncotarget.26508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
We have previously shown that proto-oncoprotein c-Jun is activated in ornithine decarboxylase (ODC)- and RAS-transformed mouse fibroblasts, and that the transformed morphology of these cells can be reversed by expressing the transactivation domain deletion mutant of c-Jun (TAM67). Here, we found that lysyl oxidase (Lox), encoding an extracellular matrix-modifying enzyme, is downregulated in a c-Jun-dependent manner in ODC-transformed fibroblasts (Odc cells). In addition to Lox, the Lox family members Lox-like 1 and 3 (Loxl1 and Loxl3) were found to be downregulated in Odc as well as in RAS-transformed fibroblasts (E4), whereas Lox-like 4 (Loxl4) was upregulated in Odc and downregulated in E4 cells compared to normal N1 fibroblasts. Tetracycline-regulatable LOX re-expression in Odc cells led to inhibition of cell growth and invasion in three-dimensional Matrigel in an activity-independent manner. On the contrary, LOX and especially LOXL2, LOXL3, and LOXL4 were found to be upregulated in several human melanoma cell lines, and LOX inhibitor B-aminopropionitrile inhibited the invasive growth of these cells particularly when co-cultured with fibroblasts in Matrigel. Knocking down the expression of LOX and especially LOXL2 in melanoma cells almost completely abrogated the invasive growth capability. Further, LOXL2 was significantly upregulated in clinical human primary melanomas compared to benign nevi, and high expression of LOXL2 in primary melanomas was associated with formation of metastases and shorter survival of patients. Thus, our studies reveal that inactive pro-LOX (together with Lox propeptide) functions as a tumor suppressor in ODC- and RAS-transformed murine fibroblasts by inhibiting cell growth and invasion, and active LOX and LOXL2 as tumor promoters in human melanoma cells by promoting their invasive growth.
Collapse
Affiliation(s)
- Mari Kielosto
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Johanna Eriksson
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Pirjo Nummela
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Current address: University of Helsinki, Genome-Scale Biology Research Program, Helsinki, Finland
| | - Miao Yin
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Erkki Hölttä
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
21
|
Nareshkumar RN, Sulochana KN, Coral K. Inhibition of angiogenesis in endothelial cells by Human Lysyl oxidase propeptide. Sci Rep 2018; 8:10426. [PMID: 29993014 PMCID: PMC6041307 DOI: 10.1038/s41598-018-28745-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a critical process involved in normal physiology. Pathological angiogenesis is observed in vascular diseases and neoplasia. The propeptide domain of LOX (LOX-PP) has been shown to inhibit tumorigenesis in various cancers. In this study, we explored the role of both overexpressed and recombinant LOX-PP in naïve human umbilical vein endothelial cell with the addition of vascular endothelial growth factor (VEGF). Primarily, we observed a significant reduction in the angiogenesis signaling pathways upon LOX-PP overexpression by proteomic analysis. Further functional analysis showed that the VEGF induced cell proliferation, migration, adhesion and tube formation was inhibited by LOX-PP. Moreover, LOX-PP arrested cells at S-phase, reduced F-actin levels and decreased phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK). The anti-angiogenic effect of LOX-PP was further confirmed by the reduction in the vascular network formation in chick chorioallantoic membrane (CAM). These results indicate that inhibition of angiogenesis events is not only achieved by overexpressing LOX-PP but also by addition of rLOX-PP. Taken together our findings discovered the anti-angiogenic role of LOX-PP in endothelial cells which suggests that harnessing this potential can be a promising strategy to inhibit angiogenesis.
Collapse
Affiliation(s)
- Ragavachetty Nagaraj Nareshkumar
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, 41, College road, Chennai, India.,School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | | | - Karunakaran Coral
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, 41, College road, Chennai, India.
| |
Collapse
|
22
|
de la Cueva A, Emmerling M, Lim SL, Yang S, Trackman PC, Sonenshein GE, Kirsch KH. A polymorphism in the lysyl oxidase propeptide domain accelerates carcinogen-induced cancer. Carcinogenesis 2018; 39:921-930. [PMID: 29579155 PMCID: PMC6692853 DOI: 10.1093/carcin/bgy045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/17/2018] [Accepted: 03/20/2018] [Indexed: 01/19/2023] Open
Abstract
The propeptide (LOX-PP) domain of the lysyl oxidase proenzyme was shown to inhibit the transformed phenotype of breast, lung and pancreatic cells in culture and the formation of Her2/neu-driven breast cancer in a xenograft model. A single nucleotide polymorphism (SNP, rs1800449) positioned in a highly conserved region of LOX-PP results in an Arg158Gln substitution (humans). This arginine (Arg)→glutamine (Gln) substitution profoundly impaired the ability of LOX-PP to inhibit the invasive phenotype and xenograft tumor formation. To study the effect of the SNP in vivo, here we established a knock in (KI) mouse line (LOX-PPGln mice) expressing an Arg152Gln substitution corresponding to the human Arg158Gln polymorphism. Breast cancer was induced in wild-type (WT) and LOX-PPGln female mice beginning at 6 weeks of age by treatment with 7,12-dimethylbenz(a)anthracene (DMBA) in combination with progesterone. Time course analysis of tumor development demonstrated earlier tumor onset and shorter overall survival in LOX-PPGln versus WT mice. To further compare the tumor burden in WT and LOX-PPGln mice, inguinal mammary glands from both groups of mice were examined for microscopic lesion formation. LOX-PPGln glands contained more lesions (9.6 versus 6.9 lesions/#4 bilateral). In addition, more DMBA-treated LOX-PPGln mice had increased leukocyte infiltrations in their livers and were moribund compared with DMBA-treated WT mice. Thus, these data indicate that the Arg→Gln substitution in LOX-PP could be an important marker associated with a more aggressive cancer phenotype and that this KI model is ideal for further mechanistic studies regarding the tumor suppressor function of LOX-PP.
Collapse
Affiliation(s)
- Ana de la Cueva
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael Emmerling
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sarah L Lim
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Shi Yang
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Gail E Sonenshein
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Kathrin H Kirsch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
23
|
Johnston KA, Lopez KM. Lysyl oxidase in cancer inhibition and metastasis. Cancer Lett 2018; 417:174-181. [DOI: 10.1016/j.canlet.2018.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
|
24
|
Dahal S, Broekelman T, Mecham RP, Ramamurthi A. Maintaining Elastogenicity of Mesenchymal Stem Cell-Derived Smooth Muscle Cells in Two-Dimensional Culture. Tissue Eng Part A 2018; 24:979-989. [PMID: 29264957 DOI: 10.1089/ten.tea.2017.0237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are localized expansions of the abdominal aorta that grow slowly to rupture. AAA growth is driven by irreversible elastic matrix breakdown in the aorta wall by chronically upregulated matrix metalloproteases (MMPs). Since adult vascular smooth muscle cells (SMCs) poorly regenerate elastic matrix, we previously explored utility of bone marrow mesenchymal stem cells and SMCs derived therefrom (BM-SMCs) for this purpose. One specific differentiated phenotype (cBM-SMCs) generated on a fibronectin substrate in presence of exogenous transforming growth factor-β and platelet-derived growth factor exhibited superior elastogenicity versus other phenotypes, and usefully provided proelastogenic and antiproteolytic stimuli to aneurysmal SMCs. Since in vivo cell therapy demands large cell inoculates, these derived SMCs must be propagated in vitro while maintaining their superior elastogenic, proelastogenic, and antiproteolytic characteristics. In this work, we thus investigated the culture conditions that must be provided to this propagation phase, which ensure that the differentiated SMCs maintain their phenotype and matrix regenerative benefits. Our results indicate that our BM-SMCs retain their phenotype in long-term culture even in the absence of differentiation growth factors and fibronectin substrate, but these conditions must be continued to be provided during postdifferentiation propagation if they are to maintain their superior elastic matrix deposition, crosslinking, and fiber formation properties. Our study, however, showed that cells propagated under these conditions exhibit higher expression of MMP-2, but favorably, no expression of elastolytic MMP-9. Hence, the study outcomes provide crucial guidelines to maintain phenotypic stability of cBM-SMCs during their propagation in two-dimensional culture before their delivery to the AAA wall for therapy.
Collapse
Affiliation(s)
- Shataakshi Dahal
- 1 Department of Biomedical Engineering, Cleveland Clinic , Cleveland, Ohio
| | - Thomas Broekelman
- 2 Department of Cell Biology and Physiology, Washington University at St. Louis , St. Louis, Missouri
| | - Robert P Mecham
- 2 Department of Cell Biology and Physiology, Washington University at St. Louis , St. Louis, Missouri
| | - Anand Ramamurthi
- 1 Department of Biomedical Engineering, Cleveland Clinic , Cleveland, Ohio.,3 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
25
|
Sánchez-Morgan N, Kirsch KH, Trackman PC, Sonenshein GE. UXT Is a LOX-PP Interacting Protein That Modulates Estrogen Receptor Alpha Activity in Breast Cancer Cells. J Cell Biochem 2017; 118:2347-2356. [PMID: 28106301 DOI: 10.1002/jcb.25893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
The lysyl oxidase proenzyme propeptide region (LOX-PP) is a tumor suppressor protein whose mechanism of action is not completely understood. Here, the Ubiquitously expressed Transcript (UXT) was identified in a yeast two-hybrid assay with LOX-PP as bait and confirmed as a novel LOX-PP associating protein. UXT, a prefoldin-like protein, is ubiquitous in human and mouse. Since UXT modulates androgen receptor transcriptional activity in prostate cancer, we studied its role in breast cancer. Breast tumors and derived cell lines overexpressed UXT. UXT was able to associate with the estrogen receptor alpha (ER) and decrease its transcriptional activity and target gene expression. Conversely, UXT knockdown increased ER element-dependent transcriptional activity. Ectopic LOX-PP relocalized UXT to the cytoplasm and decreased its stability. UXT ubiquitination and depletion in the presence of LOX-PP was rescued by a proteasomal inhibitor. In summary, proteasome-mediated turnover of UXT upon interaction with LOX-PP releases repression of ER transcriptional activity. J. Cell. Biochem. 118: 2347-2356, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nuria Sánchez-Morgan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Kathrin H Kirsch
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Gail E Sonenshein
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
26
|
Genetic polymorphisms in key hypoxia-regulated downstream molecules and phenotypic correlation in prostate cancer. BMC Urol 2017; 17:12. [PMID: 28143503 PMCID: PMC5282787 DOI: 10.1186/s12894-017-0201-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/10/2017] [Indexed: 11/19/2022] Open
Abstract
Background In this study we sought if, in their quest to handle hypoxia, prostate tumors express target hypoxia-associated molecules and their correlation with putative functional genetic polymorphisms. Methods Representative areas of prostate carcinoma (n = 51) and of nodular prostate hyperplasia (n = 20) were analysed for hypoxia-inducible factor 1 alpha (HIF-1α), carbonic anhydrase IX (CAIX), lysyl oxidase (LOX) and vascular endothelial growth factor (VEGFR2) immunohistochemistry expression using a tissue microarray. DNA was isolated from peripheral blood and used to genotype functional polymorphisms at the corresponding genes (HIF1A +1772 C > T, rs11549465; CA9 + 201 A > G; rs2071676; LOX +473 G > A, rs1800449; KDR – 604 T > C, rs2071559). Results Immunohistochemistry analyses disclosed predominance of positive CAIX and VEGFR2 expression in epithelial cells of prostate carcinomas compared to nodular prostate hyperplasia (P = 0.043 and P = 0.035, respectively). In addition, the VEGFR2 expression score in prostate epithelial cells was higher in organ-confined and extra prostatic carcinoma compared to nodular prostate hyperplasia (P = 0.031 and P = 0.004, respectively). Notably, for LOX protein the immunoreactivity score was significantly higher in organ-confined carcinomas compared to nodular prostate hyperplasia (P = 0.015). The genotype-phenotype analyses showed higher LOX staining intensity for carriers of the homozygous LOX +473 G-allele (P = 0.011). Still, carriers of the KDR−604 T-allele were more prone to have higher VEGFR2 expression in prostate epithelial cells (P < 0.006). Conclusions Protein expression of hypoxia markers (VEGFR2, CAIX and LOX) on prostate epithelial cells was different between malignant and benign prostate disease. Two genetic polymorphisms (LOX +473 G > A and KDR−604 T > C) were correlated with protein level, accounting for a potential gene-environment effect in the activation of hypoxia-driven pathways in prostate carcinoma. Further research in larger series is warranted to validate present findings. Electronic supplementary material The online version of this article (doi:10.1186/s12894-017-0201-y) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Lysyl Oxidase and the Tumor Microenvironment. Int J Mol Sci 2016; 18:ijms18010062. [PMID: 28036074 PMCID: PMC5297697 DOI: 10.3390/ijms18010062] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.
Collapse
|
28
|
Añazco C, Delgado-López F, Araya P, González I, Morales E, Pérez-Castro R, Romero J, Rojas A. Lysyl oxidase isoforms in gastric cancer. Biomark Med 2016; 10:987-98. [PMID: 27564724 DOI: 10.2217/bmm-2016-0075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most frequent cancer in the world and shows the highest incidence in Latin America and Asia. An increasing amount of evidence demonstrates that lysyl oxidase isoforms, a group of extracellular matrix crosslinking enzymes, should be considered as potential biomarkers and therapeutic targets in GC. In this review, we focus on the expression levels of lysyl oxidase isoforms, its functions and the clinical implications in GC. Finding novel proteins related to the processing of these extracellular matrix enzymes might be helpful in the design of new therapies, which, in combination with classic pharmacology, could be used to delay the progress of this aggressive cancer and offer a wider temporal window for clinical intervention.
Collapse
Affiliation(s)
- Carolina Añazco
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | - Paulina Araya
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Ileana González
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Erik Morales
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
- Pathology Department, Regional Hospital of Talca, Talca, Chile
| | - Ramón Pérez-Castro
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Jacqueline Romero
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| |
Collapse
|
29
|
Kai F, Laklai H, Weaver VM. Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease. Trends Cell Biol 2016; 26:486-497. [PMID: 27056543 DOI: 10.1016/j.tcb.2016.03.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/05/2023]
Abstract
Atherosclerosis, cancer, and various chronic fibrotic conditions are characterized by an increase in the migratory behavior of resident cells and the enhanced invasion of assorted exogenous cells across a stiffened extracellular matrix (ECM). This stiffened scaffold aberrantly engages cellular mechanosignaling networks in cells, which promotes the assembly of invadosomes and lamellae for cell invasion and migration. Accordingly, deciphering the conserved molecular mechanisms whereby matrix stiffness fosters invadosome and lamella formation could identify therapeutic targets to treat fibrotic conditions, and reducing ECM stiffness could ameliorate disease progression.
Collapse
Affiliation(s)
- FuiBoon Kai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hanane Laklai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Kasashima H, Yashiro M, Kinoshita H, Fukuoka T, Morisaki T, Masuda G, Sakurai K, Kubo N, Ohira M, Hirakawa K. Lysyl oxidase is associated with the epithelial-mesenchymal transition of gastric cancer cells in hypoxia. Gastric Cancer 2016; 19:431-442. [PMID: 26100130 DOI: 10.1007/s10120-015-0510-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/06/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE It has been reported that lysyl oxidase (LOX) is a hypoxia-responsive factor and is associated with the malignant progression of carcinoma. The aim of this study was to clarify the relationship between the epithelial-mesenchymal transition (EMT) and LOX in gastric cancer cells under hypoxia. METHODS Two gastric cancer cell lines, OCUM-2MD3 and OCUM-12, were used in an in vitro study. The effect of LOX small interfering RNA (siRNA) on the EMT and motility of gastric cancer cells under hypoxic condition was analyzed by reverse transcription PCR, Western blot, a wound-healing assay, and an invasion assay. Correlations between LOX expression and the clinicopathological features of 544 patients with gastric carcinoma were examined immunohistochemically. RESULTS Hypoxic conditions increased the number of polygonal or spindle-shaped cells resulting from EMT in gastric cancer cells. The EMT of cancer cells induced by hypoxia was inhibited by treatment with LOX siRNA. The number of migrating and invading gastric cancer cells in hypoxia was significantly decreased by LOX knockdown. LOX siRNA significantly increased the E-cadherin level and decreased the vimentin level of gastric cancer cells. LOX expression was significantly associated with invasion depth, tumor differentiation, lymph node metastasis, lymphatic invasion, venous invasion, and peritoneal metastasis. Multivariable analysis revealed that LOX was an independent parameter for overall survival. CONCLUSION LOX affects the EMT of gastric cancer cells in hypoxic conditions. LOX expression is a useful prognostic factor for patients with gastric cancer.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan. .,Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tamami Morisaki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Katsunobu Sakurai
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Naoshi Kubo
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
31
|
Trackman PC. Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer. Expert Opin Ther Targets 2016; 20:935-45. [PMID: 26848785 DOI: 10.1517/14728222.2016.1151003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The lysyl oxidase family of enzymes is classically known as being required for connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, which is required for normal connective tissue integrity. These enzymes have biological functions that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a variety of tissues. AREAS COVERED This review summarizes the major findings of novel roles for lysyl oxidases in pathologies, and highlights some of the potential therapeutic approaches that are in development and which stem from these new findings. EXPERT OPINION Fundamental questions remain regarding the mechanisms of novel biological functions of this family of proteins, and regarding functions that are independent of their catalytic enzyme activity. However, progress is underway in the development of isoform-specific pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Philip C Trackman
- a Department of Molecular and Cell Biology , Boston University, Henry M. Goldman School of Dental Medicine , Boston , MA , USA
| |
Collapse
|
32
|
Ricard-Blum S, Vallet SD. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells. Front Pharmacol 2016; 7:11. [PMID: 26869928 PMCID: PMC4740388 DOI: 10.3389/fphar.2016.00011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| | - Sylvain D Vallet
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| |
Collapse
|
33
|
Trackman PC. Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone. Matrix Biol 2016; 52-54:7-18. [PMID: 26772152 DOI: 10.1016/j.matbio.2016.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
Advances in the understanding of the biological roles of the lysyl oxidase family of enzyme proteins in bone structure and function are reviewed. This family of proteins is well-known as catalyzing the final reaction required for cross-linking of collagens and elastin. Novel emerging roles for these proteins in the phenotypic development of progenitor cells and in angiogenesis are highlighted and which point to enzymatic and non-enzymatic roles for this family in bone development and homeostasis and in disease. The explosion of interest in the lysyl oxidase family in the cancer field highlights the need to have a better understanding of the functions of this protein family in normal and abnormal connective tissue homeostasis at fundamental molecular and cellular levels including in mineralized tissues.
Collapse
Affiliation(s)
- Philip C Trackman
- Boston University, Henry M. Goldman School of Dental Medicine, 700 Albany Street, W-201, Boston, MA 02118, United States.
| |
Collapse
|
34
|
Alsulaiman M, Bais MV, Trackman PC. Lysyl oxidase propeptide stimulates osteoblast and osteoclast differentiation and enhances PC3 and DU145 prostate cancer cell effects on bone in vivo. J Cell Commun Signal 2015; 10:17-31. [PMID: 26627907 DOI: 10.1007/s12079-015-0311-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
Lysyl oxidase pro-enzyme is secreted by tumor cells and normal cells as a 50 kDa pro-enzyme into the extracellular environment where it is cleaved into the ~30 kDa mature enzyme (LOX) and 18 kDa pro-peptide (LOX-PP). Extracellular LOX enzyme activity is required for normal collagen and elastin extracellular cross-linking and maturation of the extracellular matrix. Extracellular LOX-PP acts as a tumor suppressor and can re-enter cells from the extracellular environment to induce its effects. The underlying hypothesis is that LOX-PP has the potential to promote bone cell differentiation, while inhibiting cancer cell effects in bone. Here we investigate the effect of LOX-PP on bone marrow cell proliferation and differentiation towards osteoblasts or osteoclasts, and LOX-PP modulation of prostate cancer cell conditioned media-induced alterations of proliferation and differentiation of bone marrow cells in vitro. Effects of overexpression of rLOX-PP in DU145 and PC3 prostate cancer cell lines on bone structure in vivo after intramedullary injections were determined. Data show that prostate cancer cell conditioned media inhibited osteoblast differentiation in bone marrow-derived cells, which was reversed by rLOX-PP treatment. Prostate cancer conditioned media stimulated osteoclast differentiation which was further enhanced by rLOX-PP treatment. rLOX-PP stimulated osteoclast differentiation by inhibiting OPG expression, up-regulating CCN2 expression, and increasing osteoclast fusion. In vivo studies indicate that rLOX-PP expression by PC3 cells implanted into the tibia of mice further enhanced PC3 cell ability to resorb bone, while rLOX-PP expression in DU145 cells resulted in non-significant increases in net bone formation. rLOX-PP enhances both osteoclast and osteoblast differentiation. rLOX-PP may serve to enhance coupling interactions between osteoclasts and osteoblasts helping to maintain a normal bone turnover in health, while contributing to bone abnormalities in disease.
Collapse
Affiliation(s)
- Mona Alsulaiman
- Henry M. Goldman School of Dental Medicine, Department of Molecular and Cell Biology, Boston University, 700 Albany Street, W-201, Boston, MA, 02118, USA
| | - Manish V Bais
- Henry M. Goldman School of Dental Medicine, Department of Molecular and Cell Biology, Boston University, 700 Albany Street, W-201, Boston, MA, 02118, USA
| | - Philip C Trackman
- Henry M. Goldman School of Dental Medicine, Department of Molecular and Cell Biology, Boston University, 700 Albany Street, W-201, Boston, MA, 02118, USA.
| |
Collapse
|
35
|
Cidre-Aranaz F, Alonso J. EWS/FLI1 Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Front Oncol 2015; 5:162. [PMID: 26258070 PMCID: PMC4507460 DOI: 10.3389/fonc.2015.00162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
Ewing sarcoma is an aggressive bone malignancy that affect children and young adults. Ewing sarcoma is the second most common primary bone malignancy in pediatric patients. Although significant progress has been made in the treatment of Ewing sarcoma since it was first described in the 1920s, in the last decade survival rates have remained unacceptably invariable, thus pointing to the need for new approaches centered in the molecular basis of the disease. Ewing sarcoma driving mutation, EWS–FLI1, which results from a chromosomal translocation, encodes an aberrant transcription factor. Since its first characterization in 1990s, many molecular targets have been described to be regulated by this chimeric transcription factor. Their contribution to orchestrate Ewing sarcoma phenotype has been reported over the last decades. In this work, we will focus on the description of a selection of EWS/FLI1 targets, their functional role, and their potential clinical relevance. We will also discuss their role in other types of cancer as well as the need for further studies to be performed in order to achieve a broader understanding of their particular contribution to Ewing sarcoma development.
Collapse
Affiliation(s)
- Florencia Cidre-Aranaz
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III , Madrid , Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
36
|
Bais MV, Ozdener GB, Sonenshein GE, Trackman PC. Effects of tumor-suppressor lysyl oxidase propeptide on prostate cancer xenograft growth and its direct interactions with DNA repair pathways. Oncogene 2015; 34:1928-37. [PMID: 24882580 PMCID: PMC4254378 DOI: 10.1038/onc.2014.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 04/01/2014] [Accepted: 04/18/2014] [Indexed: 01/27/2023]
Abstract
Lysyl oxidase (LOX) is a multifunctional protein required for normal collagen and elastin biosynthesis and maturation. In addition, LOX has complex roles in cancer in which the lysyl oxidase propeptide (LOX-PP) domain of secreted pro-LOX has tumor-suppressor activity, while the active enzyme promotes metastasis. In prostate cancer cell lines, recombinant LOX-PP (rLOX-PP) inhibits the growth of PC3 cells in vitro by mechanisms that were not characterized, while in DU145 cells rLOX-PP targeted fibroblast growth factor signaling. Because rLOX-PP can enhance effects of a genotoxic chemotherapeutic on breast cancer cell apoptosis, we reasoned that rLOX-PP could target DNA repair pathways typically elevated in cancer. Here we demonstrate for the first time that rLOX-PP inhibits prostate xenograft growth in vivo and that activating phosphorylations of the key DNA repair molecules ataxia-telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) are inhibited by rLOX-PP expression in vivo. In addition, in vitro studies showed that rLOX-PP inhibits radiation-induced activating phosphorylations of ATM and CHK2 and that exogenously added rLOX-PP protein can localize to the nucleus in both DU145 and PC3 cells. rLOX-PP pull-down studies resulted in detection of a protein complex with the nuclear DNA repair regulator MRE11 in both cell lines, and rLOX-PP localized to radiation-induced nuclear DNA repair foci. Finally, rLOX-PP was shown to sensitize both DU145 and PC3 cells to radiation-induced cell death determined in colony-formation assays. These data provide evidence that rLOX-PP has a nuclear mechanism of action in which it directly interacts with DNA repair proteins to sensitize prostate cancer cells to the effects of ionizing radiation.
Collapse
Affiliation(s)
- Manish V. Bais
- Boston University Henry M. Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, Boston, MA 02118
| | - Gokhan Baris Ozdener
- Boston University Henry M. Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, Boston, MA 02118
| | - Gail E. Sonenshein
- Tufts University School of Medicine, Department of Biochemistry, Boston, MA 02111
| | - Philip C. Trackman
- Boston University Henry M. Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, Boston, MA 02118
| |
Collapse
|
37
|
Fraga A, Ribeiro R, Príncipe P, Lopes C, Medeiros R. Hypoxia and Prostate Cancer Aggressiveness: A Tale With Many Endings. Clin Genitourin Cancer 2015; 13:295-301. [PMID: 26007708 DOI: 10.1016/j.clgc.2015.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/13/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023]
Abstract
Angiogenesis, increased glycolysis, and cellular adaptation to hypoxic microenvironment are characteristic of solid tumors, including prostate cancer. These representative features are the cornerstone of cancer biology, which are well correlated with invasion, metastasis, and lethality, as well as likely with the success of prostate cancer treatment (eg, tumor hypoxia has been associated with resistance to chemotherapy and radiotherapy). It is well established that prostate cancer cells also metabolically depend on enhanced glucose transport and glycolysis for expansion, whereas growth is contingent with neovascularization to permit diffusion of oxygen and glucose. While hypoxia inducible factor 1 alpha (HIF-1α) remains the central player, the succeeding activated molecules and pathways track distinct branches, all positively correlated with the degree of intratumoral hypoxia. Among these, the vascular endothelial growth factor axis as well as the lysyl oxidase and carbonic anhydrase IX activities are notable in prostate cancer and merit further study. Here, we demonstrate their linkage with HIF-1α as a tentative explanatory mechanism of prostate cancer aggressiveness. Hypoxia drives a tale where HIF-1α-dependent effects lead to many influences in distinct key cancer biology features, rendering targeted therapies toward targets at the endings less efficient. The most appropriate approach will be to inhibit the upstream common driver (HIF-1α) activity. Additional translational and clinical research initiatives in prostate cancer are required to prove its usefulness.
Collapse
Affiliation(s)
- Avelino Fraga
- Urology Department, Porto Hospital Centre, St António Hospital, Porto, Portugal; ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal; Center for Urological Research, Porto Hospital Centre, Porto, Portugal.
| | - Ricardo Ribeiro
- Center for Urological Research, Porto Hospital Centre, Porto, Portugal; Molecular Oncology Group, CI, Portuguese Institute of Oncology, Porto, Portugal; Genetics Laboratory, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Research Department, Portuguese League Against Cancer, North Centre, Porto, Portugal
| | - Paulo Príncipe
- Urology Department, Porto Hospital Centre, St António Hospital, Porto, Portugal; Center for Urological Research, Porto Hospital Centre, Porto, Portugal
| | - Carlos Lopes
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Center for Urological Research, Porto Hospital Centre, Porto, Portugal; Molecular Oncology Group, CI, Portuguese Institute of Oncology, Porto, Portugal; Research Department, Portuguese League Against Cancer, North Centre, Porto, Portugal
| |
Collapse
|
38
|
Association of the G473A polymorphism and expression of lysyl oxidase with breast cancer risk and survival in European women: a hospital-based case-control study. PLoS One 2014; 9:e105579. [PMID: 25141126 PMCID: PMC4139364 DOI: 10.1371/journal.pone.0105579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Background Lysyl oxidase (LOX) is an extracellular enzyme essential for the covalent crosslinking of extracellular matrix proteins and may also have additional functions. LOX expression can be both up- and downregulated in cancer and is associated both with tumour suppression and metastasis progression. The G473A polymorphism (rs1800449) results in the Arg158Gln amino acid substitution in the LOX propeptide, compromises its tumour suppressive activity, and was associated with an increased breast cancer risk in a Chinese Han population. In the first hospital-based case-control study in European women, we aimed at investigating the association of LOX expression and the G473A polymorphism with breast cancer risk and survival in unselected and estrogen receptor (ER) negative patients. Methodology/Principal Findings The G473A polymorphism was genotyped in 386 breast cancer patients and 243 female controls. Moreover, LOX mRNA expression was quantified in the tumors of 105 patients by qRT-PCR. We found that the minor A-allele of this polymorphism is associated with a later age at breast cancer onset, a trend towards a decreased disease-free and metastasis-free survival, but not with an increased breast cancer risk. LOX mRNA expression was significantly elevated in tumours of patients older than 55 years, postmenopausal patients, estrogen receptor positive tumours, and p53 negative tumours, but was unaffected by G473A genotype in tumours and breast cancer cell lines. High LOX expression was associated with a poor disease-free and metastasis-free survival in ER negative but not ER positive patients. LOX expression was an independent prognostic parameter in multivariate analysis, whereas G473A genotype was not. A small, distinct subgroup of the ER negative patients was identified which exhibited a considerably elevated LOX expression and a very poor disease-free (p = 0.001) and metastasis-free survival (p = 0.0003). Conclusions/Significance This newly identified ER negative/LOX high subgroup may be a suitable collective for future individualized breast cancer diagnosis and therapy.
Collapse
|
39
|
Mohankumar A, Renganathan B, Karunakaran C, Chidambaram S, Konerirajapuram Natarajan S. Peptides derived from the copper-binding region of lysyl oxidase exhibit antiangiogeneic properties by inhibiting enzyme activity: an in vitro study. J Pept Sci 2014; 20:837-49. [PMID: 25044713 DOI: 10.1002/psc.2675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/08/2014] [Accepted: 06/14/2014] [Indexed: 12/23/2022]
Abstract
Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same.
Collapse
Affiliation(s)
- Arun Mohankumar
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Medical Research Foundation, Chennai, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
40
|
Bu M, Li L, Zhang Y, Xu Y, An S, Hou F, Jie X. Lysyl oxidase genetic variants affect gene expression in cervical cancer. DNA Cell Biol 2014; 33:787-92. [PMID: 24945327 DOI: 10.1089/dna.2014.2490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lysyl oxidase (LOX) is a copper-dependent amine oxidase that plays important roles in the homeostasis of tumors. The aim of this study was to investigate the association between LOX polymorphisms and cervical cancer, and the effect of these polymorphisms on gene expression. We evaluated two polymorphisms of LOX, rs1800449G/A (G473A) and rs2278226C/G, in 262 cervical cancer cases and 298 healthy controls in the Chinese population. Results showed that the prevalence of rs1800449AA genotype was significantly increased in cases than in controls (p=0.004). Individuals who carried the rs1800449A allele had a 1.56-fold increased risk for cervical cancer than those with the rs1800449G allele (p=0.003). The rs2278226CG genotype also revealed a significantly higher proportion in cases (20.6%) than in controls (7.7%, p<0.001). Interestingly, when analyzing these two polymorphisms with the serum level of LOX, we identified that cervical cancer patients carrying the rs2278226CG genotype had a significantly elevated level of LOX than those with rs2278226CC wild type, whereas the same phenomenon was not observed in controls. The rs1800449 polymorphism did not affect the LOX serum level in either controls or patients. These results suggest that the polymorphisms in the LOX gene may be involved in the development of cervical cancer through various mechanisms.
Collapse
Affiliation(s)
- Meimei Bu
- 1 The Maternal and Child Health Hospital of Jinan City , Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Zheng Y, Wang X, Wang H, Yan W, Zhang Q, Chang X. Expression of the lysyl oxidase propeptide in hepatocellular carcinoma and its clinical relevance. Oncol Rep 2014; 31:1669-76. [PMID: 24573150 DOI: 10.3892/or.2014.3044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/20/2014] [Indexed: 11/05/2022] Open
Abstract
Lysyl oxidase is an important extracellular matrix remodeling enzyme and plays critical roles in tumor progression and development. Its tumor-suppressor activity has been shown to depend on the propeptide region. Previous studies have reported that the expression levels of lysyl oxidase propeptide (LOX-PP) are associated with cancer of the breast, pancreas, lung, prostate and gastrointestinal system. However, to date, the exact effects and molecular mechanisms of LOX-PP in hepatocellular carcinoma progression are still unclear. The present study aimed to investigate the expression and clinical significance of LOX-PP in human hepatocellular carcinoma. First, 42 cases of hepatocellular carcinoma and corresponding adjacent non-cancerous tissues (ANCTs) were collected, and the expression of LOX-PP in these samples was assessed by immunohistochemistry (IHC). The clinicopathological characteristics of all patients were recorded. Next, in in vitro studies, recombinant adenovirus LOX (ad-LOX-PP) was used to infect hepatocellular carcinoma cell lines to determine the function of LOX-PP. To determine whether ad-LOX-PP affects hepatocellular carcinoma cell survival, cell viability was examined by CCK-8 assay, and cell cycle progression was assessed by flow cytometry. We also investigated the effects of LOX-PP on the expression of cell cycle regulators (cyclin D1 and cyclin E) by western blot analysis. The migration and invasion capacities of hepatocellular carcinoma cells were observed by wound-healing and tranwell invasion assays. To further investigate how LOX-PP affects migration levels of matrix metallopeptidase (MMP)-2 and MMP-9 were assessed by western blot analysis. Additionally, markers of the PI3K and MAPK signaling pathway were detected to further confirm the mechanisms of LOX-PP. As a result, reduced expression of LOX-PP was found in hepatocellular carcinoma tissues, when compared with that in the ANCTs (15 vs. 83%, P<0.01), and its expression was associated with tumor stage and distant metastasis (each P<0.05). Proliferation in hepatocellular carcinoma cells was significantly decreased in the ad-LOX-PP group as indicated by CCK-8 assay. LOX-PP significantly reduced the expression of Ki-67, while prominent increases in the rate of apoptosis and cell cycle arrest were observed. Similarly, cell migration was significantly inhibited in the ad-LOX-PP group as evidenced by transwell invasion and wound-healing assays. The expression levels of MMP-2 and MMP-9 were attenuated in the ad-LOX-PP group, suggesting that LOX-PP inhibits hepatocellular carcinoma cell migration via down-regulation of MMPs expression. When LOX-PP expression was potentiated by an adenovirus containing LOX-PP, the expression of p-ERK was significantly downregulated, indicating that LOX-PP inhibits hepatocellular carcinoma cell proliferation and induces its apoptosis probably through downregulation of the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Anesthesia, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xuemei Wang
- Department of Ultrasound, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Haidong Wang
- Department of Obstetrics and Gynecology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Quan Zhang
- Department of Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xin Chang
- Department of Imaging Medicine Center, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
42
|
Yokoyama U, Minamisawa S, Shioda A, Ishiwata R, Jin MH, Masuda M, Asou T, Sugimoto Y, Aoki H, Nakamura T, Ishikawa Y. Prostaglandin E
2
Inhibits Elastogenesis in the Ductus Arteriosus via EP4 Signaling. Circulation 2014; 129:487-96. [DOI: 10.1161/circulationaha.113.004726] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background—
Elastic fiber formation begins in mid-gestation and increases dramatically during the last trimester in the great arteries, providing elasticity and thus preventing vascular wall structure collapse. However, the ductus arteriosus (DA), a fetal bypass artery between the aorta and pulmonary artery, exhibits lower levels of elastic fiber formation, which promotes vascular collapse and subsequent closure of the DA after birth. The molecular mechanisms for this inhibited elastogenesis in the DA, which is necessary for the establishment of adult circulation, remain largely unknown.
Methods and Results—
Stimulation of the prostaglandin E
2
(PGE
2
) receptor EP4 significantly inhibited elastogenesis and decreased lysyl oxidase (LOX) protein, which catalyzes elastin cross-links in DA smooth muscle cells (SMCs), but not in aortic SMCs. Aortic SMCs expressed much less EP4 than DASMCs. Adenovirus-mediated overexpression of LOX restored the EP4-mediated inhibition of elastogenesis in DASMCs. In EP4-knockout mice, electron microscopic examination showed that the DA acquired an elastic phenotype that was similar to the neighboring aorta. More importantly, human DA and aorta tissues from 7 patients showed a negative correlation between elastic fiber formation and EP4 expression, as well as between EP4 and LOX expression. The PGE
2
-EP4-c-Src-phospholipase C (PLC)γ–signaling pathway most likely promoted the lysosomal degradation of LOX.
Conclusions—
Our data suggest that PGE
2
signaling inhibits elastogenesis in the DA, but not in the aorta, through degrading LOX protein. Elastogenesis is spatially regulated by PGE
2
-EP4 signaling in the DA.
Collapse
Affiliation(s)
- Utako Yokoyama
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Susumu Minamisawa
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Aki Shioda
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Ryo Ishiwata
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Mei-Hua Jin
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Munetaka Masuda
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Toshihide Asou
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Yukihiko Sugimoto
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Hiroki Aoki
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Tomoyuki Nakamura
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| | - Yoshihiro Ishikawa
- From the Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan (U.Y., S.M., A.S., R.I., M.-H.J., Y.I.); the Department of Life Science and Medical Bioscience, Waseda University Graduate School of Advanced Science and Engineering, Tokyo, Japan (S.M., R.I.); the Department of Cell Physiology, Jikei University School of Medicine, Tokyo, Japan (S.M.); the Department of Surgery, Yokohama City University, Yokohama, Japan (M.M.); the Department of Cardiovascular Surgery, Kanagawa
| |
Collapse
|
43
|
Finney J, Moon HJ, Ronnebaum T, Lantz M, Mure M. Human copper-dependent amine oxidases. Arch Biochem Biophys 2014; 546:19-32. [PMID: 24407025 DOI: 10.1016/j.abb.2013.12.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 12/11/2022]
Abstract
Copper amine oxidases (CAOs) are a class of enzymes that contain Cu(2+) and a tyrosine-derived quinone cofactor, catalyze the conversion of a primary amine functional group to an aldehyde, and generate hydrogen peroxide and ammonia as byproducts. These enzymes can be classified into two non-homologous families: 2,4,5-trihydroxyphenylalanine quinone (TPQ)-dependent CAOs and the lysine tyrosylquinone (LTQ)-dependent lysyl oxidase (LOX) family of proteins. In this review, we will focus on recent developments in the field of research concerning human CAOs and the LOX family of proteins. The aberrant expression of these enzymes is linked to inflammation, fibrosis, tumor metastasis/invasion and other diseases. Consequently, there is a critical need to understand the functions of these proteins at the molecular level, so that strategies targeting these enzymes can be developed to combat human diseases.
Collapse
Affiliation(s)
- Joel Finney
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Hee-Jung Moon
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Trey Ronnebaum
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Mason Lantz
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
44
|
Abstract
Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has stimulated significant interest in lysyl oxidase as a strong candidate for developing and deploying inhibitors as functional efficacious cancer therapeutics. In this review, we discuss the rapidly expanding body of knowledge concerning lysyl oxidase in solid tumor progression, highlighting recent advancements in the field of colorectal cancer.
Collapse
Affiliation(s)
- Thomas R Cox
- Biotech Research and Innovation Centre (BRIC Univ. of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
45
|
Sato S, Zhao Y, Imai M, Simister PC, Feller SM, Trackman PC, Kirsch KH, Sonenshein GE. Inhibition of CIN85-mediated invasion by a novel SH3 domain binding motif in the lysyl oxidase propeptide. PLoS One 2013; 8:e77288. [PMID: 24167568 PMCID: PMC3805583 DOI: 10.1371/journal.pone.0077288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/30/2013] [Indexed: 12/24/2022] Open
Abstract
The lysyl oxidase gene inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162 amino acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibited the Her-2/Ras signaling axis in breast cancer cells, and reduced the Her-2-driven breast tumor burden in a xenograft model. Since its mechanism of action is largely unknown, co-affinity-purification/mass spectrometry was performed and the “Cbl-interacting protein of 85-kDa” (CIN85) identified as an associating protein. CIN85 is an SH3-containing adapter protein that is overexpressed in invasive breast cancers. The CIN85 SH3 domains interact with c-Cbl, an E3 ubiquitin ligase, via an unconventional PxxxPR ligand sequence, with the highest affinity displayed by the SH3-B domain. Interaction with CIN85 recruits c-Cbl to the AMAP1 complex where its ubiquitination activity is necessary for cancer cells to develop an invasive phenotype and to degrade the matrix. Direct interaction of LOX-PP with CIN85 was confirmed using co-immunoprecipitation analysis of lysates from breast cancer cells and of purified expressed proteins. CIN85 interaction with c-Cbl was reduced by LOX-PP. Domain specific CIN85 regions and deletion mutants of LOX-PP were prepared and used to map the sites of interaction to the SH3-B domain of CIN85 and to an epitope encompassing amino acids 111 to 116 of LOX-PP. Specific LOX-PP point mutant proteins P111A and R116A failed to interact with CIN85 or to compete for CIN85 binding with c-Cbl. Structural modeling identified a new atypical PxpxxRh SH3-binding motif in this region of LOX-PP. The LOX-PP interaction with CIN85 was shown to reduce the invasive phenotype of breast cancer cells, including their ability to degrade the surrounding extracellular matrix and for Matrigel outgrowth. Thus, LOX-PP interacts with CIN85 via a novel SH3-binding motif and this association reduces CIN85-promoted invasion by breast cancer cells.
Collapse
Affiliation(s)
- Seiichi Sato
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yingshe Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Misa Imai
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Philip C. Simister
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephan M. Feller
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Section Tumor Biology, Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Philip C. Trackman
- Division of Oral Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Kathrin H. Kirsch
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gail E. Sonenshein
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Zhao Y, Kumbrink J, Lin BT, Bouton AH, Yang S, Toselli PA, Kirsch KH. Expression of a phosphorylated substrate domain of p130Cas promotes PyMT-induced c-Src-dependent murine breast cancer progression. Carcinogenesis 2013; 34:2880-90. [PMID: 23825155 DOI: 10.1093/carcin/bgt238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Elevated expression of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. p130Cas is a downstream target of the tyrosine kinase c-Src. Signaling mediated by p130Cas through its phosphorylated substrate domain (SD) and interaction with effector molecules directly promotes tumor progression. We previously developed a constitutively phosphorylated p130Cas SD molecule, Src*/SD (formerly referred to as Src*/CasSD), which acts as decoy molecule and attenuates the transformed phenotype in v-crk-transformed murine fibroblasts and human breast cancer cells. To test the function of this molecule in vivo, we established mouse mammary tumor virus (MMTV)-long terminal repeat-Src*/SD transgenic mice in which mammary gland development and tumor formation were analyzed. Transgenic expression of the Src*/SD molecule under the MMTV-long terminal repeat promoter did not interfere with normal mammary gland development or induce tumors in mice observed for up to 11 months. To evaluate the effects of the Src*/SD molecule on tumor development in vivo, we utilized the MMTV-polyoma middle T-antigen (PyMT) murine breast cancer model that depends on c-Src. PyMT mice crossed with Src*/SD mice displayed accelerated tumor formation. The earlier onset of tumors can be explained by the interaction of the Src* domain with PyMT and targeting the fused phosphorylated SD to the membrane. At membrane compartments, it might integrate membrane-associated active signaling complexes leading to increased proliferation measured by phospho-Histone H3 staining. Although these results were unexpected, they emphasize the importance of preventing the membrane association of Src*/SD when employed as decoy molecule.
Collapse
Affiliation(s)
- Yingshe Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Agra N, Cidre F, García-García L, de la Parra J, Alonso J. Lysyl oxidase is downregulated by the EWS/FLI1 oncoprotein and its propeptide domain displays tumor supressor activities in Ewing sarcoma cells. PLoS One 2013; 8:e66281. [PMID: 23750284 PMCID: PMC3672102 DOI: 10.1371/journal.pone.0066281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 05/09/2013] [Indexed: 12/15/2022] Open
Abstract
Ewing sarcoma is the second most common bone malignancy in children and young adults. It is driven by oncogenic fusion proteins (i.e. EWS/FLI1) acting as aberrant transcription factors that upregulate and downregulate target genes, leading to cellular transformation. Thus, identificating these target genes and understanding their contribution to Ewing sarcoma tumorigenesis are key for the development of new therapeutic strategies. In this study we show that lysyl oxidase (LOX), an enzyme involved in maintaining structural integrity of the extracellular matrix, is downregulated by the EWS/FLI1 oncoprotein and in consequence it is not expressed in Ewing sarcoma cells and primary tumors. Using a doxycycline inducible system to restore LOX expression in an Ewing sarcoma derived cell line, we showed that LOX displays tumor suppressor activities. Interestingly, we showed that the tumor suppressor activity resides in the propeptide domain of LOX (LOX-PP), an N-terminal domain produced by proteolytic cleavage during the physiological processing of LOX. Expression of LOX-PP reduced cell proliferation, cell migration, anchorage-independent growth in soft agar and formation of tumors in immunodeficient mice. By contrast, the C-terminal domain of LOX, which contains the enzymatic activity, had the opposite effects, corroborating that the tumor suppressor activity of LOX is mediated exclusively by its propeptide domain. Finally, we showed that LOX-PP inhibits ERK/MAPK signalling pathway, and that many pathways involved in cell cycle progression were significantly deregulated by LOX-PP, providing a mechanistic explanation to the cell proliferation inhibition observed upon LOX-PP expression. In summary, our observations indicate that deregulation of the LOX gene participates in Ewing sarcoma development and identify LOX-PP as a new therapeutic target for one of the most aggressive paediatric malignancies. These findings suggest that therapeutic strategies based on the administration of LOX propeptide or functional analogues could be useful for the treatment of this devastating paediatric cancer.
Collapse
Affiliation(s)
- Noelia Agra
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Florencia Cidre
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Laura García-García
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan de la Parra
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
48
|
Eliades A, Papadantonakis N, Matsuura S, Mi R, Bais MV, Trackman P, Ravid K. Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. Cell Cycle 2013; 12:1242-50. [PMID: 23518500 DOI: 10.4161/cc.24312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Megakaryocytes (MKs), the platelet precursors, undergo an endomitotic cell cycle that leads to polyploidy. Lysyl oxidase propeptide (LOX-PP) is generated from lysyl oxidase (LOX) pro-enzyme after proteolytical cleavage. We recently reported that LOX, a known matrix cross-linking enzyme, contributes to MK lineage expansion. In addition, LOX expression levels are ploidy-dependent, with polyploidy MKs having minimal levels. This led us to test the effects of LOX-PP on the number and ploidy of primary MKs. LOX-PP significantly decreases mouse bone marrow MK ploidy coupled with a reduction in MK size. MK number is unchanged upon LOX-PP treatment. Analysis of LOX-PP- or vehicle-treated MKs by western blotting revealed a reduction in ERK1/2 phosphorylation and in the levels of its downstream targets, cyclin D3 and cyclin E, which are known to play a central role in MK endomitosis. Pull-down assays and immunochemistry staining indicated that LOX-PP interacts with α-tubulin and the mictotubules, which can contribute to decreased MK ploidy. Thus, our findings defined a role for LOX-PP in reducing MK ploidy. This suggests that high-level expression of LOX in aberrantly proliferating MKs could play a part in inhibiting their polyploidization via LOX-PP.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Yang X, Li S, Li W, Chen J, Xiao X, Wang Y, Yan G, Chen L. Inactivation of lysyl oxidase by β-aminopropionitrile inhibits hypoxia-induced invasion and migration of cervical cancer cells. Oncol Rep 2012; 29:541-8. [PMID: 23165370 DOI: 10.3892/or.2012.2146] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/11/2012] [Indexed: 11/06/2022] Open
Abstract
Tumor invasion and migration are major causes of mortality in patients with cervical carcinoma. Tumors under hypoxic conditions are more invasive and have a higher metastasic activity. Lysyl oxidase (LOX) is a hypoxia-responsive gene. LOX has been shown to be essential for hypoxia-induced metastasis in breast cancer. However, the direct impact of LOX on cervical cancer cell motility remains poorly understood. Our study revealed that LOX expression at protein and catalytic levels is upregulated in cervical cancer cells upon exposure to hypoxia. Hypoxia induced mesenchymal-like morphological changes in HeLa and SiHa cells which were accompanied by upregulation of α-SMA and vimentin, two mesenchymal markers, and downregulation of E-cadherin, an epithelial marker, indicating the epithelial-mesenchymal transition (EMT) of cervical cancer cells occurred under hypoxic conditions. Treatment of tumor cells with β-aminopropionitrile (BAPN), an active site inhibitor of LOX, blocked the hypoxia-induced EMT morphological and marker protein changes, and inhibited invasion and migration capacities of cervical carcinoma cells in vitro. Collectively, these findings suggest LOX enhances hypoxia-induced invasion and migration in cervical cancer cells mediated by the EMT which can be inhibited by BAPN.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510089, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The therapeutic targeting of extracellular proteins is becoming hugely attractive in light of evidence implicating the tumour microenvironment as pivotal in all aspects of tumour initiation and progression. Members of the lysyl oxidase (LOX) family of proteins are secreted by tumours and are the subject of much effort to understand their roles in cancer. In this Review we discuss the roles of members of this family in the remodelling of the tumour microenvironment and their paradoxical roles in tumorigenesis and metastasis. We also discuss how targeting this family of proteins might lead to a new avenue of cancer therapeutics.
Collapse
Affiliation(s)
- Holly E Barker
- Hypoxia & Metastasis Team, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | |
Collapse
|