1
|
Nagata K, Nishimura M, Daino K, Nishimura Y, Hattori Y, Watanabe R, Iizuka D, Yokoya A, Suzuki K, Kakinuma S, Imaoka T. Luminal progenitor and mature cells are more susceptible than basal cells to radiation-induced DNA double-strand breaks in rat mammary tissue. JOURNAL OF RADIATION RESEARCH 2024; 65:640-650. [PMID: 39238338 PMCID: PMC11420845 DOI: 10.1093/jrr/rrae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Indexed: 09/07/2024]
Abstract
Ionizing radiation promotes mammary carcinogenesis. Induction of DNA double-strand breaks (DSBs) is the initial event after radiation exposure, which can potentially lead to carcinogenesis, but the dynamics of DSB induction and repair are not well understood at the tissue level. In this study, we used female rats, which have been recognized as a useful experimental model for studying radiation effects on the mammary gland. We focused on differences in DSB kinetics among basal cells, luminal progenitor and mature cells in different parts of the mammary duct. 53BP1 foci were used as surrogate markers of DSBs, and 53BP1 foci in each mammary epithelial cell in immunostained tissue sections were counted 1-24 h after irradiation and fitted to an exponential function of time. Basal cells were identified as cytokeratin (CK) 14+ cells, luminal progenitor cells as CK8 + 18low cells and luminal mature cells as CK8 + 18high cells. The number of DSBs per nucleus tended to be higher in luminal cells than basal cells at 1 h post-irradiation. A model analysis indicated that basal cells in terminal end buds (TEBs), which constitute the leading edge of the mammary duct, had significantly fewer initial DSBs than the two types of luminal cells, and there was no significant difference in initial amount among the cell types in the subtending duct. The repair rate did not differ among mammary epithelial cell types or their locations. Thus, luminal progenitor and mature cells are more susceptible to radiation-induced DSBs than are basal cells in TEBs.
Collapse
Affiliation(s)
- Kento Nagata
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuya Hattori
- Department of Electrical Engineering and Information Science, Faculty of Electrical Engineering and Information Science, National Institute of Technology Kure College, 2–2–11 Aga-minami, Kure, Hiroshima 737-8506, Japan
| | - Ritsuko Watanabe
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1–12–4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Tanaka M, Yamada M, Mushiake M, Tsuda M, Miwa M. Elucidating Differences in Early-Stage Centrosome Amplification in Primary and Immortalized Mouse Cells. Int J Mol Sci 2023; 25:383. [PMID: 38203554 PMCID: PMC10778991 DOI: 10.3390/ijms25010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The centrosome is involved in cytoplasmic microtubule organization during interphase and in mitotic spindle assembly during cell division. Centrosome amplification (abnormal proliferation of centrosome number) has been observed in several types of cancer and in precancerous conditions. Therefore, it is important to elucidate the mechanism of centrosome amplification in order to understand the early stage of carcinogenesis. Primary cells could be used to better understand the early stage of carcinogenesis rather than immortalized cells, which tend to have various genetic and epigenetic changes. Previously, we demonstrated that a poly(ADP-ribose) polymerase (PARP) inhibitor, 3-aminobenzamide (3AB), which is known to be nontoxic and nonmutagenic, could induce centrosome amplification and chromosomal aneuploidy in CHO-K1 cells. In this study, we compared primary mouse embryonic fibroblasts (MEF) and immortalized MEF using 3AB. Although centrosome amplification was induced with 3AB treatment in immortalized MEF, a more potent PARP inhibitor, AG14361, was required for primary MEF. However, after centrosome amplification, neither 3AB in immortalized MEF nor AG14361 in primary MEF caused chromosomal aneuploidy, suggesting that further genetic and/or epigenetic change(s) are required to exhibit aneuploidy. The DNA-damaging agents doxorubicin and γ-irradiation can cause cancer and centrosome amplification in experimental animals. Although doxorubicin and γ-irradiation induced centrosome amplification and led to decreased p27Kip protein levels in immortalized MEF and primary MEF, the phosphorylation ratio of nucleophosmin (Thr199) increased in immortalized MEF, whereas it decreased in primary MEF. These results suggest that there exists a yet unidentified pathway, different from the nucleophosmin phosphorylation pathway, which can cause centrosome amplification in primary MEF.
Collapse
Affiliation(s)
- Masakazu Tanaka
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| | - Masaki Yamada
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| | - Masatoshi Mushiake
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| | - Masataka Tsuda
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| | - Masanao Miwa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan (M.M.)
| |
Collapse
|
3
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Englund JI, Bui H, Dinç DD, Paavolainen O, McKenna T, Laitinen S, Munne P, Klefström J, Peuhu E, Katajisto P. Laminin matrix adhesion regulates basal mammary epithelial cell identity. J Cell Sci 2022; 135:285829. [DOI: 10.1242/jcs.260232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
ABSTRACT
Mammary epithelium is a bilayered ductal network composed of luminal and basal epithelial cells, which together drive the growth and functional differentiation of the gland. Basal mammary epithelial cells (MECs) exhibit remarkable plasticity and progenitor activity that facilitate epithelial expansion. However, their activity must be tightly regulated to restrict excess basal cell activity. Here, we show that adhesion of basal cells to laminin α5-containing basement membrane matrix, which is produced by luminal cells, presents such a control mechanism. Adhesion to laminin α5 directs basal cells towards a luminal cell fate, and thereby results in a marked decrease of basal MEC progenitor activity in vitro and in vivo. Mechanistically, these effects are mediated through β4-integrin and activation of p21 (encoded by CDKN1A). Thus, we demonstrate that laminin matrix adhesion is a key determinant of basal identity and essential to building and maintaining a functional multicellular epithelium.
Collapse
Affiliation(s)
- Johanna I. Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Hien Bui
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Defne D. Dinç
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Tomás McKenna
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
| | - Suvi Laitinen
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Pauliina Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
- University of Helsinki 6 Faculty of Biological and Environmental Sciences , , Helsinki FI-00014 , Finland
| |
Collapse
|
5
|
Zheng ZY, Elsarraj H, Lei JT, Hong Y, Anurag M, Feng L, Kennedy H, Shen Y, Lo F, Zhao Z, Zhang B, Zhang XHF, Tawfik OW, Behbod F, Chang EC. Elevated NRAS expression during DCIS is a potential driver for progression to basal-like properties and local invasiveness. Breast Cancer Res 2022; 24:68. [PMID: 36258226 PMCID: PMC9578182 DOI: 10.1186/s13058-022-01565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is the most common type of in situ premalignant breast cancers. What drives DCIS to invasive breast cancer is unclear. Basal-like invasive breast cancers are aggressive. We have previously shown that NRAS is highly expressed selectively in basal-like subtypes of invasive breast cancers and can promote their growth and progression. In this study, we investigated whether NRAS expression at the DCIS stage can control transition from luminal DCIS to basal-like invasive breast cancers. METHODS Wilcoxon rank-sum test was performed to assess expression of NRAS in DCIS compared to invasive breast tumors in patients. NRAS mRNA levels were also determined by fluorescence in situ hybridization in patient tumor microarrays (TMAs) with concurrent normal, DCIS, and invasive breast cancer, and association of NRAS mRNA levels with DCIS and invasive breast cancer was assessed by paired Wilcoxon signed-rank test. Pearson's correlation was calculated between NRAS mRNA levels and basal biomarkers in the TMAs, as well as in patient datasets. RNA-seq data were generated in cell lines, and unsupervised hierarchical clustering was performed after combining with RNA-seq data from a previously published patient cohort. RESULTS Invasive breast cancers showed higher NRAS mRNA levels compared to DCIS samples. These NRAShigh lesions were also enriched with basal-like features, such as basal gene expression signatures, lower ER, and higher p53 protein and Ki67 levels. We have shown previously that NRAS drives aggressive features in DCIS-like and basal-like SUM102PT cells. Here, we found that NRAS-silencing induced a shift to a luminal gene expression pattern. Conversely, NRAS overexpression in the luminal DCIS SUM225 cells induced a basal-like gene expression pattern, as well as an epithelial-to-mesenchymal transition signature. Furthermore, these cells formed disorganized mammospheres containing cell masses with an apparent reduction in adhesion. CONCLUSIONS These data suggest that elevated NRAS levels in DCIS are not only a marker but can also control the emergence of basal-like features leading to more aggressive tumor activity, thus supporting the therapeutic hypothesis that targeting NRAS and/or downstream pathways may block disease progression for a subset of DCIS patients with high NRAS.
Collapse
Affiliation(s)
- Ze-Yi Zheng
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hanan Elsarraj
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Long Feng
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Hilda Kennedy
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Flora Lo
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zifan Zhao
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ossama W Tawfik
- MAWD Pathology Group, St. Luke's Hospital, Lenexa, KS, 66215, USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Eric C Chang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Rebbeck CA, Xian J, Bornelöv S, Geradts J, Hobeika A, Geiger H, Alvarez JF, Rozhkova E, Nicholls A, Robine N, Lyerly HK, Hannon GJ. Gene expression signatures of individual ductal carcinoma in situ lesions identify processes and biomarkers associated with progression towards invasive ductal carcinoma. Nat Commun 2022; 13:3399. [PMID: 35697697 PMCID: PMC9192778 DOI: 10.1038/s41467-022-30573-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/06/2022] [Indexed: 12/27/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is considered a non-invasive precursor to breast cancer, and although associated with an increased risk of developing invasive disease, many women with DCIS will never progress beyond their in situ diagnosis. The path from normal duct to invasive ductal carcinoma (IDC) is not well understood, and efforts to do so are hampered by the substantial heterogeneity that exists between patients, and even within patients. Here we show gene expression analysis from > 2,000 individually micro-dissected ductal lesions representing 145 patients. Combining all samples into one continuous trajectory we show there is a progressive loss in basal layer integrity heading towards IDC, coupled with two epithelial to mesenchymal transitions, one early and a second coinciding with the convergence of DCIS and IDC expression profiles. We identify early processes and potential biomarkers, including CAMK2N1, MNX1, ADCY5, HOXC11 and ANKRD22, whose reduced expression is associated with the progression of DCIS to invasive breast cancer.
Collapse
Affiliation(s)
- Clare A Rebbeck
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Jian Xian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joseph Geradts
- Department of Pathology & Laboratory Medicine, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Jose Franco Alvarez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Elena Rozhkova
- Department of Dermatology, Boston University School of Medicine, Boston, MA, USA
| | - Ashley Nicholls
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Herbert K Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Li Z, McGinn O, Wu Y, Bahreini A, Priedigkeit NM, Ding K, Onkar S, Lampenfeld C, Sartorius CA, Miller L, Rosenzweig M, Cohen O, Wagle N, Richer JK, Muller WJ, Buluwela L, Ali S, Bruno TC, Vignali DAA, Fang Y, Zhu L, Tseng GC, Gertz J, Atkinson JM, Lee AV, Oesterreich S. ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation. Nat Commun 2022; 13:2011. [PMID: 35440136 PMCID: PMC9019037 DOI: 10.1038/s41467-022-29498-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
Estrogen receptor alpha (ER/ESR1) is frequently mutated in endocrine resistant ER-positive (ER+) breast cancer and linked to ligand-independent growth and metastasis. Despite the distinct clinical features of ESR1 mutations, their role in intrinsic subtype switching remains largely unknown. Here we find that ESR1 mutant cells and clinical samples show a significant enrichment of basal subtype markers, and six basal cytokeratins (BCKs) are the most enriched genes. Induction of BCKs is independent of ER binding and instead associated with chromatin reprogramming centered around a progesterone receptor-orchestrated insulated neighborhood. BCK-high ER+ primary breast tumors exhibit a number of enriched immune pathways, shared with ESR1 mutant tumors. S100A8 and S100A9 are among the most induced immune mediators and involve in tumor-stroma paracrine crosstalk inferred by single-cell RNA-seq from metastatic tumors. Collectively, these observations demonstrate that ESR1 mutant tumors gain basal features associated with increased immune activation, encouraging additional studies of immune therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Olivia McGinn
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Yang Wu
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Amir Bahreini
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nolan M Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kai Ding
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Sayali Onkar
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Caleb Lampenfeld
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lori Miller
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | - Ofir Cohen
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikhil Wagle
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William J Muller
- Goodman Cancer Centre and Departments of Biochemistry and Medicine, McGill University, Montreal, QC, Canada
| | - Laki Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yusi Fang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Zhu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer M Atkinson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Kudo KI, Takabatake M, Nagata K, Nishimura Y, Daino K, Iizuka D, Nishimura M, Suzuki K, Kakinuma S, Imaoka T. Flow Cytometry Definition of Rat Mammary Epithelial Cell Populations and Their Distinct Radiation Responses. Radiat Res 2020; 194:22-37. [PMID: 32352870 DOI: 10.1667/rr15566.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/08/2020] [Indexed: 11/03/2022]
Abstract
Breast tissue is very susceptible to radiation-induced carcinogenesis, and mammary stem/progenitor cells are potentially important targets of this. The mammary epithelium is maintained as two mostly independent lineages of luminal and basal cells. To elucidate their immediate radiation responses, we analyzed the mammary glands of female Sprague-Dawley rats, a radiation carcinogenesis model, using colony formation, flow cytometry and immunofluorescence. The results revealed that flow cytometry successfully fractionates rat mammary cells into CD49fhi CD24lo basal, CD49fmed CD24hi luminal progenitor, and CD49flo CD24hi mature luminal populations, resembling human breast, rather than mouse tissues. The colony-forming ability of the basal cells was more radiosensitive than the luminal progenitor cells. Flow cytometry and immunofluorescence showed more efficient cell cycle arrest, γ-H2AX responses, and apoptosis in the irradiated luminal progenitor cells, than in the basal cells. These results provide important insights into the early phase of radiation-induced breast cancer.
Collapse
Affiliation(s)
- Ken-Ichi Kudo
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaru Takabatake
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kento Nagata
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
9
|
Wang X, Xu H, Cheng C, Ji Z, Zhao H, Sheng Y, Li X, Wang J, Shu Y, He Y, Fan L, Dong B, Xue W, Wai Chua C, Wu D, Gao WQ, He Zhu H. Identification of a Zeb1 expressing basal stem cell subpopulation in the prostate. Nat Commun 2020; 11:706. [PMID: 32024836 PMCID: PMC7002669 DOI: 10.1038/s41467-020-14296-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022] Open
Abstract
The basal cell compartment in many epithelial tissues is generally believed to serve as an important pool of stem cells. However, basal cells are heterogenous and the stem cell subpopulation within basal cells is not well elucidated. Here we uncover that the core epithelial-to-mesenchymal transition (EMT) inducer Zeb1 is expressed in a prostate basal cell subpopulation. The Zeb1+ prostate epithelial cells are multipotent prostate basal stem cells (PBSCs) that can self-renew and generate functional prostatic glandular structures at the single-cell level. Genetic ablation studies reveal an indispensable role for Zeb1 in prostate basal cell development. Utilizing unbiased single-cell transcriptomic analysis of over 9000 mouse prostate basal cells, we confirm the existence of the Zeb1+ basal cell subset. Moreover, Zeb1+ epithelial cells can be detected in mouse and human prostate tumors. Identification of the PBSC and its transcriptome profile is crucial to advance our understanding of prostate development and tumorigenesis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaru Sheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoxia Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liancheng Fan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Sciences, Kunming, 650223, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
10
|
Guo X, Tang Y, Zhu W. Distinct esophageal adenocarcinoma molecular subtype has subtype-specific gene expression and mutation patterns. BMC Genomics 2018; 19:769. [PMID: 30355311 PMCID: PMC6201634 DOI: 10.1186/s12864-018-5165-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background Esophageal carcinoma (EC), consists of two histological types, esophageal squamous carcinoma (ESCC) and esophageal adenocarcinoma (EAC). EAC accounted for 10% of EC for centuries; however, the prevalence of EAC has alarmingly risen 6 times and increased to about 50% of EC in recent 30 years in the western countries, while treatment options for EAC patients are still limited. Stratification of molecular subtypes by gene expression profiling methods had offered opportunities for targeted therapies. However, the molecular subtype in EAC has not been defined. Hence, Identification of EAC molecular subtypes is needed and will provide important insights for future new therapies. Results We performed meta-analysis of gene expression profiling data on three independent EAC cohorts and showed that there are two common molecular subtypes in EAC. Each of the two EAC molecular subtypes has subtype specific expression patterns and mutation signatures. Genes which were over-expressed in subtype I EACs rather than subtype II EAC cases, were enriched in biological processes including epithelial cell differentiation, keratinocyte differentiation, and KEGG pathways including basal cell carcinoma. TP53 and CDKN2A are significantly mutated in both EAC subtypes. 24 genes including SMAD4 were found to be only significantly mutated in subtype I EAC cases, while 30 genes including ARID1A are only significantly mutated in subtype II EACs. Conclusion Two EAC molecular subtypes were defined and validated. This finding may offer new opportunities for targeted therapies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5165-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiangqian Guo
- Department of Preventive Medicine, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics ,School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China. .,Cell Signal Transduction Laboratory, Henan University, Kaifeng, 475004, China.
| | - Yitai Tang
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
11
|
Rauner G, Kudinov T, Gilad S, Hornung G, Barash I. High Expression of CD200 and CD200R1 Distinguishes Stem and Progenitor Cell Populations within Mammary Repopulating Units. Stem Cell Reports 2018; 11:288-302. [PMID: 29937142 PMCID: PMC6067058 DOI: 10.1016/j.stemcr.2018.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/13/2023] Open
Abstract
Aiming to unravel the top of the mammary epithelial cell hierarchy, a subset of the CD49fhighCD24med mammary repopulating units (MRUs) was identified by flow cytometry, expressing high levels of CD200 and its receptor CD200R1. These MRUCD200/CD200R1 repopulated a larger area of de-epithelized mammary fat pads than the rest of the MRUs, termed MRUnot CD200/CD200R1. MRUCD200/CD200R1 maintained a much lower number of divergently defined, highly expressed genes and pathways that support better cell growth, development, differentiation, and progenitor activity than their MRUnot CD200/CD200R1 counterparts. A defined profile of hierarchically associated genes supporting a single-lineage hypothesis was confirmed by in vitro mammosphere analysis that assembled 114 genes with decreased expression from MRUCD200/CD200R1 via MRUnot CD200/CD200R1 toward CD200+CD200R1- and CD200R1+CD200- cells. About 40% of these genes were shared by a previously published database of upregulated genes in mammary/breast stem cells and may represent the core genes involved in mammary stemness.
Collapse
Affiliation(s)
- Gat Rauner
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan 50250, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 7610001, Israel
| | - Tania Kudinov
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan 50250, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 7610001, Israel
| | - Shlomit Gilad
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Hornung
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan 50250, Israel.
| |
Collapse
|
12
|
Chen J, Fu G, Chen Y, Zhu G, Wang Z. Gene-expression signature predicts survival benefit from postoperative chemoradiotherapy in head and neck squamous cell carcinoma. Oncol Lett 2018; 16:2565-2578. [PMID: 30013651 DOI: 10.3892/ol.2018.8964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Postoperative radiotherapy or concurrent chemoradiotherapy are routine clinical options for the treatment of head and neck squamous cell carcinoma (HNSCC). However, the benefit of adding chemotherapy to radiotherapy is contested. The present study aimed to develop a gene signature to predict the clinical benefit of postoperative chemoradiotherapy using public data from The Cancer Genome Atlas. A 22-gene signature was established, which demonstrated the best predictive value. Patients were separated into low-score and high-score subgroups based on the expression score of the 22-gene signature. In the high-score subgroup, patients who received chemoradiotherapy demonstrated improved overall survival, relapse-free survival and local regional control compared with those who received radiotherapy alone. However, in the low-score subgroup adding chemotherapy to radiotherapy was associated with worse patient outcomes. The predictive value of the 22-gene signature was independent of the conventional clinical variables. Gene set enrichment analysis revealed that the expression signatures of hypoxia phenotype and stem-like traits were significantly enriched in the low-score subgroup. In addition, the low-score subgroup was associated with the gene sets involved in resistance to anticancer drugs. In conclusion, hypoxia- or stem-like gene expression properties are associated with chemotherapy-resistance in HNSCC. The 22-gene signature may be useful as a predictive marker to help distinguish patients who will benefit from postoperative concurrent chemoradiotherapy.
Collapse
Affiliation(s)
- Jin Chen
- Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Guiming Fu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yibo Chen
- Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Guiquan Zhu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhaohui Wang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
Widodo I, Dwianingsih EK, Anwar SL, Fx Ediati T, Utoro T, Aryandono T, Soeripto. Prognostic Value of Clinicopathological Factors for Indonesian Breast Carcinomas of Different Molecular Subtypes. Asian Pac J Cancer Prev 2017; 18:1251-1256. [PMID: 28610410 PMCID: PMC5555531 DOI: 10.22034/apjcp.2017.18.5.1251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Breast carcinoma (BC) is a heterogeneous disease due to its different molecular profiles i.e. luminal (luminal A and luminal B) and non-luminal (HER2 positive and triple negative) subtypes. Prognostic value of clinicopathological factors of Indonesian BC of different molecular subtypes has never been reported previously. This study aims to elaborate prognostic impacts on Indonesian BCs focusing on separate molecular subtypes. Methods: A hundred and fifty cases of invasive BC, stage I-IIIA, in Sardjito Hospital, Indonesia, were stained using anti ER, PR, HER2 and Ki-67 antibodies. Survival and prognostic values were statistically analyzed. Results: Compared to the luminal subtypes, the non-luminal subtypes demonstrated higher proportions of intermediate-to-high grade, stage IIIA, positive lymph node infiltration and mortality. The triple negative subtype was typically intermediate-to-high grade, stage IIIA and with a high relative death risk. Luminal A lesions were characteristically low grade, stage I-II and less likely to cause death. Conclusion: In non-luminal BC, staging and lymph node metastasis are independent prognostic factors for survival in HER2 positive and triple negative subtypes, respectively. In luminal BC, clinicopathological factors demonstrated no influence on survival. This study suggests that staging and lymph node metastasis are correlated with survival in non-luminal Indonesian BCs.
Collapse
Affiliation(s)
- Irianiwati Widodo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ahmad I, Mui E, Galbraith L, Patel R, Tan EH, Salji M, Rust AG, Repiscak P, Hedley A, Markert E, Loveridge C, van der Weyden L, Edwards J, Sansom OJ, Adams DJ, Leung HY. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer. Proc Natl Acad Sci U S A 2016; 113:8290-5. [PMID: 27357679 PMCID: PMC4961202 DOI: 10.1073/pnas.1601571113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition.
Collapse
Affiliation(s)
- Imran Ahmad
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom;
| | - Ernest Mui
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Laura Galbraith
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Rachana Patel
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Ee Hong Tan
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Mark Salji
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Peter Repiscak
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Elke Markert
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Carolyn Loveridge
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom;
| |
Collapse
|
15
|
Haikala HM, Klefström J, Eilers M, Wiese KE. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle 2016; 15:316-23. [PMID: 26873145 DOI: 10.1080/15384101.2015.1121351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptosis caused by deregulated MYC expression is a prototype example of intrinsic tumor suppression. However, it is still unclear how supraphysiological MYC expression levels engage specific sets of target genes to promote apoptosis. Recently, we demonstrated that repression of SRF target genes by MYC/MIZ1 complexes limits AKT-dependent survival signaling and contributes to apoptosis induction. Here we report that supraphysiological levels of MYC repress gene sets that include markers of basal-like breast cancer cells, but not luminal cancer cells, in a MIZ1-dependent manner. Furthermore, repressed genes are part of a conserved gene signature characterizing the basal subpopulation of both murine and human mammary gland. These repressed genes play a role in epithelium and mammary gland development and overlap with genes mediating cell adhesion and extracellular matrix organization. Strikingly, acute activation of oncogenic MYC in basal mammary epithelial cells is sufficient to induce luminal cell identity markers. We propose that supraphysiological MYC expression impacts on mammary epithelial cell identity by repressing lineage-specific target genes. Such abrupt cell identity switch could interfere with adhesion-dependent survival signaling and thus promote apoptosis in pre-malignant epithelial tissue.
Collapse
Affiliation(s)
- Heidi M Haikala
- a Translational cancer biology, Research Programs Unit and Institute of Biomedicine, University of Helsinki , Helsinki , Finland
| | - Juha Klefström
- a Translational cancer biology, Research Programs Unit and Institute of Biomedicine, University of Helsinki , Helsinki , Finland
| | - Martin Eilers
- b Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland , Würzburg , Germany.,c Comprehensive Cancer Center Mainfranken, University of Würzburg , Würzburg , Germany
| | - Katrin E Wiese
- b Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland , Würzburg , Germany.,d Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
16
|
Johnston RL, Wockner L, McCart Reed AE, Wiegmans A, Chenevix-Trench G, Khanna KK, Lakhani SR, Smart CE. High content screening application for cell-type specific behaviour in heterogeneous primary breast epithelial subpopulations. Breast Cancer Res 2016; 18:18. [PMID: 26861772 PMCID: PMC4748588 DOI: 10.1186/s13058-016-0681-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
Background The complex interaction between multiple cell types and the microenvironment underlies the diverse pathways to carcinogenesis and necessitates sophisticated approaches to in vitro hypotheses testing. The combination of mixed culture format with high content immunofluorescence screening technology provides a powerful platform for observation of cell type specific behavior. Methods We have developed a versatile, high-throughput method for assessing cell-type specific responses. In addition to the specificity and sensitivity offered traditionally by immunofluorescent detection in flow cytometry, the ‘in-cell’ analysis method we describe provides the added benefits of higher throughput and the ability to analyse protein subcellular localisation in situ. Furthermore, elimination of the cell dissociation step allows for more immediate analysis of responses to specific extrinsic stimuli. We applied this method to investigate ionising radiation treatment response in normal breast epithelial cells, measuring growth rate, cell cycle response and double-strand DNA breaks. Results The ‘in-cell’ analysis approach elucidated several interesting donor and cell-type specific differences. Notably, in response to ionizing radiation we observed differential expression in luminal and basal-like cells of a member of the APOBEC enzyme family, recently identified as a critical driver of an oncogenic signature. Our findings suggest that this enzyme is active in the normal breast epithelium during DNA damage response. Conclusions We demonstrate the practical application of a new method for assessing cell-type specific change in mixed cultures, especially the analysis of normal primary cultures, overcoming a major technical issue of dissecting the response of multiple cell types in a heterogeneous population. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0681-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca L Johnston
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, 4029, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | - Leesa Wockner
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | - Amy E McCart Reed
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, 4029, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | - Adrian Wiegmans
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | | | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| | - Sunil R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, 4029, Australia. .,Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, 4029, Australia. .,The University of Queensland, School of Medicine, Brisbane, Queensland, 4029, Australia.
| | - Chanel E Smart
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, 4029, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4029, Australia.
| |
Collapse
|
17
|
Johnstone CN, Smith YE, Cao Y, Burrows AD, Cross RSN, Ling X, Redvers RP, Doherty JP, Eckhardt BL, Natoli AL, Restall CM, Lucas E, Pearson HB, Deb S, Britt KL, Rizzitelli A, Li J, Harmey JH, Pouliot N, Anderson RL. Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech 2015; 8:237-51. [PMID: 25633981 PMCID: PMC4348562 DOI: 10.1242/dmm.017830] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53) tumour-suppressor gene status and responses to tamoxifen in vivo and in vitro. Array-based expression profiling of whole tumours identified genes and pathways that were deregulated in metastatic tumours. EO771.LMB cells metastasised spontaneously to lung in C57BL/6 mice and displayed increased invasive capacity compared with parental EO771. By immunohistochemical assessment, EO771 and EO771.LMB were basal-like, as was the 4T1.2 tumour, whereas 67NR had a luminal phenotype. Primary tumours from all lines were negative for progesterone receptor, Erb-b2/Neu and cytokeratin 5/6, but positive for epidermal growth factor receptor (EGFR). Only 67NR displayed nuclear estrogen receptor alpha (ERα) positivity. EO771 and EO771.LMB expressed mutant p53, whereas 67NR and 4T1.2 were p53-null. Integrated molecular analysis of both the EO771/EO771.LMB and 67NR/4T1.2 pairs indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer.
Collapse
Affiliation(s)
- Cameron N Johnstone
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yvonne E Smith
- Angiogenesis and Metastasis Research, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Yuan Cao
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Allan D Burrows
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Ryan S N Cross
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Xiawei Ling
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Richard P Redvers
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Judy P Doherty
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Bedrich L Eckhardt
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Morgan Welch Inflammatory Breast Cancer Research and Clinic, Department of Breast Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony L Natoli
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Christina M Restall
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Erin Lucas
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Helen B Pearson
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Siddhartha Deb
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, VIC 2010, Australia
| | - Kara L Britt
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra Rizzitelli
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Jason Li
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Judith H Harmey
- Angiogenesis and Metastasis Research, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Normand Pouliot
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin L Anderson
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Labidi-Galy SI, Clauss A, Ng V, Duraisamy S, Elias KM, Piao HY, Bilal E, Davidowitz RA, Lu Y, Badalian-Very G, Györffy B, Kang UB, Ficarro SB, Ganesan S, Mills GB, Marto JA, Drapkin R. Elafin drives poor outcome in high-grade serous ovarian cancers and basal-like breast tumors. Oncogene 2015; 34:373-83. [PMID: 24469047 PMCID: PMC4112176 DOI: 10.1038/onc.2013.562] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/08/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022]
Abstract
High-grade serous ovarian carcinoma (HGSOC) and basal-like breast cancer (BLBC) share many features including TP53 mutations, genomic instability and poor prognosis. We recently reported that Elafin is overexpressed by HGSOC and is associated with poor overall survival. Here, we confirm that Elafin overexpression is associated with shorter survival in 1000 HGSOC patients. Elafin confers a proliferative advantage to tumor cells through the activation of the MAP kinase pathway. This mitogenic effect can be neutralized by RNA interference, specific antibodies and a MEK inhibitor. Elafin expression in patient-derived samples was also associated with chemoresistance and strongly correlates with bcl-xL expression. We extended these findings into the examination of 1100 primary breast tumors and six breast cancer cell lines. We observed that Elafin is overexpressed and secreted specifically by BLBC tumors and cell lines, leading to a similar mitogenic effect through activation of the MAP kinase pathway. Here too, Elafin overexpression is associated with poor overall survival, suggesting that it may serve as a biomarker and therapeutic target in this setting.
Collapse
Affiliation(s)
- S. Intidhar Labidi-Galy
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
- Harvard Medical School, Boston, MA
| | - Adam Clauss
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
- Harvard Medical School, Boston, MA
| | - Vivian Ng
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
| | - Sekhar Duraisamy
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kevin M. Elias
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
- Harvard Medical School, Boston, MA
- Brigham and Women’s Hospital, Division of Gynecologic Oncology, Boston, MA
| | - Hui-Ying Piao
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
| | - Erhan Bilal
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, New Brunswick, NJ
| | | | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gayane Badalian-Very
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
- Harvard Medical School, Boston, MA
| | - Balázs Györffy
- Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Un-Beom Kang
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Blais Proteomics Center, Boston, MA
| | - Scott B. Ficarro
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Blais Proteomics Center, Boston, MA
| | - Shridar Ganesan
- The Cancer Institute of New Jersey, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, New Brunswick, NJ
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jarrod A. Marto
- Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Blais Proteomics Center, Boston, MA
| | - Ronny Drapkin
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA
- Harvard Medical School, Boston, MA
- Brigham and Women’s Hospital, Department of Pathology, Boston, MA
| |
Collapse
|
19
|
Utility of immunohistochemical markers in irradiated breast tissue: an analysis of the role of myoepithelial markers, p53, and Ki-67. Am J Surg Pathol 2014; 38:1128-37. [PMID: 25029119 DOI: 10.1097/pas.0000000000000243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Radiation therapy is an important adjunct to breast-conserving surgery, but the diagnosis of recurrent/de novo carcinoma in a background of radiation atypia can be difficult, especially on small biopsies. Immunostaining for myoepithelial cell proteins is often used to assess invasion in nonirradiated breast tissue, yet these stains have not been investigated specifically in irradiated breast. We studied 29 irradiated breast resection specimens, some with carcinoma in situ (CIS, n=13) and/or invasive carcinoma (n=13). Representative blocks were stained for the myoepithelial proteins p63, smooth muscle myosin heavy chain (SMM), calponin, CK5/6, the proliferative marker Ki-67, and the tumor-suppressor p53. Nonirradiated control tissue was also stained with Ki-67 and p53 (CIS, normal, contralateral). Areas of radiation atypia/atrophy and nearly all CIS in irradiated breast tissue had abundant myoepithelial cells as evidenced by SMM, calponin, and p63 stains, with focal staining attenuation or gaps with SMM and calponin and frequently absent CK5/6 staining. As predicted, myoepithelial cell staining was absent in invasive carcinoma. p63 staining revealed postradiation myoepithelial nuclear morphologic changes. p53 staining was increased, although weak, in irradiated non-neoplastic breast (12% irradiated; 4% nonirradiated); however, irradiated CIS had less p53 staining when compared with control CIS (3% irradiated; 38% nonirradiated). As expected, Ki-67 was increased in carcinoma as compared with non-neoplastic irradiated tissue. Thus, myoepithelial immunostaining is a useful diagnostic adjunct in irradiated breast, with caveats similar to nonirradiated breast. Ki-67 may be helpful in some postradiation specimens; however, p53 staining is not reliable in this setting.
Collapse
|
20
|
Bouchalova P, Nenutil R, Muller P, Hrstka R, Appleyard MV, Murray K, Jordan LB, Purdie CA, Quinlan P, Thompson AM, Vojtesek B, Coates PJ. Mutant p53 accumulation in human breast cancer is not an intrinsic property or dependent on structural or functional disruption but is regulated by exogenous stress and receptor status. J Pathol 2014; 233:238-46. [PMID: 24687952 DOI: 10.1002/path.4356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/13/2014] [Accepted: 03/21/2014] [Indexed: 01/13/2023]
Abstract
Many human cancers contain missense TP53 mutations that result in p53 protein accumulation. Although generally considered as a single class of mutations that abrogate wild-type function, individual TP53 mutations may have specific properties and prognostic effects. Tumours that contain missense TP53 mutations show variable p53 stabilization patterns, which may reflect the specific mutation and/or aspects of tumour biology. We used immunohistochemistry on cell lines and human breast cancers with known TP53 missense mutations and assessed the effects of each mutation with four structure-function prediction methods. Cell lines with missense TP53 mutations show variable percentages of cells with p53 stabilization under normal growth conditions, ranging from approximately 50% to almost 100%. Stabilization is not related to structural or functional disruption, but agents that stabilize wild-type p53 increase the percentages of cells showing missense mutant p53 accumulation in cell lines with heterogeneous stabilization. The same heterogeneity of p53 stabilization occurs in primary breast cancers, independent of the effect of the mutation on structural properties or functional disruption. Heterogeneous accumulation is more common in steroid receptor-positive or HER2-positive breast cancers and cell lines than in triple-negative samples. Immunohistochemcal staining patterns associate with Mdm2 levels, proliferation, grade and overall survival, whilst the type of mutation reflects downstream target activity. Inhibiting Mdm2 activity increases the extent of p53 stabilization in some, but not all, breast cancer cell lines. The data indicate that missense mutant p53 stabilization is a complex and variable process in human breast cancers that associates with disease characteristics but is unrelated to structural or functional properties. That agents which stabilize wild-type p53 also stabilize mutant p53 has implications for patients with heterogeneous mutant p53 accumulation, where therapy may activate mutant p53 oncogenic function.
Collapse
Affiliation(s)
- Pavla Bouchalova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gu B, Watanabe K, Sun P, Fallahi M, Dai X. Chromatin effector Pygo2 mediates Wnt-notch crosstalk to suppress luminal/alveolar potential of mammary stem and basal cells. Cell Stem Cell 2013; 13:48-61. [PMID: 23684539 DOI: 10.1016/j.stem.2013.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 03/13/2013] [Accepted: 04/16/2013] [Indexed: 02/04/2023]
Abstract
Epigenetic mechanisms regulating lineage differentiation of mammary stem cells (MaSCs) remain poorly understood. Pygopus 2 (Pygo2) is a histone methylation reader and a context-dependent Wnt/β-catenin coactivator. Here we provide evidence for Pygo2's function in suppressing luminal/alveolar differentiation of MaSC-enriched basal cells. We show that Pygo2-deficient MaSC/basal cells exhibit partial molecular resemblance to luminal cells, such as elevated Notch signaling and reduced mammary repopulating capability upon transplantation. Inhibition of Notch signaling suppresses basal-level and Pygo2-deficiency-induced luminal/alveolar differentiation of MaSC/basal cells, whereas activation of Wnt/β-catenin signaling suppresses luminal/alveolar differentiation and Notch3 expression in a Pygo2-dependent manner. We show that Notch3 is a direct target of Pygo2 and that Pygo2 is required for β-catenin binding and maintenance of a poised/repressed chromatin state at the Notch3 locus in MaSC/basal cells. Together, our data support a model where Pygo2-mediated chromatin regulation connects Wnt signaling and Notch signaling to restrict the luminal/alveolar differentiation competence of MaSC/basal cells.
Collapse
Affiliation(s)
- Bingnan Gu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
22
|
Klos KS, Kim S, Alexander CM. Genotoxic exposure during juvenile growth of mammary gland depletes stem cell activity and inhibits Wnt signaling. PLoS One 2012. [PMID: 23185480 PMCID: PMC3503807 DOI: 10.1371/journal.pone.0049902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Various types of somatic stem cell have been tested for their response to genotoxic exposure, since these cells are likely to be important to regeneration, aging and cancer. In this study, we evaluated the response of mammary stem cells to genotoxic exposure during ductal growth in juveniles. Exposure to the polycyclic aromatic hydrocarbon (DMBA; 7,12 dimethylbenz[a]anthracene) had no gross effect on outgrowth and morphogenesis of the ductal tree, or upon lobuloalveolar growth during pregnancy. However, by fat pad assay, we found that mammary stem cell activity was reduced by 80% in glands from adults that were exposed to genotoxins as juveniles. The associated basal cell lineage was depleted. Both basal and luminal cells showed a robust response to genotoxic exposure (including γH2AX phosphorylation, pS15p53 and pT68Chk2), with durable hyperproliferation, but little cytotoxicity. Since the phenotype of these glands (low basal cell fraction, low stem cell activity) phenocopies mammary glands with loss of function for Wnt signaling, we measured Wnt signaling in genotoxin-exposed glands, and found a durable reduction in the activation of the canonical signaling Wnt receptors, Lrp5/6. Furthermore, when mammary epithelial cells were treated with Wnt3a, DMBA exposure reduced the basal cell population and Lrp activation was ablated. We conclude that during active ductal growth, Wnt-dependent mammary stem cells are sensitized to cell death by genotoxin exposure. Our conclusion may be important for other tissues, since all solid tumor stem cell activities have been shown to be Wnt-dependent to date.
Collapse
Affiliation(s)
- Kristine S. Klos
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Soyoung Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Caroline M. Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
23
|
Jäämaa S, Laiho M. Maintenance of genomic integrity after DNA double strand breaks in the human prostate and seminal vesicle epithelium: the best and the worst. Mol Oncol 2012; 6:473-83. [PMID: 22762987 PMCID: PMC3439595 DOI: 10.1016/j.molonc.2012.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer is one of the most frequent cancer types in men, and its incidence is steadily increasing. On the other hand, primary seminal vesicle carcinomas are extremely rare with less than 60 cases reported worldwide. Therefore the difference in cancer incidence has been estimated to be more than a 100,000-fold. This is astonishing, as both tissues share similar epithelial structure and hormonal cues. Clearly, the two epithelia differ substantially in the maintenance of genomic integrity, possibly due to inherent differences in their DNA damage burden and DNA damage signaling. The DNA damage response evoked by DNA double strand breaks may be relevant, as their faulty repair has been implicated in the formation of common genomic rearrangements such as TMPRSS2-ERG fusions during prostate carcinogenesis. Here, we review DNA damaging processes of both tissues with an emphasis on inflammation and androgen signaling. We discuss how benign prostate and seminal vesicle epithelia respond to acute DNA damage, focusing on the canonical DNA double strand break-induced ATM-pathway, p53 and DNA damage induced checkpoints. We propose that the prostate might be more prone to the accumulation of genetic aberrations during epithelial regeneration than seminal vesicles due to a weaker ability to enforce DNA damage checkpoints.
Collapse
Affiliation(s)
- Sari Jäämaa
- Molecular Cancer Biology Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Marikki Laiho
- Molecular Cancer Biology Program, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- The Sidney Kimmel Comprehensive Cancer Center, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, Room 444, Baltimore, MD 21231, USA
| |
Collapse
|
24
|
Jäämaa S, Sankila A, Rantanen V, Peltonen K, Järvinen PM, Af Hällström TM, Ruutu M, Taari K, Andersson LC, Laiho M. Contrasting DNA damage checkpoint responses in epithelium of the human seminal vesicle and prostate. Prostate 2012; 72:1060-70. [PMID: 22072329 DOI: 10.1002/pros.21509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prostate and seminal vesicle are two similar hormone responsive human organs that differ dramatically in their cancer incidence. DNA damage response (DDR) is required for maintenance of genomic integrity. METHODS In this study we investigated the DDR and cell cycle checkpoint activation of these organs using orthotopic cultures of human surgery-derived tissues and primary cultures of isolated prostate and seminal vesicle cells. RESULTS We find that the activation of ATM signaling pathway by ionizing radiation (IR) was comparable in both tissues. Previously, we have shown that the prostate secretory cells express low levels of histone variant H2AX and phosphorylated H2AX (γH2AX) after IR. Here we demonstrate that H2AX levels are low also in the secretory seminal vesicle cells suggesting that this is a common phenotype of postmitotic cells. We consequently established primary epithelial cell cultures from both organs to compare their DDR. Interestingly, contrary to human prostate epithelial cells (HPEC), primary seminal vesicle epithelial cells (HSVEC) displayed effective cell cycle checkpoints after IR and expressed higher levels of Wee1A checkpoint kinase. Furthermore, HSVEC but not HPEC cells were able to activate p53 and to induce p21 cell cycle inhibitor. DISCUSSION Our results show that during replication, the checkpoint enforcement is more proficient in the seminal vesicle than in the prostate epithelium cells. This indicates a more stringent enforcement of DDR in replicating seminal vesicle epithelial cells, and suggests that epithelial regeneration combined with sub-optimal checkpoint responses may contribute to high frequency of genetic lesions in the prostate epithelium.
Collapse
Affiliation(s)
- Sari Jäämaa
- Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Matrix metalloproteinase-10 promotes Kras-mediated bronchio-alveolar stem cell expansion and lung cancer formation. PLoS One 2011; 6:e26439. [PMID: 22022614 PMCID: PMC3195727 DOI: 10.1371/journal.pone.0026439] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/27/2011] [Indexed: 01/08/2023] Open
Abstract
Matrix metalloproteinase 10 (MMP-10; stromelysin 2) is a member of a large family of structurally related matrix metalloproteinases, many of which have been implicated in tumor progression, invasion and metastasis. We recently identified Mmp10 as a gene that is highly induced in tumor-initiating lung bronchioalveolar stem cells (BASCs) upon activation of oncogenic Kras in a mouse model of lung adenocarcinoma. However, the potential role of Mmp10 in lung tumorigenesis has not been addressed. Here, we demonstrate that Mmp10 is overexpressed in lung tumors induced by either the smoke carcinogen urethane or oncogenic Kras. In addition, we report a significant reduction in lung tumor number and size after urethane exposure or genetic activation of oncogenic Kras in Mmp10 null (Mmp10−/−) mice. This inhibitory effect is reflected in a defect in the ability of Mmp10-deficient BASCs to expand and undergo transformation in response to urethane or oncogenic Kras in vivo and in vitro, demonstrating a role for Mmp10 in the tumor-initiating activity of Kras-transformed lung stem cells. To determine the potential relevance of MMP10 in human cancer we analyzed Mmp10 expression in publicly-available gene expression profiles of human cancers. Our analysis reveals that MMP10 is highly overexpressed in human lung tumors. Gene set enhancement analysis (GSEA) demonstrates that elevated MMP10 expression correlates with both cancer stem cell and tumor metastasis genomic signatures in human lung cancer. Finally, Mmp10 is elevated in many human tumor types suggesting a widespread role for Mmp10 in human malignancy. We conclude that Mmp10 plays an important role in lung tumor initiation via maintenance of a highly tumorigenic, cancer-initiating, stem-like cell population, and that Mmp10 expression is associated with stem-like, highly metastatic genotypes in human lung cancers. These results indicate that Mmp10 may represent a novel therapeutic approach to target lung cancer stem cells.
Collapse
|
26
|
Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 2011; 7:e1002229. [PMID: 21852960 PMCID: PMC3154963 DOI: 10.1371/journal.pgen.1002229] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/21/2011] [Indexed: 02/04/2023] Open
Abstract
Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type-specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS). Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies.
Collapse
Affiliation(s)
- Hsiu-Ni Kung
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anatomy and Cell Biology, School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jeffrey R. Marks
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jen-Tsan Chi
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Gatza ML, Kung HN, Blackwell KL, Dewhirst MW, Marks JR, Chi JT. Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes. Breast Cancer Res 2011; 13:R62. [PMID: 21672245 PMCID: PMC3218951 DOI: 10.1186/bcr2899] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 06/07/2011] [Indexed: 12/18/2022] Open
Abstract
Introduction Breast cancer heterogeneity occurs as a consequence of the dysregulation of numerous oncogenic pathways as well as many non-genetic factors, including tumor microenvironmental stresses such as hypoxia, lactic acidosis, and glucose deprivation. Although the importance of these non-genetic factors is well recognized, it is not clear how to integrate these factors within the genetic framework of cancer as the next logical step in understanding tumor heterogeneity. Methods We report here the development of a series of gene expression signatures to measure the influences of microenvironmental stresses. The pathway activities of hypoxia, lactic acidosis, acidosis and glucose deprivation were investigated in a collection of 1,143 breast tumors, which have been separated into 17 breast tumor subgroups defined by their distinct patterns of oncogenic pathways. A validation dataset comprised of 547 breast tumors was also used to confirm the major findings, and representative breast cancer cell lines were utilized to validate in silico results and mechanistic studies. Results Through the integrative pathway analysis of microenvironmental stresses and oncogenic events in breast tumors, we identified many known and novel correlations between these two sources of tumor heterogeneity. Focusing on differences between two human epidermal growth factor receptor 2 (HER2)-related subgroups, previously identified based on patterns of oncogenic pathway activity, we determined that these subgroups differ with regards to tumor microenvironmental signatures, including hypoxia. We further demonstrate that each of these subgroups have features consistent with basal and luminal breast tumors including patterns of oncogenic signaling pathways, expression of subtype specific genes, and cellular mechanisms that regulate the hypoxia response. Importantly, we also demonstrate that the correlated pattern of hypoxia-related gene expression and basal-associated gene expression are consistent across HER2-related tumors whether we analyze the tumors as a function of our pathway-based classification scheme, using the intrinsic gene list (ERBB2+), or based on HER2 IHC status. Our results demonstrate a cell lineage-specific phenomenon in which basal-like tumors, HER2-related tumors with high hypoxia, as well as normal basal epithelial cells express increased mRNA levels of HIF-1α compared to luminal types and silencing of HIF-1α results in decreased expression of hypoxia-induced genes. Conclusions This study demonstrates differences in microenvironmental conditions in HER2-related subgroups defined by distinct oncogenic pathway activities, and provides a mechanistic explanation for differences in the observed hypoxia response between these subgroups. Collectively, these data demonstrate the potential of a pathway-based classification strategy as a framework to integrate genetic and non-genetic factors to investigate the basis of tumor heterogeneity.
Collapse
Affiliation(s)
- Michael L Gatza
- Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
28
|
Coates PJ, Appleyard MVCL, Murray K, Ackland C, Gardner J, Brown DC, Adamson DJA, Jordan LB, Purdie CA, Munro AJ, Wright EG, Dewar JA, Thompson AM. Differential contextual responses of normal human breast epithelium to ionizing radiation in a mouse xenograft model. Cancer Res 2010; 70:9808-15. [PMID: 21084272 DOI: 10.1158/0008-5472.can-10-1118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy is a key treatment option for breast cancer, yet the molecular responses of normal human breast epithelial cells to ionizing radiation are unclear. A murine subcutaneous xenograft model was developed in which nonneoplastic human breast tissue was maintained with the preservation of normal tissue architecture, allowing us to study for the first time the radiation response of normal human breast tissue in situ. Ionizing radiation induced dose-dependent p53 stabilization and p53 phosphorylation, together with the induction of p21(CDKN1A) and apoptosis of normal breast epithelium. Although p53 was stabilized in both luminal and basal cells, induction of Ser392-phosphorylated p53 and p21 was higher in basal cells and varied along the length of the ductal system. Basal breast epithelial cells expressed ΔNp63, which was unchanged on irradiation. Although stromal responses themselves were minimal, the response of normal breast epithelium to ionizing radiation differed according to the stromal setting. We also demonstrated a dose-dependent induction of γ-H2AX foci in epithelial cells that was similarly dependent on the stromal environment and differed between basal and luminal epithelial cells. The intrinsic differences between human mammary cell types in response to in vivo irradiation are consistent with clinical observation that therapeutic ionizing radiation is associated with the development of basal-type breast carcinomas. Furthermore, there may be clinically important stromal-epithelial interactions that influence DNA damage responses in the normal breast. These findings demonstrate highly complex responses of normal human breast epithelium following ionizing radiation exposure and emphasize the importance of studying whole-tissue effects rather than single-cell systems.
Collapse
Affiliation(s)
- Philip J Coates
- Centre for Oncology and Molecular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides insight into the enigmatic way in which human breast cancers are skewed toward the luminal epithelial lineage.
Collapse
Affiliation(s)
- Ole William Petersen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, The Panum Building, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
30
|
Liu Y, Appleyard MVCL, Coates PJ, Thompson AM. p53 and gamma radiation in the normal breast. Int J Radiat Biol 2009; 85:1026-31. [PMID: 19895279 DOI: 10.3109/09553000903261271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE With the increasing use of radiation as adjuvant therapy in breast cancer, the effects of gamma radiation on the remaining normal breast are of increasing importance. The complexities of multiple cellular types within breast tissues and the role of the pleiotropic Tumour Protein 53 (TP53, p53) protein with its downstream transcriptional targets and cellular processes may be central to the effects on residual normal breast tissues. CONCLUSION While a detailed understanding of p53 protein-mediated responses in normal breast tissues remains elusive, p53 appears to have a pivotal role in the effects of gamma radiation on normal breast epithelium, but not stromal cells, which may account for the differing clinical effects of gamma radiation in women treated for breast cancer.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Surgery and Molecular Oncology, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | |
Collapse
|
31
|
Levanon K, Crum C, Drapkin R. New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J Clin Oncol 2008; 26:5284-93. [PMID: 18854563 DOI: 10.1200/jco.2008.18.1107] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There are only a handful of concepts concerning cancer and carcinogenesis that are currently beyond dispute. One such dogma is the adenoma-carcinoma sequence and that a multistep accumulation of genetic alterations is required for transformation from a benign to a neoplastic tissue. The inevitable derivative of this dogma is that every invasive carcinoma is in fact a missed intraepithelial tumor, and furthermore, a late evolutionary stage in the sequence of development from a precursor lesion. Until fairly recently, high-grade serous ovarian carcinoma seemed to be one of the only known deviants of these concepts. In this article, we discuss the emergence of the fallopian tube fimbria as a field of origin for high-grade serous carcinomas and present a binary model of ovarian cancer pathogenesis that takes into consideration prior epidemiologic, morphologic, and genetic data. With the rise of the fallopian tube secretory epithelial cell as a cell of origin for high-grade pelvic serous carcinomas, the need to develop tools and model systems to characterize the biology and physiology of this cell is recognized.
Collapse
Affiliation(s)
- Keren Levanon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|