1
|
Trugilo KP, Cebinelli GCM, Castilha EP, da Silva MR, Berti FCB, de Oliveira KB. The role of transforming growth factor β in cervical carcinogenesis. Cytokine Growth Factor Rev 2024; 80:12-23. [PMID: 39482191 DOI: 10.1016/j.cytogfr.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Human papillomavirus (HPV) is involved in virtually all cases of cervical cancer. However, HPV alone is not sufficient to cause malignant development. The effects of chronic inflammation and the interaction of immune components with the microenvironment infected with the high-risk HPV type (HR) may contribute to cancer development. Transforming growth factor β (TGFB) appears to play an important role in cervical carcinogenesis. Protein and mRNA levels of this cytokine gradually increase as normal tissue develops into malignant tissue and are closely related to the severity of HPV infection. At the onset of infection, TGFB can inhibit the proliferation of infected cells and viral amplification by inhibiting cell growth and downregulating the transcriptional activity of the long control region (LCR) of HPV, thereby reducing the expression of early genes. When infected cells progress to a malignant phenotype, the response to the cell growth inhibitory effect of TGFB1 is lost and the suppression of E6 and E7 expression decreases. Subsequently, TGFB1 expression is upregulated by high levels of E6 and E7 oncoproteins, leading to an increase in TGFB1 in the tumor microenvironment, where this molecule promotes epithelial-to-mesenchymal transition (EMT), cell motility, angiogenesis, and immunosuppression. This interaction between HPV oncoproteins and TGFB1 is an important mechanism promoting the development and progression of cervical cancer.
Collapse
Affiliation(s)
- Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | - Mariane Ricciardi da Silva
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| | | | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, PR 86057-970, Brazil.
| |
Collapse
|
2
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Glycosaminoglycan modifications of betaglycan regulate ectodomain shedding to fine-tune TGF-β signaling responses in ovarian cancer. Cell Commun Signal 2024; 22:128. [PMID: 38360757 PMCID: PMC10870443 DOI: 10.1186/s12964-024-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
In pathologies including cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
Affiliation(s)
- Alex S Choi
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Laura M Jenkins-Lane
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wade Barton
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Asha Kumari
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Carly Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Calen Raulerson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mark D Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Rebecca Arend
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrew B Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
3
|
Deng X, Ma N, He J, Xu F, Zou G. The Role of TGFBR3 in the Development of Lung Cancer. Protein Pept Lett 2024; 31:491-503. [PMID: 39092729 DOI: 10.2174/0109298665315841240731060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
The Transforming Growth Factor-β (TGF-β) mediates embryonic development, maintains cellular homeostasis, regulates immune function, and is involved in a wide range of other biological processes. TGF-β superfamily signaling pathways play an important role in cancer development and can promote or inhibit tumorigenesis. Type III TGF-β receptor (TGFBR3) is a co-receptor in the TGF-β signaling pathway, which often occurs with reduced or complete loss of expression in many cancer patients and can act as a tumor suppressor gene. The reduction or deletion of TGFBR3 is more pronounced compared to other elements in the TGF-β signaling pathway. In recent years, lung cancer is one of the major malignant tumors that endanger human health, and its prognosis is poor. Recent studies have reported that TGFBR3 expression decreases to varying degrees in different types of lung cancer, both at the tissue level and at the cellular level. The invasion, metastasis, angiogenesis, and apoptosis of lung cancer cells are closely related to the expression of TGFBR3, which strengthens the inhibitory function of TGFBR3 in the evolution of lung cancer. This article reviews the mechanism of TGFBR3 in lung cancer and the influencing factors associated with TGFBR3. Clarifying the physiological function of TGFBR3 and its molecular mechanism in lung cancer is conducive to the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Deng
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Nuoya Ma
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Junyu He
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Fei Xu
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Guoying Zou
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Clinical Laboratory, The Second People's Hospital of Hunan Province, Changsha, China
| |
Collapse
|
4
|
Wu YJ, Lei J, Zhao J, Cao XW, Wang FJ. Design and characterization of a novel tumor-homing cell-penetrating peptide for drug delivery in TGFBR3 high-expressing tumors. Chem Biol Drug Des 2023; 102:1421-1434. [PMID: 37620132 DOI: 10.1111/cbdd.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Targeted therapy has attracted more and more attention in cancer treatment in recent years. However, due to the diversity of tumor types and the mutation of target sites on the tumor surface, some existing targets are no longer suitable for tumor therapy. In addition, the long-term administration of a single targeted drug can also lead to drug resistance and attenuate drug potency, so it is important to develop new targets for tumor therapy. The expression of Type III transforming growth factor β receptor (TGFBR3) is upregulated in colon, breast, and prostate cancer cells, and plays an important role in the occurrence and development of these cancers, so TGFBR3 may be developed as a novel target for tumor therapy, but so far there is no report on this research. In this study, the structure of bone morphogenetic protein 4 (BMP4), one of the ligands of TGFBR3 was analyzed through the docking analysis with TGFBR3 and sequence charge characteristic analysis, and a functional tumor-targeting penetrating peptide T3BP was identified. The results of fluorescent labeling experiments showed that T3BP could target and efficiently enter tumor cells with high expression of TGFBR3, especially A549 cells. When the expression of TGFBR3 on the surface of tumor cells (HeLa) was knocked down by RNA interference, the high delivery efficiency of T3BP was correspondingly reduced by 40%, indicating that the delivery was TGFBR3-dependent. Trichosanthin (TCS, a plant-derived ribosome inactivating protein) fused with T3BP can enhance the inhibitory activity of the fusion protein on A549 cells by more than 200 times that of TCS alone. These results indicated that T3BP, as a novel targeting peptide that can efficiently bind TGFBR3 and be used for targeted therapy of tumors with high expression of TGFBR3. This study enriches the supply of tumor-targeting peptides and provides a new potential application option for the treatment of tumors with high expression of TGFBR3.
Collapse
Affiliation(s)
- Yi-Jie Wu
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jin Lei
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
| | - Xue-Wei Cao
- Department of Applied Biology, East China University of Science and Technology, Shanghai, China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
| | - Fu-Jun Wang
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, China
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd, Dongyang, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Xu L, Yan X, Wang J, Zhao Y, Liu Q, Fu J, Shi X, Su J. The Roles of Histone Deacetylases in the Regulation of Ovarian Cancer Metastasis. Int J Mol Sci 2023; 24:15066. [PMID: 37894746 PMCID: PMC10606123 DOI: 10.3390/ijms242015066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and metastasis is the major cause of death in patients with ovarian cancer, which is regulated by the coordinated interplay of genetic and epigenetic mechanisms. Histone deacetylases (HDACs) are enzymes that can catalyze the deacetylation of histone and some non-histone proteins and that are involved in the regulation of a variety of biological processes via the regulation of gene transcription and the functions of non-histone proteins such as transcription factors and enzymes. Aberrant expressions of HDACs are common in ovarian cancer. Many studies have found that HDACs are involved in regulating a variety of events associated with ovarian cancer metastasis, including cell migration, invasion, and the epithelial-mesenchymal transformation. Herein, we provide a brief overview of ovarian cancer metastasis and the dysregulated expression of HDACs in ovarian cancer. In addition, we discuss the roles of HDACs in the regulation of ovarian cancer metastasis. Finally, we discuss the development of compounds that target HDACs and highlight their importance in the future of ovarian cancer therapy.
Collapse
Affiliation(s)
- Long Xu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Xinyi Shi
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| |
Collapse
|
6
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Heparan sulfate modifications of betaglycan promote TIMP3-dependent ectodomain shedding to fine-tune TGF-β signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555364. [PMID: 37693479 PMCID: PMC10491198 DOI: 10.1101/2023.08.29.555364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In pathologies such as cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
|
7
|
Duesman SJ, Ortega-Francisco S, Olguin-Alor R, Acevedo-Dominguez NA, Sestero CM, Chellappan R, De Sarno P, Yusuf N, Salgado-Lopez A, Segundo-Liberato M, de Oca-Lagunas SM, Raman C, Soldevila G. Transforming growth factor receptor III (Betaglycan) regulates the generation of pathogenic Th17 cells in EAE. Front Immunol 2023; 14:1088039. [PMID: 36855628 PMCID: PMC9968395 DOI: 10.3389/fimmu.2023.1088039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The transforming growth factor receptor III (TβRIII) is commonly recognized as a co-receptor that promotes the binding of TGFβ family ligands to type I and type II receptors. Within the immune system, TβRIII regulates T cell development in the thymus and is differentially expressed through activation; however, its function in mature T cells is unclear. To begin addressing this question, we developed a conditional knock-out mouse with restricted TβRIII deletion in mature T cells, necessary because genomic deletion of TβRIII results in perinatal mortality. We determined that TβRIII null mice developed more severe autoimmune central nervous neuroinflammatory disease after immunization with myelin oligodendrocyte peptide (MOG35-55) than wild-type littermates. The increase in disease severity in TβRIII null mice was associated with expanded numbers of CNS infiltrating IFNγ+ CD4+ T cells and cells that co-express both IFNγ and IL-17 (IFNγ+/IL-17+), but not IL-17 alone expressing CD4 T cells compared to Tgfbr3fl/fl wild-type controls. This led us to speculate that TβRIII may be involved in regulating conversion of encephalitogenic Th17 to Th1. To directly address this, we generated encephalitogenic Th17 and Th1 cells from wild type and TβRIII null mice for passive transfer of EAE into naïve mice. Remarkably, Th17 encephalitogenic T cells from TβRIII null induced EAE of much greater severity and earlier in onset than those from wild-type mice. The severity of EAE induced by encephalitogenic wild-type and Tgfbr3fl/fl.dLcKCre Th1 cells were similar. Moreover, in vitro restimulation of in vivo primed Tgfbr3fl/fl.dLcKCre T cells, under Th17 but not Th1 polarizing conditions, resulted in a significant increase of IFNγ+ T cells. Altogether, our data indicate that TβRIII is a coreceptor that functions as a key checkpoint in controlling the pathogenicity of autoreactive T cells in neuroinflammation probably through regulating plasticity of Th17 T cells into pathogenic Th1 cells. Importantly, this is the first demonstration that TβRIII has an intrinsic role in T cells.
Collapse
Affiliation(s)
- Samuel J. Duesman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sandra Ortega-Francisco
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Roxana Olguin-Alor
- National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Naray A. Acevedo-Dominguez
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Christine M. Sestero
- Department of Biology, Chemistry, Mathematics and Computer Science, University of Montevallo, Montevello, AL, United States
| | - Rajeshwari Chellappan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrizia De Sarno
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adrian Salgado-Lopez
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Marisol Segundo-Liberato
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Selina Montes de Oca-Lagunas
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gloria Soldevila
- Department of Immunology, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- National Laboratory of Flow Cytometry, Biomedical Research Institute, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
8
|
Mwaura AN, Riaz MA, Maoga JB, Mecha E, Omwandho COA, Scheiner-Bobis G, Meinhold-Heerlein I, Konrad L. Role of Betaglycan in TGF-β Signaling and Wound Healing in Human Endometriotic Epithelial Cells and in Endometriosis. BIOLOGY 2022; 11:biology11040513. [PMID: 35453712 PMCID: PMC9027931 DOI: 10.3390/biology11040513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Endometriosis is characterized by the presence of ectopic endometrium most often in the pelvis. The transforming growth factor-beta (TGF-β) superfamily is also involved in the pathogenesis; however, betaglycan (BG, syn. TGF-β type III receptor) as an important co-receptor was not studied. We analyzed mainly BG ectodomain shedding because released soluble BG (sBG) often antagonizes TGF-β signaling. Furthermore, we studied the role of TGF-βs and BG in wound healing and evaluated the suitability of BG measurements in serum and endocervical mucus for non-invasive diagnosis of endometriosis. Evaluation of the BG shedding and signaling pathways involved as well as wound healing was performed with enzyme-linked immune assays (ELISAs), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), small interfering RNA (siRNA) knockdown, and scratch assays with human endometriotic epithelial cells. TGF-β1/2 stimulation resulted in a significant dose-dependent reduction in BG shedding in endometriotic cells, which was TGF-β/activin receptor-like kinase-5 (ALK-5)/mother against decapentaplegic homolog3 (SMAD3)- but not SMAD2-dependent. Inhibition of matrix metalloproteinases (MMPs) using the pan-MMP inhibitor GM6001 and tissue inhibitor of MMPs (TIMP3) equally attenuated BG shedding, signifying the involvement of MMPs in shedding. Likewise, recombinant BG moderately reduced the secretion of TGF-β1/2 and wound healing of endometriotic cells. TGF-β1 significantly enhanced the secretion of MMP2 and MMP3 and moderately promoted wound healing. In order to evaluate the role of BG in endometriosis, serum (n = 238) and mucus samples (n = 182) were analyzed. Intriguingly, a significant reduction in the levels of sBG in endocervical mucus but not in the serum of endometriosis patients compared to controls was observed. Collectively, these observations support a novel role for BG in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Agnes N. Mwaura
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
| | - Muhammad A. Riaz
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
| | - Jane B. Maoga
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
| | - Ezekiel Mecha
- Department of Biochemistry, University of Nairobi, Nairobi 00100, Kenya;
| | | | - Georgios Scheiner-Bobis
- Institute for Veterinary Physiology and Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, D-35392 Giessen, Germany;
| | - Ivo Meinhold-Heerlein
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
| | - Lutz Konrad
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University, Feulgenstr. 10-12, D-35392 Giessen, Germany; (A.N.M.); (M.A.R.); (J.B.M.); (I.M.-H.)
- Correspondence: ; Tel./Fax: +49-641-985-45282
| |
Collapse
|
9
|
Luo Y, Chen R, Ning Z, Fu N, Xie M. Identification of a Four-Gene Signature for Determining the Prognosis of Papillary Thyroid Carcinoma by Integrated Bioinformatics Analysis. Int J Gen Med 2022; 15:1147-1160. [PMID: 35153506 PMCID: PMC8824688 DOI: 10.2147/ijgm.s346058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Although well-differentiated papillary thyroid carcinoma (PTC) has an indolent nature and usually an excellent prognosis, some patients experience disease recurrence or death. The aim of this study was to identify prognostic markers to stratify PTC patients. Patients and Methods Eight gene-expression profiles (GSE3467, GSE3678, GSE5364, GSE27155, GSE33630, GSE53157, GSE60542, and GSE104005) were obtained from the Gene Expression Omnibus and used to analyze differentially expressed genes (DEGs) between PTC tissues and non-tumor tissues. Univariable Cox regression survival analysis and Lasso-penalized Cox regression analysis were performed to identify prognostic genes and establish a risk-score model based on the integrated DEGs. Kaplan–Meier (KM) and receiver operating characteristic (ROC) curves were used to validate the prognostic performance of the risk score. A nomogram was constructed based on The Cancer Genome Atlas dataset and Multivariable Cox regression analysis. Results A total of 165 upregulated and 207 downregulated DEGs were screened. A four-gene signature including PAPSS2, PCOLCE2, PTX3, and TGFBR3 was identified. The risk-score model showed a strong diagnosis performance for identifying patients with a poor prognosis. KM analysis showed that patients with low risk scores had a significantly more favorable overall survival (OS) than those with high risk scores (p = 0.0002). ROC curves based on the four-gene signature showed better performances in predicting 1-, 3-, and 5-year survival than did the American Joint Committee on Cancer staging system (area under the curve: 0.86 vs 0.84, 0.80 vs 0.63, and 0.79 vs 0.73, respectively). Furthermore, when combined with age and tumor status from the nomogram, the four-gene signature achieved a good performance in guiding postoperative follow-up surveillance of patients with PTC. Conclusion The four-gene signature was found to be a novel and reliable biomarker with great potential for clinical application in risk stratification and OS prediction in patients with PTC.
Collapse
Affiliation(s)
- Yuting Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Rong Chen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhikun Ning
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Nantao Fu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Minghao Xie
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Correspondence: Minghao Xie, Department of General Surgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Road, Nanchang, Jiangxi, 330006, People’s Republic of China, Tel +8613672207521, Email
| |
Collapse
|
10
|
Lottini T, Iorio J, Lastraioli E, Carraresi L, Duranti C, Sala C, Armenio M, Noci I, Pillozzi S, Arcangeli A. Transgenic mice overexpressing the LH receptor in the female reproductive system spontaneously develop endometrial tumour masses. Sci Rep 2021; 11:8847. [PMID: 33893331 PMCID: PMC8065064 DOI: 10.1038/s41598-021-87492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
The receptor for the luteinizing hormone (LH-R) is aberrantly over expressed in cancers of the reproductive system. To uncover whether LH-R over expression has a causative role in cancer, we generated a transgenic (TG) mouse which overexpresses the human LH-R (hLH-R) in the female reproductive tract, under the control of the oviduct-specific glycoprotein (OGP) mouse promoter (mogp-1). The transgene was highly expressed in the uterus, ovary and liver, but only in the uterus morphological and molecular alterations (increased proliferation and trans-differentiation in the endometrial layer) were detected. A transcriptomic analysis on the uteri of young TG mice showed an up regulation of genes involved in cell cycle control and a down regulation of genes related to the immune system and the metabolism of xenobiotics. Aged TG females developed tumor masses in the uteri, which resembled an Endometrial Cancer (EC). Microarray and immunohistochemistry data indicated the deregulation of signaling pathways which are known to be altered in human ECs. The analysis of a cohort of 126 human ECs showed that LH-R overexpression is associated with early-stage tumors. Overall, our data led support to conclude that LH-R overexpression may directly contribute to trigger the neoplastic transformation of the endometrium.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | | | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Cesare Sala
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Miriam Armenio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Ivo Noci
- Department of Biochemical, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy.
- CSDC-Center for the Study of Complex Dynamics, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
11
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
12
|
Ahmed T, Mythreye K, Lee NY. Strength and duration of GIPC-dependent signaling networks as determinants in cancer. Neoplasia 2021; 23:181-188. [PMID: 33360508 PMCID: PMC7773760 DOI: 10.1016/j.neo.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/25/2022]
Abstract
GIPC is a PDZ-domain containing adaptor protein that regulates the cell surface expression and endocytic trafficking of numerous transmembrane receptors and signaling complexes. Interactions with over 50 proteins have been reported to date including VEGFR, insulin-like growth factor-1 receptor (IGF-1R), GPCRs, and APPL, many of which have essential roles in neuronal and cardiovascular development. In cancer, a major subset of GIPC-binding receptors and cytoplasmic effectors have been shown to promote tumorigenesis or metastatic progression, while other subsets have demonstrated strong tumor-suppressive effects. Given that these diverse pathways are widespread in normal tissues and human malignancies, precisely how these opposing signals are integrated and regulated within the same tumor setting likely depend on the strength and duration of their interactions with GIPC. This review highlights the major pathways and divergent mechanisms of GIPC signaling in various cancers and provide a rationale for emerging GIPC-targeted cancer therapies.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Nam Y Lee
- Deparment of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
13
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Plasma levels and tissue expression of soluble TGFβrIII receptor in women with early-stage breast cancer and in healthy women: a prospective observational study. J Transl Med 2020; 18:478. [PMID: 33308241 PMCID: PMC7733279 DOI: 10.1186/s12967-020-02659-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammary carcinogenesis is partly regulated by the transforming growth factor beta (TGFβ) signaling pathway. Its function in cancer progression and metastasis is highly dependent on disease stage, and it is likely modulated by the ratio of membrane-bound vs. soluble TGFβrIII (sTGFβrIII). In this prospective observational study, we assessed tissue expression and plasma levels of sTGFβrIII in healthy women, women with benign breast lesions and in early-stage breast cancer patients. METHODS In a preliminary study, plasma sTGFβrIII levels were determined in 13 healthy women (age 19-40 years) at different phases of the ovarian cycle, and in 15 patients (age 35-75 years) at different times of the day. The main study assessed plasma concentrations of sTGFβrIII in: (i) 158 healthy women in whom breast lesions were excluded; (ii) 65 women with benign breast lesions; (iii) 147 women with newly diagnosed breast cancer classified as American Joint Committee on Cancer (AJCC) stages 0 to IIB. Completers provided blood samples before surgery and at 10-30 and 160-180 days after surgery. Plasma sTGFβrIII concentrations were determined using an indirect ELISA kit. Part of the removed tissues underwent immunohistochemical (IHC) staining and analysis of tissue TGFβrIII expression. RESULTS There appeared no relevant variations in plasma sTGFßrIII levels at different times of the day or different ovarian cycle phases. Before surgery, breast cancer patients had somewhat higher sTGFβrIII than healthy women, or those with benign breast lesions (by 14.5 and 26 ng/mL, respectively), with a tendency of larger differences at higher age. This correlated with lower expression of TGFβrIII in breast cancer vs. healthy tissue samples. At 160-180 days after surgery, plasma sTGFβrIII levels in breast cancer patients declined by 23-26 ng/mL. CONCLUSIONS Plasma sTGFβrIII levels do not seem to relevantly vary during the day or the ovarian cycle. The coinciding higher plasma levels in newly diagnosed cancer patients than in healthy subjects and lower TGFβrIII expression in the malignant than in healthy breast tissue suggest ectodomain shedding as a source of circulating sTGFβrIII. Decline in plasma levels after tumor removal supports such a view.
Collapse
|
15
|
Zakrzewski PK, Forma E, Cygankiewicz AI, Bryś M, Wójcik-Krowiranda K, Bieńkiewicz A, Semczuk A, Krajewska WM. Betaglycan Gene ( TGFBR3) Polymorphism Is Associated with Increased Risk of Endometrial Cancer. J Clin Med 2020; 9:E3082. [PMID: 32987826 PMCID: PMC7650668 DOI: 10.3390/jcm9103082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023] Open
Abstract
We investigated single nucleotide polymorphism (SNP) of the betaglycan gene (TGFBR3) encoding the TGFβ co-receptor in endometrial cancer (EC) and its association with betaglycan expression. The study group included 153 women diagnosed with EC and 248 cancer-free controls. SNP genotyping and gene expression were analyzed using TaqMan probes. Three out of the eight SNPs tested, i.e., rs12566180 (CT; OR = 2.22; 95% CI = 1.15-4.30; p = 0.0177), rs6680463 (GC; OR = 2.34; 95% CI = 1.20-4.53; p = 0.0120) and rs2296621 (TT; OR = 6.40; 95% CI = 1.18-34.84; p = 0.0317) were found to be significantly associated with increased risk of EC (adjusted to age, body mass index, menarche and parity). Among the analyzed SNPs, only rs2296621 demonstrated the impact on the increased cancer aggressiveness evaluated by the WHO grading system (G3 vs. G1/2, GT-OR = 4.04; 95% CI = 1.56-10.51; p = 0.0026; T-OR = 2.38; 95% CI = 1.16-4.85; p = 0.0151). Linkage disequilibrium (LD) analysis revealed high LD (r2 ≥ 0.8) in two haploblocks, constructed by rs2770186/rs12141128 and rs12566180/rs6680463, respectively. In the case of C/C haplotype (OR = 4.82; 95% CI = 1.54-15.07; p = 0.0116-Bonferroni corrected) and T/G haplotype (OR = 3.25; 95% CI = 1.29-8.15; p = 0.0328-Bonferroni corrected) in haploblock rs12566180/rs6680463, significantly higher frequency was observed in patients with EC as compared to the control group. The genotype-phenotype studies showed that SNPs of the TGFBR3 gene associated with an increased risk of EC, i.e., rs12566180 and rs2296621 may affect betaglycan expression at the transcriptomic level (rs12566180-CC vs. TT, p < 0.01; rs2296621-GG vs. TT, p < 0.001, GT vs. TT, p < 0.05). Functional consequences of evaluated TGFBR3 gene SNPs were supported by RegulomeDB search. In conclusion, polymorphism of the TGFBR3 gene may be associated with an increased EC occurrence, as well as may be the molecular mechanism responsible for observed betaglycan down-regulation in EC patients.
Collapse
Affiliation(s)
- Piotr K. Zakrzewski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Adam I. Cygankiewicz
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| | - Katarzyna Wójcik-Krowiranda
- Department of Gynecological Oncology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland; (K.W.-K.); (A.B.)
| | - Andrzej Bieńkiewicz
- Department of Gynecological Oncology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland; (K.W.-K.); (A.B.)
| | - Andrzej Semczuk
- IInd Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wanda M. Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.F.); (A.I.C.); (M.B.); (W.M.K.)
| |
Collapse
|
16
|
Ahrens TD, Bang-Christensen SR, Jørgensen AM, Løppke C, Spliid CB, Sand NT, Clausen TM, Salanti A, Agerbæk MØ. The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Front Cell Dev Biol 2020; 8:749. [PMID: 32984308 PMCID: PMC7479181 DOI: 10.3389/fcell.2020.00749] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are accessible by liquid biopsies via an easy blood draw. They represent not only the primary tumor site, but also potential metastatic lesions, and could thus be an attractive supplement for cancer diagnostics. However, the analysis of rare CTCs in billions of normal blood cells is still technically challenging and novel specific CTC markers are needed. The formation of metastasis is a complex process supported by numerous molecular alterations, and thus novel CTC markers might be found by focusing on this process. One example of this is specific changes in the cancer cell glycocalyx, which is a network on the cell surface composed of carbohydrate structures. Proteoglycans are important glycocalyx components and consist of a protein core and covalently attached long glycosaminoglycan chains. A few CTC assays have already utilized proteoglycans for both enrichment and analysis of CTCs. Nonetheless, the biological function of proteoglycans on clinical CTCs has not been studied in detail so far. Therefore, the present review describes proteoglycan functions during the metastatic cascade to highlight their importance to CTCs. We also outline current approaches for CTC assays based on targeting proteoglycans by their protein cores or their glycosaminoglycan chains. Lastly, we briefly discuss important technical aspects, which should be considered for studying proteoglycans.
Collapse
Affiliation(s)
- Theresa D. Ahrens
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sara R. Bang-Christensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| | | | - Caroline Løppke
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte B. Spliid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Nicolai T. Sand
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas M. Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| |
Collapse
|
17
|
Gov E. Co-expressed functional module-related genes in ovarian cancer stem cells represent novel prognostic biomarkers in ovarian cancer. Syst Biol Reprod Med 2020; 66:255-266. [DOI: 10.1080/19396368.2020.1759730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Esra Gov
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
18
|
Schoonderwoerd MJA, Goumans MJTH, Hawinkels LJAC. Endoglin: Beyond the Endothelium. Biomolecules 2020; 10:biom10020289. [PMID: 32059544 PMCID: PMC7072477 DOI: 10.3390/biom10020289] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Keywords: endoglin; CD105 TGF-β; BMP9; ALK-1; TRC105; tumor microenvironment.
Collapse
Affiliation(s)
- Mark J. A. Schoonderwoerd
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Lukas J. A. C. Hawinkels
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-6736
| |
Collapse
|
19
|
In vivo imaging of TGFβ signalling components using positron emission tomography. Drug Discov Today 2019; 24:2258-2272. [DOI: 10.1016/j.drudis.2019.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/01/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
|
20
|
Huang JJ, Corona AL, Dunn BP, Cai EM, Prakken JN, Blobe GC. Increased type III TGF-β receptor shedding decreases tumorigenesis through induction of epithelial-to-mesenchymal transition. Oncogene 2019; 38:3402-3414. [PMID: 30643193 PMCID: PMC6586422 DOI: 10.1038/s41388-018-0672-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022]
Abstract
The type III TGF-β receptor (TβRIII) is a TGF-β co-receptor that presents ligand to the type II TGF-β receptor to initiate signaling. TβRIII also undergoes ectodomain shedding to release a soluble form (sTβRIII) that can bind ligand, sequestering it away from cell surface receptors. We have previously identified a TβRIII extracellular mutant that has enhanced ectodomain shedding ("super shedding (SS)"-TβRIII-SS). Here, we utilize TβRIII-SS to study the balance of cell surface and soluble TβRIII in the context of lung cancer. We demonstrate that expressing TβRIII-SS in lung cancer cell models induces epithelial-to-mesenchymal transition (EMT) and that these TβRIII-SS (EMT) cells are less migratory, invasive and adhesive and more resistant to gemcitabine. Moreover, TβRIII-SS (EMT) cells exhibit decreased tumorigenicity but increased growth rate in vitro and in vivo. These studies suggest that the balance of cell surface and soluble TβRIII may regulate a dichotomous role for TβRIII during cancer progression.
Collapse
Affiliation(s)
- Jennifer J Huang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Armando L Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Brian P Dunn
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Elise M Cai
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jesse N Prakken
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA. .,Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
21
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [PMID: 30905465 DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Han YL, Yin JJ, Cong JJ. Downregulation of microRNA-193-3p inhibits the progression of intrahepatic cholangiocarcinoma cells by upregulating TGFBR3. Exp Ther Med 2018; 15:4508-4514. [PMID: 29725386 DOI: 10.3892/etm.2018.5958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate the function of microRNA (miR)-193-3p in human intrahepatic cholangiocarcinoma (ICC) tissues and cells. To evaluate whether miR-193-3p was aberrantly upregulated, we used reverse transcription-quantitative polymerase chain reaction to detect the level of miR-193-3p in ICC tissues and ICC-9810 cells. The effects of miR-193-3p downregulation on ICC cell proliferation, migration and invasion were also measured by MTT, wound-healing and Transwell assays. Additionally, transforming growth factor-β receptor type 3 (TGFBR3) was investigated as a direct target of miR-193-3p by dual-luciferase reporter assays and western blot analyses. The results demonstrated that miR-193-3p was aberrantly upregulated in ICC tissues and cell lines. Furthermore, TGFBR3 was confirmed to be a target of miR-193-3p in ICC and was notably upregulated by miR-193-3p knockdown in the ICC-9810 cells. The knockdown of miR-193-3p also exerted direct inhibitory effects on the proliferation, migration and invasion of the ICC-9810 cells. Therefore, we present evidence that miR-193-3p plays a key role in promoting human ICC by regulating TGFBR3.
Collapse
Affiliation(s)
- Yu-Long Han
- Department of Hepatobiliary Laparoscopic Surgery Ward, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Jia-Jun Yin
- Department of Hepatobiliary Laparoscopic Surgery Ward, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Jian-Jun Cong
- Department of Hepatobiliary Laparoscopic Surgery Ward, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
23
|
Fang C, Dai CY, Mei Z, Jiang MJ, Gu DN, Huang Q, Tian L. microRNA-193a stimulates pancreatic cancer cell repopulation and metastasis through modulating TGF-β2/TGF-βRIII signalings. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:25. [PMID: 29433538 PMCID: PMC5809917 DOI: 10.1186/s13046-018-0697-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/02/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pancreatic cancer characterizes high recurrence and poor prognosis. In clinical practice, radiotherapy is widely used for pancreatic cancer treatment. However, the outcome remains undesirable due to tumor repopulation and following recurrence and metastasis after radiation. So, it is highly needed to explore the underlying molecular mechanisms and accordingly develop therapeutic strategies. Our previous studies revealed that dying cells from chemoradiation could stimulate repopulation of surviving pancreatic cancer cells. However, we still knew little how dying cells provoke pancreatic cancer cell repopulation. We herein would explore the significance of TGF-β2 changes and investigate the modulation of microRNA-193a (miR-193a), and identify their contributions to pancreatic cancer repopulation and metastasis. METHODS In vitro and in vivo repopulation models were established to mimic the biological processes of pancreatic cancer after radiation. Western blot, real-time PCR and dual-luciferase reporter assays were accordingly used to detect miR-193a and TGF-β2/TGF-βRIII signalings at the level of molecular, cellular and experimental animal model, respectively. Flow cytometry analysis, wound healing and transwell assay, vascular endothelial cell penetration experiment, and bioluminescence imaging were employed to assessthe biological behaviors of pancreatic cancer after different treatments. Patient-derived tumor xenograft (PDX) mice models were established to evaluate the therapeutic potential of miR-193a antagonist on pancreatic cancer repopulation and metastasis after radiation. RESULTS miR-193a was highly expressed in the irradiated pancreatic cancer dying cells, accordingly elevated the level of miR-193a in surviving cells, and further promoted pancreatic cancer repopulation and metastasis in vitro and in vivo. miR-193a accelerated pancreatic cancer cell cycle and stimulated cell proliferation and repopulation through inhibiting TGF-β2/TGF-βRIII/SMADs/E2F6/c-Myc signaling, and even destroyed normal intercellular junctions and promoted metastasis via repressing TGF-β2/TGF-βRIII/ARHGEF15/ABL2 pathway. Knockdown of miR-193a or restoration of TGF-β2/TGF-βRIII signaling in pancreatic cancer cells was found to block pancreatic cancer repopulation and metastasis after radiation. In PDX models, the treatment in combination with miR-193a antagonist and radiation was found to dramatically inhibit pancreatic cancer cell repopulation and metastasis, and further improved the survival after radiation. CONCLUSIONS Our findings demonstrated that miR-193a stimulated pancreatic cancer cell repopulation and metastasis through modulating TGF-β2/TGF-βRIII signalings, and miR-193a might be a potential therapeutic target for pancreatic cancer repopulation and metastasis.
Collapse
Affiliation(s)
- Chi Fang
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Yun Dai
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China
| | - Zhu Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jie Jiang
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dian-Na Gu
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tian
- Institute of Translational Medicine, Science bldg. Rm 205, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Rd No.650, Songjiang District, Shanghai, 201620, China. .,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
25
|
Nagarajan A, Malvi P, Wajapeyee N. Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression. Front Endocrinol (Lausanne) 2018; 9:483. [PMID: 30197623 PMCID: PMC6118229 DOI: 10.3389/fendo.2018.00483] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate (HS) are complex unbranched carbohydrate chains that are heavily modified by sulfate and exist either conjugated to proteins or as free, unconjugated chains. Proteins with covalently bound Heparan sulfate chains are termed Heparan Sulfate Proteoglycans (HSPGs). Both HS and HSPGs bind to various growth factors and act as co-receptors for different cell surface receptors. They also modulate the dynamics and kinetics of various ligand-receptor interactions, which in turn can influence the duration and potency of the signaling. HS and HSPGs have also been shown to exert a structural role as a component of the extracellular matrix, thereby altering processes such as cell adhesion, immune cell infiltration and angiogenesis. Previous studies have shown that HS are deregulated in a variety of solid tumors and hematological malignancies and regulate key aspects of cancer initiation and progression. HS deregulation in cancer can occur as a result of changes in the level of HSPGs or due to changes in the levels of HS biosynthesis and remodeling enzymes. Here, we describe the major cell-autonomous (proliferation, apoptosis/senescence and differentiation) and cell-non-autonomous (angiogenesis, immune evasion, and matrix remodeling) roles of HS and HSPGs in cancer. Finally, we discuss therapeutic opportunities for targeting deregulated HS biosynthesis and HSPGs as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Parmanand Malvi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Narendra Wajapeyee
| |
Collapse
|
26
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
27
|
Hu Q, Hisamatsu T, Haemmerle M, Cho MS, Pradeep S, Rupaimoole R, Rodriguez-Aguayo C, Lopez-Berestein G, Wong STC, Sood AK, Afshar-Kharghan V. Role of Platelet-Derived Tgfβ1 in the Progression of Ovarian Cancer. Clin Cancer Res 2017; 23:5611-5621. [PMID: 28611202 DOI: 10.1158/1078-0432.ccr-16-3272] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/16/2017] [Accepted: 06/06/2017] [Indexed: 01/08/2023]
Abstract
Purpose: Transforming growth factor β1 (Tgfβ1) plays an important role in cancer. Most of Tgfβ1 in plasma is from platelets; thus, we studied whether platelet Tgfβ1 has any role in the progression of ovarian cancer, and whether this role is limited to metastasis or also involves the growth of primary tumors.Experimental Design: We compared the growth of murine ovarian cancer cell-induced tumors in platelet-specific Tgfβ1-deficient mice and wild-type mice. Using resected tumor nodules, we studied the effect of platelet Tgfβ1 on neoangiogenesis and on platelet extravasation into tumors. To investigate the effect of Tgfβ1 at different stages of ovarian cancer, we reduced expression of Tgfβ1 receptor (its TgfβR1 component) in tumors at different time points after injection of cancer cells, and compared the final tumor size.Results: Lack of platelet Tgfβ1 in mice reduced tumor growth, neoangiogenesis, and platelet extravasation. Ovarian cancer tumors in platelet-specific Tgfβ1-deficient mice reached less than half of their size in wild-type littermates. Knockdown of TgfβR1 on cancer cells in the first 2 weeks after their injection reduced tumor growth, but was less effective if initiated after 3 weeks.Conclusions: We showed that platelet Tgfβ1 increased the growth of primary tumors in murine models of ovarian cancer. We also showed that inhibition of TgfβR1 is more effective in reducing the growth of ovarian cancer if initiated earlier. Our results supported a therapeutic benefit in preventing platelet activation, degranulation, and release of Tgfβ1 in ovarian cancer. Clin Cancer Res; 23(18); 5611-21. ©2017 AACR.
Collapse
Affiliation(s)
- Qianghua Hu
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takeshi Hisamatsu
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monika Haemmerle
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Soon Cho
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajesha Rupaimoole
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Gabriel Lopez-Berestein
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Anil K Sood
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Vahid Afshar-Kharghan
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
28
|
Joseph R, Srivastava OP, Pfister RR. Modeling Keratoconus Using Induced Pluripotent Stem Cells. Invest Ophthalmol Vis Sci 2017; 57:3685-97. [PMID: 27403997 PMCID: PMC5996875 DOI: 10.1167/iovs.16-19105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To model keratoconus (KC) using induced pluripotent stem cells (iPSC) generated from fibroblasts of both KC and normal human corneal stroma by a viral method. METHODS Both normal and KC corneal fibroblasts from four human donors were reprogramed directly by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, using a single polycistronic lentiviral vector coexpressing four transcription factors (Oct 4, Sox2, Klf4, and Myc) to yield iPSC. These iPS cells were characterized by immunofluorescence detection using of stem cell markers (SSEA4, Oct4, and Sox2). The mRNA sequencing was performed and the datasets were analyzed using ingenuity pathways analysis (IPA) software. RESULTS The generated stem cell-like clones expressed the pluripotency markers, SSEA4, Oct4, Sox2, Tra-1-60, and also expressed pax6. Our transcriptome analysis showed 4300 genes, which had 2-fold change and 870 genes with a q-value of <0.05 in keratoconus iPSC compared to normal iPSC. One of the genes that showed difference in KC iPSC was FGFR2 (down-regulated by 2.4 fold), an upstream target of Pi3-Kinase pathway, was further validated in keratoconus corneal sections and also KC iPSC-derived keratocytes (down regulated by 2.0-fold). Both normal and KC-derived keratocytes expressed keratocan, signature marker for keratocytes. KC iPSC-derived keratocytes showed adverse growth and proliferation and was further confirmed by using Ly2924002, a PI3k inhibitor, which severely affected the growth and differentiation in normal iPSC. CONCLUSIONS Based on our result, we propose a model for KC in which inhibition FGFR2-Pi3-Kinase pathway affects the AKT phosphorylation, and thus affecting the keratocytes survival signals. This inhibition of the survival signals could be a potential mechanism for the KC-specific decreased cell survival and apoptosis of keratocytes.
Collapse
Affiliation(s)
- Roy Joseph
- Department of Optometry and Vision Science University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P Srivastava
- Department of Optometry and Vision Science University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Roswell R Pfister
- Eye Research Laboratory, Eye Research Foundation, Birmingham, Alabama, United States
| |
Collapse
|
29
|
Sun F, Li X, Duan WQ, Tian W, Gao M, Yang J, Wu XY, Huang D, Xia W, Han YN, Wang JX, Liu YX, Dong CJ, Zhao D, Ban T, Chu WF. Transforming Growth Factor-β Receptor III is a Potential Regulator of Ischemia-Induced Cardiomyocyte Apoptosis. J Am Heart Assoc 2017; 6:JAHA.116.005357. [PMID: 28559372 PMCID: PMC5669164 DOI: 10.1161/jaha.116.005357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Myocardial infarction (MI) is often accompanied by cardiomyocyte apoptosis, which decreases heart function and leads to an increased risk of heart failure. The aim of this study was to examine the effects of transforming growth factor‐β receptor III (TGFβR3) on cardiomyocyte apoptosis during MI. Methods and Results An MI mouse model was established by left anterior descending coronary artery ligation. Cell viability, apoptosis, TGFβR3, and mitogen‐activated protein kinase signaling were assessed by methylthiazolyldiphenyl‐tetrazolium bromide assay, terminal deoxynucleotidyl transferase‐mediated dUTP nick end labeling assay, immunofluorescence, electron microscopy, and Western blotting. Our results demonstrated that TGFβR3 expression in the border region of the heart was dynamically changed during MI. After stimulation with H2O2, TGFβR3 overexpression in cardiomyocytes led to increased cell apoptosis and activation of p38 signaling, whereas TGFβR3 knockdown had the opposite effect. ERK1/2 and JNK1/2 signaling was not altered by TGFβR3 modulation, and p38 inhibitor (SB203580) reduced the effect of TGFβR3 on apoptosis, suggesting that p38 has a nonredundant function in activating apoptosis. Consistent with the in vitro observations, cardiac TGFβR3 transgenic mice showed augmented cardiomyocyte apoptosis, enlarged infarct size, increased injury, and enhanced p38 signaling upon MI. Conversely, cardiac loss of function of TGFβR3 by adeno‐associated viral vector serotype 9–TGFβR3 short hairpin RNA attenuated the effects of MI in mice. Conclusions TGFβR3 promotes apoptosis of cardiomyocytes via a p38 pathway–associated mechanism, and loss of TGFβR3 reduces MI injury, which suggests that TGFβR3 may serve as a novel therapeutic target for MI.
Collapse
Affiliation(s)
- Fei Sun
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen-Qi Duan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Tian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ming Gao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xia-Yang Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Di Huang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Xia
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan-Na Han
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia-Xin Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan-Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chang-Jiang Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Dan Zhao
- Department of Clinical Pharmacy (Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment), The 2nd Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tao Ban
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen-Feng Chu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O'Connell K, Mythreye K. Altering the Proteoglycan State of Transforming Growth Factor β Type III Receptor (TβRIII)/Betaglycan Modulates Canonical Wnt/β-Catenin Signaling. J Biol Chem 2016; 291:25716-25728. [PMID: 27784788 DOI: 10.1074/jbc.m116.748624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperactive Wnt/β-catenin signaling is linked to cancer progression and developmental abnormalities, making identification of mechanisms controlling Wnt/β-catenin signaling vital. Transforming growth factor β type III receptor (TβRIII/betaglycan) is a transmembrane proteoglycan co-receptor that exists with or without heparan and/or chondroitin sulfate glycosaminoglycan (GAG) modifications in cells and has established roles in development and cancer. Our studies here demonstrate that TβRIII, independent of its TGFβ co-receptor function, regulates canonical Wnt3a signaling by controlling Wnt3a availability through its sulfated GAG chains. Our findings revealed, for the first time, opposing functions for the different GAG modifications on TβRIII suggesting that Wnt interactions with the TβRIII heparan sulfate chains result in inhibition of Wnt signaling, likely via Wnt sequestration, whereas the chondroitin sulfate GAG chains on TβRIII promote Wnt3a signaling. These studies identify a novel, dual role for TβRIII/betaglycan and define a key requirement for the balance between chondroitin sulfate and heparan sulfate chains in dictating ligand responses with implications for both development and cancer.
Collapse
Affiliation(s)
- Laura M Jenkins
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Priyanka Singh
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Archana Varadaraj
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Nam Y Lee
- the Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Shreya Shah
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Haley V Flores
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Kathleen O'Connell
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Karthikeyan Mythreye
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, .,the Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, and
| |
Collapse
|
31
|
Shed proteoglycans in tumor stroma. Cell Tissue Res 2016; 365:643-55. [DOI: 10.1007/s00441-016-2452-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
|
32
|
Zhang S, Sun WY, Wu JJ, Gu YJ, Wei W. Decreased expression of the type III TGF-β receptor enhances metastasis and invasion in hepatocellullar carcinoma progression. Oncol Rep 2016; 35:2373-81. [PMID: 26882862 DOI: 10.3892/or.2016.4615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
The transforming growth factor β (TGF-β) superfamily of cytokines is multifunctional and involved in the regulation of cell growth and differentiation. TGF-β can induce an epithelial-mesenchymal transition (EMT) of both epithelial and endothelial cells. This has consequences for cancer progression in regards to both migration and invasion abilities. The type III TGF-β receptor (TβRIII) is a ubiquitously expressed TGF-β co-receptor which regulates TGF-β signaling and the progression of various types of cancer. Previous studies have shown that TβRIII exhibits abnormal expression and plays an essential role in regulating cancer invasion and metastasis, while little is known in regards to its role in hepatocellular carcinoma (HCC) progression. In the present study, we designed the present research to study the role of TβRIII in the invasion and metastasis of HCC and the possible mechanisms involved. The results demonstrated decreased expression of TβRIII in HCC patient tissues and human HCC cell lines. TGF-β1 stimulation led to the increased migratory ability and reduced expression of TβRIII in HCC cells. In addition, knockdown of TβRIII by small interfering RNA (siRNA) promoted the migration and invasion of HCC cells and induced activation of the Smad2 and Akt pathways. All the results suggest that TβRIII is a novel suppressor of HCC progression.
Collapse
Affiliation(s)
- Sen Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine of the Chinese Education Ministry, Anhui Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine of the Chinese Education Ministry, Anhui Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Jing-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine of the Chinese Education Ministry, Anhui Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Yuan-Jing Gu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine of the Chinese Education Ministry, Anhui Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immune Medicine of the Chinese Education Ministry, Anhui Collaborative Innovation Center of Anti‑inflammatory and Immune Medicine, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
33
|
ZAKRZEWSKI PIOTRK, NOWACKA-ZAWISZA MARIA, SEMCZUK ANDRZEJ, RECHBERGER TOMASZ, GAŁCZYŃSKI KRZYSZTOF, KRAJEWSKA WANDAM. Significance of TGFBR3 allelic loss in the deregulation of TGFβ signaling in primary human endometrial carcinomas. Oncol Rep 2015; 35:932-8. [DOI: 10.3892/or.2015.4400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/08/2015] [Indexed: 11/05/2022] Open
|
34
|
Fernández-Vega I, García-Suárez O, García B, Crespo A, Astudillo A, Quirós LM. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character. BMC Cancer 2015; 15:742. [PMID: 26482785 PMCID: PMC4617710 DOI: 10.1186/s12885-015-1724-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
Background Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Methods Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Results Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Conclusions Right sided CRCs show alterations in the expression of HSPGs, including the expression of the cell surface core proteins, many glycosiltransferases and some enzymes that modify the HS chains depending on the metastatic nature of the tumor, resulting more affected in non-metastatic ones. However, matrix proteoglycans and enzymes involved in CS fine structure synthesis are extensively modified independetly of the presence of lymph node metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1724-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Fernández-Vega
- Servicio de Patología. Hospital Universitario de Araba, Álava, 01009, Spain.
| | - Olivia García-Suárez
- Department of Morphology and Cell Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Beatriz García
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Ainara Crespo
- Department of Biotechnology, Neiker-Tecnalia Arkaute, 01080, Vitoria-Gasteiz, Spain.
| | - Aurora Astudillo
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Pathology, Hospital, Universitario Central de Asturias, 33006, Oviedo, Spain.
| | - Luis M Quirós
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
35
|
Tazat K, Hector-Greene M, Blobe GC, Henis YI. TβRIII independently binds type I and type II TGF-β receptors to inhibit TGF-β signaling. Mol Biol Cell 2015; 26:3535-45. [PMID: 26269580 PMCID: PMC4591696 DOI: 10.1091/mbc.e15-04-0203] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023] Open
Abstract
Study of the TβRIII interaction with the signaling TGF-β receptors shows that TβRIII homo-oligomerization is indirect, depending largely on interactions with GIPC scaffolds. TβRI and II bind independently to TβRIII, competing with TβRI-TβRII complex formation and inhibiting Smad2/3 signaling by a mechanism independent of TβRIII ectodomain shedding. Transforming growth factor-β (TGF-β) receptor oligomerization has important roles in signaling. Complex formation among type I and type II (TβRI and TβRII) TGF-β receptors is well characterized and is essential for signal transduction. However, studies on their interactions with the type III TGF-β coreceptor (TβRIII) in live cells and their effects on TGF-β signaling are lacking. Here we investigated the homomeric and heteromeric interactions of TβRIII with TβRI and TβRII in live cells by combining IgG-mediated patching/immobilization of a given TGF-β receptor with fluorescence recovery after photobleaching studies on the lateral diffusion of a coexpressed receptor. Our studies demonstrate that TβRIII homo-oligomerization is indirect and depends on its cytoplasmic domain interactions with scaffold proteins (mainly GIPC). We show that TβRII and TβRI bind independently to TβRIII, whereas TβRIII augments TβRI/TβRII association, suggesting that TβRI and TβRII bind to TβRIII simultaneously but not as a complex. TβRIII expression inhibited TGF-β–mediated Smad2/3 signaling in MDA-MB-231 cell lines, an effect that depended on the TβRIII cytoplasmic domain and did not require TβRIII ectodomain shedding. We propose that independent binding of TβRI and TβRII to TβRIII competes with TβRI/TβRII signaling complex formation, thus inhibiting TGF-β–mediated Smad signaling.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel )
| |
Collapse
|
36
|
Gatza CE, Elderbroom JL, Oh SY, Starr MD, Nixon AB, Blobe GC. The balance of cell surface and soluble type III TGF-β receptor regulates BMP signaling in normal and cancerous mammary epithelial cells. Neoplasia 2015; 16:489-500. [PMID: 25077702 PMCID: PMC4198744 DOI: 10.1016/j.neo.2014.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily that are over-expressed in breast cancer, with context dependent effects on breast cancer pathogenesis. The type III TGF-β receptor (TβRIII) mediates BMP signaling. While TβRIII expression is lost during breast cancer progression, the role of TβRIII in regulating BMP signaling in normal mammary epithelium and breast cancer cells has not been examined. Restoring TβRIII expression in a 4T1 murine syngeneic model of breast cancer suppressed Smad1/5/8 phosphorylation and inhibited the expression of the BMP transcriptional targets, Id1 and Smad6, in vivo. Similarly, restoring TβRIII expression in human breast cancer cell lines or treatment with sTβRIII inhibited BMP-induced Smad1/5/8 phosphorylation and BMP-stimulated migration and invasion. In normal mammary epithelial cells, shRNA-mediated silencing of TβRIII, TβRIII over-expression, or treatment with sTβRIII inhibited BMP-mediated phosphorylation of Smad1/5/8 and BMP induced migration. Inhibition of TβRIII shedding through treatment with TAPI-2 or expression of a non-shedding TβRIII mutant rescued TβRIII mediated inhibition of BMP induced Smad1/5/8 phosphorylation and BMP induced migration and/or invasion in both in normal mammary epithelial cells and breast cancer cells. Conversely, expression of a TβRIII mutant, which exhibited increased shedding, significantly reduced BMP-mediated Smad1/5/8 phosphorylation, migration, and invasion. These data demonstrate that TβRIII regulates BMP-mediated signaling and biological effects, primarily through the ligand sequestration effects of sTβRIII in normal and cancerous mammary epithelial cells and suggest that the ratio of membrane bound versus sTβRIII plays an important role in mediating these effects.
Collapse
Affiliation(s)
| | - Jennifer L Elderbroom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Sun Young Oh
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Mark D Starr
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Andrew B Nixon
- Department of Medicine, Duke University Medical Center, Durham, NC
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC.
| |
Collapse
|
37
|
Bilandzic M, Wang Y, Ahmed N, Luwor RB, Zhu HJ, Findlay JK, Stenvers KL. Betaglycan blocks metastatic behaviors in human granulosa cell tumors by suppressing NFκB-mediated induction of MMP2. Cancer Lett 2014; 354:107-14. [DOI: 10.1016/j.canlet.2014.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/10/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
|
38
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jovanović B, Beeler JS, Pickup MW, Chytil A, Gorska AE, Ashby WJ, Lehmann BD, Zijlstra A, Pietenpol JA, Moses HL. Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer. Breast Cancer Res 2014; 16:R69. [PMID: 24985072 PMCID: PMC4095685 DOI: 10.1186/bcr3684] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction There is a major need to better understand the molecular basis of triple negative breast cancer (TNBC) in order to develop effective therapeutic strategies. Using gene expression data from 587 TNBC patients we previously identified six subtypes of the disease, among which a mesenchymal-stem like (MSL) subtype. The MSL subtype has significantly higher expression of the transforming growth factor beta (TGF-β) pathway-associated genes relative to other subtypes, including the TGF-β receptor type III (TβRIII). We hypothesize that TβRIII is tumor promoter in mesenchymal-stem like TNBC cells. Methods Representative MSL cell lines SUM159, MDA-MB-231 and MDA-MB-157 were used to study the roles of TβRIII in the MSL subtype. We stably expressed short hairpin RNAs specific to TβRIII (TβRIII-KD). These cells were then used for xenograft tumor studies in vivo; and migration, invasion, proliferation and three dimensional culture studies in vitro. Furthermore, we utilized human gene expression datasets to examine TβRIII expression patterns across all TNBC subtypes. Results TβRIII was the most differentially expressed TGF-β signaling gene in the MSL subtype. Silencing TβRIII expression in MSL cell lines significantly decreased cell motility and invasion. In addition, when TβRIII-KD cells were grown in a three dimensional (3D) culture system or nude mice, there was a loss of invasive protrusions and a significant decrease in xenograft tumor growth, respectively. In pursuit of the mechanistic underpinnings for the observed TβRIII-dependent phenotypes, we discovered that integrin-α2 was expressed at higher level in MSL cells after TβRIII-KD. Stable knockdown of integrin-α2 in TβRIII-KD MSL cells rescued the ability of the MSL cells to migrate and invade at the same level as MSL control cells. Conclusions We have found that TβRIII is required for migration and invasion in vitro and xenograft growth in vivo. We also show that TβRIII-KD elevates expression of integrin-α2, which is required for the reduced migration and invasion, as determined by siRNA knockdown studies of both TβRIII and integrin-α2. Overall, our results indicate a potential mechanism in which TβRIII modulates integrin-α2 expression to effect MSL cell migration, invasion, and tumorigenicity.
Collapse
|
40
|
Meyer AE, Gatza CE, How T, Starr M, Nixon AB, Blobe GC. Role of TGF-β receptor III localization in polarity and breast cancer progression. Mol Biol Cell 2014; 25:2291-304. [PMID: 24870032 PMCID: PMC4116303 DOI: 10.1091/mbc.e14-03-0825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The majority of breast cancers originate from the highly polarized luminal epithelial cells lining the breast ducts. However, cell polarity is often lost during breast cancer progression. The type III transforming growth factor-β cell surface receptor (TβRIII) functions as a suppressor of breast cancer progression and also regulates the process of epithelial-to-mesenchymal transition (EMT), a consequence of which is the loss of cell polarity. Many cell surface proteins exhibit polarized expression, being targeted specifically to the apical or basolateral domains. Here we demonstrate that TβRIII is basolaterally localized in polarized breast epithelial cells and that disruption of the basolateral targeting of TβRIII through a single amino acid mutation of proline 826 in the cytosolic domain results in global loss of cell polarity through enhanced EMT. In addition, the mistargeting of TβRIII results in enhanced proliferation, migration, and invasion in vitro and enhanced tumor formation and invasion in an in vivo mouse model of breast carcinoma. These results suggest that proper localization of TβRIII is critical for maintenance of epithelial cell polarity and phenotype and expand the mechanisms by which TβRIII prevents breast cancer initiation and progression.
Collapse
Affiliation(s)
- Alison E Meyer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Catherine E Gatza
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Tam How
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Mark Starr
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Andrew B Nixon
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
41
|
The type III TGFβ receptor regulates filopodia formation via a Cdc42-mediated IRSp53-N-WASP interaction in epithelial cells. Biochem J 2013; 454:79-89. [PMID: 23750457 DOI: 10.1042/bj20121701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell adhesion and migration are tightly controlled by regulated changes in the actin cytoskeleton. Previously we reported that the TGFβ (transforming growth factor β) superfamily co-receptor, TβRIII (type III TGFβ receptor; also known as βglycan), regulates cell adhesion, migration and invasion, and suppresses cancer progression, in part, through activation of the small GTPase Cdc42 (cell division cycle 42), and Cdc42-dependent alterations to the actin cytoskeleton. In the present study we demonstrate that TβRIII specifically promotes filopodial formation and extension in MCF10A and HMEC (human mammary epithelial cell) mammary epithelial cells. Mechanistically, cell-surface TβRIII and Cdc42 co-localize to filopodial structures and co-complex in a β-arrestin2-dependent, and a TβRI/TβRII-independent manner. The β-arrestin2-mediated interaction between TβRIII and Cdc42 increases complex formation between the Cdc42 effectors IRSp53 with N-WASP (neuronal Wiskott-Aldrich syndrome protein) to increase filopodial formation. We demonstrate a function link between filopodial structures and epithelial cell adhesion as regulated by the TβRIII-Cdc42 interaction. The present studies identify TβRIII as a novel regulator of IRSp53/N-WASP via Cdc42 to regulate filopodial formation and cell adhesion.
Collapse
|
42
|
Liu XL, Xue BX, Lei Z, Yang DR, Zhang QC, Shan YX, Zhang HT. TGFBR3 co-downregulated with GATA3 is associated with methylation of the GATA3 gene in bladder urothelial carcinoma. Anat Rec (Hoboken) 2013; 296:1717-23. [PMID: 24124001 DOI: 10.1002/ar.22802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/08/2022]
Abstract
Bladder urothelial carcinoma (BUC) accounts for ∼90% of all cases of bladder cancer. Reduced expression of TGFBR3 has been frequently observed in several types of human cancers. However, little is known about whether expression of TGFBR3 reduced in BUC and the underlying mechanisms. In the present study, we performed quantitative real-time PCR to examine the mRNA expression of TGFBR3 and GATA3, and bisulfite genomic sequencing to evaluate the methylation status in TGFBR3 and GATA3 promoter regions in fresh tumor and the corresponding paracarcinoma tissues from 29 patients with BUC. As a result, the expression of TGFBR3 and GATA3, a transcriptional factor of the TGFBR3 gene, were found to be co-downregulated in BUC. Moreover, our findings indicated that GATA3 promoter methylation was one of the reasons for silencing of GATA3 and TGFBR3 in BUC, albeit TGFBR3 methylation and mutation were not associated with reduced expression of TGFBR3 mRNA in BUC. In summary, our findings suggest that methylation in the GATA3 promoter region may inhibit the expression of GATA3 mRNA, which leads to the reduced expression of TGFBR3 mRNA in BUC.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Ataie-Kachoie P, Badar S, Morris DL, Pourgholami MH. Minocycline targets the NF-κB Nexus through suppression of TGF-β1-TAK1-IκB signaling in ovarian cancer. Mol Cancer Res 2013; 11:1279-91. [PMID: 23858099 DOI: 10.1158/1541-7786.mcr-13-0239] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Substantial evidence supports the critical role of NF-κB in ovarian cancer. Minocycline, a tetracycline, has been shown to exhibit beneficial effects in this malignancy through regulation of a cohort of genes that overlap significantly with the NF-κB transcriptome. Here, it was examined whether or not the molecular mechanism could be attributed to modulation of NF-κB signaling using a combination of in vitro and in vivo models. Minocycline suppressed constitutive NF-κB activation in OVCAR-3 and SKOV-3 ovarian carcinoma cells and was correlated with attenuation of IκBα kinase (IKK) activation, IκBα phosphorylation and degradation, and p65 phosphorylation and nuclear translocation. The inhibition of IKK was found to be associated with suppression of TGF-β-activated-kinase-1 (TAK1) activation and its dissociation from TAK1-binding-protein-1 (TAB1), an indispensable functional mediator between TGF-β and TAK1. Further studies demonstrated that minocycline downregulated TGF-β1 expression. Enforced TGF-β1 expression induced NF-κB activity, and minocycline rescued this effect. Consistent with this finding, TGF-β1 knockdown suppressed NF-κB activation and abrogated the inhibitory effect of minocycline on this transcription factor. These results suggest that the minocycline-induced suppression of NF-κB activity is mediated, in part, through inhibition of TGF-β1. Furthermore, the influence of minocycline on NF-κB pathway activation was examined in female nude mice harboring intraperitoneal OVCAR-3 tumors. Both acute and chronic administration of minocycline led to suppression of p65 phosphorylation and nuclear translocation accompanied by downregulation of NF-κB activity and endogenous protein levels of its target gene products. These data reveal the therapeutic potential of minocycline as an agent targeting the pro-oncogenic TGF-β-NF-κB axis in ovarian cancer. IMPLICATIONS This preclinical study lends support to the notion that ovarian cancer management would benefit from administration of minocycline.
Collapse
Affiliation(s)
- Parvin Ataie-Kachoie
- Professor and Head of Department of Surgery, Level 3 Pitney Building, St. George Hospital, Gray St., Kogarah, Sydney, NSW 2217, Australia.
| | | | | | | |
Collapse
|
44
|
LIU XIAOLONG, XIAO KEBING, XUE BOXIN, YANG DONGRONG, LEI ZHE, SHAN YUXI, ZHANG HONGTAO. Dual role of TGFBR3 in bladder cancer. Oncol Rep 2013; 30:1301-8. [DOI: 10.3892/or.2013.2599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/12/2013] [Indexed: 11/06/2022] Open
|
45
|
CCN6 knockdown disrupts acinar organization of breast cells in three-dimensional cultures through up-regulation of type III TGF-β receptor. Neoplasia 2013; 14:1067-74. [PMID: 23226100 DOI: 10.1593/neo.121322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 01/15/2023] Open
Abstract
While normal cells in the human breast are organized into acinar structures, disruption of the acinar architecture is a hallmark of cancer. In a three-dimensional model of morphogenesis, we show that down-regulation of the matrix-associated tumor suppressor protein CCN6 (WNT1-inducible-signaling pathway protein 3) disrupts breast epithelial cell polarity and organization into acini through up-regulation of the type III transforming growth factor-β receptor (TβRIII or betaglycan). Down-regulation of CCN6 in benign breast cells led to loss of tissue polarity and resulted in cellular disorganization with loss of α6 integrin-rich basement membrane and the basolateral polarity protein E-cadherin. Silencing of TβRIII with shRNA and siRNA rescued the ability of breast epithelial cells to form polarized acinar structures with reduced matrix invasion and restored the correct expression of α6 integrin and E-cadherin. Conversely, CCN6 overexpression in aggressive breast cancer cells reduced TβRIII in vitro and in a xenograft model of CCN6 overexpression. The relevance of our studies to human breast cancer is highlighted by the finding that CCN6 protein levels are inversely associated with TβRIII protein in 64%of invasive breast carcinomas. These results reveal a novel function of the matricellular protein CCN6 and establish a mechanistic link between CCN6 and TβRIII in maintaining acinar organization in the breast.
Collapse
|
46
|
Mythreye K, Knelson EH, Gatza CE, Gatza ML, Blobe GC. TβRIII/β-arrestin2 regulates integrin α5β1 trafficking, function, and localization in epithelial cells. Oncogene 2013; 32:1416-27. [PMID: 22562249 PMCID: PMC3835656 DOI: 10.1038/onc.2012.157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/15/2012] [Accepted: 03/28/2012] [Indexed: 12/15/2022]
Abstract
The type III TGF-β receptor (TβRIII) is a ubiquitous co-receptor for TGF-β superfamily ligands with roles in suppressing cancer progression, in part through suppressing cell motility. Here we demonstrate that TβRIII promotes epithelial cell adhesion to fibronectin in a β-arrestin2 dependent and TGF-β/BMP independent manner by complexing with active integrin α5β1, and mediating β-arrestin2-dependent α5β1 internalization and trafficking to nascent focal adhesions. TβRIII-mediated integrin α5β1 trafficking regulates cell adhesion and fibronectin fibrillogenesis in epithelial cells, as well as α5 localization in breast cancer patients. We further demonstrate that increased TβRIII expression correlates with increased α5 localization at sites of cell-cell adhesion in breast cancer patients, while higher TβRIII expression is a strong predictor of overall survival in breast cancer patients. These data support a novel, clinically relevant role for TβRIII in regulating integrin α5 localization, reveal a novel crosstalk mechanism between the integrin and TGF-β superfamily signaling pathways and identify β-arrestin2 as a regulator of α5β1 trafficking.
Collapse
Affiliation(s)
| | - Erik H. Knelson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27708, USA
| | - Catherine E. Gatza
- Department of Medicine, Duke University Medical Center, Durham NC 27708, USA
| | - Michael L. Gatza
- Duke IGSP, Duke University Medical Center, Durham, NC 27708, USA
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center, Durham NC 27708, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27708, USA
| |
Collapse
|
47
|
Transient overexpression of TGFBR3 induces apoptosis in human nasopharyngeal carcinoma CNE-2Z cells. Biosci Rep 2013; 33:e00029. [PMID: 23387308 PMCID: PMC3596095 DOI: 10.1042/bsr20120047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NPC (nasopharyngeal carcinoma) is a common malignancy in southern China without defined aetiology. Recent studies have shown that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), exhibits anticancer activities. This study was to investigate the effects of TGFBR3 on NPC growth and the mechanisms for its actions. Effects of TGFBR3 overexpression on cell viability and apoptosis were measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], AO/EB (acridine orange/ethidium bromide) staining and electron microscopy in human NPC CNE-2Z cells. The expression of apoptosis-related proteins, p-Bad, Bad, XIAP (X-linked inhibitor of apoptosis), AIF (apoptosis-inducing factor), Bax and Bcl-2, was determined by Western blot or immunofluorescence analysis. Caspase 3 activity was measured by caspase 3 activity kit and [Ca2+]i (intracellular Ca2+ concentration) was detected by confocal microscopy. Transfection of TGFBR3 containing plasmid DNA at concentrations of 0.5 and 1 μg/ml reduced viability and induced apoptosis in CNE-2Z in concentration- and time-dependent manners. Forced expression of TGFBR3 up-regulated pro-apoptotic Bad and Bax protein, and down-regulated anti-apoptotic p-Bad, Bcl-2 and XIAP protein. Furthermore, transient overexpression of TGFBR3 also enhanced caspase 3 activity, increased [Ca2+]i and facilitated AIF redistribution from the mitochondria to the nucleus in CNE-2Z cells, which is independent of the caspase 3 pathway. These events were associated with TGFBR3-regulated multiple targets involved in CNE-2Z proliferation. Therefore transient overexpression of TGFBR3 may be a novel strategy for NPC prevention and therapy.
Collapse
|
48
|
Bilandzic M, Chu S, Wang Y, Tan HL, Fuller PJ, Findlay JK, Stenvers KL. Betaglycan alters NFκB-TGFβ2 cross talk to reduce survival of human granulosa tumor cells. Mol Endocrinol 2013; 27:466-79. [PMID: 23322721 DOI: 10.1210/me.2012-1239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular pathways controlling granulosa cell tumor (GCT) survival are poorly understood. In many cell types, nuclear factor-κB (NFκB) and TGFβ coordinately regulate cell survival to maintain tissue homeostasis. Because GCT cell lines exhibit constitutively activated NFκB, we hypothesized that NFκB blocks TGFβ-mediated cell death in GCT cells. To test this hypothesis, we used the human GCT cell line KGN, which exhibits loss of betaglycan, a TGFβ co-receptor. After inhibition of NFκB in KGN cells, re-expression of betaglycan resulted in a decrease in cell viability, which was further decreased by TGFβ2. Intriguingly, TGFβ2 increased NFκB reporter activity in control cells, but betaglycan expression suppressed both basal and TGFβ2-stimulated NFκB activity. Chemical inhibition of Mothers against decapentaplegic homolog 2/3 (SMAD2/3) signaling or SMAD2/3 gene silencing revealed that both SMADs contributed to cell survival. Furthermore, inhibiting NFκB activity resulted in a specific reduction in SMAD3 expression. Conversely, overexpression of SMAD3 increased basal NFκB activity and countered betaglycan-mediated suppression of NFκB activity. Finally, ERK1/2 activation emerged as the point of convergence of NFκB, SMAD3, and TGFβ2/betaglycan governance of GCT cell viability. Key findings in KGN cells were reproduced in a second GCT cell line, COV434. Collectively, our data establish that both SMAD2/3 and NFκB signaling pathways support GCT cell viability and suggest the existence of a positive feedback loop between NFκB and SMAD3 signaling in late-stage GCT. Furthermore, our data suggest that loss of betaglycan during tumor progression in GCT alters the functional outcomes generated by NFκB and TGFβ pathway cross talk.
Collapse
Affiliation(s)
- Maree Bilandzic
- Prince Henry’s Institute, Department of Developmental Biology and Anatomy, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ko SY, Barengo N, Ladanyi A, Lee JS, Marini F, Lengyel E, Naora H. HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest 2012; 122:3603-17. [PMID: 22945634 DOI: 10.1172/jci62229] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 07/12/2012] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancers (EOCs) often exhibit morphologic features of embryonic Müllerian duct-derived tissue lineages and colonize peritoneal surfaces that overlie connective and adipose tissues. However, the mechanisms that enable EOC cells to readily adapt to the peritoneal environment are poorly understood. In this study, we show that expression of HOXA9, a Müllerian-patterning gene, is strongly associated with poor outcomes in patients with EOC and in mouse xenograft models of EOC. Whereas HOXA9 promoted EOC growth in vivo, HOXA9 did not stimulate autonomous tumor cell growth in vitro. On the other hand, expression of HOXA9 in EOC cells induced normal peritoneal fibroblasts to express markers of cancer-associated fibroblasts (CAFs) and to stimulate growth of EOC and endothelial cells. Similarly, expression of HOXA9 in EOC cells induced normal adipose- and bone marrow-derived mesenchymal stem cells (MSCs) to acquire features of CAFs. These effects of HOXA9 were due in substantial part to its transcriptional activation of the gene encoding TGF-β2 that acted in a paracrine manner on peritoneal fibroblasts and MSCs to induce CXCL12, IL-6, and VEGF-A expression. These results indicate that HOXA9 expression in EOC cells promotes a microenvironment that is permissive for tumor growth.
Collapse
Affiliation(s)
- Song Yi Ko
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Watson LN, Mottershead DG, Dunning KR, Robker RL, Gilchrist RB, Russell DL. Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis. Endocrinology 2012; 153:4544-55. [PMID: 22759380 DOI: 10.1210/en.2012-1181] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the ovarian follicle, oocyte-secreted factors induce cumulus-specific genes and repress mural granulosa cell specific genes to establish these functionally distinct cell lineages. The mechanism establishing this precise morphogenic pattern of oocyte signaling within the follicle is unknown. The present study investigated a role for heparan sulphate proteoglycans (HSPG) as coreceptors mediating oocyte secreted factor signaling. In vitro maturation of cumulus oocyte complexes in the presence of exogenous heparin, which antagonizes HSPG signaling, prevented cumulus expansion and blocked the induction of cumulus-specific matrix genes, Has2 and Tnfaip6, whereas conversely, the mural granulosa-specific genes, Lhcgr and Cyp11a1, were strongly up-regulated. Heparin also blocked phosphorylation of SMAD2. Exogenous growth differentiation factor (GDF)-9 reversed these heparin effects; furthermore, GDF9 strongly bound to heparin sepharose. These observations indicate that heparin binds endogenous GDF9 and disrupts interaction with heparan sulphate proteoglycan coreceptor(s), important for GDF9 signaling. The expression of candidate HSPG coreceptors, Syndecan 1-4, Glypican 1-6, and Betaglycan, was examined. An ovulatory dose of human chorionic gonadotropin down-regulated Betaglycan in cumulus cells, and this regulation required GDF9 activity; conversely, Betaglycan was significantly increased in luteinizing mural granulosa cells. Human chorionic gonadotropin caused very strong induction of Syndecan 1 and Syndecan 4 in mural granulosa as well as cumulus cells. Glypican 1 was selectively induced in cumulus cells, and this expression appeared dependent on GDF9 action. These data suggest that HSPG play an essential role in GDF9 signaling and are involved in the patterning of oocyte signaling and cumulus cell function in the periovulatory follicle.
Collapse
Affiliation(s)
- Laura N Watson
- Robinson Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide 5005, Australia
| | | | | | | | | | | |
Collapse
|