1
|
Li K, Guo B, Gu J, Ta N, Gu J, Yu H, Sun M, Han T. Emerging advances in drug delivery systems (DDSs) for optimizing cancer complications. Mater Today Bio 2025; 30:101375. [PMID: 39759851 PMCID: PMC11699619 DOI: 10.1016/j.mtbio.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
The management and treatment of tumor complications pose continuous challenges due to the inherent complexity. However, the advent of drug delivery systems (DDSs) brings promising opportunities to address the tumor complications using innovative technological approaches. This review focuses on common oncological complications, including cancer thrombosis, malignant serous effusion, tumor-associated infections, cancer pain, and treatment-related complications. Emphasis was placed on the application and potential of DDSs in mitigating and treating these tumor complications, and we delved into the underlying mechanisms of common cancer-associated complications, discussed the limitations of conventional treatments, and outlined the current status and potential development of DDSs for various complications in this review. Moreover, we have discussed the existing challenges in DDSs research, underscoring the need for addressing issues related to biocompatibility and targeting of DDSs, optimizing drug delivery routes, and enhancing delivery efficiency and precision. In conclusion, DDSs offer promising avenues for treating cancer complications, offering the potential for the development of more effective and safer drug delivery strategies, thereby improving the quality of life and survival rates of cancer patients.
Collapse
Affiliation(s)
- Kerui Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Bei Guo
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110001, China
| | - Junmou Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Na Ta
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hao Yu
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110001, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Wang L, Yu Y, Fang Y, Li Y, Yu W, Wang Z, Lv J, Wang R, Liang S. Malignant pleural effusion facilitates the establishment and maintenance of tumor organoid biobank with multiple patient-derived lung tumor cell sources. Exp Hematol Oncol 2024; 13:115. [PMID: 39548571 PMCID: PMC11566167 DOI: 10.1186/s40164-024-00581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
The Patient-Derived Organoids (PDOs) has demonstrated significant potential in personalized medicine. However, the initial establishment of lung cancer organoids (LCOs), and timely therapeutic recommendations face several challenges. Particularly, the current culture systems have not yet achieved the capability to long-term cultivation of all lung tumor sample sources, including malignant pleural effusion (MPE), which poses significant barriers to the rapid clinical translation of PDOs. Here, we established a LCOs biobank derived from various tumor cell origins and investigated the impact of supplementing culture media with MPE supernatant on organoid formation, culture duration, and drug sensitivity. Our findings indicate that MPE can enhance the successful rate of LCOs by extending the passage number and promoting the initial formation of difficult-to-culture samples, such as those derived from MPE or cell lines that were previously unsuccessful in Airway Organoid (AO) medium. MPE also facilitates the rapid proliferation of LCOs, reducing the culture duration by over 50%. Additionally, LCOs exhibit increased chemoresistance in the presence of MPE, which modifies stem cell distribution and reshapes the internal structure of the organoids. Overall, this study highlights the significance of MPE in facilitating the establishment and maintenance of LCOs, and its potential for translational applications in lung cancer research and personalized.
Collapse
Affiliation(s)
- Lingwei Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
- Department of Thoracic Surgery, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116011, China
| | - Yanli Yu
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Yanhua Fang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Yanjiao Li
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Weiting Yu
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Zhe Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Jinyan Lv
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Ruoyu Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
| | - Shanshan Liang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
| |
Collapse
|
3
|
Zhang M, Xia L, Peng W, Xie G, Li F, Zhang C, Syeda MZ, Hu Y, Lan F, Yan F, Jin Z, Du X, Han Y, Lv B, Wang Y, Li M, Fei X, Zhao Y, Chen K, Chen Y, Li W, Chen Z, Zhou Q, Zhang M, Ying S, Shen H. CCL11/CCR3-dependent eosinophilia alleviates malignant pleural effusions and improves prognosis. NPJ Precis Oncol 2024; 8:138. [PMID: 38951159 PMCID: PMC11217290 DOI: 10.1038/s41698-024-00608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024] Open
Abstract
Malignant pleural effusion (MPE) is a common occurrence in advanced cancer and is often linked with a poor prognosis. Eosinophils were reported to involve in the development of MPE. However, the role of eosinophils in MPE remains unclear. To investigate this, we conducted studies using both human samples and mouse models. Increased eosinophil counts were observed in patients with MPE, indicating that the higher the number of eosinophils is, the lower the LENT score is. In our animal models, eosinophils were found to migrate to pleural cavity actively upon exposure to tumor cells. Intriguingly, we discovered that a deficiency in eosinophils exacerbated MPE, possibly due to their anti-tumor effects generated by modifying the microenvironment of MPE. Furthermore, our experiments explored the role of the C-C motif chemokine ligand 11 (CCL11) and its receptor C-C motif chemokine receptor 3 (CCR3) in MPE pathology. As a conclusion, our study underscores the protective potential of eosinophils against the development of MPE, and that an increase in eosinophils through adoptive transfer of eosinophils or increasing their numbers improved MPE.
Collapse
Affiliation(s)
- Min Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lixia Xia
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fei Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Madiha Zahra Syeda
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Fen Lan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Fugui Yan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhangchu Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xufei Du
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yinling Han
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Baihui Lv
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yuejue Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Miao Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xia Fei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Kaijun Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yan Chen
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- State Key Lab for Respiratory Diseases, National Clinical Research Centre for Respiratory Disease, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
4
|
Lee JH, Hallis SP, Kwak MK. Continuous TNF-α exposure in mammary epithelial cells promotes cancer phenotype acquisition via EGFR/TNFR2 activation. Arch Pharm Res 2024; 47:465-480. [PMID: 38734854 DOI: 10.1007/s12272-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Tumor necrosis factor alpha (TNF-α), an abundant inflammatory cytokine in the tumor microenvironment (TME), is linked to breast cancer growth and metastasis. In this study, we established MCF10A cell lines incubated with TNF-α to investigate the effects of continuous TNF-α exposure on the phenotypic change of normal mammary epithelial cells. The established MCF10A-LE cell line, through long-term exposure to TNF-α, displayed cancer-like features, including increased proliferation, migration, and sustained survival signaling even in the absence of TNF-α stimulation. Unlike the short-term exposed cell line MCF10A-SE, MCF10A-LE exhibited elevated levels of epidermal growth factor receptor (EGFR) and subsequent TNF receptor 2 (TNFR2), and silencing of EGFR or TNFR2 suppressed the cancer-like phenotype of MCF10A-LE. Notably, we demonstrated that the elevated levels of NAD(P)H oxidase 4 (NOX4) and the resulting increase in reactive oxygen species (ROS) were associated with EGFR/TNFR2 elevation in MCF10A-LE. Furthermore, mammosphere-forming capacity and the expression of cancer stem cell (CSC) markers increased in MCF10A-LE. Silencing of EGFR reversed these effects, indicating the acquisition of CSC-like properties via EGFR signaling. In conclusion, our results reveal that continuous TNF-α exposure activates the EGFR/TNFR2 signaling pathway via the NOX4/ROS axis, promoting neoplastic changes in mammary epithelial cells within the inflammatory TME.
Collapse
Affiliation(s)
- Jin-Hee Lee
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Steffanus Pranoto Hallis
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- Department of Pharmacy and BK21FOUR Advanced Program for SmartPharma Leaders, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
5
|
Wang MJ, Xia Y, Gao QL. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. Curr Med Sci 2024; 44:261-272. [PMID: 38561595 DOI: 10.1007/s11596-024-2859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Lei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Gonnelli F, Hassan W, Bonifazi M, Pinelli V, Bedawi EO, Porcel JM, Rahman NM, Mei F. Malignant pleural effusion: current understanding and therapeutic approach. Respir Res 2024; 25:47. [PMID: 38243259 PMCID: PMC10797757 DOI: 10.1186/s12931-024-02684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
Malignant pleural effusion (MPE) is a common complication of thoracic and extrathoracic malignancies and is associated with high mortality and elevated costs to healthcare systems. Over the last decades the understanding of pathophysiology mechanisms, diagnostic techniques and optimal treatment intervention in MPE have been greatly advanced by recent high-quality research, leading to an ever less invasive diagnostic approach and more personalized management. Despite a number of management options, including talc pleurodesis, indwelling pleural catheters and combinations of the two, treatment for MPE remains symptom directed and centered around drainage strategy. In the next future, because of a better understanding of underlying tumor biology together with more sensitive molecular diagnostic techniques, it is likely that combined diagnostic and therapeutic procedures allowing near total outpatient management of MPE will become popular. This article provides a review of the current advances, new discoveries and future directions in the pathophysiology, diagnosis and management of MPE.
Collapse
Affiliation(s)
- Francesca Gonnelli
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona Via Conca 71, Ancona, 60126, Italy
| | - Wafa Hassan
- Department of Respiratory Medicine, Sheffield Teaching Hospitals, University of Sheffield, Sheffield, UK
| | - Martina Bonifazi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona Via Conca 71, Ancona, 60126, Italy
| | | | - Eihab O Bedawi
- Department of Respiratory Medicine, Sheffield Teaching Hospitals, University of Sheffield, Sheffield, UK
| | - José M Porcel
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova, University Hospital, Lleida, Spain
| | - Najib M Rahman
- Oxford Pleural Unit, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Unit, Oxford, UK
- Chinese Academy of Medicine Oxford Institute, Oxford, UK
| | - Federico Mei
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona Via Conca 71, Ancona, 60126, Italy.
| |
Collapse
|
7
|
Han M, Li S, Fan H, An J, Peng C, Peng F. Regulated cell death in glioma: promising targets for natural small-molecule compounds. Front Oncol 2024; 14:1273841. [PMID: 38304870 PMCID: PMC10830839 DOI: 10.3389/fonc.2024.1273841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Gliomas are prevalent malignant tumors in adults, which can be categorized as either localized or diffuse gliomas. Glioblastoma is the most aggressive and deadliest form of glioma. Currently, there is no complete cure, and the median survival time is less than one year. The main mechanism of regulated cell death involves organisms coordinating the elimination of damaged cells at risk of tumor transformation or cells hijacked by microorganisms for pathogen replication. This process includes apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, necrosis, parthanayosis, entosis, lysosome-dependent death, NETosis, oxiptosis, alkaliptosis, and disulfidaptosis. The main goal of clinical oncology is to develop therapies that promote the effective elimination of cancer cells by regulating cell death are the main goal of clinical oncology. Recently, scientists have utilized pertinent regulatory factors and natural small-molecule compounds to induce regulated cell death for the treatment of gliomas. By analyzing the PubMed and Web of Science databases, this paper reviews the research progress on the regulation of cell death and the role of natural small-molecule compounds in glioma. The aim is to provide help for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Mingyu Han
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Sui Li
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Huali Fan
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Junsha An
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Piggott LM, Hayes C, Greene J, Fitzgerald DB. Malignant pleural disease. Breathe (Sheff) 2023; 19:230145. [PMID: 38351947 PMCID: PMC10862126 DOI: 10.1183/20734735.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Malignant pleural disease represents a growing healthcare burden. Malignant pleural effusion affects approximately 1 million people globally per year, causes disabling breathlessness and indicates a shortened life expectancy. Timely diagnosis is imperative to relieve symptoms and optimise quality of life, and should give consideration to individual patient factors. This review aims to provide an overview of epidemiology, pathogenesis and suggested diagnostic pathways in malignant pleural disease, to outline management options for malignant pleural effusion and malignant pleural mesothelioma, highlighting the need for a holistic approach, and to discuss potential challenges including non-expandable lung and septated effusions.
Collapse
Affiliation(s)
- Laura M. Piggott
- Department of Respiratory Medicine, Tallaght University Hospital, Dublin, Ireland
- Department of Respiratory Medicine, St. James's Hospital, Dublin, Ireland
- These authors contributed equally
| | - Conor Hayes
- Department of Respiratory Medicine, Tallaght University Hospital, Dublin, Ireland
- Department of Respiratory Medicine, St. James's Hospital, Dublin, Ireland
- These authors contributed equally
| | - John Greene
- Department of Oncology, Tallaght University Hospital, Dublin, Ireland
| | | |
Collapse
|
9
|
Marqués M, Pont M, Hidalgo I, Sorolla MA, Parisi E, Salud A, Sorolla A, Porcel JM. MicroRNAs Present in Malignant Pleural Fluid Increase the Migration of Normal Mesothelial Cells In Vitro and May Help Discriminate between Benign and Malignant Effusions. Int J Mol Sci 2023; 24:14022. [PMID: 37762343 PMCID: PMC10531386 DOI: 10.3390/ijms241814022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The sensitivity of pleural fluid (PF) analyses for the diagnosis of malignant pleural effusions (MPEs) is low to moderate. Knowledge about the pathobiology and molecular characteristics of this condition is limited. In this study, the crosstalk between stromal cells and tumor cells was investigated in vitro in order to reveal factors that are present in PF which can mediate MPE formation and aid in discriminating between benign and malignant etiologies. Eighteen PF samples, in different proportions, were exposed in vitro to mesothelial MeT-5A cells to determine the biological effects on these cells. Treatment of normal mesothelial MeT-5A cells with malignant PF increased cell viability, proliferation, and migration, and activated different survival-related signaling pathways. We identified differentially expressed miRNAs in PF samples that could be responsible for these changes. Consistently, bioinformatics analysis revealed an enrichment of the discovered miRNAs in migration-related processes. Notably, the abundance of three miRNAs (miR-141-3p, miR-203a-3, and miR-200c-3p) correctly classified MPEs with false-negative cytological examination results, indicating the potential of these molecules for improving diagnosis. Malignant PF produces phenotypic and functional changes in normal mesothelial cells. These changes are partly mediated by certain miRNAs, which, in turn, could serve to differentiate malignant from benign effusions.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Mariona Pont
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - José M. Porcel
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
10
|
Whitfield HJ, Berthelet J, Mangiola S, Bell C, Anderson RL, Pal B, Yeo B, Papenfuss AT, Merino D, Davis MJ. Single-cell RNA sequencing captures patient-level heterogeneity and associated molecular phenotypes in breast cancer pleural effusions. Clin Transl Med 2023; 13:e1356. [PMID: 37691350 PMCID: PMC10493486 DOI: 10.1002/ctm2.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Malignant pleural effusions (MPEs) are a common complication of advanced cancers, particularly those adjacent to the pleura, such as lung and breast cancer. The pathophysiology of MPE formation remains poorly understood, and although MPEs are routinely used for the diagnosis of breast cancer patients, their composition and biology are poorly understood. It is difficult to distinguish invading malignant cells from resident mesothelial cells and to identify the directionality of interactions between these populations in the pleura. There is a need to characterize the phenotypic diversity of breast cancer cell populations in the pleural microenvironment, and investigate how this varies across patients. METHODS Here, we used single-cell RNA-sequencing to study the heterogeneity of 10 MPEs from seven metastatic breast cancer patients, including three Miltenyi-enriched samples using a negative selection approach. This dataset of almost 65 000 cells was analysed using integrative approaches to compare heterogeneous cell populations and phenotypes. RESULTS We identified substantial inter-patient heterogeneity in the composition of cell types (including malignant, mesothelial and immune cell populations), in expression of subtype-specific gene signatures and in copy number aberration patterns, that captured variability across breast cancer cell populations. Within individual MPEs, we distinguished mesothelial cell populations from malignant cells using key markers, the presence of breast cancer subtype expression patterns and copy number aberration patterns. We also identified pleural mesothelial cells expressing a cancer-associated fibroblast-like transcriptomic program that may support cancer growth. CONCLUSIONS Our dataset presents the first unbiased assessment of breast cancer-associated MPEs at a single cell resolution, providing the community with a valuable resource for the study of MPEs. Our work highlights the molecular and cellular diversity captured in MPEs and motivates the potential use of these clinically relevant biopsies in the development of targeted therapeutics for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Holly J. Whitfield
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Jean Berthelet
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Stefano Mangiola
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Caroline Bell
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Robin L. Anderson
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Peter MacCallum Cancer CentreParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
| | - Bhupinder Pal
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Belinda Yeo
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Austin HealthHeidelbergVictoriaAustralia
| | - Anthony T. Papenfuss
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneCarltonVictoriaAustralia
| | - Delphine Merino
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
- Immunology DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Melissa J. Davis
- Department of Medical Biology, The Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- Bioinformatics DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Clinical Pathology, Faculty of MedicineDentistry and Health Science, The University of MelbourneCarltonVictoriaAustralia
- The University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- The South Australian Immunogenomics Cancer InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
11
|
Liu S, Zhao Y, Zhang J, Liu Z. Application of single-cell RNA sequencing analysis of novel breast cancer phenotypes based on the activation of ferroptosis-related genes. Funct Integr Genomics 2023; 23:173. [PMID: 37212877 DOI: 10.1007/s10142-023-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Ferroptosis is distinct from classic apoptotic cell death characterized by the accumulation of reactive oxygen species (ROS) and lipid peroxides on the cell membrane. Increasing findings have demonstrated that ferroptosis plays an important role in cancer development, but the exploration of ferroptosis in breast cancer is limited. In our study, we aimed to establish a ferroptosis activation-related model based on the differentially expressed genes between a group exhibiting high ferroptosis activation and a group exhibiting low ferroptosis activation. By using machine learning to establish the model, we verified the accuracy and efficiency of our model in The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) set and gene expression omnibus (GEO) dataset. Additionally, our research innovatively utilized single-cell RNA sequencing data to systematically reveal the microenvironment in the high and low FeAS groups, which demonstrated differences between the two groups from comprehensive aspects, including the activation condition of transcription factors, cell pseudotime features, cell communication, immune infiltration, chemotherapy efficiency, and potential drug resistance. In conclusion, different ferroptosis activation levels play a vital role in influencing the outcome of breast cancer patients and altering the tumor microenvironment in different molecular aspects. By analyzing differences in ferroptosis activation levels, our risk model is characterized by a good prognostic capacity in assessing the outcome of breast cancer patients, and the risk score can be used to prompt clinical treatment to prevent potential drug resistance. By identifying the different tumor microenvironment landscapes between the high- and low-risk groups, our risk model provides molecular insight into ferroptosis in breast cancer patients.
Collapse
Affiliation(s)
- Shuochuan Liu
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Yajie Zhao
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Jiao Zhang
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Dongming Road, Zhengzhou, 450008, Henan Province, China
| | - Zhenzhen Liu
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Dongming Road, Zhengzhou, 450008, Henan Province, China.
| |
Collapse
|
12
|
Rajasegaran T, How CW, Saud A, Ali A, Lim JCW. Targeting Inflammation in Non-Small Cell Lung Cancer through Drug Repurposing. Pharmaceuticals (Basel) 2023; 16:ph16030451. [PMID: 36986550 PMCID: PMC10051080 DOI: 10.3390/ph16030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths. Lung cancers can be classified as small-cell (SCLC) or non-small cell (NSCLC). About 84% of all lung cancers are NSCLC and about 16% are SCLC. For the past few years, there have been a lot of new advances in the management of NSCLC in terms of screening, diagnosis and treatment. Unfortunately, most of the NSCLCs are resistant to current treatments and eventually progress to advanced stages. In this perspective, we discuss some of the drugs that can be repurposed to specifically target the inflammatory pathway of NSCLC utilizing its well-defined inflammatory tumor microenvironment. Continuous inflammatory conditions are responsible to induce DNA damage and enhance cell division rate in lung tissues. There are existing anti-inflammatory drugs which were found suitable for repurposing in non-small cell lung carcinoma (NSCLC) treatment and drug modification for delivery via inhalation. Repurposing anti-inflammatory drugs and their delivery through the airway is a promising strategy to treat NSCLC. In this review, suitable drug candidates that can be repurposed to treat inflammation-mediated NSCLC will be comprehensively discussed together with their administration via inhalation from physico-chemical and nanocarrier perspectives.
Collapse
Affiliation(s)
- Thiviyadarshini Rajasegaran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Anoosha Saud
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azhar Ali
- Cancer Science Institute Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jonathan Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
13
|
Adhikari S, Hussain Sheikh A, Baildya N, Mahmoudi G, Alam Choudhury N, Okpareke O, Sen T, Kumar Verma A, Kumar Singh R, Pathak S, Kaminsky W. Antiproliferative Evaluation and Supramolecular Properties of a Pd(II) complex Harvested from Benzil bis(pyridyl hydrazone) Ligand: Combined Experimental and Theoretical Studies. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Paik PK, Luo J, Ai N, Kim R, Ahn L, Biswas A, Coker C, Ma W, Wong P, Buonocore DJ, Lai WV, Chaft JE, Acharyya S, Massagué J, Kris MG. Phase I trial of the TNF-α inhibitor certolizumab plus chemotherapy in stage IV lung adenocarcinomas. Nat Commun 2022; 13:6095. [PMID: 36241629 PMCID: PMC9568581 DOI: 10.1038/s41467-022-33719-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
We previously identified a chemotherapy-induced paracrine inflammatory loop that paradoxically mitigates the anti-tumor effect of chemotherapy and triggers metastatic propagation in breast and lung cancer models. Therefore, we sought to further validate and translate these findings into patient care by coupling the anti-TNF-α drug certolizumab pegol with standard cisplatin doublet chemotherapy. Here we first validate the anti-metastatic effect of certolizumab in a liver-metastatic Lewis Lung Carcinoma model. We then evaluate the safety, efficacy, and pharmacodynamic effects of certolizumab with cisplatin and pemetrexed in an open label Phase 1 clinical trial (NCT02120807) of eighteen adult patients with stage IV lung adenocarcinomas. The primary outcome is maximum tolerated dose. Secondary outcomes are response rate and progression-free survival (PFS); pharmacodynamic changes in blood and tumor are evaluated as a correlative outcome. There were nine partial responses among 16 patients evaluable (56%, 95% CI 30 to 80%). The median duration of response was 9.0 months (range 5.9 to 42.6 months) and median PFS was 7.1 months (95% CI 6.3 to NR). The standard 400 mg dose of certolizumab, added to cisplatin and pemetrexed, is well-tolerated and, as a correlative endpoint, demonstrates potent pharmacodynamic inhibition of peripheral cytokines associated with the paracrine inflammatory loop.
Collapse
Affiliation(s)
- Paul K Paik
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Jia Luo
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ni Ai
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Rachel Kim
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Ahn
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anup Biswas
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Courtney Coker
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Wanchao Ma
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Phillip Wong
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren J Buonocore
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W Victoria Lai
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jamie E Chaft
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Joan Massagué
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark G Kris
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
15
|
Li X, Chen L, Peng X, Zhan X. Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front Oncol 2022; 12:911410. [PMID: 35965509 PMCID: PMC9366252 DOI: 10.3389/fonc.2022.911410] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
As a significant public health problem with high morbidity and mortality worldwide, tumor is one of the major diseases endangering human life. Moreover, metastasis is the most important contributor to the death of tumor patients. Epithelial-mesenchymal transition (EMT) is an essential biological process in developing primary tumors to metastasis. It underlies tumor progression and metastasis by inducing a series of alterations in tumor cells that confer the ability to move and migrate. Tumor-associated macrophages (TAMs) are one of the primary infiltrating immune cells in the tumor microenvironment, and they play an indispensable role in the EMT process of tumor cells by interacting with tumor cells. With the increasing clarity of the relationship between TAMs and EMT and tumor metastasis, targeting TAMs and EMT processes is emerging as a promising target for developing new cancer therapies. Therefore, this paper reviews the recent research progress of tumor-associated macrophages in tumor epithelial-mesenchymal transition and briefly discusses the current anti-tumor therapies targeting TAMs and EMT processes.
Collapse
Affiliation(s)
| | | | - Xiaobo Peng
- *Correspondence: Xiaobo Peng, ; Xianbao Zhan,
| | | |
Collapse
|
16
|
Sun Y, Hu Y, Wan C, Lovell JF, Jin H, Yang K. Local biomaterial-assisted antitumour immunotherapy for effusions in the pleural and peritoneal cavities caused by malignancies. Biomater Sci 2021; 9:6381-6390. [PMID: 34582527 DOI: 10.1039/d1bm00971k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant pleural effusion (MPE) and malignant ascites (MA), which are common but serious conditions caused by malignancies, are related to poor quality of life and high mortality. Current treatments, including therapeutic thoracentesis and indwelling pleural catheters or paracentesis and catheter drainage, are largely palliative. An effective treatment is urgently needed. MPE and MA are excellent candidates for intratumoural injections that have direct contact with tumour cells and kill tumour cells more effectively and efficiently with fewer side effects, and the fluid environment of MPE and MA can provide a homogeneous area for drug distribution. The immunosuppressive environments within the pleural and peritoneal cavities suggest the feasibility of local immunotherapy. In this review, we introduce the current management of MPE and MA, discuss the latest advances and challenges in utilizing local biomaterial-assisted antitumour therapies for the treatment of MPE and MA, and discuss further opportunities in this field.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jonathan F Lovell
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York. Buffalo, New York, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Zhao L, Giannou AD, Xu Y, Shiri AM, Liebold I, Steglich B, Bedke T, Zhang T, Lücke J, Scognamiglio P, Kempski J, Woestemeier A, Chen J, Agalioti T, Zazara DE, Lindner D, Janning M, Hennigs JK, Jagirdar RM, Kotsiou OS, Zarogiannis SG, Kobayashi Y, Izbicki JR, Ghosh S, Rothlin CV, Bosurgi L, Huber S, Gagliani N. Efferocytosis fuels malignant pleural effusion through TIMP1. SCIENCE ADVANCES 2021; 7:7/33/eabd6734. [PMID: 34389533 PMCID: PMC8363144 DOI: 10.1126/sciadv.abd6734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/24/2021] [Indexed: 06/03/2023]
Abstract
Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.
Collapse
Affiliation(s)
- Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, 350003 Fuzhou, People's Republic of China
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imke Liebold
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jing Chen
- Department of Pharmacy, Dong Fang Hospital (900 Hospital of the Joint Logistics Team), School of Medicine, Xiamen University, 350025 Fuzhou, People's Republic of China
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E Zazara
- Center for Obstetrics and Pediatrics, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 33 280, 69120 Heidelberg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim and Medical Faculty Mannheim, University of Heidelberg Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Jan K Hennigs
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Yasushi Kobayashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jacob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lidia Bosurgi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
18
|
The Association Between Pleural Fluid Exposure and Survival in Pleural Mesothelioma. Chest 2021; 160:1925-1933. [PMID: 34119515 DOI: 10.1016/j.chest.2021.05.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Most patients with malignant pleural mesothelioma (MPM) seek treatment with malignant pleural effusion (MPE). In vitro evidence suggests that MPE may not be a simple bystander of malignancy, but rather potentially has biological properties that improve cancer cell survival and promote cancer progression. If this is the case, MPE management may need to shift from current symptomatic strategies to aggressive fluid removal to impact survival. RESEARCH QUESTION Is there an association between pleural fluid exposure and survival in MPM? STUDY DESIGN AND METHODS Data from 761 patients who received a diagnosis of MPM between 2008 and 2018 were collected from patient medical records in three UK pleural units. Data included factors previously identified as influencing prognosis in MPM. Medical imaging was reviewed for presence, size, and duration of pleural effusion. Time-dependent covariate analysis of pleural fluid exposure and survival (model included weight loss, serum albumin, hemoglobin, MPM subtype, performance status, chemotherapy, and age) and multivariate Cox regression analysis of pleurodesis and survival were conducted. RESULTS Median overall survival was 278 days (interquartile range, 127-505 days; 95% CI, 253-301 days). Pleural fluid exposure duration showed no association with survival (hazard ratio, 1.0; 95% CI, 1.0-1.0). Median survival was 473, 378, and 258 days with complete, partial, and no pleurodesis (P = .008). INTERPRETATION Pleurodesis success seems to be associated with improved survival; however, it is unclear whether duration of MPM exposure to pleural fluid is associated with survival within the limitations of this retrospective study. Future prospective studies are required to assess this potentially important mechanism.
Collapse
|
19
|
Tan Z, Xue H, Sun Y, Zhang C, Song Y, Qi Y. The Role of Tumor Inflammatory Microenvironment in Lung Cancer. Front Pharmacol 2021; 12:688625. [PMID: 34079469 PMCID: PMC8166205 DOI: 10.3389/fphar.2021.688625] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common and fatal malignant tumor in the world. The tumor microenvironment (TME) is closely related to the occurrence and development of lung cancer, in which the inflammatory microenvironment plays an important role. Inflammatory cells and inflammatory factors in the tumor inflammatory microenvironment promote the activation of the NF-κB and STAT3 inflammatory pathways and the occurrence, development, and metastasis of lung cancer by promoting immune escape, tumor angiogenesis, epithelial-mesenchymal transition, apoptosis, and other mechanisms. Clinical and epidemiological studies have also shown a strong relationship among chronic infection, inflammation, inflammatory microenvironment, and lung cancer. The relationship between inflammation and lung cancer can be better understood through the gradual understanding of the tumor inflammatory microenvironment, which is advantageous to find more therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Zhaofeng Tan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haibin Xue
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yuli Sun
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonglei Song
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanfu Qi
- Departments of Oncology Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Asciak R, Kanellakis NI, Yao X, Abd Hamid M, Mercer RM, Hassan M, Bedawi EO, Dobson M, Fsadni P, Montefort S, Dong T, Rahman NM, Psallidas I. Pleural Fluid Has Pro-Growth Biological Properties Which Enable Cancer Cell Proliferation. Front Oncol 2021; 11:658395. [PMID: 33996582 PMCID: PMC8115017 DOI: 10.3389/fonc.2021.658395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives Patients with malignant pleural mesothelioma (MPM) or pleural metastases often present with malignant pleural effusion (MPE). This study aimed to analyze the effect of pleural fluid on cancer cells. Materials and Methods Established patient-derived cancer cell cultures derived from MPE (MPM, breast carcinoma, lung adenocarcinoma) were seeded in 100% pleural fluid (exudate MPM MPE, transudate MPE, non-MPE transudate fluid) and proliferation was monitored. In addition, the establishment of new MPM cell cultures, derived from MPE specimens, was attempted by seeding the cells in 100% MPE fluid. Results All established cancer cell cultures proliferated with similar growth rates in the different types of pleural fluid. Primary MPM cell culture success was similar with MPE fluid as with full culture medium. Conclusions Pleural fluid alone is adequate for cancer cell proliferation in vitro, regardless of the source of pleural fluid. These results support the hypothesis that pleural fluid has important pro-growth biological properties, but the mechanisms for this effect are unclear and likely not malignant effusion specific.
Collapse
Affiliation(s)
- Rachelle Asciak
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Mater Dei Hospital, Msida, Malta
| | - Nikolaos I Kanellakis
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Megat Abd Hamid
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel M Mercer
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Maged Hassan
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Eihab O Bedawi
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Melissa Dobson
- Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Research and Early Development, Respiratory & Immunology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
21
|
Hocking AJ, Farrall AL, Newhouse S, Sordillo P, Greco K, Karapetis CS, Dougherty B, Klebe S. Study protocol of a phase 1 clinical trial establishing the safety of intrapleural administration of liposomal curcumin: curcumin as a palliative treatment for malignant pleural effusion (IPAL-MPE). BMJ Open 2021; 11:e047075. [PMID: 33782024 PMCID: PMC8009239 DOI: 10.1136/bmjopen-2020-047075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION This is a phase 1, open-label, single-centre, uncontrolled, dose-escalation study to evaluate the feasibility, tolerability and pharmacokinetic profiles of a single dose of liposomal curcumin, administered via an existing tunnelled indwelling pleural catheter (TIPC) directly to the tumour site in individuals with diagnoses of malignant pleural effusion. Primarily, we aim to determine a maximum tolerated dose of liposomal curcumin administered via this method. METHODS AND ANALYSIS We will use a 3+3 expanded cohort for predefined dose-escalation levels or until a predefined number of dose-limiting toxicities are reached. Participants will be administered a single dose of liposomal curcumin (LipoCurc, SignPath Pharma) via their existing TIPC as a sequential enrolling case series with the following dose cohorts: 100, 200 and 300 mg/m2. Primary endpoints are determination of the maximum tolerated dose within the predetermined dose range, and determination of the feasibility of intrapleural administration of liposomal curcumin via an existing TIPC. Secondary endpoints include determination of the safety and tolerability of intrapleural administration of liposomal curcumin, median overall survival, effects on quality of life and on feelings of breathlessness, and the pharmacokinetics and concentrations of curcumin from the plasma and the pleural fluid. Important inclusion criteria include age ≥18 years, an existing TIPC, a pleural biopsy or pleural fluid cytology-proven diagnosis of malignant pleural effusion and for whom no antitumour therapy of proven benefit is available or has been previously declined, eastern cooperative group performance status <2. ETHICS AND DISSEMINATION The study protocol has been approved by the Southern Adelaide Local Health Network Human Research Ethics Committee (HREC) (approval number: HREC/20/SAC/11). Study results will be published in peer-reviewed journals, and presented at conferences, in field of medical oncology and respiratory medicine. TRIAL REGISTRATION NUMBER ACTRN12620001216909. PROTOCOL VERSION NUMBER V.1.0.
Collapse
Affiliation(s)
| | - Alexandra L Farrall
- Anatomical Pathology, Flinders University, Bedford Park, South Australia, Australia
| | - Sarah Newhouse
- School of Medicine, Flinders University, Bedford Park, South Australia, Australia
- Respiratory and Sleep Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | - Kim Greco
- Respiratory and Sleep Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Christos Stelios Karapetis
- School of Medicine, Flinders University, Bedford Park, South Australia, Australia
- Medical Oncology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Brendan Dougherty
- Respiratory and Sleep Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Sonja Klebe
- Anatomical Pathology, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
22
|
Zhang Q, Li ZL, Xu JD, Xu QQ, Zhang Y, Guo SJ, Yao WF, Bao BH, Tang YP, Zhang L. Toxicity reduction and water expelling effect preservation of Shizaotang after its toxic members processing with vinegar on rats with malignant pleural effusions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113583. [PMID: 33189845 DOI: 10.1016/j.jep.2020.113583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shizaotang (SZT), consisted of Euphorbia kansui S.L.Liou ex S.B.Ho (EK), Euphorbia pekinensis Rupr. (EP), Daphne genkwa Sieb. et Zucc. (DG,fried) and Ziziphus jujuba Mill. (ZJ), is usually used for treating malignant pleural effusions (MPE), but the toxicity of EK and EP limits its clinical safe application. It was reported that vinegar processing can reduce the toxicity of EK and EP. Whether EK and EP processing with vinegar can cause the reduced toxicity and retained pharmacological effects of SZT, it still remains unknown. AIM OF THE STUDY We aimed to evaluate whether using vinegar processed EK and EP would reduce toxicity and preserve water expelling effect of SZT. MATERIALS AND METHODS Network pharmacology and qualitative analysis of SZT/VSZT were used to construct compound-target-pathway network of their effects and toxicity. Pleural fluid weight, urine volume, uric electrolyte, pH, pro-inflammatory cytokines in pleural fluid, serum Renin-Angiotensin-Aldosterone System (RAAS), anti-diuretic hormone (ADH) and intestinal aquaporin 8 (AQP8) protein were used to evaluate the effect mechanisms involved in rats experiments. And liver damage, oxidative damage and HE staining (liver, stomach, and intestine) were used to determine the toxicity. RESULTS Network pharmacology analysis reviewed inflammation-related pathways of the effect and toxicity of SZT/VSZT: VEGF-PI3K-AKT pathway inhibited MPE by changing the vasopermeability; PI3K-Akt/Mitogen-activated protein kinase (MAPK)/TNF-NF-κB signaling pathway inhibited MPE by up-regulating expression of AQP8 protein. In vivo experiments displayed that SZT/VSZT could reduce pleural fluid, increase urine volume, lower pro-inflammatory cytokines levels and up-regulate AQP8 protein expression significantly (P < 0.05, P < 0.01). In addition, disorders on electrolyte (Na+, K+ and Cl-) and pH were ameliorated (P < 0.05, P < 0.01). The levels of RAAS and ADH were significantly dose-dependently called back (P < 0.01). These findings were partly consistent with the results of network pharmacology analysis. Results of toxicity experiments demonstrated that SZT and VSZT exhibited certain toxicity on normal rats, and VSZT had lower toxicity than that of SZT. Interestingly, SZT and VSZT exerted alleviation effect to the liver damage and oxidative damage on model rats. CONCLUSION SZT/VSZT improved MPE by regulating associated inflammation pathways. Besides, compared to SZT, VSZT showed lower toxicity and equivalent expelling MPE effect. This study may provide scientific basis for guiding the clinical application of SZT.
Collapse
Affiliation(s)
- Qiao Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhen-Lan Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jin-Di Xu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, PR China.
| | - Qian-Qian Xu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Si-Jia Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Bei-Hua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi Province, China.
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
23
|
Changchien CY, Chang HH, Dai MS, Tsai WC, Tsai HC, Wang CY, Shen MS, Cheng LT, Lee HS, Chen Y, Tsai CL. Distinct JNK/VEGFR signaling on angiogenesis of breast cancer-associated pleural fluid based on hormone receptor status. Cancer Sci 2021; 112:781-791. [PMID: 33315285 PMCID: PMC7894017 DOI: 10.1111/cas.14772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023] Open
Abstract
Malignant pleural effusion is a common complication in metastatic breast cancer (MBC); however, changes in the pleural microenvironment are poorly characterized, especially with respect to estrogen receptor status. Histologically, MBC presents with increased microvessels beneath the parietal and visceral pleura, indicating generalized angiogenic activity. Breast cancer‐associated pleural fluid (BAPF) was collected and cultured with HUVECs to recapitulate the molecular changes in subpleural endothelial cells. The clinical progression of triple‐negative breast cancer (TNBC) is much more aggressive than that of hormone receptor‐positive breast cancer (HPBC). However, BAPF from HPBC (BAPF‐HP) and TNBC (BAPF‐TN) homogeneously induced endothelial proliferation, migration, and angiogenesis. In addition, BAPF elicited negligible changes in the protein marker of endothelial‐mesenchymal transition. Both BAPF‐HP and BAPF‐TN exclusively upregulated JNK signaling among all MAPKs in HUVECs. By contrast, the response to the JNK inhibitor was insignificant in Transwell and tube formation assays of the HUVECs cultured with BAPF‐TN. The distinct contribution of p‐JNK to endothelial angiogenesis was consequently thought to be induced by BAPF‐HP and BAPF‐TN. Due to increased angiogenic factors in HUVECs cultured with BAPF, vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor was applied accordingly. Responses to VEGFR2 blockade were observed in both BAPF‐HP and BAPF‐TN concerning endothelial migration and angiogenesis. In conclusion, the above results revealed microvessel formation in the pleura of MBC and the underlying activation of p‐JNK/VEGFR2 signaling. Distinct responses to blocking p‐JNK and VEGFR2 in HUVECs cultured with BAPF‐HP or BAPF‐TN could lay the groundwork for future investigations in treating MBC based on hormone receptor status.
Collapse
Affiliation(s)
- Chih-Ying Changchien
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Shen Dai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hao-Chung Tsai
- Division of Chest Medicine, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Yung Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Sheng Shen
- Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Li-Ting Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Liang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
24
|
Ye LL, Peng WB, Niu YR, Xiang X, Wei XS, Wang ZH, Wang X, Zhang SY, Chen X, Zhou Q. Accumulation of TNFR2-expressing regulatory T cells in malignant pleural effusion of lung cancer patients is associated with poor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1647. [PMID: 33490159 PMCID: PMC7812164 DOI: 10.21037/atm-20-7181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Regulatory T cells (Tregs) may represent a major cellular mechanism in immune suppression by dampening the anti-tumor response in malignant pleural effusion (MPE). Tumor necrosis factor receptor type II (TNFR2) has emerged as a novel identification for the maximally suppressive subset of Tregs in the tumor environment. At present, the significance of TNFR2 expression on Tregs in MPE remains unclear. Methods The distribution of TNFR2+cells in Tregs and effector T cells (Teffs) in MPE, peripheral blood (PB), and tuberculosis pleural effusion (TPE) were determined. The associations between TNFR2+Tregs frequencies present in MPE and the clinical and laboratorial characteristics of patients with lung cancer were investigated. The immunosuppressive phenotype of TNFR2+Tregs in MPE was analyzed. The effects of the TNF-TNFR2 interaction on the immunosuppressive function of Tregs was explored. The efficacy of targeting TNFR2 for MPE therapy was examined. The source of TNF in MPE was identified. Results We observed that markedly higher levels of TNFR2 were expressed in MPE Tregs compared with the levels expressed in MPE Teffs, PB Tregs, or in TPE Tregs. The frequencies of TNFR2+Tregs were positively correlated with the number of tumor cells in MPE, as well as the volume of MPE. High frequencies of TNFR2+Tregs in MPE indicated short survival time and poor performance status for MPE patients. Compared to TNFR2-Tregs, TNFR2+Tregs expressed higher levels of immunosuppressive molecules cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-ligand 1 (PD-L1), and replicating marker Ki-67. Consequently, the proportions of interferon gamma (IFN-γ)-producing cytotoxic T lymphocytes (CTLs) were significantly increased after TNFR2 blockade. Furthermore, tumor necrosis factor (TNF), through interaction with TNFR2, enhanced the suppressive capacity of Tregs by up-regulating CTLA-4 and PD-L1 expression. Interestingly, T helper 1 (Th1) and T helper 17 (Th17) cells are the major source of TNF in MPE, suggesting that MPE Teffs may paradoxically promote tumor growth by boosting MPE Treg activity via the TNF-TNFR2 pathway. Conclusions Our data expanded the immunosuppressive mechanism present in MPE induced by Tregs, and provides novel insight for the diagnosis, disease evaluation, and treatment of MPE patients.
Collapse
Affiliation(s)
- Lin-Lin Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Bei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ran Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Shan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Hao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Yu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Mahdavi Sharif P, Jabbari P, Razi S, Keshavarz-Fathi M, Rezaei N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine 2020; 130:155066. [PMID: 32208336 DOI: 10.1016/j.cyto.2020.155066] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TNF-alpha is involved in many physiologic and pathologic cellular pathways, including cellular proliferation, differentiation, and death, regulation of immunologic reactions to different cells and molecules, local and vascular invasion of neoplasms, and destruction of tumor vasculature. It is obvious that because of integrated functions of TNF-alpha inside different physiologic systems, it cannot be used as a single-agent therapy for neoplasms; however, long-term investigation of its different cellular pathways has led to recognition of a variety of subsequent molecules with more specific interactions, and therefore, might be suitable as prognostic and therapeutic factors for neoplasms. Here, we will review different aspects of the TNF-alpha as a cytokine involved in both physiologic functions of cells and pathologic abnormalities, most importantly, cancers.
Collapse
Affiliation(s)
- Pouya Mahdavi Sharif
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Jabbari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
26
|
Hocking A, Tommasi S, Sordillo P, Klebe S. The Safety and Exploration of the Pharmacokinetics of Intrapleural Liposomal Curcumin. Int J Nanomedicine 2020; 15:943-952. [PMID: 32103948 PMCID: PMC7023862 DOI: 10.2147/ijn.s237536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Malignant pleural effusion (MPE) is the accumulation of fluid in the pleural cavity as a result of malignancies affecting the lung, pleura and mediastinal lymph nodes. Curcumin, a compound found in turmeric, has anti-cancer properties that could not only treat MPE accumulation but also reduce cancer burden. To our knowledge, direct administration of curcumin into the pleural cavity has never been reported, neither in animals nor in humans. Purpose To explore the compartmental distribution, targeted pharmacokinetics and the safety profile of liposomal curcumin following intrapleural and intravenous administration. Methods Liposomal curcumin (16 mg/kg) was administered into Fischer 344 rats by either intrapleural injection or intravenous infusion. The concentration of curcumin in plasma and tissues (lung, liver and diaphragm) were measured using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Blood and tissues were examined for pathological changes. Results No pleural or lung pathologies were observed following intrapleural liposomal curcumin administration. Total curcumin concentration peaked 1.5 hrs after the administration of intrapleural liposomal curcumin and red blood cell morphology appeared normal. A red blood cells abnormality (echinocytosis) was observed immediately and at 1.5 hrs after intravenous infusion of liposomal curcumin. Conclusion These results indicate that liposomal curcumin is safe when administered directly into the pleural cavity and may represent a viable alternative to intravenous infusion in patients with pleural-based tumors.
Collapse
Affiliation(s)
- Ashleigh Hocking
- Department of Anatomical Pathology, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders University, Adelaide, SA, Australia
| | | | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University, Adelaide, SA, Australia.,Department of Surgical Pathology, SA Health, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
27
|
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020; 43:1-18. [PMID: 31900901 DOI: 10.1007/s13402-019-00489-1] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women worldwide and the fifth cause of death among all cancer patients. Breast cancer development is driven by genetic and epigenetic alterations, with the tumor microenvironment (TME) playing an essential role in disease progression and evolution through mechanisms like inflammation promotion. TNF-α is one of the essential pro-inflammatory cytokines found in the TME of breast cancer patients, being secreted both by stromal cells, mainly by tumor-associated macrophages, and by the cancer cells themselves. In this review, we explore the biological and clinical impact of TNF-α in all stages of breast cancer development. First of all, we explore the correlation between TNF-α expression levels at the tumor site or in plasma/serum of breast cancer patients and their respective clinical status and outcome. Secondly, we emphasize the role of TNF-α signaling in both estrogen-positive and -negative breast cancer cells. Thirdly, we underline TNF-α involvement in epithelial-to-mesenchymal transition (EMT) and metastasis of breast cancer cells, and we point out the contribution of TNF-α to the development of acquired drug resistance. CONCLUSIONS Collectively, these data reveal a pro-tumorigenic role of TNF-α during breast cancer progression and metastasis. We systemize the knowledge regarding TNF-α-related therapies in breast cancer, and we explain how TNF-α may act as both a target and a drug in different breast cancer therapeutic approaches. By corroborating the known molecular effects of TNF-α signaling in breast cancer cells with the results from several preclinical and clinical trials, including TNF-α-related clinical observations, we conclude that the potential of TNF-α in breast cancer therapy promises to be of great interest.
Collapse
Affiliation(s)
- Daniel Cruceriu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,11th Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. .,MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
| |
Collapse
|
28
|
Beck TN, Deneka AY, Chai L, Kanach C, Johal P, Alvarez NJ, Boumber Y, Golemis EA, Laub GW. An improved method of delivering a sclerosing agent for the treatment of malignant pleural effusion. BMC Cancer 2019; 19:614. [PMID: 31234819 PMCID: PMC6589887 DOI: 10.1186/s12885-019-5777-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Background Malignant pleural effusion (MPE) is a devastating sequela associated with cancer. Talc pleurodesis is a common treatment strategy for MPE but has been estimated to be unsuccessful in up to 20–50% of patients. Clinical failure of talc pleurodesis is thought to be due to poor dispersion. This monograph reports the development of a foam delivery system designed to more effectively coat the pleural cavity. Methods C57BL/6 mice were injected with Lewis lung carcinoma (LL/2) cells intrapleurally to induce MPE. The mice then received either normal saline (NS) control, foam control (F), talc slurry (TS, 2 mg/g) or talc foam (TF, 2 mg/g). Airspace volume was evaluated by CT, lungs/pleura were collected, and percent fibrosis was determined. Results The TF group had significantly better survival than the TS group (21 vs 13.5 days, p < 0.0001). The average effusion volume was less in the talc groups compared to the control group (140 vs 628 μL, p < 0.001). TF induced significant lung fibrosis (p < 0.01), similar to TS. On CT, TF significantly (p < 0.05) reduced loss of right lung volume (by 30–40%) compared to the control group. This was not seen with TS (p > 0.05). Conclusions This report describes using a novel talc foam delivery system for the treatment of MPE. In the LL/2 model, mice treated with the TF had better survival outcomes and less reduction of lung volume than mice treated with the standard of care TS. These data provide support for translational efforts to move talc foam from animal models into clinical trials.
Collapse
Affiliation(s)
- Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA. .,Digestive Disease & Surgery Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Alexander Y Deneka
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Department of Biochemistry, Kazan Federal University, Kazan, Russia
| | - Louis Chai
- Department of Cardiothoracic Surgery, Drexel University College of Medicine, Hahnemann University Hospital, 230 North Broad Street, Philadelphia, PA, 19102, USA
| | - Colin Kanach
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Priya Johal
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Nicolas J Alvarez
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19129, USA
| | - Yanis Boumber
- Department of Biochemistry, Kazan Federal University, Kazan, Russia.,Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Glenn W Laub
- Department of Cardiothoracic Surgery, Drexel University College of Medicine, Hahnemann University Hospital, 230 North Broad Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
29
|
Diagnostic value of angiopoietin-2 in the differentiation of malignant pleural effusions. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.555113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Migrated T lymphocytes into malignant pleural effusions: an indicator of good prognosis in lung adenocarcinoma patients. Sci Rep 2019; 9:2996. [PMID: 30816121 PMCID: PMC6395746 DOI: 10.1038/s41598-018-35840-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023] Open
Abstract
The presence of leukocyte subpopulations in malignant pleural effusions (MPEs) can have a different impact on tumor cell proliferation and vascular leakiness, their analysis can help to understand the metastatic microenvironment. We analyzed the relationship between the leukocyte subpopulation counts per ml of pleural fluid and the tumor cell count, molecular phenotype of lung adenocarcinoma (LAC), time from cancer diagnosis and previous oncologic therapy. We also evaluated the leukocyte composition of MPEs as a biomarker of prognosis. We determined CD4+ T, CD8+ T and CD20+ B cells, monocytes and neutrophils per ml in pleural effusions of 22 LAC and 10 heart failure (HF) patients by flow cytometry. Tumor cells were identified by morphology and CD326 expression. IFNγ, IL-10 and IL-17, and chemokines were determined by ELISAs and migratory response to pleural fluids by transwell assays. MPEs from LAC patients had more CD8+ T lymphocytes and a tendency to more CD4+ T and CD20+ B lymphocytes than HF-related fluids. However, no correlation was found between lymphocytes and tumor cells. In those MPEs which were detected >1 month from LAC diagnosis, there was a negative correlation between pleural tumor cells and CD8+ T lymphocytes. CXCL10 was responsible for the attraction of CD20+ B, CD4+ T and CD8+ T lymphocytes in malignant fluids. Concentrations of IL-17 were higher in MPEs than in HF-related effusions. Survival after MPE diagnosis correlated positively with CD4+ T and CD8+ T lymphocytes, but negatively with neutrophils and IL-17 levels. In conclusion, lymphocyte enrichment in MPEs from LAC patients is mostly due to local migration and increases patient survival.
Collapse
|
31
|
Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front Immunol 2018; 9:444. [PMID: 29593717 PMCID: PMC5857565 DOI: 10.3389/fimmu.2018.00444] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some of these diseases. However, some rare patients treated with these drugs paradoxically develop an aggravation of their disease or new onset autoimmunity, revealing an immunosuppressive facet of TNF. A possible mechanism of this observation is the direct and positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly function of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host disease as an example of the ambivalence of this cytokine in the pathophysiology of an immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing on the putative suppressive effect of TNF in antitumor immunity and of the interest of blocking TNFR2 to regulate the Treg compartment.
Collapse
Affiliation(s)
- Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Mathieu Leclerc
- Université Paris-Est and INSERM U955, Créteil, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| | - Jimena Tosello
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eliane Piaggio
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - José L Cohen
- Université Paris-Est and INSERM U955, Créteil, France.,Centre d'Investigation Clinique Biothérapie, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| |
Collapse
|
32
|
Marazioti A, Lilis I, Vreka M, Apostolopoulou H, Kalogeropoulou A, Giopanou I, Giotopoulou GA, Krontira AC, Iliopoulou M, Kanellakis NI, Agalioti T, Giannou AD, Jones-Paris C, Iwakura Y, Kardamakis D, Blackwell TS, Taraviras S, Spella M, Stathopoulos GT. Myeloid-derived interleukin-1β drives oncogenic KRAS-NF-κΒ addiction in malignant pleural effusion. Nat Commun 2018; 9:672. [PMID: 29445180 PMCID: PMC5813197 DOI: 10.1038/s41467-018-03051-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Malignant pleural effusion (MPE) is a frequent metastatic manifestation of human cancers. While we previously identified KRAS mutations as molecular culprits of MPE formation, the underlying mechanism remained unknown. Here, we determine that non-canonical IKKα-RelB pathway activation of KRAS-mutant tumor cells mediates MPE development and this is fueled by host-provided interleukin IL-1β. Indeed, IKKα is required for the MPE-competence of KRAS-mutant tumor cells by activating non-canonical NF-κB signaling. IL-1β fuels addiction of mutant KRAS to IKKα resulting in increased CXCL1 secretion that fosters MPE-associated inflammation. Importantly, IL-1β-mediated NF-κB induction in KRAS-mutant tumor cells, as well as their resulting MPE-competence, can only be blocked by co-inhibition of both KRAS and IKKα, a strategy that overcomes drug resistance to individual treatments. Hence we show that mutant KRAS facilitates IKKα-mediated responsiveness of tumor cells to host IL-1β, thereby establishing a host-to-tumor signaling circuit that culminates in inflammatory MPE development and drug resistance.
Collapse
Affiliation(s)
- Antonia Marazioti
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece.
| | - Ioannis Lilis
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Malamati Vreka
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377, Munich, Bavaria, Germany
| | - Hara Apostolopoulou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Argyro Kalogeropoulou
- Stem Cell Biology Laboratory, Department of Physiology, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Ioanna Giopanou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Georgia A Giotopoulou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Anthi C Krontira
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Marianthi Iliopoulou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Nikolaos I Kanellakis
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Theodora Agalioti
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Anastasios D Giannou
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Celestial Jones-Paris
- Division of Allergy, Pulmonary and Critical Care, Department of Internal Medicine, Vanderbilt University School of Medicine, T-1218 MCN, Nashville, TN, 37232-2650, USA
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Chiba, 278-0022, Japan
| | - Dimitrios Kardamakis
- Department of Radiation Oncology and Stereotactic Radiotherapy, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care, Department of Internal Medicine, Vanderbilt University School of Medicine, T-1218 MCN, Nashville, TN, 37232-2650, USA
| | - Stavros Taraviras
- Stem Cell Biology Laboratory, Department of Physiology, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Magda Spella
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece
| | - Georgios T Stathopoulos
- Department of Physiology, Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, 26504, Rio, Achaia, Greece.
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377, Munich, Bavaria, Germany.
| |
Collapse
|
33
|
|
34
|
De Waele M, Agzarian J, Hanna WC, Schieman C, Finley CJ, Macri J, Schneider L, Schnurr T, Farrokhyar F, Radford K, Nair P, Shargall Y. Does the usage of digital chest drainage systems reduce pleural inflammation and volume of pleural effusion following oncologic pulmonary resection?-A prospective randomized trial. J Thorac Dis 2017; 9:1598-1606. [PMID: 28740674 DOI: 10.21037/jtd.2017.05.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prolonged air leak and high-volume pleural drainage are the most common causes for delays in chest tube removal following lung resection. While digital pleural drainage systems have been successfully used in the management of post-operative air leak, their effect on pleural drainage and inflammation has not been studied before. We hypothesized that digital drainage systems (as compared to traditional analog continuous suction), using intermittent balanced suction, are associated with decreased pleural inflammation and postoperative drainage volumes, thus leading to earlier chest tube removal. METHODS One hundred and three [103] patients were enrolled and randomized to either analog (n=50) or digital (n=53) drainage systems following oncologic lung resection. Chest tubes were removed according to standardized, pre-defined protocol. Inflammatory mediators [interleukin-1B (IL-1B), 6, 8, tumour necrosis factor-alpha (TNF-α)] in pleural fluid and serum were measured and analysed. The primary outcome of interest was the difference in total volume of postoperative fluid drainage. Secondary outcome measures included duration of chest tube in-situ, prolonged air-leak incidence, length of hospital stay and the correlation between pleural effusion formation, degree of inflammation and type of drainage system used. RESULTS There was no significant difference in total amount of fluid drained or length of hospital stay between the two groups. A trend for shorter chest tube duration was found with the digital system when compared to the analog (P=0.055). Comparison of inflammatory mediator levels revealed no significant differences between digital and analog drainage systems. The incidence of prolonged post-operative air leak was significantly higher when using the analog system (9 versus 2 patients; P=0.025). Lobectomy was associated with longer chest tube duration (P=0.001) and increased fluid drainage when compared to sub-lobar resection (P<0.001), regardless of drainage system. CONCLUSIONS Use of post-lung resection digital drainage does not appear to decrease pleural fluid formation, but is associated with decreased prolonged air leaks. Total pleural effusion volumes did not differ with the type of drainage system used. These findings support previously established benefits of the digital system in decreasing prolonged air leaks, but the advantages do not appear to extend to decreased pleural fluid formation.
Collapse
Affiliation(s)
- Michèle De Waele
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - John Agzarian
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Waël C Hanna
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | | | - Christian J Finley
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Joseph Macri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton General Hospital, Hamilton, ON L8L 2X2, Canada
| | - Laura Schneider
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Terri Schnurr
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Forough Farrokhyar
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada.,Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Katherine Radford
- Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Parameswaran Nair
- Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Yaron Shargall
- Department of Surgery, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
35
|
Sui Z, Shi Y, Gao Z, Yang D, Wang Z. Expression of programmed cell death1 in T follicular helper cells is regulated by prostaglandin E2 secreted by HBV-infected HepG2.2.1.5 cells. Mol Med Rep 2017; 15:4305-4311. [PMID: 28440484 DOI: 10.3892/mmr.2017.6503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/14/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the distribution of T follicular helper (Tfh)-cell subsets in patients with hepatitis B virus (HBV) and determine the underlying mechanism of HBV regulation of Tfh cells. The frequency of peripheral blood Tfh subsets was analyzed using flow cytometry. The expression level of programmed cell death‑1 (PD‑1) and prostaglandin E2 (PGE2) was quantified using reverse transcription‑quantitative polymerase chain reaction and western blotting. The PGE2 level in culture supernatant was detected using enzyme‑linked immunosorbent assay. A Transwell chamber was used to co‑culture Tfh cells with HepG2 and HepG2.2.1.5. The percentage of inducible T‑cell costimulator (ICOS)+ and total Tfh cells was high at the immune activation (IA) group; however, it was reduced in the immune tolerance (IT), responders with HBsAg seroconversion (RP) and healthy control (HC) groups. The percentage of PD‑1+ Tfh cells was significantly higher in IA and IT compared with RP and HC. The ratio of PD‑1+/total Tfh cells was positively correlated with the load of HBV DNA; therefore, this ratio may act as an indicator for HBV replication. The expression level of PD‑1 in Tfh cells was higher in the HepG2.2.1.5 co‑cultured group compared with the HepG2 group, this may be due to the high PGE2 expression level in HBV‑infected HepG2.2.1.5 cells. The findings of the present study revealed an imbalanced distribution of PD‑1+ Tfh cells in patients with HBV at different immune phases. Additionally, HBV may upregulate the expression of PD‑1 in Tfh cells by promoting HepG2.2.1.5 to secret PGE2. Identifying the effect of HBV on Tfh‑cell subsets is crucial for improving immuno-based therapy for HBV.
Collapse
Affiliation(s)
- Zhefeng Sui
- Department of Nursing, Hulunbeier Vocational Technical College, Hulunbuir, Inner Mongolia 021000, P.R. China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiling Gao
- Department of Pharmacy, Baicheng Medical College, Baicheng, Jilin 137000, P.R. China
| | - Deguang Yang
- Department of Cardiology, The Third Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhihao Wang
- Department of Gerontology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
36
|
Psallidas I, Kalomenidis I, Porcel JM, Robinson BW, Stathopoulos GT. Malignant pleural effusion: from bench to bedside. Eur Respir Rev 2017; 25:189-98. [PMID: 27246596 DOI: 10.1183/16000617.0019-2016] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/25/2016] [Indexed: 11/05/2022] Open
Abstract
Malignant pleural effusion (MPE) is a common but serious condition that is related with poor quality of life, morbidity and mortality. Its incidence and associated healthcare costs are rising and its management remains palliative, with median survival ranging from 3 to 12 months. During the last decade there has been significant progress in unravelling the pathophysiology of MPE, as well as its diagnostics, imaging, and management. Nowadays, formerly bed-ridden patients are genotyped, phenotyped, and treated on an ambulatory basis. This article attempts to provide a comprehensive overview of current advances in MPE from bench to bedside. In addition, it highlights unanswered questions in current clinical practice and suggests future directions for basic and clinical research in the field.
Collapse
Affiliation(s)
- Ioannis Psallidas
- Oxford Respiratory Trials Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals Trust, Oxford, UK
| | - Ioannis Kalomenidis
- 1st Dept of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Jose M Porcel
- Pleural Medicine Unit, Dept of Internal Medicine, Arnau de Vilanova University Hospital, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Bruce W Robinson
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia Dept of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Achaia, Greece Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
37
|
Xie SL, Yang MH, Chen K, Huang H, Zhao XW, Zang YS, Li B. Efficacy of Arsenic Trioxide in the Treatment of Malignant Pleural Effusion Caused by Pleural Metastasis of Lung Cancer. Cell Biochem Biophys 2016; 71:1325-33. [PMID: 25413961 DOI: 10.1007/s12013-014-0352-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the study was to investigate the mechanism of arsenic trioxide (As2O3) in the treatment of malignant pleural effusion (MPE) caused by pleural metastasis of lung cancer. A mouse model of MPE caused by pleural metastasis of lung cancer was first established, and As2O3 was then intraperitoneally injected to treat the MPE. Mice treated with bevacizumab and bleomycin were included as positive controls, and placebo equivalents were also used as negative controls. The effects of As2O3 on MPE volume, pleural vessel density, vascular permeability, expression of angiogenic function-related factors, including vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF-α), as well as nuclear factor-κB (NF-κB) activity in pleural carcinomatosis, were observed. Intraperitoneal injection of As2O3 reduced the volume of MPE and decreased vascular density and permeability in pleural metastatic nodules in a dose-dependent manner. Moreover, dose-dependent decreases in VEGF and TNF-α expression in MPE, and NF-κB activity in pleural carcinomatosis, were also found after As2O3 treatment. We showed that As2O3 can down-regulate VEGF expression via inhibition of NF-κB, and decrease vascular density and permeability in pleural metastatic nodules, thereby eliciting its effects on MPE caused by pleural metastasis of lung cancer. Our results provide a foundation for an As2O3-based clinical treatment program.
Collapse
Affiliation(s)
- She-Ling Xie
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China
| | - Meng-Hang Yang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China
| | - Kun Chen
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China
| | - Hai Huang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China
| | - Xue-Wei Zhao
- Department of Thoracic Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Yuan-Sheng Zang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China.
| | - Bing Li
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University/Center for Diagnosis and Treatment of Lung Cancer of the Chinese People's Liberation Army, Shanghai, 200003, China.
| |
Collapse
|
38
|
Inhibition of KPNA4 attenuates prostate cancer metastasis. Oncogene 2016; 36:2868-2878. [PMID: 27941876 DOI: 10.1038/onc.2016.440] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is a common cancer in men. Although current treatments effectively palliate symptoms and prolong life, the metastatic PCa remains incurable. It is important to find biomarkers and targets to improve metastatic PCa diagnosis and treatment. Here we report a novel correlation between karyopherin α4 (KPNA4) and PCa pathological stages. KPNA4 mediates the cytoplasm-to-nucleus translocation of transcription factors, including nuclear factor kappa B, although its role in PCa was largely unknown. We find that knockdown of KPNA4 reduces cell migration in multiple PCa cell lines, suggesting a role of KPNA4 in PCa progression. Indeed, stable knockdown of KPNA4 significantly reduces PCa invasion and distant metastasis in mouse models. Functionally, KPNA4 alters tumor microenvironment in terms of macrophage polarization and osteoclastogenesis by modulating tumor necrosis factor (TNF)-α and -β. Further, KPNA4 is proved as a direct target of miR-708, a tumor-suppressive microRNA. We disclose the role of miR-708-KPNA4-TNF axes in PCa metastasis and KPNA4's potential as a novel biomarker for PCa metastasis.
Collapse
|
39
|
Lee YCG, Idell S, Stathopoulos GT. Translational Research in Pleural Infection and Beyond. Chest 2016; 150:1361-1370. [DOI: 10.1016/j.chest.2016.07.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
|
40
|
Liu F, Ai F, Tian L, Liu S, Zhao L, Wang X. Infliximab enhances the therapeutic effects of 5-fluorouracil resulting in tumor regression in colon cancer. Onco Targets Ther 2016; 9:5999-6008. [PMID: 27757041 PMCID: PMC5055041 DOI: 10.2147/ott.s109342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colon cancer (CC) is among the most common malignant diseases with a dismal survival. Tumor necrosis factor-alpha (TNF-α) has been identified as a therapeutic target in various cancers, and anti-TNF-α treatment has shown promising effects in different cancer models. However, if TNF-α can be targeted in CC, the therapeutic values of anti-TNF-α treatment in CC remain unknown. Our study indicated that TNF-α is highly expressed in CC cell lines and patient tumor samples. High expression of TNF-α is an independent adverse prognosticator of CC. Targeting the TNF-α by its antibody infliximab induced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity and enhanced apoptosis leading to cell death. The combination of infliximab with 5-fluorouracil showed better responses in vitro and in vivo than 5-fluorouracil alone. In conclusion, this study identified TNF-α as a target of CC and anti-TNF-α treatment synergized with chemotherapy leading to a better outcome in preclinical models.
Collapse
Affiliation(s)
- Fen Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, People's Republic of China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, People's Republic of China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University
| | - Shaojun Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University
| | - Lian Zhao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, People's Republic of China
| |
Collapse
|
41
|
Tanaka T, Imamura T, Yoneda M, Irie A, Ogi H, Nagata M, Yoshida R, Fukuma D, Kawahara K, Shinohara M, Nakayama H. Enhancement of active MMP release and invasive activity of lymph node metastatic tongue cancer cells by elevated signaling via the TNF-α-TNFR1-NF-κB pathway and a possible involvement of angiopoietin-like 4 in lung metastasis. Int J Oncol 2016; 49:1377-84. [PMID: 27511626 DOI: 10.3892/ijo.2016.3653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/22/2016] [Indexed: 11/05/2022] Open
Abstract
To study the role of TNF-α in tongue cancer metastasis, we made highly metastatic cells from a human oral squamous cell carcinoma cell line (SAS) by repeating the passage in which the cells were injected into a nude mouse tongue and harvested from metastasized cervical lymph nodes. Cancer cells after 5 passages (GSAS/N5) increased invasive activity 7-fold in a TNF-α receptor 1 (TNFR1)-dependent manner and enhanced mRNA expression of TNF-α and TNFR1. In the highly metastatic cells, NF-κB activation was upregulated via elevated phosphorylation of Akt and Ikkα/β in the signaling pathway and secretion of TNF-α, active MMP-2 and MMP-9 increased. Suppression of increase of TNF-α mRNA expression and MMP secretion by NF-κB inhibitor NBD peptide suggested a positive feedback loop in GSAS/N5 cells; TNF-α activates NF-κB and activated NF-κB induces further TNF-α secretion, leading to increase of active MMP release and promotion of invasion and metastasis of the cells. GSAS/N5 cells that had been injected into the nude mouse tongue and harvested from metastasized lungs multiplied angiopoietin-like 4 (angptl4) expression with enhanced migration activity, which indicated a possible involvement of angptl4 in lung metastasis of the cells. These results suggest that TNF-α and angptl4 promote metastasis of the oral cancer cells, thus, these molecules may be therapeutic targets for patients with tongue cancer.
Collapse
Affiliation(s)
- Takuya Tanaka
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takahisa Imamura
- Department of Molecular Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masakazu Yoneda
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Atsushi Irie
- Department of Immunogenetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hidenao Ogi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Daiki Fukuma
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
42
|
The role of tumor necrosis factor alpha in differentiation between malignant and non malignant pleural effusion. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2016. [DOI: 10.1016/j.ejcdt.2016.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
New insights on pleural fluid formation: potential translational targets. CURRENT PULMONOLOGY REPORTS 2016. [DOI: 10.1007/s13665-016-0135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Spella M, Giannou AD, Stathopoulos GT. Switching off malignant pleural effusion formation-fantasy or future? J Thorac Dis 2015; 7:1009-20. [PMID: 26150914 DOI: 10.3978/j.issn.2072-1439.2015.05.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Malignant pleural effusion (MPE) is common and difficult to treat. In the vast majority of patients the presence of MPE heralds incurable disease, associated with poor quality of life, morbidity and mortality. Current therapeutic approaches are inefficient and merely offer palliation of associated symptoms. Recent scientific progress has shed light in the biologic processes governing the mechanisms behind the pathobiology of MPE. Pleural based tumors interfere with pleural fluid drainage, as well as the host vasculature and immune system, resulting in decreased fluid absorption and increased pleural fluid production via enhanced plasma extravasation into the pleural space. In order to achieve this feat, pleural based tumors must elicit critical vasoactive events in the pleura, thus forming a favorable microenvironment for tumor dissemination and MPE development. Such properties involve specific transcriptional signaling cascades in addition to secretion of important mediators which attract and activate host cell populations which, in turn, impact tumor cell functions. The dissection of the biologic steps leading to MPE formation provides novel therapeutic targets and recent research findings provide encouraging results towards future therapeutic innovations in MPE management.
Collapse
Affiliation(s)
- Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| |
Collapse
|
45
|
Giannou AD, Marazioti A, Spella M, Kanellakis NI, Apostolopoulou H, Psallidas I, Prijovich ZM, Vreka M, Zazara DE, Lilis I, Papaleonidopoulos V, Kairi CA, Patmanidi AL, Giopanou I, Spiropoulou N, Harokopos V, Aidinis V, Spyratos D, Teliousi S, Papadaki H, Taraviras S, Snyder LA, Eickelberg O, Kardamakis D, Iwakura Y, Feyerabend TB, Rodewald HR, Kalomenidis I, Blackwell TS, Agalioti T, Stathopoulos GT. Mast cells mediate malignant pleural effusion formation. J Clin Invest 2015; 125:2317-34. [PMID: 25915587 DOI: 10.1172/jci79840] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/26/2015] [Indexed: 01/02/2023] Open
Abstract
Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.
Collapse
|
46
|
Domvri K, Zarogoulidis P, Theodoropoulos F, Huang H, Zarogoulidis K. Establishment of a malignant pleural effusion mouse model: pathogenesis pathways. Transl Lung Cancer Res 2015; 1:163-6. [PMID: 25806177 DOI: 10.3978/j.issn.2218-6751.2012.08.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/24/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Kalliopi Domvri
- Pulmonary Department - Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department - Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece ; ; Pulmonary Department - Interventional Unit, "Ruhrlandklinik", University of Essen, Essen, Germany
| | - Fotis Theodoropoulos
- Pulmonary Department - Interventional Unit, "Ruhrlandklinik", University of Essen, Essen, Germany
| | - Haidong Huang
- Department of Respiratory diseases, Changhai hospital, Yangpu District, Shanghai 200082, China
| | - Konstantinos Zarogoulidis
- Pulmonary Department - Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
47
|
Lee HW, Choi HY, Joo KM, Nam DH. Tumor progression locus 2 (Tpl2) kinase as a novel therapeutic target for cancer: double-sided effects of Tpl2 on cancer. Int J Mol Sci 2015; 16:4471-91. [PMID: 25723737 PMCID: PMC4394431 DOI: 10.3390/ijms16034471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 02/15/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor progression locus 2 (Tpl2) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| | - Han Yong Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| |
Collapse
|
48
|
Effect of Endostar combined with angiopoietin-2 inhibitor on malignant pleural effusion in mice. Med Oncol 2014; 32:410. [DOI: 10.1007/s12032-014-0410-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
49
|
Marazioti A, Stathopoulos GT. Monoclonal antibody targeting of mononuclear cell chemokines driving malignant pleural effusion. Oncoimmunology 2014; 3:e29195. [PMID: 25083335 PMCID: PMC4108461 DOI: 10.4161/onci.29195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 01/12/2023] Open
Abstract
Recent evidence suggests that host immune cells contribute to the development of malignant pleural effusion (MPE), a common manifestation of metastatic cancer. We have identified such cells, predominantly mononuclear myeloid cells, recruited by tumor-orchestrated inflammatory chemokines. Moreover, targeting of these inflammation-associated mediators modified the disease course of MPE in mice.
Collapse
Affiliation(s)
- Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis; Department of Physiology; Faculty of Medicine; University of Patras; Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis; Department of Physiology; Faculty of Medicine; University of Patras; Rio, Greece
| |
Collapse
|
50
|
Zhu G, Du Q, Wang X, Tang N, She F, Chen Y. TNF-α promotes gallbladder cancer cell growth and invasion through autocrine mechanisms. Int J Mol Med 2014; 33:1431-40. [PMID: 24676340 PMCID: PMC4055436 DOI: 10.3892/ijmm.2014.1711] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) has been suggested to be a putative tumor promoter gene, and autocrine of TNF-α expression has been found in colon cancer and ovarian cancer. As the role of autocrine TNF-α in human gallbladder cancer has not yet been elucidated, the present study examined the expression of TNF-α in gallbladder cancer-derived cell lines. Based on the data, TNF-α mRNA and TNF-α protein expression differed significantly different between the cell lines. In addition, using siRNA targeting TNF-α, the vector, pGPU-GFP-siTNF-α, was constructed and then transfected into the SGC-996 cells (gallbladder cancer cell line) which express high levels of endogenous TNF-α. In vitro experiments indicated that the silencing of TNF-α in the SGC-996 cells significantly suppressed proliferation and invasion. However, apoptosis was not induced by the silencing of TNF-α. Furthermore, we traced the mechanisms underlying these effects and found that the silencing of TNF-α affected the TNF-α-AKT-NF-κB-Bcl-2 pathway in the SGC-996 cells. Our data provide evidence that autocrine TNF-α plays a role as a tumor promoter gene in gallbladder cancer cells, possibly by promoting proliferation and invasion through autocrine mechanisms.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Qiang Du
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Yanling Chen
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| |
Collapse
|