1
|
Suba Z. DNA Damage Responses in Tumors Are Not Proliferative Stimuli, but Rather They Are DNA Repair Actions Requiring Supportive Medical Care. Cancers (Basel) 2024; 16:1573. [PMID: 38672654 PMCID: PMC11049279 DOI: 10.3390/cancers16081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In tumors, somatic mutagenesis presumably drives the DNA damage response (DDR) via altered regulatory pathways, increasing genomic instability and proliferative activity. These considerations led to the standard therapeutic strategy against cancer: the disruption of mutation-activated DNA repair pathways of tumors. PURPOSE Justifying that cancer cells are not enemies to be killed, but rather that they are ill human cells which have the remnants of physiologic regulatory pathways. RESULTS 1. Genomic instability and cancer development may be originated from a flaw in estrogen signaling rather than excessive estrogen signaling; 2. Healthy cells with genomic instability exhibit somatic mutations, helping DNA restitution; 3. Somatic mutations in tumor cells aim for the restoration of DNA damage, rather than further genomic derangement; 4. In tumors, estrogen signaling drives the pathways of DNA stabilization, leading to apoptotic death; 5. In peritumoral cellular infiltration, the genomic damage of the tumor induces inflammatory cytokine secretion and increased estrogen synthesis. In the inflammatory cells, an increased growth factor receptor (GFR) signaling confers the unliganded activation of estrogen receptors (ERs); 6. In breast cancer cells responsive to genotoxic therapy, constitutive mutations help the upregulation of estrogen signaling and consequential apoptosis. In breast tumors non-responsive to genotoxic therapy, the possibilities for ER activation via either liganded or unliganded pathways are exhausted, leading to farther genomic instability and unrestrained proliferation. CONCLUSIONS Understanding the real character and behavior of human tumors at the molecular level suggests that we should learn the genome repairing methods of tumors and follow them by supportive therapy, rather than provoking additional genomic damages.
Collapse
Affiliation(s)
- Zsuzsanna Suba
- Department of Molecular Pathology, National Institute of Oncology, Ráth György Str. 7-9, H-1122 Budapest, Hungary
| |
Collapse
|
2
|
Sun SQ, Du FX, Zhang LH, Hao-Shi, Gu FY, Deng YL, Ji YZ. Prevention of STAT3-related pathway in SK-N-SH cells by natural product astaxanthin. BMC Complement Med Ther 2023; 23:430. [PMID: 38031104 PMCID: PMC10685499 DOI: 10.1186/s12906-023-04267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Neuroblastoma (NB) is the most common solid malignancy in children. Despite current intensive treatment, the long-term event-free survival rate is less than 50% in these patients. Thus, patients with NB urgently need more valid treatment strategies. Previous research has shown that STAT3 may be an effective target in high-risk NB patients. However, there are no effective inhibitors in clinical evaluation with low toxicity and few side effects. Astaxanthin is a safe and natural anticancer product. In this study, we investigated whether astaxanthin could exert antitumor effects in the SK-N-SH neuroblastoma cancer cell line. METHOD MTT and colony formation assays were used to determine the effect of astaxanthin on the proliferation and colony formation of SK-N-SH cells. Flow cytometry assays were used to detect the apoptosis of SK-N-SH cells. The migration and invasion ability of SK-N-SH cells were detected by migration and invasion assays. Western blot and RT-PCR were used to detect the protein and mRNA levels. Animal experiments were carried out and cell apoptosis in tissues were assessed using a TUNEL assay. RESULT We confirmed that astaxanthin repressed proliferation, clone formation ability, migration and invasion and induced apoptosis in SK-N-SH cells through the STAT3 pathway. Furthermore, the highest inhibitory effect was observed when astaxanthin was combined with si-STAT3. The reason for this may be that the combination of astaxanthin and si-STAT3 can lower STAT3 expression further than astaxanthin or si-STAT3 alone. CONCLUSION Astaxanthin can exert anti-tumor effect on SK-N-SH cells. The inhibitory effect was the higher when astaxanthin was combined with si-STAT3.
Collapse
Affiliation(s)
- Shao-Qian Sun
- School of Medical Technology, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Feng-Xiang Du
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Li-Hua Zhang
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Hao-Shi
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Fu-Ying Gu
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China
| | - Yu-Lin Deng
- School of Medical Technology, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Yi-Zhi Ji
- Biochemical Engineering College, Beijng Union University, Beijing, 100023, China.
| |
Collapse
|
3
|
Suba Z. Rosetta Stone for Cancer Cure: Comparison of the Anticancer Capacity of Endogenous Estrogens, Synthetic Estrogens and Antiestrogens. Oncol Rev 2023; 17:10708. [PMID: 37152665 PMCID: PMC10154579 DOI: 10.3389/or.2023.10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
This work presents the history of the recognition of principal regulatory capacities of estrogen hormones having been mistakenly regarded as breast cancer promoting agents for more than 120 years. Comprehensive analysis of the results of clinical, epidemiological, immunological and molecular studies justified that endogenous estrogens are the principal regulators of embryonic development, survival and reproduction via orchestrating appropriate expression and even edition of all genes in mammalians. Medical use of chemically modified synthetic estrogens caused toxic complications; thromboembolic events and increased cancer risk in female organs as they proved to be endocrine disruptors deregulating estrogen receptors (ERs) rather than their activators. Synthetic estrogen treatment exhibits ambiguous correlations with cancer risk at different sites, which may be attributed to an inhibition of the unliganded activation of estrogen receptors (ERs) coupled with compensatory liganded activation. The principle of estrogen induced breast cancer led to the introduction of antiestrogen therapies against this tumor; inhibition of the liganded activation of estrogen receptors and aromatase enzyme activity. The initial enthusiasm turned into disappointment as the majority of breast cancers proved to be primarily resistant to antiestrogens. In addition, nearly all patients showing earlier good tumor responses to endocrine therapy, later experienced secondary resistance leading to metastatic disease and fatal outcome. Studying the molecular events in tumors responsive and unresponsive to antiestrogen therapy, it was illuminated that a complete inhibition of liganded ER activation stimulates the growth of cancers, while a successful compensatory upregulation of estrogen signal may achieve DNA restoration, tumor regression and patient's survival. Recognition of the principal role of endogenous estrogens in gene expression, gene edition and DNA repair, estrogen treatment and stimulation of ER expression in patients may bring about a great turn in medical practice.
Collapse
|
4
|
Wo G, Zhu Z, Fang Z, Chen X, Liang M, Wang Y, Shao X, Shen H, Tang J. Dihydrotanshinone I: A Target for STAT3 in the Therapy of Tamoxifen‐Resistant Breast Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202203082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guanqun Wo
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | - Zhen Zhu
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Zheng Fang
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Xi Chen
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | | | - Yalin Wang
- Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 P. R. China
| | - Xinyi Shao
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| | - Hongyu Shen
- Nanjing Medical University Nanjing 210029 P. R. China
| | - Jin‐Hai Tang
- Nanjing University of Chinese Medicine Xianlin Road 138 Nanjing 210023 P. R. China
| |
Collapse
|
5
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
6
|
Tsoi H, Man EPS, Chau KM, Khoo US. Targeting the IL-6/STAT3 Signalling Cascade to Reverse Tamoxifen Resistance in Estrogen Receptor Positive Breast Cancer. Cancers (Basel) 2021; 13:cancers13071511. [PMID: 33806019 PMCID: PMC8036560 DOI: 10.3390/cancers13071511] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary This study identifies the molecular mechanisms through which BQ323636.1 can enhance IL-6 and IL-6R expression, which leads to the activation of STAT3 and the development of tamoxifen resistance in ER+ breast cancer. We demonstrated a statistically significant association of IL-6R with tamoxifen resistance; patients with high IL-6R expression had poorer survival outcome. In vitro and in vivo studies confirmed that targeting IL-6R with Tocilizumab reduced tamoxifen resistance, providing the basis for potential use for disease management Abstract Breast cancer is the most common female cancer. About 70% of breast cancer patients are estrogen receptor α (ERα) positive (ER+) with tamoxifen being the most commonly used anti-endocrine therapy. However, up to 50% of patients who receive tamoxifen suffer recurrence. We previously identified BQ323636.1 (BQ), a novel splice variant of NCOR2, can robustly predict tamoxifen resistance in ER+ primary breast cancer. Here we show that BQ can enhance IL-6/STAT3 signalling. We demonstrated that through interfering with NCOR2 suppressive activity, BQ favours the binding of ER to IL-6 promoter and the binding of NF-ĸB to IL-6 receptor (IL-6R) promoter, leading to the up-regulation of both IL-6 and IL-6R and thus the activation of STAT3. Knockdown of IL-6R could compromise tamoxifen resistance mediated by BQ. Furthermore, Tocilizumab (TCZ), an antibody that binds to IL-6R, could effectively reverse tamoxifen resistance both in vitro and in vivo. Analysis of clinical breast cancer samples confirmed that IL-6R expression was significantly associated with BQ expression and tamoxifen resistance in primary breast cancer, with high IL-6R expression correlating with poorer survival. Multivariate Cox-regression analysis confirmed that high IL-6R expression remained significantly associated with poor overall as well as disease-specific survival in ER+ breast cancer.
Collapse
|
7
|
Compensatory Estrogen Signal Is Capable of DNA Repair in Antiestrogen-Responsive Cancer Cells via Activating Mutations. JOURNAL OF ONCOLOGY 2020; 2020:5418365. [PMID: 32774370 PMCID: PMC7407016 DOI: 10.1155/2020/5418365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Cancer cells are embarrassed human cells exhibiting the remnants of same mechanisms for DNA stabilization like patients have in their healthy cells. Antiestrogens target the liganded activation of ERs, which is the principal means of genomic regulation in both patients and their tumors. The artificial blockade of liganded ER activation is an emergency situation promoting strong compensatory actions even in cancer cells. When tumor cells are capable of an appropriate upregulation of ER signaling resulting in DNA repair, a tumor response may be detected. In contrast, when ER signaling is completely inhibited, tumor cells show unrestrained proliferation, and tumor growth may be observed. The laboratory investigations of genomic mechanisms in antiestrogen-responsive and antiestrogen-unresponsive tumor cells have considerably enhanced our knowledge regarding the principal regulatory capacity of estrogen signaling. In antiestrogen-responsive tumor cells, a compensatory increased expression and liganded activation of estrogen receptors (ERs) result in an apoptotic death. Conversely, in antiestrogen resistant tumors exhibiting a complete blockade of liganded ER activation, a compensatory effort for unliganded ER activation is characteristic, conferred by the increased expression and activity of growth factor receptors. However, even extreme unliganded ER activation is incapable of DNA restoration when the liganded ER activation is completely blocked. Researchers mistakenly suspect even today that in tumors growing under antiestrogen treatment, the increased unliganded activation of estrogen receptor via activating mutations is an aggressive survival technique, whilst it is a compensatory effort against the blockade of liganded ER activation. The capacity of liganded ERs for genome modification in emergency states provides possibilities for estrogen/ER use in medical practice including cancer cure.
Collapse
|
8
|
Shoemaker RH, Fox JT, Juliana MM, Moeinpour FL, Grubbs CJ. Evaluation of the STAT3 inhibitor GLG‑302 for the prevention of estrogen receptor‑positive and ‑negative mammary cancers. Oncol Rep 2019; 42:1205-1213. [PMID: 31322250 DOI: 10.3892/or.2019.7219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a key role in the transformation of normal cells to cancerous cells. Although inhibitors of STAT3 have been shown to suppress the growth of multiple cancer types in vitro and in vivo, such agents are of particular interest for the prevention of breast cancer, which affects over 200,000 women and claims more than 40,000 lives in the United States each year. In the present study, we employed the MMTV/Neu transgenic mouse model, which develops estrogen receptor (ER)‑negative, Neu‑overexpressing tumors, and the Sprague‑Dawley (SD) rat model, which develops ER‑positive tumors upon exposure to the carcinogen 7,12‑dimethylbenz[a]anthracene (DMBA), to test the efficacy of the STAT3 inhibitor GLG‑302 in the prevention of mammary cancer. Orally administered GLG‑302 and its trizma salt derivative reduced mammary cancer incidence, multiplicity, and tumor weights in female MMTV/Neu mice, and GLG‑302 reduced tumor multiplicity and weights in female DMBA‑treated rats. Consistent with the mechanism of action of STAT3 inhibitors, the reductions in mammary tumors were correlated with decreases in STAT3 phosphorylation and cell proliferation. These data suggest that GLG‑302 is a novel agent with potential for prevention of mammary cancer and support the further development of STAT3 inhibitors for this cause.
Collapse
Affiliation(s)
- Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Jennifer T Fox
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Margaret M Juliana
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fariba L Moeinpour
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Tumor-Associated Macrophages Induce Endocrine Therapy Resistance in ER+ Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11020189. [PMID: 30736340 PMCID: PMC6406935 DOI: 10.3390/cancers11020189] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Antiestrogenic adjuvant treatments are first-line therapies in patients with breast cancer positive for estrogen receptor (ER+). Improvement of their treatment strategies is needed because most patients eventually acquire endocrine resistance and many others are initially refractory to anti-estrogen treatments. The tumor microenvironment plays essential roles in cancer development and progress; however, the molecular mechanisms underlying such effects remain poorly understood. Breast cancer cell lines co-cultured with TNF-α-conditioned macrophages were used as pro-inflammatory tumor microenvironment models. Proliferation, migration, and colony formation assays were performed to evaluate tamoxifen and ICI 182,780 resistance and confirmed in a mouse-xenograft model. Molecular mechanisms were investigated using cytokine antibody arrays, WB, ELISA, ChIP, siRNA, and qPCR-assays. In our simulated pro-inflammatory tumor microenvironment, tumor-associated macrophages promoted proliferation, migration, invasiveness, and breast tumor growth of ER+ cells, rendering these estrogen-dependent breast cancer cells resistant to estrogen withdrawal and tamoxifen or ICI 182,780 treatment. Crosstalk between breast cancer cells and conditioned macrophages induced sustained release of pro-inflammatory cytokines from both cell types, activation of NF-κB/STAT3/ERK in the cancer cells and hyperphosphorylation of ERα, which resulted constitutively active. Our simulated tumor microenvironment strongly altered endocrine and inflammatory signaling pathways in breast cancer cells, leading to endocrine resistance in these cells.
Collapse
|
10
|
Radenkovic S, Konjevic G, Gavrilovic D, Stojanovic-Rundic S, Plesinac-Karapandzic V, Stevanovic P, Jurisic V. pSTAT3 expression associated with survival and mammographic density of breast cancer patients. Pathol Res Pract 2018; 215:366-372. [PMID: 30598340 DOI: 10.1016/j.prp.2018.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/01/2018] [Accepted: 12/24/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Constitutive activation of STAT3 have been shown in several tumor types including breast cancer. We investigate STAT3 expresion as possible molecular marker for breast cancer early detection, as well as prognostic factor for determination of tumor agressiveness. METHODS In this study we measure p(Y705)STAT3 expression in tumor and adjacent tissue of breast cancer patients by Western blot. For relapse-free survival (RFS) and overall survival (OS) we used Log-Rank test. RESULTS We show that average expression of p (Y705) STAT3 in tumor tissue is higher compared to adjacent tissue. Moreover, we found that patients with HER2 positive receptors had significantly higher pSTAT3 expression compared to HER2 negative patients. We showed that patients with high mammographic density had significantly higher tumor expression of pSTAT3 compared to patients with low mammographic density. Also, we show that pSTAT3 expression correlates with longer RFS in the entire group of patients, as well as in the group of ER positive, in lymph node positive and in older group of breast cancer patients (with age over 50). Furthermore, in the entire group of patients, in ER positive, in lymph node positive and in older group of patient, high expression of pSTAT3 showed a better survival than low expression of pSTAT3. CONCLUSION Considering that the expression of pSTAT3 is associated with longer RFS and survival, it can be used as prognostic tools for determination of group of breast cancer patients with low-risk.
Collapse
Affiliation(s)
- Sandra Radenkovic
- Institute of Oncology and Radiology of Serbia, Department of Radiation Oncology and Diagnostics, Belgrade, Serbia
| | - Gordana Konjevic
- Institute of Oncology and Radiology of Serbia, Department of Radiation Oncology and Diagnostics, Belgrade, Serbia; Institute of Oncology and Radiology of Serbia, Department of Experimental Oncology, Serbia
| | - Dusica Gavrilovic
- Institute of Oncology and Radiology of Serbia, Department of Radiation Oncology and Diagnostics, Belgrade, Serbia
| | | | | | | | - Vladimir Jurisic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
11
|
Adelson K, Ramaswamy B, Sparano JA, Christos PJ, Wright JJ, Raptis G, Han G, Villalona-Calero M, Ma CX, Hershman D, Baar J, Klein P, Cigler T, Budd GT, Novik Y, Tan AR, Tannenbaum S, Goel A, Levine E, Shapiro CL, Andreopoulou E, Naughton M, Kalinsky K, Waxman S, Germain D. Randomized phase II trial of fulvestrant alone or in combination with bortezomib in hormone receptor-positive metastatic breast cancer resistant to aromatase inhibitors: a New York Cancer Consortium trial. NPJ Breast Cancer 2016; 2:16037. [PMID: 28721390 PMCID: PMC5515340 DOI: 10.1038/npjbcancer.2016.37] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/09/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
The proteasome inhibitor bortezomib enhances the effect of the selective estrogen receptor (ER) downregulator (SERD) fulvestrant by causing accumulation of cytoplasmic ER aggregates in preclinical models. The purpose of this trial was to determine whether bortezomib enhanced the effectiveness of fulvestrant. One hundred eighteen postmenopausal women with ER-positive metastatic breast cancer resistant to aromatase inhibitors (AIs) were randomized to fulvestrant alone (Arm A-500 mg intramuscular (i.m.) day -14, 1, 15 in cycle 1, and day 1 of additional cycles) or in combination with bortezomib (Arm B-1.6 mg/m2 intravenous (i.v.) on days 1, 8, 15 of each cycle). The study was powered to show an improvement in median progression-free survival (PFS) from 5.4 to 9.0 months and compare PFS rates at 6 and 12 months (α=0.10, β=0.10). Patients with progression on fulvestrant could cross over to the combination (arm C). Although there was no difference in median PFS (2.7 months in both arms), the hazard ratio for PFS in Arm B versus Arm A (referent) was 0.73 (95% confidence interval (CI)=0.49, 1.09, P=0.06, 1-sided log-rank test, significant at the prespecified 1-sided 0.10 α level). At 12 months, the PFS proportion in Arm A and Arm B was 13.6% and 28.1% (P=0.03, 1-sided χ2-test; 95% CI for difference (14.5%)=-0.06, 29.1%). Of 27 patients on arm A who crossed over to the combination (arm C), 5 (18%) were progression-free for at least 24 weeks. Bortezomib likely enhances the effectiveness of fulvestrant in AI-resistant, ER-positive metastatic breast cancer by reducing acquired resistance, supporting additional evaluation of proteasome inhibitors in combination with SERDs.
Collapse
Affiliation(s)
- Kerin Adelson
- Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, New Haven, CT, USA
| | | | - Joseph A Sparano
- Department of Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Paul J Christos
- Department of Healthcare Policy & Research, Weill Cornell Medical Center, New York, NY, USA
| | - John J Wright
- Investigational Drug Branch, Cancer Therapy and Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George Raptis
- Department of Medicine, Northwell Health, Lake Success NY and Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | | | - Cynthia X Ma
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Dawn Hershman
- Department of Medicine and Epidemiology New York Presbyterian-Columbia University Medical Center, New York, NY, NY, USA
| | - Joseph Baar
- Department of Medicine, Division of Hematology/Oncology, Seidman Cancer Center of the University Hospitals of the Cleveland Medical Center, Cleveland, OH, USA
| | - Paula Klein
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Tessa Cigler
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical Center, New York, NY, USA
| | - G Thomas Budd
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, USA
| | - Yelena Novik
- Perlmutter Cancer Center, NYU Langone Medical Center, New York University School of Medicine, New York, NY, USA
| | - Antoinette R Tan
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Susan Tannenbaum
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Anupama Goel
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Ellis Levine
- Roswell Park Cancer Institute, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, USA
| | - Charles L Shapiro
- The Ohio State Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | | | - Michael Naughton
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Kevin Kalinsky
- Department of Medicine, Division of Hematology and Oncology, New York Presbyterian-Columbia University Medical Center, New York, NY, USA
| | - Sam Waxman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Doris Germain
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| |
Collapse
|
12
|
Zhao C, Li H, Lin HJ, Yang S, Lin J, Liang G. Feedback Activation of STAT3 as a Cancer Drug-Resistance Mechanism. Trends Pharmacol Sci 2015; 37:47-61. [PMID: 26576830 DOI: 10.1016/j.tips.2015.10.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays crucial roles in several cellular processes such as cell proliferation and survival, and has been found to be aberrantly activated in many cancers. Much research has explored the leading mechanisms for regulating the STAT3 pathway and its role in promoting tumorigenesis. We focus here on recent evidence suggesting that feedback activation of STAT3 plays a prominent role in mediating drug resistance to a broad spectrum of targeted cancer therapies and chemotherapies. We highlight the potential of co-targeting STAT3 and its primary target to overcome drug resistance, and provide perspective on repurposing clinically approved drugs as STAT3 pathway inhibitors, in combination with the FDA-approved receptor tyrosine kinase (RTK) inhibitors, to improve clinical outcome of cancer treatment.
Collapse
Affiliation(s)
- Chengguang Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Huameng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Huey-Jen Lin
- Department of Medical Laboratory Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China.
| | - Jiayuh Lin
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
13
|
Ishii Y, Nhiayi MK, Tse E, Cheng J, Massimino M, Durden DL, Vigneri P, Wang JYJ. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release. PLoS One 2015; 10:e0140585. [PMID: 26473951 PMCID: PMC4608728 DOI: 10.1371/journal.pone.0140585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022] Open
Abstract
Knockout serum replacement (KOSR) is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML) cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors—imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.
Collapse
Affiliation(s)
- Yuki Ishii
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - May Keu Nhiayi
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Edison Tse
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Jonathan Cheng
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Michele Massimino
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Donald L. Durden
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Paolo Vigneri
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Jean Y. J. Wang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
RNAi-mediated silencing of Anxa2 inhibits breast cancer cell proliferation by downregulating cyclin D1 in STAT3-dependent pathway. Breast Cancer Res Treat 2015; 153:263-75. [PMID: 26253946 DOI: 10.1007/s10549-015-3529-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
Although the upregulated expression of Anxa2 has been implicated in carcinogenesis, cancer progression, and poor prognosis of cancer patients, the detailed molecular mechanisms involved in these processes remain unclear. In this study, we investigated the effect of Anxa2 downregulation with small interference RNA on breast cancer proliferation. To explore molecular mechanisms underlying Anxa2-mediated cancer cell proliferation. We analyzed cell cycle distribution and signaling pathways using semi-quantitative real-time PCR and Western blotting. Anxa2 depletion in breast cancer cells significantly inhibited cell proliferation by decelerating cell cycle progression. The retarded G1-to-S phase transition in Anxa2-silenced cells was attributed to the decreased levels of cyclin D1, which is a crucial promoting factor for cell proliferation because it regulates G1-to-S phase transition during cell cycle progression. We provided evidence that Anxa2 regulates epidermal growth factor-induced phosphorylation of STAT3. The reduced expression of phosphorylated STAT3 is the main factor responsible for decreased cyclin D1 levels in Anxa2-silenced breast cancer cells. Our results revealed the direct relationship between Anxa2 and activation of STAT3, a key transcription factor that plays a pivotal role in regulating breast cancer proliferation and survival. This study provides novel insights into the functions of Anxa2 as a critical molecule in cellular signal transduction and significantly improves our understanding of the mechanism through which Anxa2 regulates cell cycle and cancer cell proliferation.
Collapse
|
15
|
Abstract
Around 70% of all breast cancers are estrogen receptor alpha positive and hence their development is highly dependent on estradiol. While the invention of endocrine therapies has revolusioned the treatment of the disease, resistance to therapy eventually occurs in a large number of patients. This paper seeks to illustrate and discuss the complexity and heterogeneity of the mechanisms which underlie resistance and the approaches proposed to combat them. It will also focus on the use and development of methods for predicting which patients are likely to develop resistance.
Collapse
|
16
|
Xiong A, Yang Z, Shen Y, Zhou J, Shen Q. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers (Basel) 2014; 6:926-57. [PMID: 24743778 PMCID: PMC4074810 DOI: 10.3390/cancers6020926] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents.
Collapse
Affiliation(s)
- Ailian Xiong
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhengduo Yang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yicheng Shen
- College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Liu LYD, Chang LY, Kuo WH, Hwa HL, Lin YS, Jeng MH, Roth DA, Chang KJ, Hsieh FJ. Prognostic features of signal transducer and activator of transcription 3 in an ER(+) breast cancer model system. Cancer Inform 2014; 13:21-45. [PMID: 24526833 PMCID: PMC3921136 DOI: 10.4137/cin.s12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aberrantly expressed signal transducer and activator of transcription 3 (STAT3) predicts poor prognosis, primarily in estrogen receptor positive (ER(+)) breast cancers. Activated STAT3 is overexpressed in luminal A subtype cells. The mechanisms contributing to the prognosis and/or subtype relevant features of STAT3 in ER(+) breast cancers are through multiple interacting regulatory pathways, including STAT3-MYC, STAT3-ERα, and STAT3-MYC-ERα interactions, as well as the direct action of activated STAT3. These data predict malignant events, treatment responses and a novel enhancer of tamoxifen resistance. The inferred crosstalk between ERα and STAT3 in regulating their shared target gene-METAP2 is partially validated in the luminal B breast cancer cell line-MCF7. Taken together, we identify a poor prognosis relevant gene set within the STAT3 network and a robust one in a subset of patients. VEGFA, ABL1, LYN, IGF2R and STAT3 are suggested therapeutic targets for further study based upon the degree of differential expression in our model.
Collapse
Affiliation(s)
- Li-Yu D Liu
- Department of Agronomy, Biometry Division, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Chang
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Lin Hwa
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | | | - Meei-Huey Jeng
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Don A Roth
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - King-Jen Chang
- Department of Surgery, National Taiwan University, Taipei, Taiwan. ; Cheng Ching General Hospital, Taichung, Taiwan
| | - Fon-Jou Hsieh
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan. ; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
|
19
|
Nickols NG, Szablowski JO, Hargrove AE, Li BC, Raskatov JA, Dervan PB. Activity of a Py-Im polyamide targeted to the estrogen response element. Mol Cancer Ther 2013; 12:675-84. [PMID: 23443804 DOI: 10.1158/1535-7163.mct-12-1040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pyrrole-imidazole (Py-Im) polyamides are a class of programmable DNA minor groove binders capable of modulating the activity of DNA-binding proteins and affecting changes in gene expression. Estrogen receptor alpha (ERα) is a ligand-activated hormone receptor that binds as a homodimer to estrogen response elements (ERE) and is a driving oncogene in a majority of breast cancers. We tested a selection of structurally similar Py-Im polyamides with differing DNA sequence specificity for activity against 17β-estadiol (E2)-induced transcription and cytotoxicity in ERα positive, E2-stimulated T47DKBluc cells, which express luciferase under ERα control. The most active polyamide targeted the sequence 5'-WGGWCW-3' (W = A or T), which is the canonical ERE half site. Whole transcriptome analysis using RNA-Seq revealed that treatment of E2-stimulated breast cancer cells with this polyamide reduced the effects of E2 on the majority of those most strongly affected by E2 but had much less effect on the majority of E2-induced transcripts. In vivo, this polyamide circulated at detectable levels following subcutaneous injection and reduced levels of ER-driven luciferase expression in xenografted tumors in mice after subcutaneous compound administration without significant host toxicity.
Collapse
Affiliation(s)
- Nicholas G Nickols
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
20
|
Sen M, Joyce S, Panahandeh M, Li C, Thomas SM, Maxwell J, Wang L, Gooding WE, Johnson DE, Grandis JR. Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res 2012; 18:4986-96. [PMID: 22825581 DOI: 10.1158/1078-0432.ccr-12-0792] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE EGF receptor (EGFR) is upregulated in most epithelial cancers where signaling through EGFR contributes to cancer cell proliferation and survival. The limited clinical efficacy of EGFR inhibitors suggests that identification of resistance mechanisms may identify new pathways for therapeutic targeting. STAT3 is upregulated in many cancers and activated via both EGFR-dependent and -independent pathways. In the present study, we tested the consequences of STAT3 inhibition in EGFR inhibitor-resistant head and neck squamous cell carcinoma (HNSCC) and bladder cancer models to determine whether STAT3 blockade can enhance responses to EGFR targeting. EXPERIMENTAL DESIGN pSTAT3 expression was assessed in human HNSCC tumors that recurred following cetuximab treatment. Cetuximab-sensitive and -resistant cell lines were treated with a STAT3 decoy to determine EC(50) concentrations and the effects on STAT3 target gene expression by Western blotting. In vivo assays included evaluation of antitumor efficacy of STAT3 decoy in cetuximab-sensitive and -resistant models followed by immunoblotting for STAT3 target protein expression. RESULTS Targeting STAT3 with a STAT3 decoy reduced cellular viability and the expression of STAT3 target genes in EGFR inhibitor resistance models. The addition of a STAT3 inhibitor to EGFR blocking strategies significantly enhanced antitumor effects in vivo. Biopsies from HNSCC tumors that recurred following cetuximab treatment showed increased STAT3 activation compared with pretreatment biopsies. CONCLUSIONS These results suggest that STAT3 activation contributes to EGFR inhibitor resistance both in HNSCC and bladder cancer where concomitant targeting of STAT3 may represent an effective treatment strategy.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bilal E, Vassallo K, Toppmeyer D, Barnard N, Rye IH, Almendro V, Russnes H, Børresen-Dale AL, Levine AJ, Bhanot G, Ganesan S. Amplified loci on chromosomes 8 and 17 predict early relapse in ER-positive breast cancers. PLoS One 2012; 7:e38575. [PMID: 22719901 PMCID: PMC3374812 DOI: 10.1371/journal.pone.0038575] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/07/2012] [Indexed: 01/12/2023] Open
Abstract
Adjuvant hormonal therapy is administered to all early stage ER+ breast cancers, and has led to significantly improved survival. Unfortunately, a subset of ER+ breast cancers suffer early relapse despite hormonal therapy. To identify molecular markers associated with early relapse in ER+ breast cancer, an outlier analysis method was applied to a published gene expression dataset of 268 ER+ early-stage breast cancers treated with tamoxifen alone. Increased expression of sets of genes that clustered in chromosomal locations consistent with the presence of amplicons at 8q24.3, 8p11.2, 17q12 (HER2 locus) and 17q21.33-q25.1 were each found to be independent markers for early disease recurrence. Distant metastasis free survival (DMFS) after 10 years for cases with any amplicon (DMFS = 56.1%, 95% CI = 48.3–63.9%) was significantly lower (P = 0.0016) than cases without any of the amplicons (DMFS = 87%, 95% CI = 76.3% –97.7%). The association between presence of chromosomal amplifications in these regions and poor outcome in ER+ breast cancers was independent of histologic grade and was confirmed in independent clinical datasets. A separate validation using a FISH-based assay to detect the amplicons at 8q24.3, 8p11.2, and 17q21.33-q25.1 in a set of 36 early stage ER+/HER2- breast cancers treated with tamoxifen suggests that the presence of these amplicons are indeed predictive of early recurrence. We conclude that these amplicons may serve as prognostic markers of early relapse in ER+ breast cancer, and may identify novel therapeutic targets for poor prognosis ER+ breast cancers.
Collapse
Affiliation(s)
- Erhan Bilal
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kristen Vassallo
- Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States of America
| | - Deborah Toppmeyer
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Nicola Barnard
- Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States of America
| | - Inga H. Rye
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vanessa Almendro
- Dana Farber Cancer Institute, Harvard University, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Hege Russnes
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Dana Farber Cancer Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Anne-Lise Børresen-Dale
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arnold J. Levine
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Institute for Advanced Study, Princeton, New Jersey, United States of America
| | - Gyan Bhanot
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Institute for Advanced Study, Princeton, New Jersey, United States of America
- * E-mail: (GB); (SG)
| | - Shridar Ganesan
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail: (GB); (SG)
| |
Collapse
|
22
|
Qi X, Zhi H, Lepp A, Wang P, Huang J, Basir Z, Chitambar CR, Myers CR, Chen G. p38γ mitogen-activated protein kinase (MAPK) confers breast cancer hormone sensitivity by switching estrogen receptor (ER) signaling from classical to nonclassical pathway via stimulating ER phosphorylation and c-Jun transcription. J Biol Chem 2012; 287:14681-91. [PMID: 22399296 DOI: 10.1074/jbc.m112.349357] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor (ER) α promotes breast cancer growth by regulating gene expression through classical estrogen response element (ERE) binding and nonclassical (interaction with c-Jun at AP-1 sites) pathways. ER is the target for anti-estrogens such as tamoxifen (TAM). However, the potential for classical versus nonclassical ER signaling to influence hormone sensitivity is not known. Moreover, anti-estrogens frequently activate several signaling cascades besides the target ER, and the implications of these "off-target" signaling events have not been explored. Here, we report that p38γ MAPK is selectively activated by treatment with TAM. This results in both phosphorylation of ER at Ser-118 and stimulation of c-Jun transcription, thus switching ER signaling from the classical to the nonclassical pathway leading to increased hormone sensitivity. Unexpectedly, phosphorylation at Ser-118 is required for ER to bind both p38γ and c-Jun, thereby promoting ER relocation from ERE to AP-1 promoter sites. Thus, ER/Ser-118 phosphorylation serves as a central mechanism by which p38γ regulates signaling transduction of ER with its inhibitor TAM.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. J Neurooncol 2012; 107:487-501. [PMID: 22249692 DOI: 10.1007/s11060-011-0786-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/26/2011] [Indexed: 01/08/2023]
Abstract
Glioma stem-like cells (GSCs) may be the initiating cells in glioblastoma (GBM) and contribute to the resistance of these tumors to conventional therapies. Development of novel chemotherapeutic agents and treatment approaches against GBM, especially those specifically targeting GSCs are thus necessary. In the present study, we found that a novel Janus kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway inhibitor (WP1193) significantly decreased the proliferation of established glioma cell lines in vitro and inhibit the growth of glioma in vivo. To test the efficacy of WP1193 against GSCs, we then administrated WP1193 to GSCs isolated and expanded from multiple human GBM tumors. We revealed that WP1193 suppressed phosphorylation of JAK2 and STAT3 with high potency and demonstrated a dose-dependent inhibition of proliferation and neurosphere formation of GSCs. These effects were at least due in part to G1 arrest associated with down-regulation of cyclin D1 and up-regulation of p21( Cip1/Waf-1 ). Furthermore, WP1193 exposure decreased expression of stem cell markers including CD133 and c-myc, and induced cell death in GSCs through apoptosis. Taken together, our data indicate that WP1193 is a potent small molecule inhibitor of the JAK2/STAT3 pathway that shows promise as a therapeutic agent against GBM by targeting GSCs.
Collapse
|
24
|
Vivacqua A, Romeo E, De Marco P, De Francesco EM, Abonante S, Maggiolini M. GPER mediates the Egr-1 expression induced by 17β-estradiol and 4-hydroxitamoxifen in breast and endometrial cancer cells. Breast Cancer Res Treat 2011; 133:1025-35. [PMID: 22147081 DOI: 10.1007/s10549-011-1901-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/24/2011] [Indexed: 02/06/2023]
Abstract
Early growth response-1 (Egr-1) is an immediate early gene involved in relevant biological events including the proliferation of diverse types of cell tumors. In a microarray analysis performed in breast cancer cells, 17β-estradiol (E2) and the estrogen receptor antagonist 4-hydroxitamoxifen (OHT) up-regulated Egr-1 through the G protein-coupled receptor named GPR30/GPER. Hence, in this study, we aimed to provide evidence regarding the ability of E2, OHT and the selective GPER ligand G-1 to regulate Egr-1 expression and function through the GPER/EGFR/ERK transduction pathway in both Ishikawa (endometrial) and SkBr3 (breast) cancer cells. Interestingly, we demonstrate that Egr-1 is involved in the transcription of genes regulating cell proliferation like CTGF and cyclin D1 and required for the proliferative effects induced by E2, OHT, and G-1 in both Ishikawa and SkBr3 cells. In addition, we show that GPER mediates the expression of Egr-1 also in carcinoma-associated fibroblasts (CAFs). Our data suggest that Egr-1 may represent an important mediator of the biological effects induced by E2 and OHT through GPER/EGFR/ERK signaling in breast and endometrial cancer cells. The results obtained in CAFs provide further evidence regarding the potential role exerted by the GPER-dependent Egr-1 up-regulation in tumor development and progression. Therefore, Egr-1 may be included among the bio-markers of estrogen and antiestrogen actions and may be considered as a further therapeutic target in both breast and endometrial tumors.
Collapse
Affiliation(s)
- Adele Vivacqua
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende, CS, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Ko YM, Wu TY, Wu YC, Chang FR, Guh JY, Chuang LY. Annonacin induces cell cycle-dependent growth arrest and apoptosis in estrogen receptor-α-related pathways in MCF-7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1283-1290. [PMID: 21840388 DOI: 10.1016/j.jep.2011.07.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/11/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tamoxifen resistance is common in estrogen receptor-α (ERα)-positive breast cancers. Pawpaw and soursop are anticancer annonaceous plants in complementary medicine. Thus, we studied the effects of annonacin, an annonaceous acetogenin, in breast cancer cells. MATERIALS AND METHODS Cell growth and ERα-related pathways were studied. The effects of annonacin were tested in MCF-7 xenografts in nude mice. RESULTS In ERα-positive MCF-7 cells, annonacin (half-effective dose ED(50) = 0.31 μM) and 4-hydroxytamoxifen (ED(50) = 1.13 μM) decreased cell survival whereas annonacin (0.5-1 μM) increased cell death at 48 h. Annonacin and 4-hydroxytamoxifen were additive in inhibiting cell survival. Annonacin (0.1 μM) induced G(0)/G(1) growth arrest while increasing p21(WAF1) and p27(kip1) and decreasing cyclin D1 protein expression. Annonacin (0.1μM) decreased cyclin D1 protein expression more than 4-hydroxytamoxifen (1 μM). Annonacin (0.1 μM) increased apoptosis while decreasing Bcl-2 protein expression. The combination of annonacin (0.1 μM) and 4-hydroxytamoxifen (1 μM) decreased Bcl-2 protein expression and ERα transcriptional activity more than annonacin (0.1 μM) did alone. Annonacin, but not 4-hydroxytamoxifen, decreased ERα protein expression. Moreover, annonacin decreased phosphorylation of ERK1/2, JNK and STAT3. In nude mice, annonacin decreased MCF-7 xenograft tumor size at 7-22 days. Moreover, annonacin decreased ERα, cyclin D1 and Bcl-2 protein expression in the xenograft at 22 days. CONCLUSIONS Annonacin induced growth arrest and apoptosis in ERα-related pathways in MCF-7 cells. Annonacin and 4-hydroxytamoxifen were additive in inhibiting cell survival and ERα transcriptional activity. Moreover, annonacin attenuated MCF-7 xenograft tumor growth while inhibiting ERα, cyclin D1 and Bcl-2 protein expressions in nude mice.
Collapse
Affiliation(s)
- Yu-Min Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Many studies have reported a correlation between elevated estrogen blood levels and breast cancer and this observation has raised controversy concerning the long-term use of hormonal replacement therapy. This review will not address further this controversial topic; but rather, this review focuses on the role of estrogen signaling in first, the normal development of the breast and second, how alterations of this signaling pathway contribute to breast cancer.
Collapse
Affiliation(s)
- Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Insitute, Mount Sinai School of Medicine, One New York, NY 10029, USA.
| |
Collapse
|
27
|
Ishii Y, Papa L, Bahadur U, Yue Z, Aguirre-Ghiso J, Shioda T, Waxman S, Germain D. Bortezomib enhances the efficacy of fulvestrant by amplifying the aggregation of the estrogen receptor, which leads to a proapoptotic unfolded protein response. Clin Cancer Res 2011; 17:2292-300. [PMID: 21292820 DOI: 10.1158/1078-0432.ccr-10-1745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Fulvestrant is known to promote the degradation of the estrogen receptor (ER) in the nucleus. However, fulvestrant also promotes the aggregation of the newly synthesized ER in the cytoplasm. Accumulation of protein aggregates leads to cell death but this effect is limited as a result of their elimination by the proteasome. We tested whether combining fulvestrant with the proteasome inhibitor, bortezomib, could enhance the accumulation of ER aggregates and cause apoptotic cell death. EXPERIMENTAL DESIGN The rate of aggregation of the ER was monitored in ER(+) breast cancer cells lines, T47D, ZR-75.1, BT474, MDA-MB-361, MCF-7, fulvestrant resistance MCF-7, and tamoxifen-resistant T47D-cyclin D1 cells. Activation of the unfolded protein response, apoptosis, and metabolic rate were also monitored in these cell lines following treatment with fulvestrant, bortezomib, or bortezomib in combination with fulvestrant. RESULTS We found that bortezomib enhances the fulvestrant-mediated aggregation of the ER in the cytoplasm without blocking the degradation of the ER in the nucleus. Further, these aggregates activate a sustained unfolded protein response leading to apoptotic cell death. Further, we show that the combination induced tumor regression in a breast cancer mouse model of tamoxifen resistance. CONCLUSIONS Adding bortezomib to fulvestrant enhances its efficacy by taking advantage of the unique ability of fulvestrant to promote cytoplasmic aggregates of the ER. As this effect of fulvestrant is independent of the transcriptional activity of the ER, these results suggest that this novel combination may be effective in breast cancers that are ER(+) but estrogen independent.
Collapse
Affiliation(s)
- Yuki Ishii
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cortez V, Nair BC, Chakravarty D, Vadlamudi RK. Integrin-linked kinase 1: role in hormonal cancer progression. Front Biosci (Schol Ed) 2011; 3:788-96. [PMID: 21196412 DOI: 10.2741/s187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrin-linked kinase 1 (ILK1) is a serine/threonine kinase that plays important roles in a variety of cellular functions including cell survival, migration and angiogenesis. ILK1 is normally expressed in numerous tissues and activated by growth factors, cytokines and hormones. Dysregulation of ILK1 expression or function is found in several hormonal tumors including breast, ovary and prostate. Emerging evidence suggests that ILK overexpression promotes cellular transformation, cell survival, epithelial mesenchymal transition (EMT), and metastasis of hormonal cancer cells while inhibition of ILK1 reduces tumor growth and progression. The recent development of ILK1 inhibitors has provided novel mechanisms for blocking ILK1 signaling to curb metastasis and therapy resistance of hormonal tumors. This review will focus on recent advances made towards understanding the role of ILK signaling axis in progression of hormonal cancer.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
29
|
Mittal MK, Singh K, Misra S, Chaudhuri G. SLUG-induced elevation of D1 cyclin in breast cancer cells through the inhibition of its ubiquitination. J Biol Chem 2010; 286:469-79. [PMID: 21044962 DOI: 10.1074/jbc.m110.164384] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UbcH5c, a member of the UbcH5 family of protein ubiquitin conjugase E2 enzymes, is a critical component of biological processes in human cells, being the initial ubiquitinating enzyme of substrates like IκB, TP53, and cyclin D1. We report here that the metastasis regulator protein SLUG inhibits the expression of UbcH5c directly through chromatin remodeling and thus, among other downstream effects, elevates the level of cyclin D1, thus enhancing the growth rates of breast cancer cells. Overexpression of SLUG in the SLUG-deficient breast cancer cells significantly decreased the levels of mRNA and protein of UbcH5c but only elevated the protein levels of cyclin D1. On the contrary, knockdown of SLUG in SLUG-high breast cancer cells elevated the levels of UbcH5c while decreasing the level of cyclin D1 protein. SLUG is recruited at the E2-box sequence at the UbcH5c gene promoter along with the corepressor CtBP1 and the effector HDAC1 to silence the expression of this gene. Knockdown of UbcH5c in the SLUG-deficient human breast cells elevated the level of cyclin D1 as well as the rates of proliferation and invasiveness of these cells. Whereas the growth rates of the cells are enhanced due to overexpression of SLUG or knockdown of UbcH5c in the breast cancer cells tested, ER(+) cells also acquire resistance to the anti-estrogen 4-hydroxytamoxifen due to the rise of cyclin D1 levels in these cells. This study thus implicates high levels of SLUG and low levels of UbcH5c as a determinant in the progression of metastatic breast cancer.
Collapse
Affiliation(s)
- Mukul K Mittal
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208, USA. and
| | | | | | | |
Collapse
|
30
|
Kretzer NM, Cherian MT, Mao C, Aninye IO, Reynolds PD, Schiff R, Hergenrother PJ, Nordeen SK, Wilson EM, Shapiro DJ. A noncompetitive small molecule inhibitor of estrogen-regulated gene expression and breast cancer cell growth that enhances proteasome-dependent degradation of estrogen receptor {alpha}. J Biol Chem 2010; 285:41863-73. [PMID: 21041310 DOI: 10.1074/jbc.m110.183723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mechanisms responsible for 17β-estradiol (E(2))-stimulated breast cancer growth and development of resistance to tamoxifen and other estrogen receptor α (ERα) antagonists are not fully understood. We describe a new tool for dissecting ERα action in breast cancer, p-fluoro-4-(1,2,3,6,-tetrahydro-1,3-dimethyl-2-oxo-6-thionpurin-8-ylthio) (TPSF), a potent small-molecule inhibitor of estrogen receptor α that does not compete with estrogen for binding to ERα. TPSF noncompetitively inhibits estrogen-dependent ERα-mediated gene expression with little inhibition of transcriptional activity by NF-κB or the androgen or glucocorticoid receptor. TPSF inhibits E(2)-ERα-mediated induction of the proteinase inhibitor 9 gene, which is activated by ERα binding to estrogen response element DNA, and the cyclin D1 gene, which is induced by tethering ERα to other DNA-bound proteins. TPSF inhibits anchorage-dependent and anchorage-independent E(2)-ERα-stimulated growth of MCF-7 cells but does not inhibit growth of ER-negative MDA-MB-231 breast cancer cells. TPSF also inhibits ERα-dependent growth in three cellular models for tamoxifen resistance; that is, 4-hydroxytamoxifen-stimulated MCF7ERαHA cells that overexpress ERα, fully tamoxifen-resistant BT474 cells that have amplified HER-2 and AIB1, and partially tamoxifen-resistant ZR-75 cells. TPSF reduces ERα protein levels in MCF-7 cells and several other cell lines without altering ERα mRNA levels. The proteasome inhibitor MG132 abolished down-regulation of ERα by TPSF. Thus, TPSF affects receptor levels at least in part due to its ability to enhance proteasome-dependent degradation of ERα. TPSF represents a novel class of ER inhibitor with significant clinical potential.
Collapse
Affiliation(s)
- Nicole M Kretzer
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801-3602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Klinge CM, Riggs KA, Wickramasinghe NS, Emberts CG, McConda DB, Barry PN, Magnusen JE. Estrogen receptor alpha 46 is reduced in tamoxifen resistant breast cancer cells and re-expression inhibits cell proliferation and estrogen receptor alpha 66-regulated target gene transcription. Mol Cell Endocrinol 2010; 323:268-76. [PMID: 20302909 PMCID: PMC2875375 DOI: 10.1016/j.mce.2010.03.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/02/2010] [Accepted: 03/10/2010] [Indexed: 12/11/2022]
Abstract
Resistance to endocrine therapy is a major clinical problem in breast cancer. The role of ERalpha splice variants in endocrine resistance is largely unknown. We observed reduced protein expression of an N-terminally truncated ERalpha46 in endocrine-resistant LCC2, LCC9, and LY2 compared to MCF-7 breast cancer cells. Transfection of LCC9 and LY2 cells with hERalpha46 partially restored growth inhibition by TAM. Overexpression of hERalpha46 in MCF-7 cells reduced estradiol (E(2))-stimulated endogenous pS2, cyclin D1, nuclear respiratory factor-1 (NRF-1), and progesterone receptor transcription. Expression of oncomiR miR-21 was lower in TAM-resistant LCC9 and LY2 cells compared to MCF-7 cells. Transfection with ERalpha46 altered the pharmacology of E(2) regulation of miR-21 expression from inhibition to stimulation, consistent with the hypothesis that hERalpha46 inhibits ERalpha activity. Established miR-21 targets PTEN and PDCD4 were reduced in ERalpha46-transfected, E(2)-treated MCF-7 cells. In conclusion, ERalpha46 appears to enhance endocrine responses by inhibiting selected ERalpha66 responses.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Methylation patterns of genes coding for drug-metabolizing enzymes in tamoxifen-resistant breast cancer tissues. J Mol Med (Berl) 2010; 88:1123-31. [PMID: 20628863 DOI: 10.1007/s00109-010-0652-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 06/22/2010] [Accepted: 06/28/2010] [Indexed: 01/13/2023]
Abstract
The biological mechanisms underlying resistance to tamoxifen are of considerable clinical significance. However, little is known about the correlation between tamoxifen resistance and methylation of genes related to drug-metabolizing enzymes. To address this issue, we examined the methylation pattern and expression of the selected genes coding for drug-metabolizing enzymes, including COMT, CYP1A1, CYP2D6, NAT1, and SULT1A1 in tamoxifen-resistant and control breast cancers. Bisulfite genomic sequencing and methylation-specific PCR were carried out to evaluate the methylation patterns of the five genes from control (n = 74) and tamoxifen-resistant tissues (n = 37) chosen by an age-matched sampling method. Also, end-point reverse transcriptase polymerase chain reaction (RT-PCR) and real-time RT-PCR were performed to determine RNA expression of the genes. Bisulfite genomic sequencing revealed methylation of the NAT1 gene in 25 of the control cancers (33.8%) and 23 of the resistant tumors (62.2%). Of the five genes, only NAT1 showed a significant lower methylation rate in the control group than in the resistant group (p = 0.004). No significant difference of the methylation rate was found in the other four genes including COMT, CYP1A1, CYP2D6, and SULT1A1 (p > 0.05). Furthermore, the expression rate of NAT1 mRNA was lower in the tumors from the resistant group than in control tumors (28.6% vs. 65.2%, p = 0.031). Real-time RT-PCR analysis demonstrated that the NAT1 gene was more down-regulated in resistant tissues than in control group (p = 0.023). Moreover, malignant cells from the resistant cases demonstrated a higher percentage of positive staining for Ki67 (p = 0.001) and cyclin D1 (p = 0.043) than those from the control group. Taken together, the higher methylation rate of the NAT1 gene is related to tamoxifen resistance, and this fact supports the hypothesis that hypermethylation of the NAT1 gene might affect the initiation of tamoxifen resistance.
Collapse
|
33
|
Dancau AM, Wuth L, Waschow M, Holst F, Krohn A, Choschzick M, Terracciano L, Politis S, Kurtz S, Lebeau A, Friedrichs K, Wencke K, Monni O, Simon R. PPFIA1andCCND1are frequently coamplified in breast cancer. Genes Chromosomes Cancer 2010; 49:1-8. [PMID: 19787783 DOI: 10.1002/gcc.20713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ana-Maria Dancau
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim MJ, Kang KA, Yang Y, Lim JS. NDRG2 Expression Increases Apoptosis Induced by Doxorubicin in Malignant Breast Caner Cells. Biomol Ther (Seoul) 2009. [DOI: 10.4062/biomolther.2009.17.4.370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
35
|
Abstract
Endocrine therapies targeting oestrogen action (anti-oestrogens, such as tamoxifen, and aromatase inhibitors) decrease mortality from breast cancer, but their efficacy is limited by intrinsic and acquired therapeutic resistance. Candidate molecular biomarkers and gene expression signatures of tamoxifen response emphasize the importance of deregulation of proliferation and survival signalling in endocrine resistance. However, definition of the specific genetic lesions and molecular processes that determine clinical endocrine resistance is incomplete. The development of large-scale computational and genetic approaches offers the promise of identifying the mediators of endocrine resistance that may be exploited as potential therapeutic targets and biomarkers of response in the clinic.
Collapse
Affiliation(s)
- Elizabeth A Musgrove
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.
| | | |
Collapse
|
36
|
Detection of copy number amplification of cyclin D1 (CCND1) and cortactin (CTTN) in oral carcinoma and oral brushed samples from areca chewers. Oral Oncol 2009; 45:1032-6. [PMID: 19666237 DOI: 10.1016/j.oraloncology.2009.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 11/21/2022]
Abstract
Oral squamous cell carcinoma (OSCC) in Asians is highly associated with the abuse of areca (betel) chewing. There are several hundred million Asians who chew areca and are therefore at high risk of OSCC. Aberrance in cyclin D1 (CCND1) and/or cortactin (CTTN), which are localized on 11q13, seems to be critical events for the development of oral carcinogenesis. This study identified amplifications of CCND1 and CTTN by quantitative (Q)-PCR analysis in 50% and 45% of OSCC samples, respectively. Co-amplification of both genes was identified in 20% of tumors. Higher CTTN expression was associated with nodal metastasis of the OSCC, while the amplification of CCND1 was identified in 28% of oral brushed samples from areca chewers, who form a high risk group for OSCC. This study confirms the importance of alterations in CCND1 and CTTN with respect to areca-associated OSCC, and demonstrates that there is an early occurrence of amplification of these genes in the risk population. The non-invasive brushing sampling method coupling with Q-PCR analysis needs to be validated for use as an early detection system for gene copy changes, which should aid oral cancer prevention.
Collapse
|
37
|
Boström P, Söderström M, Palokangas T, Vahlberg T, Collan Y, Carpen O, Hirsimäki P. Analysis of cyclins A, B1, D1 and E in breast cancer in relation to tumour grade and other prognostic factors. BMC Res Notes 2009; 2:140. [PMID: 19615042 PMCID: PMC2716358 DOI: 10.1186/1756-0500-2-140] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background The cell cycle is promoted by activation of cyclin dependent kinases (Cdks), which are regulated positively by cyclins and negatively by Cdk inhibitors. Proliferation of carcinoma is associated with altered regulation of the cell cycle. Little is known on the combined alterations of cyclins A, B1, D1 and E in breast cancer in relation to the tumour grade and other prognostic factors. Findings Immunohistochemical analysis of cyclins A, B1, D1 and E, estrogen receptor, progesterone receptor, Ki-67, Her-2/neu and CK5/6 was performed on 53 breast carcinomas. mRNA levels of the cyclins were analysed of 12 samples by RT-PCR. The expression of cyclins A, B1 and E correlated with each other, while cyclin D1 correlated with none of these cyclins. Cyclins A, B1 and E showed association with tumour grade, Her-2/neu and Ki-67. Cyclin E had a negative correlation with hormone receptors and a positive correlation with triple negative carcinomas. Cyclin D1 had a positive correlation with ER, PR and non-basal breast carcinomas. Conclusion Cyclin A, B1 and E overexpression correlates to grade, Ki-67 and Her2/neu expression. Overexpression of cyclin D1 has a positive correlation with receptor status and non-basal carcinomas suggesting that cyclin D1 expression might be a marker of good prognosis. Combined analysis of cyclins indicates that cyclin A, B and E expression is similarly regulated, while other factors regulate cyclin D1 expression. The results suggest that the combined immunoreactivity of cyclins A, B1, D and E might be a useful prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Pia Boström
- Turku University Central Hospital, Department of Pathology, Kiinamyllynkatu 4 - 8, 20520 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mauro L, Pellegrino M, Lappano R, Vivacqua A, Giordano F, Palma MG, Andò S, Maggiolini M. E-cadherin mediates the aggregation of breast cancer cells induced by tamoxifen and epidermal growth factor. Breast Cancer Res Treat 2009; 121:79-89. [PMID: 19593637 DOI: 10.1007/s10549-009-0456-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 06/25/2009] [Indexed: 01/03/2023]
Abstract
In the present study, we evaluated the ability of 4-hydroxytamoxifen (OHT) and epidermal growth factor (EGF) to regulate homotypic adhesion in MCF7 breast cancer cells. Our results demonstrate that OHT and EGF activate the E-cadherin promoter, increase E-cadherin mRNA and protein expression and enhance homotypic aggregation of MCF7 cells. Interestingly, an ERalpha and EGFR cross-talk is involved in the E-cadherin expression by OHT and EGF, as demonstrated by knocking down either receptor. On the basis of our findings, the well-established cross-talk between ERalpha and EGFR could be extended to the modulation of E-cadherin expression by OHT and EGF. Thus, the potential ability of tamoxifen to induce cell-cell aggregation may contribute to the biologic response of pharmacologic intervention in patients with breast cancer.
Collapse
Affiliation(s)
- Loredana Mauro
- Department Cellular Biology, University of Calabria, Cosenza, Arcavacata-Rende (CS), 87030, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J 2009; 28:1418-28. [PMID: 19339991 DOI: 10.1038/emboj.2009.88] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 03/09/2009] [Indexed: 12/20/2022] Open
Abstract
We used ChIP-Seq to map ERalpha-binding sites and to profile changes in RNA polymerase II (RNAPII) occupancy in MCF-7 cells in response to estradiol (E2), tamoxifen or fulvestrant. We identify 10 205 high confidence ERalpha-binding sites in response to E2 of which 68% contain an estrogen response element (ERE) and only 7% contain a FOXA1 motif. Remarkably, 596 genes change significantly in RNAPII occupancy (59% up and 41% down) already after 1 h of E2 exposure. Although promoter proximal enrichment of RNAPII (PPEP) occurs frequently in MCF-7 cells (17%), it is only observed on a minority of E2-regulated genes (4%). Tamoxifen and fulvestrant partially reduce ERalpha DNA binding and prevent RNAPII loading on the promoter and coding body on E2-upregulated genes. Both ligands act differently on E2-downregulated genes: tamoxifen acts as an agonist thus downregulating these genes, whereas fulvestrant antagonizes E2-induced repression and often increases RNAPII occupancy. Furthermore, our data identify genes preferentially regulated by tamoxifen but not by E2 or fulvestrant. Thus (partial) antagonist loaded ERalpha acts mechanistically different on E2-activated and E2-repressed genes.
Collapse
|
40
|
Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, Panda AK, Labhasetwar V. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm 2008; 5:849-62. [PMID: 18680382 DOI: 10.1021/mp800047v] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The efficacy of potential anticancer drugs during preclinical development is generally tested in vitro using cancer cells grown in monolayer; however, a significant discrepancy in their efficacy is observed when these drugs are evaluated in vivo. This discrepancy, in part, could be due to the three-dimensional (3-D) nature of tumors as compared to the two-dimensional (2-D) nature of monolayer cultures. Therefore, there is a need for an in vitro model that would mimic the 3-D nature of tumors. With this objective, we have developed surface-engineered, large and porous biodegradable polymeric microparticles as a scaffold for 3-D growth of cancer cells. Using the MCF-7 cell line as model breast cancer cells, we evaluated the antiproliferative effect of three anticancer drugs: doxorubicin, paclitaxel and tamoxifen in 3-D model vs in 2-D monolayer. With optimized composition of microparticles and cell culture conditions, a density of 4.5 x 10 (6) MCF-7 cells/mg of microparticles, which is an 18-fold increase from the seeding density, was achieved in six days of culture. Cells were observed to have grown in clumps on the microparticle surface as well as in their interior matrix structure. The antiproliferative effect of the drugs in 3-D model was significantly lower than in 2-D monolayer, which was evident from the 12- to 23-fold differences in their IC 50 values. Using doxorubicin, the flow cytometry data demonstrated approximately 2.6-fold lower drug accumulation in the cells grown in 3-D model than in the cells grown as 2-D monolayer. Further, only 26% of the cells in 3-D model had the same concentration of drug as the cells in monolayer, thus explaining the reduced activity of the drugs in 3-D model. The collagen content of the cells grown in 3-D model was 2-fold greater than that of the cells grown in 2-D, suggesting greater synthesis of extracellular matrix in 3-D model, which acted as a barrier to drug diffusion. The microarray analysis showed changes in several genes in cells grown in 3-D, which could also influence the drug effect. In conclusion, the cells grown in 3-D are more resistant to chemotherapy than those grown in 2-D culture, suggesting the significant roles of cellular architecture, phenotypic variations, and extracellular matrix barrier to drug transport in drug efficacy. We propose that our model provides a better assessment of drug efficacy than the currently used 2-D monolayer as many of its characteristic features are similar to an actual tumor. A well-characterized 3-D model can particularly be useful for rapid screening of a large number of therapeutics for their efficacy during the drug discovery phase.
Collapse
Affiliation(s)
- Jayme L Horning
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zilli M, Grassadonia A, Tinari N, Di Giacobbe A, Gildetti S, Giampietro J, Natoli C, Iacobelli S. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta Rev Cancer 2008; 1795:62-81. [PMID: 18804516 DOI: 10.1016/j.bbcan.2008.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 01/04/2023]
Abstract
The use of endocrine agents is a safe and effective treatment in the management of hormone-sensitive breast cancer. Unfortunately, sooner or later, tumor cells develop resistance to endocrine manipulation making useless this approach. During the last decade, new molecules and intracellular signaling pathways involved in endocrine resistance have been identified. Several studies have documented that estrogen receptor signaling may maintain a pivotal role in the tumor growth despite the failure of a previous hormonal treatment. In this review we will discuss the general principles for optimizing the choice of endocrine therapy based on an understanding of the molecular mechanisms responsible for resistance to the different anti-hormonal agents.
Collapse
Affiliation(s)
- Marinella Zilli
- Department of Oncology and Neurosciences, University G D'Annunzio Medical School, Via dei Vestini, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|