1
|
Munger K, White EA. What are the essential determinants of human papillomavirus carcinogenesis? mBio 2024; 15:e0046224. [PMID: 39365046 PMCID: PMC11558995 DOI: 10.1128/mbio.00462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Human papillomavirus (HPV) infection is the leading viral cause of cancer. Over the past several decades, research on HPVs has provided remarkable insight into human cell biology and into the pathology of viral and non-viral cancers. The HPV E6 and E7 proteins engage host cellular proteins to establish an environment in infected cells that is conducive to virus replication. They rewire host cell signaling pathways to promote proliferation, inhibit differentiation, and limit cell death. The activity of the "high-risk" HPV E6 and E7 proteins is so potent that their dysregulated expression is sufficient to drive the initiation and maintenance of HPV-associated cancers. Consequently, intensive research efforts have aimed to identify the host cell targets of E6 and E7, in part with the idea that some or all of the virus-host interactions would be essential cancer drivers. These efforts have identified a large number of potential binding partners of each oncoprotein. However, over the same time period, parallel research has revealed that a relatively small number of genetic mutations drive carcinogenesis in most non-viral cancers. We therefore propose that a high-priority goal is to identify which of the many targets of E6 and E7 are critical drivers of HPV carcinogenesis. By identifying the cancer-driving targets of E6 and E7, it should be possible to better understand the distinct roles of other targets, perhaps in the viral life cycle, and to focus efforts to develop anti-cancer therapies on the subset of virus-host interactions for which therapeutic intervention would have the greatest impact.
Collapse
Affiliation(s)
- Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Smalley TB, Nicolaci A, Tran KC, Lokhandwala J, Obertopp N, Matlack JK, Miner RE, Teng MN, Pilon-Thomas S, Binning JM. Targeted degradation of the HPV oncoprotein E6 reduces tumor burden in cervical cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618959. [PMID: 39464070 PMCID: PMC11507957 DOI: 10.1101/2024.10.17.618959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Human Papilloma Virus (HPV)-related cancers are a global health burden, yet there are no targeted therapies available for chronically infected patients. The HPV protein E6 is essential for HPV-mediated tumorigenesis and immune evasion, making it an attractive target for antiviral drug development. In this study, we developed an E6-targeting Proteolysis Targeting Chimera (PROTAC) that inhibits the growth of HPV(+) tumors. To develop E6 antagonists, we generated a panel of nanobodies targeting E6 proteins derived from the oncogenic HPV16 subtype. The highest affinity E6 nanobody, A5, was fused to Von Hippel Lindau protein (VHL) to generate a PROTAC that degrades E6 (PROTACE6). Mutational rescue experiments validated specific degradation via the CRL2VHL E3 ligase. Intralesional administration of the PROTACE6 using a clinically viable DNA vaccine reduced tumor burden in an immunocompetent mouse model of HPV(+) cancer. The inhibitory effect of the PROTACE6 was abrogated by CD4+ and CD8+ T-cell depletion, indicating that the antitumor function of the PROTACE6 relies in part on a host immune response. Overall, these results suggest that the targeted degradation of E6 inhibits its oncogenic function and stimulates a robust immune response against HPV(+) tumors, opening new opportunities for virus-specific therapies in the treatment of HPV-related cancers.
Collapse
Affiliation(s)
- Tracess B Smalley
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Angelo Nicolaci
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, 33612, USA
| | - Kim C Tran
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jameela Lokhandwala
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Nina Obertopp
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, 33612, USA
| | - Jenet K Matlack
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Robert E Miner
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, 33612, USA
| | - Michael N Teng
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Jennifer M Binning
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
3
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. mBio 2024; 15:e0181124. [PMID: 39248565 PMCID: PMC11481495 DOI: 10.1128/mbio.01811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active sites were required for PTPN14 to promote differentiation. Together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.IMPORTANCEThe Hippo kinase cascade inhibits YAP1, an oncoprotein and driver of cell stemness and self-renewal. There is mounting evidence that the Hippo pathway is targeted by tumor viruses including human papillomavirus. The high-risk HPV E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 activates YAP1 has not been elucidated. Here we report that by degrading the tumor suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human epithelial cells.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583953. [PMID: 38496413 PMCID: PMC10942435 DOI: 10.1101/2024.03.07.583953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active site were required for PTPN14 to promote differentiation. Taken together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Current address: Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. J Virol 2024; 98:e0172623. [PMID: 38226814 PMCID: PMC10878100 DOI: 10.1128/jvi.01726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Ikechukwu CK, Qin K, Zhang H, Pan J, Zhang W. Novel equid papillomavirus from domestic donkey. Equine Vet J 2024; 56:171-177. [PMID: 37246448 DOI: 10.1111/evj.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Papillomaviruses can be of great medical importance as they infect humans and animals such as Equus species, other livestock and pets. They are responsible for several papillomas and benign tumours in their host. OBJECTIVES To describe a novel equid papillomavirus detected in oral swab samples collected from donkeys (Equus asinus) found on the Northwest plateau of China. STUDY DESIGN Cross-sectional. METHODS Swab samples collected from the oral mucosa of 32 donkeys in the Gansu Province of China, were subjected to viral metagenomic analysis to detect the presence of Papillomavirus. After de novo assembly, a novel papillomavirus genome designated as Equus asinus papillomavirus 3 (EaPV3) was identified in the studied samples. Additional bioinformatic analysis of the assembled genome was done using the Geneious prime software (version 2022.0.2). RESULTS The complete circular genome of EaPV3 is 7430 bp in length with a GC content of 50.8%. The genome was predicted to contain five ORFs coding for three early proteins (E7, E1, and E2) and two late proteins (L1 and L2). Phylogenic analysis of the nucleotide sequences of the concatenated amino acid sequences of the E1E2L1L2 genes revealed that EaPV3 is most closely related to Equus asinus papillomavirus 1 (EaPV1). The genome analysis of EaPV3 revealed similar genome organisation with other equine papillomavirus and the presence of E7 papillomavirus oncoprotein. MAIN LIMITATIONS Since there were no warts in the oral cavity of the donkeys in this study, and no biopsy samples taken, we are unable to conclusively link the novel virus to any clinical condition in the donkeys. CONCLUSIONS The Comparative characterisation of EaPV3 and its closest relatives, as well as phylogenetic analysis demonstrated that it is a novel virus specie that clusters within the Dyochipapilloma PV genus.
Collapse
Affiliation(s)
- Chukwudozie Kingsley Ikechukwu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Kailin Qin
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Han Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiamin Pan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565564. [PMID: 37961092 PMCID: PMC10635129 DOI: 10.1101/2023.11.03.565564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the E7 protein by degrading the components of the SKP1-CUL1-F-box (SCF) ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
ZER1 Contributes to the Carcinogenic Activity of High-Risk HPV E7 Proteins. mBio 2022; 13:e0203322. [PMID: 36346242 PMCID: PMC9765665 DOI: 10.1128/mbio.02033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human papillomavirus (HPV) E7 proteins bind to host cell proteins to facilitate virus replication. Interactions between HPV E7 and host cell proteins can also drive cancer progression. We hypothesize that HPV E7-host protein interactions specific for high-risk E7 contribute to the carcinogenic activity of high-risk HPV. The cellular protein ZER1 interacts with the E7 protein from HPV16, the genotype most frequently associated with human cancers. The HPV16 E7-ZER1 interaction is unique among HPV E7 tested to date. Other E7 proteins, even from closely related HPV genotypes, do not bind ZER1, which is a substrate specificity factor for a CUL2-RING ubiquitin ligase. In the present study, we investigated the contribution of ZER1 to the carcinogenic activity of HPV16 E7. First, we mapped the ZER1 binding site to specific residues on the C terminus of HPV16 E7. We showed that the mutant HPV16 E7 that cannot bind ZER1 is impaired in the ability to promote the growth of primary keratinocytes. We found that ZER1 and CUL2 contribute to, but are not required for, HPV16 E7 to degrade RB1. Cancer dependency data show that ZER1 is an essential gene in most HPV-positive, but not HPV-negative, cancer cell lines. Depleting ZER1 impaired the growth of primary keratinocytes expressing HPV16 E7 or HPV18 E7 and of HPV16-and HPV18-positive cervical cancer cell lines. Taken together, our work demonstrates that ZER1 contributes to HPV-mediated carcinogenesis and is essential for the growth of HPV-positive cells. IMPORTANCE HPV16 is highly carcinogenic and is the most predominant HPV genotype associated with human cancers. The mechanisms that underlie differences between high-risk HPV genotypes are currently unknown, but many of these differences are likely attributable to the activities of the oncogenic HPV proteins, including E7. The HPV E7 oncoprotein is essential for HPV-mediated carcinogenesis. A large number of HPV E7 targets have been identified. However, it is unclear which of these many interactions contributes to the carcinogenic activity of HPV E7. Here, we characterized the interaction between HPV16 E7 and the host cell protein ZER1, testing whether this genotype-specific interaction could enable some of the carcinogenic activity of HPV16 E7. We found that ZER1 binding contributes to the growth-promoting activity of HPV16 E7 and to the growth of HPV-positive cervical cancer cells. We propose that ZER1 makes an important contribution to HPV-mediated carcinogenesis.
Collapse
|
9
|
Giannone G, Giuliano AR, Bandini M, Marandino L, Raggi D, Earle W, Ayres B, Pettaway CA, McNeish IA, Spiess PE, Necchi A. HPV vaccination and HPV-related malignancies: impact, strategies and optimizations toward global immunization coverage. Cancer Treat Rev 2022; 111:102467. [DOI: 10.1016/j.ctrv.2022.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
|
10
|
Romero-Masters JC, Lambert PF, Munger K. Molecular Mechanisms of MmuPV1 E6 and E7 and Implications for Human Disease. Viruses 2022; 14:2138. [PMID: 36298698 PMCID: PMC9611894 DOI: 10.3390/v14102138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human papillomaviruses (HPVs) cause a substantial amount of human disease from benign disease such as warts to malignant cancers including cervical carcinoma, head and neck cancer, and non-melanoma skin cancer. Our ability to model HPV-induced malignant disease has been impeded by species specific barriers and pre-clinical animal models have been challenging to develop. The recent discovery of a murine papillomavirus, MmuPV1, that infects laboratory mice and causes the same range of malignancies caused by HPVs provides the papillomavirus field the opportunity to test mechanistic hypotheses in a genetically manipulatable laboratory animal species in the context of natural infections. The E6 and E7 proteins encoded by high-risk HPVs, which are the HPV genotypes associated with human cancers, are multifunctional proteins that contribute to HPV-induced cancers in multiple ways. In this review, we describe the known activities of the MmuPV1-encoded E6 and E7 proteins and how those activities relate to the activities of HPV E6 and E7 oncoproteins encoded by mucosal and cutaneous high-risk HPV genotypes.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
11
|
TMEM16A as a potential treatment target for head and neck cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:196. [PMID: 35668455 PMCID: PMC9172006 DOI: 10.1186/s13046-022-02405-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
Transmembrane protein 16A (TMEM16A) forms a plasma membrane-localized Ca2+-activated Cl- channel. Its gene has been mapped to an area on chromosome 11q13, which is amplified in head and neck squamous cell carcinoma (HNSCC). In HNSCC, TMEM16A overexpression is associated with not only high tumor grade, metastasis, low survival, and poor prognosis, but also deterioration of clinical outcomes following platinum-based chemotherapy. Recent study revealed the interaction between TMEM16A and transforming growth factor-β (TGF-β) has an indirect crosstalk in clarifying the mechanism of TMEM16A-induced epithelial-mesenchymal transition. Moreover, human papillomavirus (HPV) infection can modulate TMEM16A expression along with epidermal growth factor receptor (EGFR), whose phosphorylation has been reported as a potential co-biomarker of HPV-positive cancers. Considering that EGFR forms a functional complex with TMEM16A and is a co-biomarker of HPV, there may be crosstalk between TMEM16A expression and HPV-induced HNSCC. EGFR activation can induce programmed death ligand 1 (PD-L1) synthesis via activation of the nuclear factor kappa B pathway and JAK/STAT3 pathway. Here, we describe an interplay among EGFR, PD-L1, and TMEM16A. Combination therapy using TMEM16A and PD-L1 inhibitors may improve the survival rate of HNSCC patients, especially those resistant to anti-EGFR inhibitor treatment. To the best of our knowledge, this is the first review to propose a biological validation that combines immune checkpoint inhibition with TMEM16A inhibition.
Collapse
|
12
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
13
|
Hatterschide J, Castagnino P, Kim HW, Sperry SM, Montone KT, Basu D, White EA. YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. eLife 2022; 11:75466. [PMID: 35170430 PMCID: PMC8959598 DOI: 10.7554/elife.75466] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes nearly 5% of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo pathway and activates the Hippo effector yes-associated protein (YAP1). The HPV E7 oncoprotein is required for HPV infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in basal epithelial cells. YAP1 activation by HPV E7 required that E7 binds and degrades the tumor suppressor protein tyrosine phosphatase non-receptor type 14 (PTPN14). E7 required YAP1 transcriptional activity to extend the lifespan of primary keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1 activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential, targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis. The ‘epithelial’ cells that cover our bodies are in a constant state of turnover. Every few weeks, the outermost layers die and are replaced by new cells from the layers below. For scientists, this raises a difficult question. Cells infected by human papillomaviruses, often known as HPV, can become cancerous over years or even decades. How do infected cells survive while the healthy cells around them mature and get replaced? One clue could lie in PTPN14, a human protein which many papillomaviruses eliminate using their viral E7 protein; this mechanism could be essential for the virus to replicate and cause cancer. To find out the impact of losing PTPN14, Hatterschide et al. used human epithelial cells to make three-dimensional models of infected tissues. These experiments showed that, when papillomaviruses destroy PTPN14, a human protein called YAP1 turns on in the lowest, most long-lived layer of the tissue. Cells in which YAP1 is activated survive while those that carry the inactive version mature and die. This suggests that papillomaviruses turn on YAP1 to remain in tissues for long periods. Papillomaviruses cause about five percent of all human cancers. Finding ways to stop them from activating YAP1 has the potential to prevent disease. Overall, the research by Hatterschide et al. also sheds light on other epithelial cancers which are not caused by viruses.
Collapse
Affiliation(s)
- Joshua Hatterschide
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Paola Castagnino
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Hee Won Kim
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Steven M Sperry
- Department of Otolaryngology-Head and Neck Surgery, Aurora St. Luke's Medical Center, Milwaukee, United States
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
14
|
Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021; 13:v13112234. [PMID: 34835040 PMCID: PMC8623401 DOI: 10.3390/v13112234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.
Collapse
|
15
|
Human DLG1 and SCRIB Are Distinctly Regulated Independently of HPV-16 during the Progression of Oropharyngeal Squamous Cell Carcinomas: A Preliminary Analysis. Cancers (Basel) 2021; 13:cancers13174461. [PMID: 34503271 PMCID: PMC8430552 DOI: 10.3390/cancers13174461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The process of HPV-mediated oncogenesis in HNSCCs is not fully understood. DLG1 and SCRIB protein expression levels and localization changes were evaluated in a number of HPV16-positive and HPV-negative OPSCCs and seem to be associated with malignant transformation. Moreover, loss of SCRIB expression inversely correlates with higher grade tumors, and this is much more evident in the presence of HPV16 E6. This could serve as a potential marker in predicting development of OPSCCs. Abstract The major causative agents of head and neck squamous cell carcinomas (HNSCCs) are either environmental factors, such as tobacco and alcohol consumption, or infection with oncogenic human papillomaviruses (HPVs). An important aspect of HPV-induced oncogenesis is the targeting by the E6 oncoprotein of PDZ domain-containing substrates for proteasomal destruction. Tumor suppressors DLG1 and SCRIB are two of the principal PDZ domain-containing E6 targets. Both have been shown to play critical roles in the regulation of cell growth and polarity and in maintaining the structural integrity of the epithelia. We investigated how modifications in the cellular localization and protein expression of DLG1 and SCRIB in HPV16-positive and HPV-negative histologic oropharyngeal squamous cell carcinomas (OPSCC) might reflect disease progression. HPV presence was determined by p16 staining and HPV genotyping. Whilst DLG1 expression levels did not differ markedly between HPV-negative and HPV16-positive OPSCCs, it appeared to be relocated from cell–cell contacts to the cytoplasm in most samples, regardless of HPV16 positivity. This indicates that alterations in DLG1 distribution could contribute to malignant progression in OPSCCs. Interestingly, SCRIB was also relocated from cell–cell contacts to the cytoplasm in the tumor samples in comparison with normal tissue, regardless of HPV16 status, but in addition there was an obvious reduction in SCRIB expression in higher grade tumors. Strikingly, loss of SCRIB was even more pronounced in HPV16-positive OPSCCs. These alterations in SCRIB levels may contribute to transformation and loss of tissue architecture in the process of carcinogenesis and could potentially serve as markers in the development of OPSCCs.
Collapse
|
16
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
17
|
Song Z, Cui Y, Li Q, Deng J, Ding X, He J, Liu Y, Ju Z, Fang L. The genetic variability, phylogeny and functional significance of E6, E7 and LCR in human papillomavirus type 52 isolates in Sichuan, China. Virol J 2021; 18:94. [PMID: 33941222 PMCID: PMC8091156 DOI: 10.1186/s12985-021-01565-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Variations in human papillomavirus (HPV) E6 and E7 have been shown to be closely related to the persistence of the virus and the occurrence and development of cervical cancer. Long control region (LCR) of HPV has been shown multiple functions on regulating viral transcription. In recent years, there have been reports on E6/E7/LCR of HPV-16 and HPV-58, but there are few studies on HPV-52, especially for LCR. In this study, we focused on gene polymorphism of the HPV-52 E6/E7/LCR sequences, assessed the effects of variations on the immune recognition of viral E6 and E7 antigens, predicted the effect of LCR variations on transcription factor binding sites and provided more basic date for further study of E6/E7/LCR in Chengdu, China. Methods LCR/E6/E7 of the HPV-52 were amplified and sequenced to do polymorphic and phylogenetic analysis. Sequences were aligned with the reference sequence by MEGA 7.0 to identify SNP. A neighbor-joining phylogenetic tree was constructed by MEGA 7.0, followed by the secondary structure prediction of the related proteins using PSIPRED 4.0. The selection pressure of E6 and E7 coding regions were estimated by Bayes empirical Bayes analysis of PAML 4.9. The HLA class-I and II binding peptides were predicted by the Immune Epitope Database server. The B cell epitopes were predicted by ABCpred server. Transcription factor binding sites in LCR were predicted by JASPAR database. Results 50 SNP sites (6 in E6, 10 in E7, 34 in LCR) were found. From the most variable to the least variable, the nucleotide variations were LCR > E7 > E6. Two deletions were found between the nucleotide sites 7387–7391 (TTATG) and 7698–7700 (CTT) in all samples. A deletion was found between the nucleotide sites 7287–7288 (TG) in 97.56% (40/41) of the samples. The combinations of all the SNP sites and deletions resulted in 12 unique sequences. As shown in the neighbor-joining phylogenetic tree, except for one belonging to sub-lineage C2, others sequences clustered into sub-lineage B2. No positive selection was observed in E6 and E7. 8 non-synonymous amino acid substitutions (including E3Q and K93R in the E6, and T37I, S52D, Y59D, H61Y, D64N and L99R in the E7) were potential affecting multiple putative epitopes for both CD4+ and CD8+ T-cells and B-cells. A7168G was the most variable site (100%) and the binding sites for transcription factor VAX1 in LCR. In addition, the prediction results showed that LCR had the high probability binding sites for transcription factors SOX9, FOS, RAX, HOXA5, VAX1 and SRY. Conclusion This study provides basic data for understanding the relation among E6/E7/LCR mutations, lineages and carcinogenesis. Furthermore, it provides an insight into the intrinsic geographical relatedness and biological differences of the HPV-52 variants, and contributes to further research on the HPV-52 therapeutic vaccine development. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01565-5.
Collapse
Affiliation(s)
- Zhilin Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Yanru Cui
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Qiufu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Junhang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Xianping Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China. .,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China.
| | - Jiaoyu He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Yiran Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Zhuang Ju
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Liyuan Fang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
18
|
He J, Li T, Wang Y, Song Z, Li Q, Liu Y, Cui Y, Ma S, Deng J, Wei X, Ding X. Genetic variability of human papillomavirus type 39 based on E6, E7 and L1 genes in Southwest China. Virol J 2021; 18:72. [PMID: 33832494 PMCID: PMC8027298 DOI: 10.1186/s12985-021-01528-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background Human papillomavirus type 39 associated with genital intraepithelial neoplasia and invasive cancers, has a high prevalence in Southwest China. HPV E6, E7 are two main papillomavirus oncoproteins, closely relate to the function of HPV immortalization, cell transformation, and carcinogenesis. L1 is the major capsid protein, can reflect the replication status of the virus in cells and the progression of cervical lesions. The purpose of this study is to reveal the prevalence of HPV 39 and the genetic polymorphisms of HPV39 based on E6, E7 and L1 gene in southwest China. Methods Cell samples were collected by cervical scraped for HPV detecting and typing, and HPV39 positive samples were selected out. Important E6, E7 and L1 genes of HPV39 were sequenced and analyzed for the study of HPV39 genetic polymorphisms. Phylogenetic trees were constructed by Maximum-likelihood and Kimura 2-parameters methods in Molecular Evolutionary Genetics Analysis version 6.0. The selection pressures of E6, E7 and L1 genes were estimated by Datamonkey web server. The secondary and three-dimensional structure of HPV39 E6, E7 proteins were created by sopma server and SWISS-MODEL software.
Results 344 HPV39 positive samples were selected from 5718 HPV positive cell samples. Among HPV39 E6-E7 sequences, 20 single nucleotide mutations were detected, including 10 non-synonymous and 10 synonymous mutations; 26 single nucleotide mutations were detected in HPV39 L1 sequences, including 7 non-synonymous and 19 synonymous mutations respectively. 11 novel variants of HPV39 E6-E7 (5 in E6 and 6 in E7) and 14 novel variants of HPV39 L1 were identified in this study. A-branch was the most frequent HPV39 lineage in southwest China during our investigation. Selective pressure analysis showed that codon sites 26, 87, 151 in E6 and 75, 180, 222, 272, 284, 346, 356 in L1 were positively selected sites, as well as codon sites 45, 138, 309, 381 were negative selection sites in L1 gene, E7 has neither positive selection sites nor negative selection sites. A certain degree of secondary and three-dimensional structure dislocation was existed due to the non-synonymous mutations. Conclusions Amino acid substitution affected the secondary and three-dimensional structure of HPV39, and resulting in the differences of carcinogenic potential and biological functions as well as the immune response due to the antigen epitopes difference, the antigen epitopes with stronger adaptability in Southwest will be screened out based on the above research results for the later vaccine development. And gene polymorphism of HPV39 in Southwest China may improve the effectiveness of clinical test and vaccine design, specifically for women in Southwest China.
Collapse
Affiliation(s)
- Jiaoyu He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Tianjun Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Youliang Wang
- The People's Hospital of Pengzhou, Pengzhou, Sichuan, People's Republic of China
| | - Zhilin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Qiufu Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Yiran Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Yanru Cui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Siyu Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Junhang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Xia Wei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China
| | - Xianping Ding
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China. .,Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Nanchuan Biotechnology Research Institute, Chongqing, Sichuan, People's Republic of China. .,Institute of Medical Genetics, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
19
|
An Immunocompetent Mouse Model of HPV16(+) Head and Neck Squamous Cell Carcinoma. Cell Rep 2020; 29:1660-1674.e7. [PMID: 31693903 PMCID: PMC6870917 DOI: 10.1016/j.celrep.2019.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence of human papilloma virus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) is increasing and implicated in more than 60% of all oropharyngeal carcinomas (OPSCCs). Although whole-genome, transcriptome, and proteome analyses have identified altered signaling pathways in HPV-induced HNSCCs, additional tools are needed to investigate the unique pathobiology of OPSCC. Herein, bioinformatics analyses of human HPV(+) HNSCCs revealed that all tumors express full-length E6 and identified molecular subtypes based on relative E6 and E7 expression levels. To recapitulate the levels, stoichiometric ratios, and anatomic location of E6/E7 expression, we generated a genetically engineered mouse model whereby balanced expression of E6/E7 is directed to the oropharyngeal epithelium. The addition of a mutant PIK3CAE545K allele leads to the rapid development of pre-malignant lesions marked by immune cell accumulation, and a subset of these lesions progress to OPSCC. This mouse provides a faithful immunocompetent model for testing treatments and investigating mechanisms of immuno- suppression. Carper et al. present the ‘‘iKHP’’ mouse, in which HPV16 oncogenes are inducibly activated in vivo in a tissue-specific and temporal manner. Oropharyngeal- specific expression of E6/E7 with PIK3CAE545K in these mice promotes the development of premalignant lesions marked by immune cell infiltration, but only a subset spontaneously convert to OPSCC.
Collapse
|
20
|
A Conserved Amino Acid in the C Terminus of Human Papillomavirus E7 Mediates Binding to PTPN14 and Repression of Epithelial Differentiation. J Virol 2020; 94:JVI.01024-20. [PMID: 32581101 DOI: 10.1128/jvi.01024-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus (HPV) E7 oncoprotein is a primary driver of HPV-mediated carcinogenesis. The E7 proteins from diverse HPVs bind to the host cellular nonreceptor protein tyrosine phosphatase type 14 (PTPN14) and direct it for degradation through the activity of the E7-associated host E3 ubiquitin ligase UBR4. Here, we show that a highly conserved arginine residue in the C-terminal domain of diverse HPV E7 mediates the interaction with PTPN14. We found that disruption of PTPN14 binding through mutation of the C-terminal arginine did not impact the ability of several high-risk HPV E7 proteins to bind and degrade the retinoblastoma tumor suppressor or activate E2F target gene expression. HPVs infect human keratinocytes, and we previously reported that both PTPN14 degradation by HPV16 E7 and PTPN14 CRISPR knockout repress keratinocyte differentiation-related genes. Now, we have found that blocking PTPN14 binding through mutation of the conserved C-terminal arginine rendered both HPV16 and HPV18 E7 unable to repress differentiation-related gene expression. We then confirmed that the HPV18 E7 variant that could not bind PTPN14 was also impaired in repressing differentiation when expressed from the complete HPV18 genome. Finally, we found that the ability of HPV18 E7 to extend the life span of primary human keratinocytes required PTPN14 binding. CRISPR/Cas9 knockout of PTPN14 rescued keratinocyte life span extension in the presence of the PTPN14 binding-deficient HPV18 E7 variant. These results support the model that PTPN14 degradation by high-risk HPV E7 leads to repression of differentiation and contributes to its carcinogenic activity.IMPORTANCE The E7 oncoprotein is a primary driver of HPV-mediated carcinogenesis. HPV E7 binds the putative tumor suppressor PTPN14 and targets it for degradation using the ubiquitin ligase UBR4. PTPN14 binds to a C-terminal arginine highly conserved in diverse HPV E7. Our previous efforts to understand how PTPN14 degradation contributes to the carcinogenic activity of high-risk HPV E7 used variants of E7 unable to bind to UBR4. Now, by directly manipulating E7 binding to PTPN14 and using a PTPN14 knockout rescue experiment, we demonstrate that the degradation of PTPN14 is required for high-risk HPV18 E7 to extend keratinocyte life span. Our data show that PTPN14 binding by HPV16 E7 and HPV18 E7 represses keratinocyte differentiation. HPV-positive cancers are frequently poorly differentiated, and the HPV life cycle depends upon keratinocyte differentiation. The finding that PTPN14 binding by HPV E7 impairs differentiation has significant implications for HPV-mediated carcinogenesis and the HPV life cycle.
Collapse
|
21
|
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted pathogen, and high-risk HPVs contribute to 5% of human cancers, including 25% of head and neck squamous cell carcinomas (HNSCCs). Despite the significant role played by HPVs in HNSCC, there is currently no available in vivo system to model the process from papillomavirus infection to virus-induced HNSCC. In this paper, we describe an infection-based HNSCC model, utilizing a mouse papillomavirus (MmuPV1), which naturally infects laboratory mice. Infections of the tongue epithelium of two immunodeficient strains with MmuPV1 caused high-grade squamous dysplasia with early signs of invasive carcinoma over the course of 4 months. When combined with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO), MmuPV1 caused invasive squamous cell carcinoma (SCC) on the tongue of both immunodeficient and immunocompetent mice. These tumors expressed markers of papillomavirus infection and HPV-associated carcinogenesis. This novel preclinical model provides a valuable new means to study how natural papillomavirus infections contribute to HNSCC.IMPORTANCE The species specificity of papillomavirus has limited the development of an infection-based animal model to study HPV-associated head and neck carcinogenesis. Our study presents a novel in vivo model using the mouse papillomavirus MmuPV1 to study papillomavirus-associated head and neck cancer. In our model, MmuPV1 infects and causes lesions in both immunodeficient and genetically immunocompetent strains of mice. These virally induced lesions carry features associated with both HPV infections and HPV-associated carcinogenesis. Combined with previously identified cancer cofactors, MmuPV1 causes invasive squamous cell carcinomas in mice. This model provides opportunities for basic and translational studies of papillomavirus infection-based head and neck disease.
Collapse
|
22
|
Roberts S, Evans D, Mehanna H, Parish JL. Modelling human papillomavirus biology in oropharyngeal keratinocytes. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180289. [PMID: 30955493 PMCID: PMC6501899 DOI: 10.1098/rstb.2018.0289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most human papillomavirus (HPV) positive head and neck cancers arise in the tonsil crypts; deep invaginations at the tonsil surface that are lined with reticulated epithelium infiltrated by immune cells. As in cervical HPV infections, HPV16 is the most prevalent high-risk type in the oropharyngeal cancers, and a genital-oral route of infection is most likely. However, the natural history of HPV-driven oropharyngeal pathogenesis is an enigma, although there is evidence that it is different to that of cervical disease. It is not known if the virus establishes a productive or abortive infection in keratinocytes of the tonsil crypt, or if viral infections progress to cancer via a neoplastic phase, as in cervical HPV infection. The HPV DNA is more frequently found unintegrated in the cancers of the oropharynx compared to those that arise in the cervix, and may include novel HPV-human DNA hybrids episomes. Here, we review current understanding of HPV biology in the oropharynx and discuss the cell-based systems being used to model the HPV life cycle in tonsil keratinocytes and how they can be used to inform on HPV-driven neoplastic progression in the oropharynx. This article is part of the theme issue ‘Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses’.
Collapse
Affiliation(s)
- Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham , Vincent Drive, Birmingham B15 2TT , UK
| | - Dhananjay Evans
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham , Vincent Drive, Birmingham B15 2TT , UK
| | - Hisham Mehanna
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham , Vincent Drive, Birmingham B15 2TT , UK
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham , Vincent Drive, Birmingham B15 2TT , UK
| |
Collapse
|
23
|
Abstract
Cancer cells undergo metabolic changes that support their malignant growth. These changes are often associated with increased expression of the rate-limiting glycolytic enzyme hexokinase 2. Hexokinase 2 is an enzyme that catalyzes the conversion of glucose to glucose-6-phosphate. In this study, we utilized Gene Expression Profiling Interactive Analysis (GEPIA) database analysis and clinical sample analysis to find that hexokinase 2 was highly expressed in cervical cancer. Furthermore, we found that high hexokinase 2 expression in cervical cancer demonstrated a positive correlation with tumor size (P = .009696), pathological grade (P = .028551), and prognosis (P = .00069) but not with age (P = .956201) or lymph node metastasis (P = .131379). At the cellular level, we knocked down the expression of hexokinase 2 in the human cervical cancer cell line SiHa. The results demonstrated that knockdown of hexokinase 2 inhibited the proliferation and migration of SiHa cells and promoted cell apoptosis. During this process, knockdown of hexokinase 2 inhibited phosphorylation of AKT and mammalian target of rapamycin and promoted p53 expression. At the same time, overexpression of human papillomavirus 18 oncogenes E6 and E7 significantly promoted the expression of hexokinase 2. Most importantly, we discovered a novel upstream regulatory microRNA for hexokinase 2: miR-9-5p. Luciferase reporter assays and Western blot assays demonstrated that hexokinase 2 expression was inhibited by miR-9-5p by directly binding its 3′-untranslated region in SiHa cells. Next, we determined that miR-9-5p could suppress the proliferation and migration of SiHa cells and induce apoptosis. In conclusion, we found that hexokinase 2 serves a carcinogenic role in cervical cancer through the miR-9-5p/hexokinase 2/AKT pathway, which serves as the basis for potential therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiuli Wang
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
24
|
Yun HY, Kim MW, Lee HS, Kim W, Shin JH, Kim H, Shin HC, Park H, Oh BH, Kim WK, Bae KH, Lee SC, Lee EW, Ku B, Kim SJ. Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol 2019; 17:e3000367. [PMID: 31323018 PMCID: PMC6668832 DOI: 10.1371/journal.pbio.3000367] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/31/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are causative agents of various diseases associated with cellular hyperproliferation, including cervical cancer, one of the most prevalent tumors in women. E7 is one of the two HPV-encoded oncoproteins and directs recruitment and subsequent degradation of tumor-suppressive proteins such as retinoblastoma protein (pRb) via its LxCxE motif. E7 also triggers tumorigenesis in a pRb-independent pathway through its C-terminal domain, which has yet been largely undetermined, with a lack of structural information in a complex form with a host protein. Herein, we present the crystal structure of the E7 C-terminal domain of HPV18 belonging to the high-risk HPV genotypes bound to the catalytic domain of human nonreceptor-type protein tyrosine phosphatase 14 (PTPN14). They interact directly and potently with each other, with a dissociation constant of 18.2 nM. Ensuing structural analysis revealed the molecular basis of the PTPN14-binding specificity of E7 over other protein tyrosine phosphatases and also led to the identification of PTPN21 as a direct interacting partner of E7. Disruption of HPV18 E7 binding to PTPN14 by structure-based mutagenesis impaired E7’s ability to promote keratinocyte proliferation and migration. Likewise, E7 binding-defective PTPN14 was resistant for degradation via proteasome, and it was much more effective than wild-type PTPN14 in attenuating the activity of downstream effectors of Hippo signaling and negatively regulating cell proliferation, migration, and invasion when examined in HPV18-positive HeLa cells. These results therefore demonstrated the significance and therapeutic potential of the intermolecular interaction between HPV E7 and host PTPN14 in HPV-mediated cell transformation and tumorigenesis. Human papillomaviruses cause various diseases associated with cellular hyperproliferation, including cervical cancer. Structural, biochemical, and cellular analyses reveal the molecular basis and significance of the intermolecular interaction between the E7 protein of human papillomavirus 18 and the human tumor suppressor protein PTPN14.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Humans
- Models, Molecular
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Protein Binding
- Protein Domains
- Protein Tyrosine Phosphatases, Non-Receptor/chemistry
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Retinoblastoma Protein/chemistry
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Sequence Homology, Amino Acid
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Min Wook Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hye Shin
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyunmin Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Won Kon Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| |
Collapse
|
25
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci U S A 2019; 116:7033-7042. [PMID: 30894485 DOI: 10.1073/pnas.1819534116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomavirus (HPV) E7 proteins enable oncogenic transformation of HPV-infected cells by inactivating host cellular proteins. High-risk but not low-risk HPV E7 target PTPN14 for proteolytic degradation, suggesting that PTPN14 degradation may be related to their oncogenic activity. HPV infects human keratinocytes but the role of PTPN14 in keratinocytes and the consequences of PTPN14 degradation are unknown. Using an HPV16 E7 variant that can inactivate retinoblastoma tumor suppressor (RB1) but cannot degrade PTPN14, we found that high-risk HPV E7-mediated PTPN14 degradation impairs keratinocyte differentiation. Deletion of PTPN14 from primary human keratinocytes decreased keratinocyte differentiation gene expression. Related to oncogenic transformation, both HPV16 E7-mediated PTPN14 degradation and PTPN14 deletion promoted keratinocyte survival following detachment from a substrate. PTPN14 degradation contributed to high-risk HPV E6/E7-mediated immortalization of primary keratinocytes and HPV+ but not HPV- cancers exhibit a gene-expression signature consistent with PTPN14 inactivation. We find that PTPN14 degradation impairs keratinocyte differentiation and propose that this contributes to high-risk HPV E7-mediated oncogenic activity independent of RB1 inactivation.
Collapse
|
27
|
Genetic variability of human papillomavirus type 51 E6, E7, L1 and L2 genes in Southwest China. Gene 2019; 690:99-112. [DOI: 10.1016/j.gene.2018.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022]
|
28
|
Transferrin receptor-involved HIF-1 signaling pathway in cervical cancer. Cancer Gene Ther 2019; 26:356-365. [PMID: 30651591 DOI: 10.1038/s41417-019-0078-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022]
|
29
|
Sher YP, Lee C, Liu SY, Chen IH, Lee MH, Chiu FF, Leng CH, Liu SJ. A therapeutic vaccine targeting HPV E6/E7 with intrinsic Toll-like receptor 2 agonist activity induces antitumor immunity. Am J Cancer Res 2018; 8:2528-2537. [PMID: 30662809 PMCID: PMC6325468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023] Open
Abstract
The E6 and E7 oncoproteins of human papillomavirus (HPV) are ideal targets for developing immunotherapeutic approaches to treat HPV-associated tumors. Our previous studies showed that a recombinant lipidated HPV16 E7 mutant (rlipo-E7m) with inactivation of the E7 oncogenic functions can activate antigen presenting cells through Toll-like receptor 2 (TLR2) and induce antitumor immunity. Given that some HPV-associated tumors overexpress E6 but not E7, it is necessary to include therapeutic agents containing HPV E6 in therapeutic vaccine development to broaden the utility of the vaccine. In this study, we further incorporated a mutant HPV16 E6 (E6m) into rlipo-E7m to generate rlipo-E6mE7m, which could elicit both E6- and E7-specific immune responses after immunization. The rlipo-E6mE7m immunization induced higher levels of T cell proliferation and cytotoxic T lymphocyte response than the nonlipidated recombinant E6mE7m (rE6mE7m) immunization. Accordingly, a single-dose administration of rlipo-E6mE7m at day 7 after tumor inoculation in mice showed complete inhibition of tumor growth, whereas administration of rE6mE7m did not. These results demonstrated that rlipo-E6mE7m could be used in tumors with E6 and/or E7 expression via the induction of E6- and E7-specific immunity.
Collapse
Affiliation(s)
- Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung, Taiwan
- Research Center for Chinese Herbal Medicine, China Medical UniversityTaichung, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Chi Lee
- National Institute Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli, Taiwan
| | - Shin-Yu Liu
- National Institute Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli, Taiwan
| | - I-Hua Chen
- National Institute Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli, Taiwan
| | - Ming-Hui Lee
- National Institute Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli, Taiwan
| | - Fang-Feng Chiu
- National Institute Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli, Taiwan
| | - Chih-Hsiang Leng
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung, Taiwan
- National Institute Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung, Taiwan
- National Institute Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
30
|
Nyman PE, Buehler D, Lambert PF. Loss of Function of Canonical Notch Signaling Drives Head and Neck Carcinogenesis. Clin Cancer Res 2018; 24:6308-6318. [PMID: 30087145 DOI: 10.1158/1078-0432.ccr-17-3535] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC), a common cancer worldwide, is etiologically associated with tobacco use, high alcohol consumption, and high-risk human papillomaviruses (HPV). The Notch signaling pathway, which is involved in cell differentiation decisions with differential downstream targets and effects depending on tissue type and developmental stage, has been implicated in human HNSCC. NOTCH1 is among the most frequently mutated genes in both HPV-positive and HPV-negative HNSCC. These mutations are predicted to inactivate the function of Notch. Other studies have argued the opposite-Notch signaling is increased in HNSCC. EXPERIMENTAL DESIGN To assess the role of Notch signaling in HPV-positive and HPV-negative HNSCC, we utilized genetically engineered mouse (GEM) models for conventional keratinizing HNSCC, in which either HPV16 E6 and E7 oncoproteins or a gain-of-function mutant p53 are expressed, and in which we inactivated canonical Notch signaling via expression of a dominant negative form of MAML1 (DNMAML1), a required transcriptional coactivator of Notch signaling. RESULTS Loss of canonical Notch signaling increased tumorigenesis in both contexts and also caused an increase in nuclear β-catenin, a marker for increased tumorigenic potential. When combined with loss of canonical Notch signaling, HPV oncogenes led to the highest frequency of cancers overall and the largest number of poorly differentiated (high-grade) cancers. CONCLUSIONS These findings inform on the contribution of loss of canonical Notch signaling in head and neck carcinogenesis.
Collapse
Affiliation(s)
- Patrick E Nyman
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison Wisconsin
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison Wisconsin
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison Wisconsin.
| |
Collapse
|
31
|
Eldakhakhny S, Zhou Q, Crosbie EJ, Sayan BS. Human papillomavirus E7 induces p63 expression to modulate DNA damage response. Cell Death Dis 2018; 9:127. [PMID: 29374145 PMCID: PMC5833683 DOI: 10.1038/s41419-017-0149-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022]
Abstract
Cervical cancer is the third most common malignancy diagnosed in women worldwide. The major aetiological factor underlying the malignant transformation of cervical cells is the persistent infection with high-risk human papillomaviruses (HR-HPV), with more than 99% of cases expressing viral sequences. Here, we report a previously unknown mechanism driven by high-risk human papillomavirus E7 protein to modulate response to DNA damage in cervical cancer cells. Our data shows that HR-HPV E7 oncoprotein induces the transcription of the p53-family member p63, which modulates DNA damage response pathways, to facilitate repair of DNA damage. Based on our findings, we proposed a model, where HR-HPV could interfere with the sensitivity of transformed cells to radiation therapy by modulating DNA damage repair efficiency. Importantly, we have shown for the first time a critical role for p63 in response to DNA damage in cervical cancer cells.
Collapse
Affiliation(s)
- Sahar Eldakhakhny
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Qing Zhou
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4QL, UK
| | - Berna S Sayan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4QL, UK.
| |
Collapse
|
32
|
Abstract
Genetically engineered mice (GEMs) have provided valuable insights into the carcinogenic properties of various human tumor viruses, which, in aggregate, are etiologically associated with over 15% of all human cancers. This review provides an overview of seminal discoveries made through the use of GEM models for human DNA tumor viruses. Emphasis is placed on the discoveries made in the study of human papillomaviruses, Merkel cell carcinoma-associated polyomavirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus, because GEMs have contributed extensively to our understanding of how these DNA tumor viruses directly contribute to human cancers.
Collapse
Affiliation(s)
- Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705;
| |
Collapse
|
33
|
Tomaić V. Functional Roles of E6 and E7 Oncoproteins in HPV-Induced Malignancies at Diverse Anatomical Sites. Cancers (Basel) 2016; 8:cancers8100095. [PMID: 27775564 PMCID: PMC5082385 DOI: 10.3390/cancers8100095] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/15/2016] [Accepted: 10/08/2016] [Indexed: 01/13/2023] Open
Abstract
Approximately 200 human papillomaviruses (HPVs) infect human epithelial cells, of which the alpha and beta types have been the most extensively studied. Alpha HPV types mainly infect mucosal epithelia and a small group of these causes over 600,000 cancers per year worldwide at various anatomical sites, especially anogenital and head-and-neck cancers. Of these the most important is cervical cancer, which is the leading cause of cancer-related death in women in many parts of the world. Beta HPV types infect cutaneous epithelia and may contribute towards the initiation of non-melanoma skin cancers. HPVs encode two oncoproteins, E6 and E7, which are directly responsible for the development of HPV-induced carcinogenesis. They do this cooperatively by targeting diverse cellular pathways involved in the regulation of cell cycle control, of apoptosis and of cell polarity control networks. In this review, the biological consequences of papillomavirus targeting of various cellular substrates at diverse anatomical sites in the development of HPV-induced malignancies are highlighted.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy.
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
34
|
Chenzhang Y, Wen Q, Ding X, Cao M, Chen Z, Mu X, Wang T. Identification of the impact on T- and B- cell epitopes of human papillomavirus type-16 E6 and E7 variant in Southwest China. Immunol Lett 2016; 181:26-30. [PMID: 27693214 DOI: 10.1016/j.imlet.2016.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022]
Abstract
Cervical cancers almost are infected by human papillmavirus (HPV), encoding E6 and E7 oncoproteins which are regard as ideal targets on the mechanism of this disease and development of vaccines. HLA (human leukocyte antigen) participates in the local immune response to prevent tumor invasion and progression. But due to highly polymorphism of HLA, prediction shows its importance in this study. More effective immunoinformatics was used for predicting epitopes from HPV-16 E6 and E7, including T- and B-cell epitopes. Eight substitutions are detected. Specifically speaking, for HLA-I, HLA-A*33:03 (26), HLA-B*13:01 (14), HLA-C*03:02 (5) for E6 and HLA-A*02:01 (6), HLA-B*40:01 (5), HLA-C*03:04 (4) for E7 are most frequency. Epitope 41-48EVYDFAFR for HLA-A*33:03 (0.1) for E6 has best binding affinity, as well as HLA*02:01 and HLA-B*40:01 (0.2) for E7. The mutations of D25E and L83V of E6 and N29S of E7 produce new epitopes, and the percentile values change with them. For HLA-II, seventeen epitopes in the reference at percentile value from 0.22 to 4.76, while in variant from 0.22 to 4.96. For the B-cell epitopes, three most potent epitopes for E6 were listed, and N29S lead the growth of score from 0.81 to 0.83. In summary, E640-55REVYDFAFRDLCIVYR and E711-22YMLDLQPETTDL are the important regions, containing the majority of predicted epitopes. E6 72-83 for HLA-A*02:01 and E6 74-84 for HLA-B*15:02 maybe are the new direct for therapeutic vaccine aimed at L83V variants. HLA-DRB1*15:02 is better binder with T cell in our HLA class II. It is a systematic, detail recognition for T- and B-cell epitopes of HPV-16 E6 and E7 from Southwest China, which may be helpful to design vaccines specifically for women in Southwest China and testing methods specifically for this region. The results of our study may contribute to future researches on vaccines improvement, or screening methods for a particular population.
Collapse
Affiliation(s)
- Yuwei Chenzhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Qiang Wen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Xianping Ding
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China.
| | - Man Cao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Zuyi Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Xuemei Mu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| |
Collapse
|
35
|
Allison DB, Maleki Z. HPV-related head and neck squamous cell carcinoma: An update and review. J Am Soc Cytopathol 2016; 5:203-215. [PMID: 31042510 DOI: 10.1016/j.jasc.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 06/09/2023]
Abstract
This is a review of human papilloma virus (HPV)-related head and neck squamous cell carcinoma (HNSCC). The epidemiology, pathology, clinical features, and risk factors of HPV-related HNSCC are discussed. HPV vaccines are also discussed.
Collapse
Affiliation(s)
- Derek B Allison
- Division of Cytopathology, Department of Pathology, The Johns Hopkins Hospital, 600 N. Wolfe Street/Pathology 412C, Baltimore, Maryland
| | - Zahra Maleki
- Division of Cytopathology, Department of Pathology, The Johns Hopkins Hospital, 600 N. Wolfe Street/Pathology 412C, Baltimore, Maryland.
| |
Collapse
|
36
|
Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice. mBio 2016; 7:mBio.00628-16. [PMID: 27190216 PMCID: PMC4895109 DOI: 10.1128/mbio.00628-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. IMPORTANCE : Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an accumulation of DNA damage. We hypothesize, therefore, that DNA damage induced by HPV leads to an accumulation of mutations in patients with FA deficiency and that such mutations allow HPV-driven cancers to become independent of the viral oncogenes. Consistent with this hypothesis, we found that cervical cancers arising in HPV16 transgenic mice with FA deficiency frequently escape from dependency on the HPV16 oncogene that drove its development. Our report provides further support for vaccination of FA patients against HPVs and argues for the need to define mutational profiles of SCCs arising in FA patients in order to inform precision medicine-based approaches to treating these patients.
Collapse
|
37
|
Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, Szalmas A, Thatte J, Thomas M, Tomaić V, Banks L. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy. Viruses 2015; 7:3530-51. [PMID: 26147797 PMCID: PMC4517114 DOI: 10.3390/v7072785] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer-causing HPV E6 oncoproteins are characterized by the presence of a PDZ binding motif (PBM) at their extreme carboxy terminus. It was long thought that this region of E6 had a sole function to confer interaction with a defined set of cellular substrates. However, more recent studies have shown that the E6 PBM has a complex pattern of regulation, whereby phosphorylation within the PBM can regulate interaction with two classes of cellular proteins: those containing PDZ domains and the members of the 14-3-3 family of proteins. In this review, we explore the roles that the PBM and its ligands play in the virus life cycle, and subsequently how these can inadvertently contribute towards the development of malignancy. We also explore how subtle alterations in cellular signal transduction pathways might result in aberrant E6 phosphorylation, which in turn might contribute towards disease progression.
Collapse
Affiliation(s)
- Ketaki Ganti
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Justyna Broniarczyk
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Wiem Manoubi
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Paola Massimi
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Suruchi Mittal
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - David Pim
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Anita Szalmas
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Jayashree Thatte
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Miranda Thomas
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Vjekoslav Tomaić
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| | - Lawrence Banks
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, Trieste 34149, Italy.
| |
Collapse
|
38
|
Anderson KS, Dahlstrom KR, Cheng JN, Alam R, Li G, Wei Q, Gross ND, Chowell D, Posner M, Sturgis EM. HPV16 antibodies as risk factors for oropharyngeal cancer and their association with tumor HPV and smoking status. Oral Oncol 2015; 51:662-7. [PMID: 25957822 DOI: 10.1016/j.oraloncology.2015.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/16/2015] [Accepted: 04/15/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND Antibodies (Abs) to the HPV16 proteome increase risk for HPV-associated OPC (HPVOPC). The goal of this study was to investigate the association of a panel of HPV16 Abs with risk for OPC as well as the association of these Abs with tumor HPV and smoking status among patients with OPC. METHODS IgG Abs to the HPV16 antigens E1, E2, E4, E5, E6, E7, L1, L2 were quantified using a programmable ELISA assay. Sera were obtained from 258 OPC patients at diagnosis and 250 healthy controls. HPV16 tumor status was measured by PCR for 137 cases. Multivariable logistic regression was used to calculate odds ratios for the association of HPV16 Abs with risk for OPC. RESULTS HPV16 E1, E2, E4, E5, E6, E7 and L1-specific IgG levels were elevated in OPC patients compared to healthy controls (p<0.05). After multivariable adjustment, Ab positivity for NE2, CE2, E6, and/or E7 was associated with OPC risk (OR [95% CI], 249.1 [99.3-624.9]). Among patients with OPC, Ab positivity for these antigens was associated with tumor HPV status, especially among never or light smokers (OR [95% CI], 6.5 [2.1-20.1] and OR [95% CI], 17.5 [4.0-77.2], respectively). CONCLUSIONS Antibodies to HPV16 proteins are associated with increased risk for HPVOPC. Among patients with OPC, HPV16 Abs are associated with tumor HPV status, in particular among HPV positive patients with no or little smoking history.
Collapse
Affiliation(s)
- Karen S Anderson
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.
| | - Kristina R Dahlstrom
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Julia N Cheng
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Rizwan Alam
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Guojun Li
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States
| | - Neil D Gross
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diego Chowell
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States; Simon A. Levin Mathematical, Computational, and Modeling Sciences Center, Arizona State University, Tempe, AZ, United States
| | - Marshall Posner
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Erich M Sturgis
- Department of Head and Neck Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
39
|
Adams AK, Hallenbeck GE, Casper KA, Patil YJ, Wilson KM, Kimple RJ, Lambert PF, Witte DP, Xiao W, Gillison ML, Wikenheiser-Brokamp KA, Wise-Draper TM, Wells SI. DEK promotes HPV-positive and -negative head and neck cancer cell proliferation. Oncogene 2015; 34:868-77. [PMID: 24608431 PMCID: PMC4160430 DOI: 10.1038/onc.2014.15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and patient outcomes using current treatments remain poor. Tumor development is etiologically associated with tobacco or alcohol use and/or human papillomavirus (HPV) infection. HPV-positive HNSCCs, which frequently harbor wild-type p53, carry a more favorable prognosis and are a biologically distinct subgroup when compared with their HPV-negative counterparts. HPV E7 induces expression of the human DEK gene, both in vitro and in vivo. In keratinocytes, DEK overexpression is sufficient for causing oncogenic phenotypes in the absence of E7. Conversely, DEK loss results in cell death in HPV-positive cervical cancer cells at least in part through p53 activation, and Dek knockout mice are relatively resistant to the development of chemically induced skin papillomas. Despite the established oncogenic role of DEK in HPV-associated cervical cancer cell lines and keratinocytes, a functional role of DEK has not yet been explored in HNSCC. Using an established transgenic mouse model of HPV16 E7-induced HNSCC, we demonstrate that Dek is required for optimal proliferation of E7-transgenic epidermal cells and for the growth of HNSCC tumors. Importantly, these studies also demonstrate that DEK protein is universally upregulated in both HPV-positive and -negative human HNSCC tumors relative to adjacent normal tissue. Furthermore, DEK knockdown inhibited the proliferation of HPV-positive and -negative HNSCC cells, establishing a functional role for DEK in human disease. Mechanistic studies reveal that attenuated HNSCC cell growth in response to DEK loss was associated with reduced expression of the oncogenic p53 family member, ΔNp63. Exogenous ΔNp63 expression rescued the proliferative defect in the absence of DEK, thereby establishing a functional DEK-ΔNp63 oncogenic pathway that promotes HNSCC. Taken together, our data demonstrate that DEK stimulates HNSCC cellular growth and identify ΔNp63 as a novel DEK effector.
Collapse
Affiliation(s)
- Allie K. Adams
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Grace E. Hallenbeck
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Keith A. Casper
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Yash J. Patil
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Keith M. Wilson
- Department of Otolaryngology, Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Randall J. Kimple
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David P. Witte
- Division of Pathology & Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Xiao
- Viral Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maura L. Gillison
- Viral Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Pathology & Laboratory Medicine and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center/University of Cincinnati, Cincinnati, OH, USA
| | - Trisha M. Wise-Draper
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Hematology/Oncology, University Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
40
|
Roy-Chowdhuri S, Krishnamurthy S. The role of cytology in the era of HPV-related head and neck carcinoma. Semin Diagn Pathol 2014; 32:250-7. [PMID: 25638437 DOI: 10.1053/j.semdp.2014.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enlarged neck lymph nodes are very often subject to fine needle aspiration biopsy to detect metastatic disease in patients with suspected or proven squamous cell carcinoma in head and neck region. Cytology specimens of metastatic carcinoma in such patients are routinely evaluated for human papilloma virus (HPV) to identify patients with HPV-related head and neck squamous cell carcinoma. Different types of cytology specimens including smears, cytospins, cell blocks and aspirated material in the rinse can all be used for different types of HPV testing such as immunohistochemistry for p16, HPV-in situ hybridization, and HPV-Polymerase chain reaction. There is currently no consensus regarding the testing of high-risk HPV in cytology specimens. The establishment of standardized HPV testing of cytology specimens is of utmost importance and is eagerly awaited.
Collapse
Affiliation(s)
- Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 053, Houston, TX 77030-4095
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 053, Houston, TX 77030-4095.
| |
Collapse
|
41
|
Yang L, Yang H, Wu K, Shi X, Ma S, Sun Q. Prevalence of HPV and variation of HPV 16/HPV 18 E6/E7 genes in cervical cancer in women in South West China. J Med Virol 2014; 86:1926-36. [PMID: 25111286 DOI: 10.1002/jmv.24043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Lijuan Yang
- Institute of Medical Biology; Chinese Academy of Medical Sciences, and Peking Union Medical College; Kunming China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases; Kunming China
| | - Hongying Yang
- The Third Affiliated Hospital of Kunming Medical University (Yunnan Provincial Tumor Hospital); Kunming China
| | - Kun Wu
- The First Affiliated Hospital of Kunming Medical University; Kunming China
| | - Xinan Shi
- Southwest Guizhou Vocational and Technical College for Nationalities; Xingyi China
| | - Shaohui Ma
- Institute of Medical Biology; Chinese Academy of Medical Sciences, and Peking Union Medical College; Kunming China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases; Kunming China
| | - Qiangming Sun
- Institute of Medical Biology; Chinese Academy of Medical Sciences, and Peking Union Medical College; Kunming China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases; Kunming China
| |
Collapse
|
42
|
Bol V, Grégoire V. Biological basis for increased sensitivity to radiation therapy in HPV-positive head and neck cancers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:696028. [PMID: 24804233 PMCID: PMC3996288 DOI: 10.1155/2014/696028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 01/01/2023]
Abstract
Although development of head and neck squamous cell carcinomas (HNSCCs) is commonly linked to the consumption of tobacco and alcohol, a link between human papillomavirus (HPV) infection and a subgroup of head and neck cancers has been established. These HPV-positive tumors represent a distinct biological entity with overexpression of viral oncoproteins E6 and E7. It has been shown in several clinical studies that HPV-positive HNSCCs have a more favorable outcome and greater response to radiotherapy. The reason for improved prognosis of HPV-related HNSCC remains speculative, but it could be owned to multiple factors. One hypothesis is that HPV-positive cells are intrinsically more sensitive to standard therapies and thus respond better to treatment. Another possibility is that HPV-positive tumors uniquely express viral proteins that induce an immune response during therapy that helps clear tumors and prevents recurrence. Here, we will review current evidence for the biological basis of increased radiosensitivity in HPV-positive HNSCC.
Collapse
Affiliation(s)
- V. Bol
- Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Brussels, Belgium
| | - V. Grégoire
- Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Brussels, Belgium
| |
Collapse
|
43
|
Ren S, Solomides C, Draganova-Tacheva R, Bibbo M. Overview of nongynecological samples prepared with liquid-based cytology medium. Acta Cytol 2014; 58:522-32. [PMID: 25115150 DOI: 10.1159/000363123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Liquid-based cytology of nongynecological specimens is commonly used in cytology laboratories throughout the world and various processing methods, such as ThinPrep and SurePath, have been reported. The cytological features and performance of liquid-based cytology for various cytology specimens, including body cavity fluids, urine, brushing specimens and fine-needle aspiration of various lesions, were reviewed and compared with the experience of our laboratory and the literature published in PubMed. STUDY DESIGN The parameters for the evaluation of liquid-based cytology and conventional smears were described in the various types of specimens. Criteria for the interpretation of nongynecological liquid-based cytology were highlighted to show differences in cell morphology, background and artifacts. RESULTS The interpretation requires familiarity with the appearance of liquid-based cytology in the various types of preparations to avoid misdiagnosis. CONCLUSIONS Cell blocks can be prepared with specimens preserved in a liquid-based cytology medium and immunocytochemical stains and molecular testing can be successfully performed. These are important adjuncts in order to reach a definitive diagnosis.
Collapse
Affiliation(s)
- Shuyue Ren
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pa., USA
| | | | | | | |
Collapse
|
44
|
Yang L, Yang H, Chen J, Huang X, Pan Y, Li D, Ding X, Wu K, Shi X, Fu J, Shi H, Ma S, Sun Q. Genetic variability of HPV-58 E6 and E7 genes in Southwest China. INFECTION GENETICS AND EVOLUTION 2013; 21:395-400. [PMID: 24368255 DOI: 10.1016/j.meegid.2013.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 01/18/2023]
Abstract
HPV accounts for most of incidence of cervical cancer. Genetic variations of E6 and E7 may be associated with the development of cervical cancer in specific geographic regions. HPV-58 has been found to be a relatively prevalent high-risk HPV among southwest Chinese women. To explore gene intratypic variations and polymorphisms of HPV-58 E6 and E7 genes originating in Southwest China, a total of 2000 scraped cell samples were collected for DNA extraction and HPV typing. Then, the E6 and E7 genes of HPV-58 (n=22) were sequenced and compared to others submitted to GenBank, followed by an analysis of the diversity of secondary structure by DNASTAR software. Phylogenetic trees were then constructed by Neighbor-Joining and the Kimura 2-parameters methods, followed by an analysis of selection pressures acting on the E6/E7 genes by PAML software. 22 were HPV-58 positive among 215 high-risk types' samples. The nucleotide variation rate of E6 was 86.36% (19/22) among the 22 HPV-58 E6 sequences studied. 4 single nucleotide changes were identified among the E6 sequences with 3/4 synonymous mutations (C187T, A260C, C307T) and 1/4 non-synonymous mutations (A388C, from Lys to Asn, in alpha helix). The most common mutations of E6 genes are the C307T and A388C. 8 single nucleotide changes were identified among the HPV-58 E7 sequences with 2/8 synonymous mutations (T726C, T744G) and 6/8 non-synonymous mutations (G599A, C632T, G694A, G760A, G761A, T803C). The nucleotide variation rate of E7 was 72.73% (17/22). The most common mutations of E7 genes are C632T, G694A, T744G, G760A (from Gly to Ser, in turn), G761A and T803C. The phylogenetic analyses demonstrate that all HPV-58 E6/E7 variants identified belonged to the Southeast Asia lineage. There was no evidence of positive selection in the sequence alignment of HPV-58 E6 and E7 genes.
Collapse
Affiliation(s)
- Lijuan Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Hongying Yang
- The Third Affiliated Hospital of Kunming Medical University, Yunnan Provincial Tumor Hospital, Kunming 650118, PR China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Xinwei Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Duo Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Xiaojie Ding
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Kun Wu
- The First Affiliated Hospital of Kunming Medical University, Kunming 650032, PR China
| | - Xinan Shi
- Southwest Guizhou Vocational and Technical College for Nationalities, Xingyi 562400, PR China
| | - Juanjuan Fu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China.
| |
Collapse
|
45
|
Faquin WC. Human papillomavirus (HPV) assays for testing fine-needle aspiration specimens in patients with head and neck squamous cell carcinoma. Cancer Cytopathol 2013; 122:92-5. [PMID: 24339237 DOI: 10.1002/cncy.21374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 01/29/2023]
Affiliation(s)
- William C Faquin
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Benson E, Li R, Eisele D, Fakhry C. The clinical impact of HPV tumor status upon head and neck squamous cell carcinomas. Oral Oncol 2013; 50:565-74. [PMID: 24134947 DOI: 10.1016/j.oraloncology.2013.09.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/30/2013] [Accepted: 09/13/2013] [Indexed: 02/02/2023]
Abstract
Human papillomavirus (HPV) is etiologically responsible for a distinct subset of head and neck squamous cell cancers (HNSCCs). HPV-positive HNSCCs (HPV-HNSCCs) most commonly arise from the oropharynx and are responsible for the increasing incidence of oropharyngeal SCC (OSCC) in the United States (US) and abroad. HPV-positive OSCC (HPV-OSCC) has a unique demographic and risk factor profile and tumor biology. HPV-OSCC patients tend to be white, younger, and have a higher cumulative exposure to sexual behaviors as compared with HPV-negative OSCC patients. HPV-positive tumor status also significantly improves survival, and is indeed the single strongest prognostic factor for OSCC. The mechanisms that underlie the improved prognosis conferred by HPV-positive disease are unknown. The purpose of this review is to describe the clinical impact of HPV status in HNSCC, particularly in OSCC, both in terms of the unique clinic-demographic profile and prognostic implications.
Collapse
Affiliation(s)
- Eleni Benson
- Johns Hopkins Medical Institutions, Department of Otolaryngology-Head and Neck Surgery., 601 N. Caroline Street, 6th Floor, Baltimore, MD 21287, United States.
| | - Ryan Li
- Johns Hopkins Medical Institutions, Department of Otolaryngology-Head and Neck Surgery., 601 N. Caroline Street, 6th Floor, Baltimore, MD 21287, United States.
| | - David Eisele
- Johns Hopkins Medical Institutions, Department of Otolaryngology-Head and Neck Surgery., 601 N. Caroline Street, 6th Floor, Baltimore, MD 21287, United States.
| | - Carole Fakhry
- Johns Hopkins Medical Institutions, Department of Otolaryngology-Head and Neck Surgery., 601 N. Caroline Street, 6th Floor, Baltimore, MD 21287, United States; Milton J. Dance Jr. Head and Neck Cancer Center, Baltimore, MD 21204, United States; Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, 615 N Wolfe St., Baltimore, MD 21205, United States.
| |
Collapse
|
47
|
High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins. PLoS One 2013; 8:e75056. [PMID: 24086435 PMCID: PMC3781031 DOI: 10.1371/journal.pone.0075056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/06/2013] [Indexed: 11/19/2022] Open
Abstract
Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.
Collapse
|
48
|
Holmes BJ, Westra WH. The expanding role of cytopathology in the diagnosis of HPV-related squamous cell carcinoma of the head and neck. Diagn Cytopathol 2013; 42:85-93. [DOI: 10.1002/dc.23014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/04/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Brittany J. Holmes
- Department of Pathology; the Johns Hopkins Medical Institutions; Baltimore Maryland
| | - William H. Westra
- Department of Pathology; the Johns Hopkins Medical Institutions; Baltimore Maryland
- Department of Oncology; the Johns Hopkins Medical Institutions; Baltimore Maryland
- Department of Otolaryngology/Head and Neck Surgery; the Johns Hopkins Medical Institutions; Baltimore Maryland
| |
Collapse
|
49
|
Kimple RJ, Smith MA, Blitzer GC, Torres AD, Martin JA, Yang RZ, Peet CR, Lorenz LD, Nickel KP, Klingelhutz AJ, Lambert PF, Harari PM. Enhanced radiation sensitivity in HPV-positive head and neck cancer. Cancer Res 2013; 73:4791-800. [PMID: 23749640 DOI: 10.1158/0008-5472.can-13-0587] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Patients with human papillomavirus (HPV+)-associated head and neck cancer (HNC) show significantly improved survival outcome compared with those with HPV-negative (HPV-) tumors. Published data examining this difference offers conflicting results to date. We systematically investigated the radiation sensitivity of all available validated HPV+ HNC cell lines and a series of HPV- HNC cell lines using in vitro and in vivo techniques. HPV+ HNCs exhibited greater intrinsic radiation sensitivity (average SF2 HPV-: 0.59 vs. HPV+: 0.22; P < 0.0001), corresponding with a prolonged G2-M cell-cycle arrest and increased apoptosis following radiation exposure (percent change 0% vs. 85%; P = 0.002). A genome-wide microarray was used to compare gene expression 24 hours following radiation between HPV+ and HPV- cell lines. Multiple genes in TP53 pathway were upregulated in HPV+ cells (Z score 4.90), including a 4.6-fold increase in TP53 (P < 0.0001). Using immortalized human tonsillar epithelial (HTE) cells, increased radiation sensitivity was seen in cell expressing HPV-16 E6 despite the effect of E6 to degrade p53. This suggested that low levels of normally functioning p53 in HPV+ HNC cells could be activated by radiation, leading to cell death. Consistent with this, more complete knockdown of TP53 by siRNA resulted in radiation resistance. These results provide clear evidence, and a supporting mechanism, for increased radiation sensitivity in HPV+ HNC relative to HPV- HNC. This issue is under active investigation in a series of clinical trials attempting to de-escalate radiation (and chemotherapy) in selected patients with HPV+ HNC in light of their favorable overall survival outcome.
Collapse
Affiliation(s)
- Randall J Kimple
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, 3107 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|