1
|
Feng C, Chen X, Yin X, Jiang Y, Zhao C. Matrix Metalloproteinases on Skin Photoaging. J Cosmet Dermatol 2024; 23:3847-3862. [PMID: 39230065 PMCID: PMC11626319 DOI: 10.1111/jocd.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Skin aging is characterized by an imbalance between the generation and degradation of extracellular matrix molecules (ECM). Matrix metalloproteinases (MMPs) are the primary enzymes responsible for ECM breakdown. Intrinsic and extrinsic stimuli can induce different MMPs. However, there is limited literature especially on the summary of skin MMPs and potential inhibitors. OBJECTIVE We aim to focus on the upregulation of MMP expression or activity in skin cells following exposure to UV radiation. We also would like to offer valuable insights into potential clinical applications of MMP inhibitors for mitigating skin aging. METHODS This article presents the summary of prior research, which involved an extensive literature search across diverse academic databases including Web of Science and PubMed. RESULTS Our findings offer a comprehensive insight into the effects of MMPs on skin aging after UV irradiation, including their substrate preferences and distinct roles in this process. Additionally, a comprehensive list of natural plant and animal extracts, proteins, polypeptides, amino acids, as well as natural and synthetic compounds that serve as inhibitors for MMPs is compiled. CONCLUSION Skin aging is a complex process influenced by environmental factors and MMPs. Research focuses on UV-induced skin damage and the formation of Advanced Glycosylation End Products (AGEs), leading to wrinkles and impaired functionality. Inhibiting MMPs is crucial for maintaining youthful skin. Natural sources of MMP inhibitor substances, such as extracts from plants and animals, offer a safer approach to obtain inhibitors through dietary supplements. Studying isolated active ingredients can contribute to developing targeted MMP inhibitors.
Collapse
Affiliation(s)
- Chao Feng
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Xianglong Chen
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Xiuqing Yin
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| |
Collapse
|
2
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
3
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Arora D, Hackenberg Y, Li J, Winter D. Updates on the study of lysosomal protein dynamics: possibilities for the clinic. Expert Rev Proteomics 2023; 20:47-55. [PMID: 36919490 DOI: 10.1080/14789450.2023.2190515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples. AREAS COVERED We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types. EXPERT OPINION The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.
Collapse
Affiliation(s)
- Dhriti Arora
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yannic Hackenberg
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jiaran Li
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
6
|
Hook G, Reinheckel T, Ni J, Wu Z, Kindy M, Peters C, Hook V. Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders. Pharmacol Rev 2022; 74:600-629. [PMID: 35710131 PMCID: PMC9553114 DOI: 10.1124/pharmrev.121.000527] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cathepsin B (CTSB) is a powerful lysosomal protease. This review evaluated CTSB gene knockout (KO) outcomes for amelioration of brain dysfunctions in neurologic diseases and aging animal models. Deletion of the CTSB gene resulted in significant improvements in behavioral deficits, neuropathology, and/or biomarkers in traumatic brain injury, ischemia, inflammatory pain, opiate tolerance, epilepsy, aging, transgenic Alzheimer's disease (AD), and periodontitis AD models as shown in 12 studies. One study found beneficial effects for double CTSB and cathepsin S KO mice in a multiple sclerosis model. Transgenic AD models using amyloid precursor protein (APP) mimicking common sporadic AD in three studies showed that CTSB KO improved memory, neuropathology, and biomarkers; two studies used APP representing rare familial AD and found no CTSB KO effect, and two studies used highly engineered APP constructs and reported slight increases in a biomarker. In clinical studies, all reports found that CTSB enzyme was upregulated in diverse neurologic disorders, including AD in which elevated CTSB was positively correlated with cognitive dysfunction. In a wide range of neurologic animal models, CTSB was also upregulated and not downregulated. Further, human genetic mutation data provided precedence for CTSB upregulation causing disease. Thus, the consilience of data is that CTSB gene KO results in improved brain dysfunction and reduced pathology through blockade of CTSB enzyme upregulation that causes human neurologic disease phenotypes. The overall findings provide strong support for CTSB as a rational drug target and for CTSB inhibitors as therapeutic candidates for a wide range of neurologic disorders. SIGNIFICANCE STATEMENT: This review provides a comprehensive compilation of the extensive data on the effects of deleting the cathepsin B (CTSB) gene in neurological and aging mouse models of brain disorders. Mice lacking the CTSB gene display improved neurobehavioral deficits, reduced neuropathology, and amelioration of neuronal cell death and inflammatory biomarkers. The significance of the compelling CTSB evidence is that the data consilience validates CTSB as a drug target for discovery of CTSB inhibitors as potential therapeutics for treating numerous neurological diseases.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Thomas Reinheckel
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Junjun Ni
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Zhou Wu
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Mark Kindy
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Christoph Peters
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Vivian Hook
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| |
Collapse
|
7
|
Mohapatra PK, Srivastava R, Varshney KK, Babu SH. Formulation and Evaluation of Isradipine Nanosuspension and Exploring its Role as a Potential Anticancer Drug by Computational Approach. Anticancer Agents Med Chem 2021; 22:1984-2001. [PMID: 34353274 DOI: 10.2174/1871520621666210805125426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND T-type calcium channels are aberrantly expressed in different human cancers and regulate cell cycle progression, proliferation, migration, and survival. FAK-1 can promote tumor protein degradation (p53) through ubiquitination, leading to cancer cell growth and proliferation. Similar findings are obtained regarding protease inhibitors' effect on cytokine-induced neutrophil activation that suppresses Granulocyte-macrophage colony-stimulating-factor (GM-CSF) TNF-α-induced O2 release and adherence in human neutrophils without affecting phosphorylation of Extracellular signal-regulated kinase (ERK) and p38. Nanosuspensions are carrier-free, submicron colloidal dispersions which consist of pure drugs and stabilizers. Incorporating drug loaded in nanosuspensions possessed great advantages of passive drug targeting with improved solubility, stability, and bioavailability, as well as lower systemic toxicity. OBJECTIVE The present investigation objective was to establish a molecular association of Protease and Focal Adhesion Kinase 1 as cancer targets for isradipine a calcium channel blocker (CCB). Furthermore, the study also aimed to formulate its optimized nanosuspension and how the physical, morphological, and dissolution properties of isradipine impact nanosuspension stability. MATERIAL AND METHOD Five different molecular targets, namely Cysteine Proteases (Cathepsin B), Serine Proteases (Matriptase), Aspartate Proteases, Matrix Metalloproteases (MMP), and FAK-1 were obtained from RCSB-PDB, which has some leading associations with the inhibition in cancer pathogenesis. Molecular interactions of these targets with CCB isradipine were identified and established by the molecular simulation docking studies. Isradipine-loaded nanosuspension was prepared by precipitation technique by employing a 23 factorial design. PVP K-30, poloxamer 188, and sodium lauryl sulfate (SLS) were used as polymer, co-polymer, and surfactant. The nanosuspension particles are characterized for particle size, zeta potential, viscosity, polydispersity index (PDI), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), In-vitro drug release kinetics, and short-term stability study. RESULT It was found to show considerable interaction with Cysteine, Serine, Aspartate, Threonine, and Matrix metalloproteases with the binding energy of -3.91, -6.7, -3.48, -8.42, respectively. Furthermore, the interaction of isradipine with FAK-1 was compared with 7 native ligands and was found to show significant interaction with a binding energy of -8.62, -7.27, -7.69, -5.67, -5.41, -7.44, -8.21. The optimized nanosuspension was evaluated and exhibited the particle size of 754.9 nm, zeta potential of 32.5 mV, the viscosity of 1.287 cp, and PDI of 1.000. The in-vitro dissolution of the optimized formulation (F8) was higher (96.57%). CONCLUSION Isradipine could act as a potential inhibitor of different proteases and FAK-1 associated with tumor growth initiation, progression, and metastasis. Furthermore, isradipine-loaded nanosuspension with optimized release could be utilized to deliver the anticancer drug in a more targeted way as emerging cancer nanotechnology.
Collapse
Affiliation(s)
- Prasanta Kumar Mohapatra
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh. India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh. India
| | - Krishna Kumar Varshney
- Moradabad Institute of Technology (MIT) College of Pharmacy, Moradabad, Uttar Pradesh. India
| | - S Haresh Babu
- Lydia College of Pharmacy, Ravulapalem, Andhra Pradesh. India
| |
Collapse
|
8
|
Lauko DI, Ohkawa T, Mares SE, Welch MD. Baculovirus actin-rearrangement-inducing factor ARIF-1 induces the formation of dynamic invadosome clusters. Mol Biol Cell 2021; 32:1433-1445. [PMID: 34133213 PMCID: PMC8351737 DOI: 10.1091/mbc.e20-11-0705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a pathogen of lepidopteran insects, has a striking dependence on the host cell actin cytoskeleton. During the delayed-early stage of infection, AcMNPV was shown to induce the accumulation of actin at the cortex of infected cells. However, the dynamics and molecular mechanism of cortical actin assembly remained unknown. Here, we show that AcMNPV induces dynamic cortical clusters of dot-like actin structures that mediate degradation of the underlying extracellular matrix and therefore function similarly to clusters of invadosomes in mammalian cells. Furthermore, we find that the AcMNPV protein actin-rearrangement-inducing factor-1 (ARIF-1), which was previously shown to be necessary and sufficient for cortical actin assembly and efficient viral infection in insect hosts, is both necessary and sufficient for invadosome formation. We mapped the sequences within the C-terminal cytoplasmic region of ARIF-1 that are required for invadosome formation and identified individual tyrosine and proline residues that are required for organizing these structures. Additionally, we found that ARIF-1 and the invadosome-associated proteins cortactin and the Arp2/3 complex localize to invadosomes and Arp2/3 complex is required for their formation. These ARIF-1-induced invadosomes may be important for the function of ARIF-1 in systemic virus spread.
Collapse
Affiliation(s)
- Domokos I Lauko
- Microbiology Graduate Group, University of California, Berkeley, Berkeley, CA 94720
| | - Taro Ohkawa
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Sergio E Mares
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew D Welch
- Microbiology Graduate Group, University of California, Berkeley, Berkeley, CA 94720.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
9
|
Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 2021; 18:123. [PMID: 34059091 PMCID: PMC8166383 DOI: 10.1186/s12974-021-02137-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a member of the NLR family of inherent immune cell sensors. The NLRP3 inflammasome can detect tissue damage and pathogen invasion through innate immune cell sensor components commonly known as pattern recognition receptors (PRRs). PRRs promote activation of nuclear factor kappa B (NF-κB) pathways and the mitogen-activated protein kinase (MAPK) pathway, thus increasing the transcription of genes encoding proteins related to the NLRP3 inflammasome. The NLRP3 inflammasome is a complex with multiple components, including an NAIP, CIITA, HET-E, and TP1 (NACHT) domain; apoptosis-associated speck-like protein containing a CARD (ASC); and a leucine-rich repeat (LRR) domain. After ischemic stroke, the NLRP3 inflammasome can produce numerous proinflammatory cytokines, mediating nerve cell dysfunction and brain edema and ultimately leading to nerve cell death once activated. Ischemic stroke is a disease with high rates of mortality and disability worldwide and is being observed in increasingly younger populations. To date, there are no clearly effective therapeutic strategies for the clinical treatment of ischemic stroke. Understanding the NLRP3 inflammasome may provide novel ideas and approaches because targeting of upstream and downstream molecules in the NLRP3 pathway shows promise for ischemic stroke therapy. In this manuscript, we summarize the existing evidence regarding the composition and activation of the NLRP3 inflammasome, the molecules involved in inflammatory pathways, and corresponding drugs or molecules that exert effects after cerebral ischemia. This evidence may provide possible targets or new strategies for ischemic stroke therapy.
Collapse
Affiliation(s)
- Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
10
|
The Role of Lysosomes in the Cancer Progression: Focus on the Extracellular Matrix Degradation. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Cathepsin B Localizes in the Caveolae and Participates in the Proteolytic Cascade in Trabecular Meshwork Cells. Potential New Drug Target for the Treatment of Glaucoma. J Clin Med 2020; 10:jcm10010078. [PMID: 33379277 PMCID: PMC7795952 DOI: 10.3390/jcm10010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.
Collapse
|
12
|
Webb BA, Aloisio FM, Charafeddine RA, Cook J, Wittmann T, Barber DL. pHLARE: a new biosensor reveals decreased lysosome pH in cancer cells. Mol Biol Cell 2020; 32:131-142. [PMID: 33237838 PMCID: PMC8120692 DOI: 10.1091/mbc.e20-06-0383] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many lysosome functions are determined by a lumenal pH of ∼5.0, including the activity of resident acid-activated hydrolases. Lysosome pH (pHlys) is often increased in neurodegenerative disorders and predicted to be decreased in cancers, making it a potential target for therapeutics to limit the progression of these diseases. Accurately measuring pHlys, however, is limited by currently used dyes that accumulate in multiple intracellular compartments and cannot be propagated in clonal cells for longitudinal studies or used for in vivo determinations. To resolve this limitation, we developed a genetically encoded ratiometric pHlys biosensor, pHLARE (pHLysosomal Activity REporter), which localizes predominantly in lysosomes, has a dynamic range of pH 4.0 to 6.5, and can be stably expressed in cells. Using pHLARE we show decreased pHlys with inhibiting activity of the mammalian target of rapamycin complex 1 (mTORC1). Also, cancer cells from different tissue origins have a lower pHlys than untransformed cells, and stably expressing oncogenic RasV12 in untransformed cells is sufficient to decrease pHlys. pHLARE is a new tool to accurately measure pHlys for improved understanding of lysosome dynamics, which is increasingly considered a therapeutic target.
Collapse
Affiliation(s)
- Bradley A Webb
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Francesca M Aloisio
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Rabab A Charafeddine
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Jessica Cook
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94941
| |
Collapse
|
13
|
Iizuka S, Leon RP, Gribbin KP, Zhang Y, Navarro J, Smith R, Devlin K, Wang LG, Gibbs SL, Korkola J, Nan X, Courtneidge SA. Crosstalk between invadopodia and the extracellular matrix. Eur J Cell Biol 2020; 99:151122. [PMID: 33070041 DOI: 10.1016/j.ejcb.2020.151122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native collagen-I, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.
Collapse
Affiliation(s)
- Shinji Iizuka
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA.
| | - Ronald P Leon
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Kyle P Gribbin
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ying Zhang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Jose Navarro
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Smith
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Kaylyn Devlin
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lei G Wang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Summer L Gibbs
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - James Korkola
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xiaolin Nan
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara A Courtneidge
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA; Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
14
|
The Role of Matrix Metalloproteinases in Periodontal Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144923. [PMID: 32650590 PMCID: PMC7399864 DOI: 10.3390/ijerph17144923] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
This review provides a detailed description of matrix metalloproteinases (MMPs), focusing on those that are known to have critical roles in bone and periodontal disease. Periodontal disease is an inflammatory process initiated by anaerobic bacteria, which promote the host immune response in the form of a complex network of molecular pathways involving proinflammatory mediators such as cytokines, growth factors, and MMPs. MMPs are a family of 23 endopeptidases, collectively capable of degrading virtually all extracellular matrix (ECM) components. This study critically discusses the available research concerning the involvement of the MMPs in periodontal disease development and progression and presents possible therapeutic strategies. MMPs participate in morphogenesis, physiological tissue turnover, and pathological tissue destruction. Alterations in the regulation of MMP activity are implicated in the manifestation of oral diseases, and MMPs comprise the most important pathway in tissue destruction associated with periodontal disease. MMPs can be considered a risk factor for periodontal disease, and measurements of MMP levels may be useful markers for early detection of periodontitis and as a tool to assess prognostic follow-ups. Detection and inhibition of MMPs could, therefore, be useful in periodontal disease prevention or be an essential part of periodontal disease therapy, which, considering the huge incidence of the disease, may greatly improve oral health globally.
Collapse
|
15
|
Abstract
The glycolytic phenotype of the Warburg effect is associated with acidification of the tumor microenvironment. In this review, we describe how acidification of the tumor microenvironment may increase the invasive and degradative phenotype of cancer cells. As a template of an extracellular acidic microenvironment that is linked to proteolysis, we use the resorptive pit formed between osteoclasts and bone. We describe similar changes that have been observed in cancer cells in response to an acidic microenvironment and that are associated with proteolysis and invasive and metastatic phenotypes. This includes consideration of changes observed in the intracellular trafficking of vesicles, i.e., lysosomes and exosomes, and in specialized regions of the membrane, i.e., invadopodia and caveolae. Cancer-associated cells are known to affect what is generally referred to as tumor proteolysis but little direct evidence for this being regulated by acidosis; we describe potential links that should be verified.
Collapse
|
16
|
Wunderli SL, Blache U, Beretta Piccoli A, Niederöst B, Holenstein CN, Passini FS, Silván U, Bundgaard L, Auf dem Keller U, Snedeker JG. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol 2020; 89:11-26. [PMID: 31917255 DOI: 10.1016/j.matbio.2019.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
Although the molecular mechanisms behind tendon disease remain obscure, aberrant stromal matrix turnover and tissue hypervascularity are known hallmarks of advanced tendinopathy. We harness a tendon explant model to unwind complex cross-talk between the stromal and vascular tissue compartments. We identify the hypervascular tendon niche as a state-switch that gates degenerative matrix remodeling within the tissue stroma. Here pathological conditions resembling hypervascular tendon disease provoke rapid cell-mediated tissue breakdown upon mechanical unloading, in contrast to unloaded tendons that remain functionally stable in physiological low-oxygen/-temperature niches. Analyses of the stromal tissue transcriptome and secretome reveal that a stromal niche with elevated tissue oxygenation and temperature drives a ROS mediated cellular stress response that leads to adoption of an immune-modulatory phenotype within the degrading stromal tissue. Degradomic analysis further reveals a surprisingly rich set of active matrix proteases behind the progressive loss of tissue mechanics. We conclude that the tendon stromal compartment responds to aberrant mechanical unloading in a manner that is highly dependent on the vascular niche, with ROS gating a complex proteolytic breakdown of the functional collagen backbone.
Collapse
Affiliation(s)
- Stefania L Wunderli
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Ulrich Blache
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Agnese Beretta Piccoli
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Barbara Niederöst
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Claude N Holenstein
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Fabian S Passini
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Unai Silván
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| | - Louise Bundgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Jess G Snedeker
- University Hospital Balgrist, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland.
| |
Collapse
|
17
|
Chen BJ, Tang YJ, Tang YL, Liang XH. What makes cells move: Requirements and obstacles for leader cells in collective invasion. Exp Cell Res 2019; 382:111481. [PMID: 31247191 DOI: 10.1016/j.yexcr.2019.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/15/2019] [Accepted: 06/23/2019] [Indexed: 02/05/2023]
Abstract
Most recently, mounting evidence has shown that cancer cells can invade as a cohesive and multicellular group with coordinated movement, which is called collective invasion. In this cohesive cancer cell group, cancer cells at the front of collective invasion are defined as leader cell that are responsible for many aspects of collective invasion, including sensing the microenvironment, determining the invasion direction, modifying the path of invasion and transmitting information to other cells. To fulfill their dispensable roles, leader cells are required to embark on some specific phenotypes with unusual expression of some proteins and it's very important to investigate into these proteins as they may serve as potential therapeutic targets. Here, in this review we will summarize current knowledge on four emerging proteins highly expressed in leader cells including K14, ΔNp63α, Dll4 and cysteine protease cathepsin B (CTSB), with a focus on their important roles in collective invasion and special mechanisms by which they promote collective invasion.
Collapse
Affiliation(s)
- Bing-Jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University.China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
18
|
Kryczka J, Papiewska-Pajak I, Kowalska MA, Boncela J. Cathepsin B Is Upregulated and Mediates ECM Degradation in Colon Adenocarcinoma HT29 Cells Overexpressing Snail. Cells 2019; 8:cells8030203. [PMID: 30818851 PMCID: PMC6468499 DOI: 10.3390/cells8030203] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
During tumor development and ongoing metastasis the acquisition of mesenchymal cell traits by epithelial carcinoma cells is achieved through a programmed phenotypic shift called the epithelial-to-mesenchymal transition, EMT. EMT contributes to increased cancer cell motility and invasiveness mainly through invadosomes, the adhesion structures that accompany the mesenchymal migration. The invadosomes and their associated proteases restrict protease activity to areas of the cell in direct contact with the ECM, thus precisely controlling cell invasion. Our data prove that Snail-overexpressing HT-29 cells that imitate the phenotype of colon cancer cells in the early stage of the EMT showed an increase in the expression and pericellular activity of cathepsin B. It appears that the pericellular localization of cathepsin B, also observed in colon and rectum adenocarcinoma tissue samples, plays a key role in its function.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | | | - M Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.
| |
Collapse
|
19
|
Genomic Variations in Susceptibility to Intracranial Aneurysm in the Korean Population. J Clin Med 2019; 8:jcm8020275. [PMID: 30823506 PMCID: PMC6406302 DOI: 10.3390/jcm8020275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023] Open
Abstract
Genome-wide association studies found genetic variations with modulatory effects for intracranial aneurysm (IA) formations in European and Japanese populations. We aimed to identify the susceptibility of single nucleotide polymorphisms (SNPs) to IA in a Korean population consisting of 250 patients, and 294 controls using the Asian-specific Axiom Precision Medicine Research Array. Twenty-nine SNPs reached a genome-wide significance threshold (5 × 10−8). The rs371331393 SNP, with a stop-gain function of ARHGAP32 (11q24.3), showed the most significant association with the risk of IA (OR = 43.57, 95% CI: 21.84–86.95; p = 9.3 × 10−27). Eight out of 29 SNPs—GBA (rs75822236), TCF24 (rs112859779), OLFML2A (rs79134766), ARHGAP32 (rs371331393), CD163L1 (rs138525217), CUL4A (rs74115822), LOC102724084 (rs75861150), and LRRC3 (rs116969723)—demonstrated sufficient statistical power greater than or equal to 0.8. Two previously reported SNPs, rs700651 (BOLL, 2q33.1) and rs6841581 (EDNRA, 4q31.22), were validated in our GWAS (Genome-wide association study). In a subsequent analysis, three SNPs showed a significant difference in expressions: the rs6741819 (RNF144A, 2p25.1) was down-regulated in the adrenal gland tissue (p = 1.5 × 10−6), the rs1052270 (TMOD1. 9q22.33) was up-regulated in the testis tissue (p = 8.6 × 10−10), and rs6841581 (EDNRA, 4q31.22) was up-regulated in both the esophagus (p = 5.2 × 10−12) and skin tissues (1.2 × 10−6). Our GWAS showed novel candidate genes with Korean-specific variations in IA formations. Large population based studies are thus warranted.
Collapse
|
20
|
Campden RI, Zhang Y. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Arch Biochem Biophys 2019; 670:32-42. [PMID: 30807742 DOI: 10.1016/j.abb.2019.02.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/22/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
Abstract
Lysosomal cysteine cathepsins are a family of proteases that are involved in a myriad of cellular processes from proteolytic degradation in the lysosome to bone resorption. These proteins mature following the cleavage of a pro-domain in the lysosome to become either exo- or endo-peptidases. The cathepsins B, C, L, S and Z have been implicated in NLRP3 inflammasome activation following their activation with ATP, monosodium urate, silica crystals, or bacterial components, among others. These five cathepsins have both compensatory and independent functions in NLRP3 inflammasome activation. There is much evidence in the literature to support the release of cathepsin B following lysosomal membrane degradation which leads to NLRP3 inflammasome activation. This is likely due to a hitherto unidentified role of this protein in the cytoplasm, although other interactions with autophagy proteins and within lysosomes have been proposed. Cathepsin C is involved in the processing of neutrophil IL-1β through processing of upstream proteases. Cathepsin Z is non-redundantly required for NLRP3 inflammasome activation following nigericin, ATP and monosodium urate activation. Lysosomal cysteine cathepsins are members of a diverse and complementary family, and likely share both overlapping and independent functions in NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Rhiannon I Campden
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Yifei Zhang
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Morrin ST, Owens RA, Le Berre M, Gerlach JQ, Joshi L, Bode L, Irwin JA, Hickey RM. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1902-1917. [PMID: 30663306 DOI: 10.1021/acs.jafc.8b06484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bovine colostrum is a rich source of bioactive components which are important in the development of the intestine, in stimulating gut structure and function and in preparing the gut surface for subsequent colonization of microbes. What is not clear, however, is how colostrum may affect the repertoire of receptors and membrane proteins of the intestinal surface and the post-translational modifications associated with them. In the present work, we aimed to characterize the surface receptor and glycan profile of human HT-29 intestinal cells after exposure to a bovine colostrum fraction (BCF) by means of proteomic and glycomic analyses. Integration of label-free quantitative proteomic analysis and lectin array profiles confirmed that BCF exposure results in changes in the levels of glycoproteins present at the cell surface and also changes to their glycosylation pattern. This study contributes to our understanding of how milk components may regulate intestinal cells and prime them for bacterial interaction.
Collapse
Affiliation(s)
- Sinead T Morrin
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rebecca A Owens
- Department of Biology , Maynooth University , Maynooth , W23 F2H6 , County Kildare , Ireland
| | - Marie Le Berre
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Jared Q Gerlach
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lokesh Joshi
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence , University of California, San Diego , La Jolla , California 92093 , United States
| | - Jane A Irwin
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
| |
Collapse
|
22
|
Kirbaeva NV, Sharanova NE, Malinkin AD, Vasil'ev AV. Activity of Cathepsin B and Proteome in the Serum and Brain of Rats with Different Behavioral Activity under Conditions of Metabolic Stress. Bull Exp Biol Med 2018; 165:721-724. [PMID: 30353345 DOI: 10.1007/s10517-018-4250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 11/30/2022]
Abstract
Study of the brain and serum of male Wistar rats with the metabolic stress model detected changed proteomic profiles of emotiogenic structures and an increase of cathepsin B activity. Antiapoptotic effect of coenzyme Q10, added to the ration, was detected. Differences in the adaptation response of animals with passive and active behavior under conditions of metabolic stress were detected.
Collapse
Affiliation(s)
- N V Kirbaeva
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia.
| | - N E Sharanova
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A D Malinkin
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| | - A V Vasil'ev
- Federal Research Center of Nutrition and Biotechnology, Moscow, Russia
| |
Collapse
|
23
|
Maacha S, Hong J, von Lersner A, Zijlstra A, Belkhiri A. AXL Mediates Esophageal Adenocarcinoma Cell Invasion through Regulation of Extracellular Acidification and Lysosome Trafficking. Neoplasia 2018; 20:1008-1022. [PMID: 30189359 PMCID: PMC6126204 DOI: 10.1016/j.neo.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022]
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that is characterized by resistance to chemotherapy and a poor clinical outcome. The overexpression of the receptor tyrosine kinase AXL is frequently associated with unfavorable prognosis in EAC. Although it is well documented that AXL mediates cancer cell invasion as a downstream effector of epithelial-to-mesenchymal transition, the precise molecular mechanism underlying this process is not completely understood. Herein, we demonstrate for the first time that AXL mediates cell invasion through the regulation of lysosomes peripheral distribution and cathepsin B secretion in EAC cell lines. Furthermore, we show that AXL-dependent peripheral distribution of lysosomes and cell invasion are mediated by extracellular acidification, which is potentiated by AXL-induced secretion of lactate through AKT-NF-κB-dependent MCT-1 regulation. Our novel mechanistic findings support future clinical studies to evaluate the therapeutic potential of the AXL inhibitor R428 (BGB324) in highly invasive EAC.
Collapse
Affiliation(s)
- Selma Maacha
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ariana von Lersner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37240, USA
| | - Andries Zijlstra
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37240, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Zhang X, Wang J, Li X, Wang D. Lysosomes contribute to radioresistance in cancer. Cancer Lett 2018; 439:39-46. [PMID: 30217567 DOI: 10.1016/j.canlet.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/05/2018] [Accepted: 08/30/2018] [Indexed: 01/02/2023]
Abstract
Radiotherapy is one of the most widely used methods to treat human tumors. Efficacy is due mainly to the DNA damage it induces. However, tumor cells often develop responsive adaptiveness to radiation treatment to survive, which leads to radioresistance. Many cellular processes, such as DNA damage repair, cell cycle arrest and autophagy, are involved in the development of radioresistance. Few interventions to combat radioresistance exist to date. In recent years, the lysosome has been reported to contribute to chemo- and radioresistance. Although for many years, the lysosome was known as an organelle that degrades waste materials, we now know it is also involved in important signaling pathways regulating cellular homeostasis. Although an increasing number of preclinical studies show that lysosome-related factors promote radioresistance, the role of the lysosome in radioresistance has not been systematically demonstrated. Here, we combine an updated understanding of lysosomes with a review of current studies regarding the role of lysosomes in mediating radioresistance.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China; Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
25
|
Yang KM, Bae E, Ahn SG, Pang K, Park Y, Park J, Lee J, Ooshima A, Park B, Kim J, Jung Y, Takahashi S, Jeong J, Park SH, Kim SJ. Co-chaperone BAG2 Determines the Pro-oncogenic Role of Cathepsin B in Triple-Negative Breast Cancer Cells. Cell Rep 2018; 21:2952-2964. [PMID: 29212038 DOI: 10.1016/j.celrep.2017.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/14/2017] [Accepted: 11/06/2017] [Indexed: 11/26/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2), which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region. BAG2 regulates pro-cathepsin B/annexin II complex formation and facilitates the trafficking of pro-cathespin-B-containing TGN38-positive vesicles toward the cell periphery, leading to the secretion of pro-cathepsin B, which induces metastasis. Collectively, our results uncover BAG2 as a regulator of the oncogenic function of pro-cathepsin B and a potential diagnostic and therapeutic target that may reduce the burden of metastatic breast cancer.
Collapse
Affiliation(s)
- Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea.
| | - Eunjin Bae
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University Medical College, 712 Eonjuro, Gangnam-Gu, Seoul 135-720, Republic of Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Bundang-ku, Seongnam City, 463-400 Kyunggi-do, Korea
| | - Yuna Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Bundang-ku, Seongnam City, 463-400 Kyunggi-do, Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, CHA Bio Complex, Bundang-ku, Seongnam City, 463-400 Kyunggi-do, Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Bora Park
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Junil Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea
| | - Yunshin Jung
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University Medical College, 712 Eonjuro, Gangnam-Gu, Seoul 135-720, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Kyunggi-do 16229, Republic of Korea; TheragenEtex Bio Institute, TheragenEtex, Co., Suwon, Gyeonggi-do 16229, Republic of Korea.
| |
Collapse
|
26
|
Luan H, Mohapatra B, Bielecki TA, Mushtaq I, Mirza S, Jennings TA, Clubb RJ, An W, Ahmed D, El-Ansari R, Storck MD, Mishra NK, Guda C, Sheinin YM, Meza JL, Raja S, Rakha EA, Band V, Band H. Loss of the Nuclear Pool of Ubiquitin Ligase CHIP/STUB1 in Breast Cancer Unleashes the MZF1-Cathepsin Pro-oncogenic Program. Cancer Res 2018; 78:2524-2535. [PMID: 29510992 DOI: 10.1158/0008-5472.can-16-2140] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/11/2018] [Accepted: 03/01/2018] [Indexed: 01/23/2023]
Abstract
CHIP/STUB1 ubiquitin ligase is a negative co-chaperone for HSP90/HSC70, and its expression is reduced or lost in several cancers, including breast cancer. Using an extensive and well-annotated breast cancer tissue collection, we identified the loss of nuclear but not cytoplasmic CHIP to predict more aggressive tumorigenesis and shorter patient survival, with loss of CHIP in two thirds of ErbB2+ and triple-negative breast cancers (TNBC) and in one third of ER+ breast cancers. Reduced CHIP expression was seen in breast cancer patient-derived xenograft tumors and in ErbB2+ and TNBC cell lines. Ectopic CHIP expression in ErbB2+ lines suppressed in vitro oncogenic traits and in vivo xenograft tumor growth. An unbiased screen for CHIP-regulated nuclear transcription factors identified many candidates whose DNA-binding activity was up- or downregulated by CHIP. We characterized myeloid zinc finger 1 (MZF1) as a CHIP target, given its recently identified role as a positive regulator of cathepsin B/L (CTSB/L)-mediated tumor cell invasion downstream of ErbB2. We show that CHIP negatively regulates CTSB/L expression in ErbB2+ and other breast cancer cell lines. CTSB inhibition abrogates invasion and matrix degradation in vitro and halts ErbB2+ breast cancer cell line xenograft growth. We conclude that loss of CHIP remodels the cellular transcriptome to unleash critical pro-oncogenic pathways, such as the matrix-degrading enzymes of the cathepsin family, whose components can provide new therapeutic opportunities in breast and other cancers with loss of CHIP expression.Significance: These findings reveal a novel targetable pathway of breast oncogenesis unleashed by the loss of tumor suppressor ubiquitin ligase CHIP/STUB1. Cancer Res; 78(10); 2524-35. ©2018 AACR.
Collapse
Affiliation(s)
- Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sameer Mirza
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tameka A Jennings
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert J Clubb
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dena Ahmed
- Department of Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Rokaya El-Ansari
- Department of Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nitish K Mishra
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chittibabu Guda
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuri M Sheinin
- Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jane L Meza
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Srikumar Raja
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emad A Rakha
- Department of Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska. .,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.,Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska. .,Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.,Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.,Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
27
|
Shao G, Wang R, Sun A, Wei J, Peng K, Dai Q, Yang W, Lin Q. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells. Mol Cancer 2018; 17:24. [PMID: 29455656 PMCID: PMC5817799 DOI: 10.1186/s12943-018-0784-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. METHODS Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. RESULTS Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4 significantly reduced extracellular amount of cathepsin B induced by EGF. Consistent with the role of NEDD4, cathepsin B is pivotal for both basal and the EGF-stimulated lung cancer cell migration. Our studies propose a novel mechanism underlying the EGFR-promoted lung cancer cell migration that is mediated by NEDD4 through regulation of cathepsin B secretion. CONCLUSION NEDD4 mediates the EGFR lung cancer cell migration signaling through promoting lysosomal secretion of cathepsin B.
Collapse
Affiliation(s)
- Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ranran Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jing Wei
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ke Peng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qian Dai
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wannian Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
28
|
Dykes SS, Gray AL, Coleman DT, Saxena M, Stephens CA, Carroll JL, Pruitt K, Cardelli JA. The Arf-like GTPase Arl8b is essential for three-dimensional invasive growth of prostate cancer in vitro and xenograft formation and growth in vivo. Oncotarget 2018; 7:31037-52. [PMID: 27105540 PMCID: PMC5058737 DOI: 10.18632/oncotarget.8832] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer is a multistep process that requires cells to respond appropriately to the tumor microenvironment, both in early proliferative stages and in later invasive disease. Arl8b is a lysosome localized Arf-like GTPase that controls the spatial distribution of lysosomes via recruitment of kinesin motors. Common features of the tumor microenvironment such as acidic extracellular pH and various growthfactors stimulate lysosome trafficking to the cell periphery (anterograde), which is critical for tumor invasion by facilitating the release of lysosomal proteases to promote matrix remodeling. Herein we report for the first time that Arl8b regulates anterograde lysosome trafficking in response to hepatocyte growth factor, epidermal growth factor, and acidic extracellular pH. Depletion of Arl8b results in juxtanuclear lysosome aggregation, and this effect corresponds with both diminished invasive growth and proteolytic extracellular matrix degradation in a three-dimensional model of prostate cancer. Strikingly, we found that depletion of Arl8b abolishes the ability of prostate cancer cells to establish subcutaneous xenografts in mice. We present evidence that Arl8b facilitates lipid hydrolysis to maintain efficient metabolism for a proliferative capacity in low nutrient environments, suggesting a likely explanation for the complete inability of Arl8b-depleted tumor cells to grow in vivo. In conclusion, we have identified two mechanisms by which Arl8b regulates cancer progression: 1) through lysosome positioning and protease release leading to an invasive phenotype and 2) through control of lipid metabolism to support cellular proliferation. These novel roles highlight that Arl8b is a potential target for the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Samantha S Dykes
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Alana L Gray
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - David T Coleman
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Madhurima Saxena
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, LA, USA.,Current address: Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A Stephens
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - Jennifer L Carroll
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Kevin Pruitt
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, LA, USA.,Current address: Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - James A Cardelli
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA.,Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
29
|
Ólafsson EB, Varas-Godoy M, Barragan A. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix. Cell Microbiol 2017; 20. [PMID: 29119662 DOI: 10.1111/cmi.12808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a "Trojan horse" mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy-based high-throughput approach to assess motility and matrix degradation by Toxoplasma-challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma-challenged DCs up-regulated expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) and their supernatants impaired matrix degradation by naïve DCs and by-stander DCs dose dependently. Gene silencing of TIMP-1 by short hairpin RNA restored matrix degradation activity in Toxoplasma-infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88-dependent fashion whereas abrogated proteolysis persevered in Toxoplasma-infected MyD88-deficient DCs. This indicated that both TLR/MyD88-dependent and TLR/MyD88-independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP-1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma-induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non-proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination.
Collapse
Affiliation(s)
- Einar B Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Dykes SS, Steffan JJ, Cardelli JA. Lysosome trafficking is necessary for EGF-driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers. BMC Cancer 2017; 17:672. [PMID: 28978320 PMCID: PMC5628462 DOI: 10.1186/s12885-017-3660-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/27/2017] [Indexed: 12/27/2022] Open
Abstract
Background Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Methods Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. Results EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. Conclusions These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking. Electronic supplementary material The online version of this article (10.1186/s12885-017-3660-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha S Dykes
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71130, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, 71130, USA.,Present Address: Department of Radiation Oncology, University of Florida, Gainesville, FL, 32608, USA
| | - Joshua J Steffan
- Department of Natural Sciences, Dickinson State University, 291 Campus Dr, Dickinson, ND, 58601, USA.
| | - James A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71130, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center- Shreveport, Shreveport, LA, 71130, USA
| |
Collapse
|
31
|
Alessandrini F, Pezzè L, Ciribilli Y. LAMPs: Shedding light on cancer biology. Semin Oncol 2017; 44:239-253. [PMID: 29526252 DOI: 10.1053/j.seminoncol.2017.10.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 01/09/2023]
Abstract
Lysosomes are important cytoplasmic organelles whose critical functions in cells are increasingly being understood. In particular, despite the long-standing accepted concept about the role of lysosomes as cellular machineries solely assigned to degradation, it has been demonstrated that they play active roles in homeostasis and even in cancer biology. Indeed, it is now well documented that during the process of cellular transformation and cancer progression lysosomes are changing localization, composition, and volume and, through the release of their enzymes, lysosomes can also enhance cancer aggressiveness. LAMPs (lysosome associated membrane proteins) represent a family of glycosylated proteins present predominantly on the membrane of lysosomes whose expression can vary among different tissues, suggesting a separation of functions. In this review we focus on the functions and roles of the different LAMP family members, with a particular emphasis on cancer progression and metastatic spread. LAMP proteins are involved in many different aspects of cell biology and can influence cellular processes such as phagocytosis, autophagy, lipid transport, and aging. Interestingly, for all the five members identified so far (LAMP1, LAMP2, LAMP3, CD68/Macrosialin/LAMP4, and BAD-LAMP/LAMP5), a role in cancer has been suggested. While this is well documented for LAMP1 and LAMP2, the involvement of the other three proteins in cancer progression and aggressiveness has recently been proposed and remains to be elucidated. Here we present different examples about how LAMP proteins can influence and support tumor growth and metastatic spread, emphasizing the impact of each single member of the family.
Collapse
Affiliation(s)
- Federica Alessandrini
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Centre for Integrative Biology (CIBIO), University of Trento, Povo (TN), Italy.
| |
Collapse
|
32
|
Abstract
Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis.
Collapse
|
33
|
Abdulla MH, Valli-Mohammed MA, Al-Khayal K, Al Shkieh A, Zubaidi A, Ahmad R, Al-Saleh K, Al-Obeed O, McKerrow J. Cathepsin B expression in colorectal cancer in a Middle East population: Potential value as a tumor biomarker for late disease stages. Oncol Rep 2017; 37:3175-3180. [PMID: 28440429 PMCID: PMC5442396 DOI: 10.3892/or.2017.5576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/02/2017] [Indexed: 02/05/2023] Open
Abstract
Cathepsin B (CTSB), is a cysteine protease belonging to the cathepsin (Clan CA) family. The diagnostic and prognostic significance of increased CTSB in the serum of cancer patients have been evaluated for some tumor types. CTSB serum and protein levels have also been reported previously in colorectal cancer (CRC) with contradictory results. The aim of the present study was to investigate CTSB expression in CRC patients and the association of CTSB expression with various tumor stages in a Middle East population. Serum CTSB levels were evaluated in 70 patients and 20 healthy control subjects using enzyme-linked immunosorbant assay (ELISA) technique. CTSB expression was determined in 100 pairs of CRC tumor and adjacent normal colonic tissue using quantitative PCR for mRNA levels. Detection of CTSB protein expression in tissues was carried out using both immunohistochemistry and western blotting techniques. ELISA analysis showed that in sera obtained from CRC patients, the CTSB concentration was significantly higher in late stage patients with lymph node metastases when compared to early stage patients with values of 2.9 and 0.33 ng/ml, respectively (P=0.001). The majority of tumors studied had detectable CTSB protein expression with significant increased positive staining in tumors cells when compared with matched normal colon subjects (P=0.006). The mRNA expression in early stage CRC compared to late stage CRC was 0.04±0.01 and 0.07±0.02, respectively. Increased mRNA expression was more frequently observed in the advanced cancer stages with lymph node metastases when compared with the control (P=0.002). Mann-Whitney test and paired t-test were used to compare serum CTSB and mRNA levels in early and late tumor stage. A subset of four paired tissue extracts were analyzed by western blotting. The result confirmed a consistent increase in the CTSB protein expression level in tumor tissues compared with that noted in the adjacent normal mucosal cells. These findings indicate that CTSB may be an important prognostic biomarker for late stage CRC and cases with lymph node metastases in the Middle Eastern population. Monitoring serum CTSB in CRC patients may predict and/or diagnose cases with lymph node metastases.
Collapse
Affiliation(s)
- Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Mansoor-Ali Valli-Mohammed
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Abdulmalik Al Shkieh
- Department of Pathology, King Khalid University Hospital, King Saud University, Riyadh 11472, Kingdom of Saudi Arabia
| | - Ahmad Zubaidi
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - Khalid Al-Saleh
- Medical Oncology Unit, Department of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University, College of Medicine, Riyadh 11472, Kingdom of Saudi Arabia
| | - James McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, Eatemadi R, Sadroddiny E. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother 2016; 86:221-231. [PMID: 28006747 DOI: 10.1016/j.biopha.2016.12.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022] Open
Abstract
Cancer is the second cause of death in 2015, and it has been estimated to surpass heart diseases as the leading cause of death in the next few years. Several mechanisms are involved in cancer pathogenesis. Studies have indicated that proteases are also implicated in tumor growth and progression which is highly dependent on nutrient and oxygen supply. On the other hand, protease inhibitors could be considered as a potent strategy in cancer therapy. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. In this review, we focus on the role of different types of proteases and protease inhibitors in cancer pathogenesis.
Collapse
Affiliation(s)
- Ali Eatemadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran.
| | - Hammed T Aiyelabegan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tehran University of Medical Sciences International Campus (TUMS-IC), Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Daraee
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Daraee
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis. Clin Breast Cancer 2016; 17:e119-e125. [PMID: 28017540 DOI: 10.1016/j.clbc.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/17/2016] [Accepted: 11/13/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Disrupting the autophagic balance to trigger autophagic death may open new strategies for cancer therapy. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and may play a role in cancer biology and clinical behavior. METHODS The expression of TFEB and the lysosomal cancer cell content (expression of lysosomal associated membrane protein 2a [LAMP2a] and cathepsin D) was studied in a series of 100 T1-stage breast carcinomas. Expression patterns were correlated with autophagy/hypoxia-related proteins, angiogenesis, and clinical outcome. The effect of hypoxic/acidic conditions on TFEB kinetics was studied in the MCF-7 cancer cell line. RESULTS Overexpression of TFEB in cancer cell cytoplasm and the perinuclear/nuclear area was noted in 23 (23%) of 100 cases. High LAMP2a and cathepsin D expression was noted in 30 (30%) of 100 and 28 (28%) of 100 cases, respectively. TFEB expression was directly linked with LAMP2a (P < .0001, r = 0.53), cathepsin D (P = .0002, r = 0.36), light chain 3A (LC3A) (P = .02, r = 0.22), and hypoxia-inducible factor 2-alpha (HIF-2α) (P = .01, r = 0.25) expression and inversely with progesterone receptor (P = .01, r = 0.22). High vascular density was directly linked with LAMP2a (P = .05, r = 0.18) and cathepsin D (P = .005, r = 0.28). In Kaplan-Meier survival analysis, TFEB and cathepsin D expression were related to an ominous prognosis (P = .001 and P = .03, respectively). In multivariate analysis, TFEB expression sustained its independent prognostic significance (P = .05, hazard ratio 2.1). In in vitro experiments, acidity triggered overexpression of TFEB and nuclear translocation. CONCLUSION Intense TFEB expression and lysosomal biogenesis, evident in one fourth of early breast carcinomas, define poor prognosis. Tumor acidity is among the microenvironmental conditions that trigger TFEB overactivity. TFEB is a sound target for the development of lysosomal targeting therapies.
Collapse
|
36
|
Fields PA, Burmester EM, Cox KM, Karch KR. Rapid proteomic responses to a near-lethal heat stress in the salt marsh mussel Geukensia demissa. ACTA ACUST UNITED AC 2016; 219:2673-86. [PMID: 27335449 DOI: 10.1242/jeb.141176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/17/2016] [Indexed: 01/27/2023]
Abstract
Acute heat stress perturbs cellular function on a variety of levels, leading to protein dysfunction and aggregation, oxidative stress and loss of metabolic homeostasis. If these challenges are not overcome quickly, the stressed organism can die. To better understand the earliest tissue-level responses to heat stress, we examined the proteomic response of gill from Geukensia demissa, an extremely eurythermal mussel from the temperate intertidal zone of eastern North America. We exposed 15°C-acclimated individuals to an acute near-lethal heat stress (45°C) for 1 h, and collected gill samples from 0 to 24 h of recovery. The changes in protein expression we found reveal a coordinated physiological response to acute heat stress: proteins associated with apoptotic processes were increased in abundance during the stress itself (i.e. at 0 h of recovery), while protein chaperones and foldases increased in abundance soon after (3 h). The greatest number of proteins changed abundance at 6 h; these included oxidative stress proteins and enzymes of energy metabolism. Proteins associated with the cytoskeleton and extracellular matrix also changed in abundance starting at 6 h, providing evidence of cell proliferation, migration and tissue remodeling. By 12 h, the response to acute heat stress was diminishing, with fewer stress and structural proteins changing in abundance. Finally, the proteins with altered abundances identified at 24 h suggest a return to the pre-stress anabolic state.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | | | - Kelly M Cox
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Kelly R Karch
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
37
|
Dykes SS, Gao C, Songock WK, Bigelow RL, Woude GV, Bodily JM, Cardelli JA. Zinc finger E-box binding homeobox-1 (Zeb1) drives anterograde lysosome trafficking and tumor cell invasion via upregulation of Na+/H+ Exchanger-1 (NHE1). Mol Carcinog 2016; 56:722-734. [PMID: 27434882 DOI: 10.1002/mc.22528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
Abstract
Tumor cell invasion through the extracellular matrix is facilitated by the secretion of lysosome-associated proteases. As a common mechanism for secretion, lysosomes must first traffic to the cell periphery (anterograde trafficking), consistent with invasive cells often containing lysosomes closer to the plasma membrane compared to non-invasive cells. Epithelial to mesenchymal transition (EMT) is a transcriptionally driven program that promotes an invasive phenotype, and Zeb1 is one transcription factor that activates the mesenchymal gene expression program. The role of lysosome trafficking in EMT-driven invasion has not been previously investigated. We found that cells with increased levels of Zeb1 displayed lysosomes located closer to the cell periphery and demonstrated increased protease secretion and invasion in 3-dimensional (3D) cultures compared to their epithelial counterparts. Additionally, preventing anterograde lysosome trafficking via pharmacological inhibition of Na+/H+ exchanger 1 (NHE1) or shRNA depletion of ADP-ribosylation like protein 8b (Arl8b) reversed the invasive phenotype of mesenchymal cells, thus supporting a role for lysosome positioning in EMT-mediated tumor cell invasion. Immunoblot revealed that expression of Na+/H+ exchanger 1 correlated with Zeb1 expression. Furthermore, we found that the transcription factor Zeb1 binds to the Na+/H+ exchanger 1 promoter, suggesting that Zeb1 directly controls Na+/H+ transcription. Collectively, these results provide insight into a novel mechanism regulating Na+/H+ exchanger 1 expression and support a role for anterograde lysosome trafficking in Zeb1-driven cancer progression. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samantha S Dykes
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - ChongFeng Gao
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan
| | - William K Songock
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - Rebecca L Bigelow
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - George Vande Woude
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Jason M Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - James A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| |
Collapse
|
38
|
Mirković B, Markelc B, Butinar M, Mitrović A, Sosič I, Gobec S, Vasiljeva O, Turk B, Čemažar M, Serša G, Kos J. Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget 2016; 6:19027-42. [PMID: 25848918 PMCID: PMC4662473 DOI: 10.18632/oncotarget.3699] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
Cathepsin B is a ubiquitously expressed lysosomal cysteine protease that participates in protein turnover within lysosomes. However, its protein and activity levels have been shown to be increased in cancer. Cathepsin B endopeptidase activity is involved in the degradation of extracellular matrix, a process that promotes tumor invasion, metastasis and angiogenesis. Previously, we reported an established antibiotic nitroxoline as a potent and selective inhibitor of cathepsin B. In the present study, we elucidated its anti-tumor properties in in vitro and in vivo tumor models. Tumor and endothelial cell lines with high levels of active cathepsin B were selected for functional analysis of nitroxoline in vitro. Nitroxoline significantly reduced extracellular DQ-collagen IV degradation by all evaluated cancer cell lines using spectrofluorimetry. Nitroxoline also markedly decreased tumor cell invasion monitored in real time and reduced the invasive growth of multicellular tumor spheroids, used as a 3D in vitro model of tumor invasion. Additionally, endothelial tube formation was significantly reduced by nitroxoline in an in vitro angiogenesis assay. Finally, nitroxoline significantly abrogated tumor growth, angiogenesis and metastasis in vivo in LPB fibrosarcoma and MMTV-PyMT breast cancer mouse models. Overall, our results designate nitroxoline as a promising drug candidate for anti-cancer treatment.
Collapse
Affiliation(s)
- Bojana Mirković
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Miha Butinar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
39
|
Kamata T, Jin H, Giblett S, Patel B, Patel F, Foster C, Pritchard C. The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours. EMBO Mol Med 2016; 7:1119-37. [PMID: 26183450 PMCID: PMC4568947 DOI: 10.15252/emmm.201404838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment is known to play an integral role in facilitating cancer progression at advanced stages, but its function in some pre-cancerous lesions remains elusive. We have used the V600EBRAF-driven mouse lung model that develop premalignant lesions to understand stroma–tumour interactions during pre-cancerous development. In this model, we have found that immature macrophage-lineage cells (IMCs) producing PDGFA, TGFβ and CC chemokines are recruited to the stroma of premalignant lung adenomas through CC chemokine receptor 1 (CCR1)-dependent mechanisms. Stromal IMCs promote proliferation and transcriptional alterations suggestive of epithelial–mesenchymal transition in isolated premalignant lung tumour cells ex vivo, and are required for the maintenance of early-stage lung tumours in vivo. Furthermore, we have found that IMC recruitment to the microenvironment is restrained by the cholesterol-binding protein, Niemann-Pick type C2 (NPC2). Studies on isolated cells ex vivo confirm that NPC2 is secreted from tumour cells and is taken up by IMCs wherein it suppresses secretion of the CCR1 ligand CC chemokine 6 (CCL6), at least in part by facilitating its lysosomal degradation. Together, these findings show that NPC2 secreted by premalignant lung tumours suppresses IMC recruitment to the microenvironment in a paracrine manner, thus identifying a novel target for the development of chemopreventive strategies in lung cancer.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Hong Jin
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Susan Giblett
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Bipin Patel
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Falguni Patel
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Charles Foster
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Catrin Pritchard
- Department of Biochemistry, University of Leicester, Leicester, UK
| |
Collapse
|
40
|
Cypher LR, Bielecki TA, Adepegba O, Huang L, An W, Iseka F, Luan H, Tom E, Storck MD, Hoppe AD, Band V, Band H. CSF-1 receptor signalling is governed by pre-requisite EHD1 mediated receptor display on the macrophage cell surface. Cell Signal 2016; 28:1325-1335. [PMID: 27224507 DOI: 10.1016/j.cellsig.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
Colony stimulating factor-1 receptor (CSF-1R), a receptor tyrosine kinase (RTK), is the master regulator of macrophage biology. CSF-1 can bind CSF-1R resulting in receptor activation and signalling essential for macrophage functions such as proliferation, differentiation, survival, polarization, phagocytosis, cytokine secretion, and motility. CSF-1R activation can only occur after the receptor is presented on the macrophage cell surface. This process is reliant upon the underlying macrophage receptor trafficking machinery. However, the mechanistic details governing this process are incompletely understood. C-terminal Eps15 Homology Domain-containing (EHD) proteins have recently emerged as key regulators of receptor trafficking but have not yet been studied in the context of macrophage CSF-1R signalling. In this manuscript, we utilize primary bone-marrow derived macrophages (BMDMs) to reveal a novel function of EHD1 as a regulator of CSF-1R abundance on the cell surface. We report that EHD1-knockout (EHD1-KO) macrophages cell surface and total CSF-1R levels are significantly decreased. The decline in CSF-1R levels corresponds with reduced downstream macrophage functions such as cell proliferation, migration, and spreading. In EHD1-KO macrophages, transport of newly synthesized CSF-1R to the macrophage cell surface was reduced and was associated with the shunting of the receptor to the lysosome, which resulted in receptor degradation. These findings reveal a novel and functionally important role for EHD1 in governing CSF-1R signalling via regulation of anterograde transport of CSF-1R to the macrophage cell surface.
Collapse
Affiliation(s)
- Luke R Cypher
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Timothy Alan Bielecki
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | | | - Lu Huang
- Department of Chemistry and Biochemistry, BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Wei An
- Department of Genetics, Cell Biology, & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fany Iseka
- Department of Genetics, Cell Biology, & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | | | - Eric Tom
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew D Storck
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Vimla Band
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Genetics, Cell Biology, & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid Band
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Genetics, Cell Biology, & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
41
|
Fey T, Schubert KM, Schneider H, Fein E, Kleinert E, Pohl U, Dendorfer A. Impaired endothelial shear stress induces podosome assembly
via
VEGF up‐regulation. FASEB J 2016; 30:2755-66. [DOI: 10.1096/fj.201500091r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Theres Fey
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Kai Michael Schubert
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Holger Schneider
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Evelyn Fein
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Eike Kleinert
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Ulrich Pohl
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- German Centre for Cardiovascular Research (DZHK)‐Munich Heart AllianceMunichGermany
- Munich Cluster for Systems NeurologyMunichGermany
| | - Andreas Dendorfer
- Walter‐Brendel‐Centre of Experimental Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- German Centre for Cardiovascular Research (DZHK)‐Munich Heart AllianceMunichGermany
| |
Collapse
|
42
|
Chevalier C, Collin G, Descamps S, Touaitahuata H, Simon V, Reymond N, Fernandez L, Milhiet PE, Georget V, Urbach S, Lasorsa L, Orsetti B, Boissière-Michot F, Lopez-Crapez E, Theillet C, Roche S, Benistant C. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nat Commun 2016; 7:10765. [PMID: 26899482 PMCID: PMC4764922 DOI: 10.1038/ncomms10765] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
ERBB2 overexpression in human breast cancer leads to invasive carcinoma but the mechanism is not clearly understood. Here we report that TOM1L1 is co-amplified with ERBB2 and defines a subgroup of HER2+/ER+ tumours with early metastatic relapse. TOM1L1 encodes a GAT domain-containing trafficking protein and is a SRC substrate that negatively regulates tyrosine kinase signalling. We demonstrate that TOM1L1 upregulation enhances the invasiveness of ERBB2-transformed cells. This pro-tumoural function does not involve SRC, but implicates membrane-bound membrane-type 1 MMP (MT1-MMP)-dependent activation of invadopodia, membrane protrusions specialized in extracellular matrix degradation. Mechanistically, ERBB2 elicits the indirect phosphorylation of TOM1L1 on Ser321. The phosphorylation event promotes GAT-dependent association of TOM1L1 with the sorting protein TOLLIP and trafficking of the metalloprotease MT1-MMP from endocytic compartments to invadopodia for tumour cell invasion. Collectively, these results show that TOM1L1 is an important element of an ERBB2-driven proteolytic invasive programme and that TOM1L1 amplification potentially enhances the metastatic progression of ERBB2-positive breast cancers. ERBB2 overexpression in human breast cancer leads to invasion and metastasis. Here the authors report that ERBB2 induces indirect phosphorylation of TOM1L1 that promotes trafficking of the metalloprotease MT1-MMP to invadopodia, which leads to tumour cell invasion.
Collapse
Affiliation(s)
- Clément Chevalier
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Guillaume Collin
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Simon Descamps
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Heiani Touaitahuata
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Valérie Simon
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Nicolas Reymond
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Laurent Fernandez
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| | | | - Serge Urbach
- Functional Proteomics Platform, 34090 Montpellier, France
| | - Laurence Lasorsa
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Béatrice Orsetti
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Florence Boissière-Michot
- Translational Research Unit, Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, 34298 Montpellier, France
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Institut régional du Cancer de Montpellier (ICM)-Val d'Aurelle, 34298 Montpellier, France
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM U896, 34298 Montpellier, France
| | - Serge Roche
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France
| | - Christine Benistant
- Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293 Montpellier, France.,Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, 29 rue de navacelles, 34090 Montpellier, France
| |
Collapse
|
43
|
Circu ML, Dykes SS, Carroll J, Kelly K, Galiano F, Greer A, Cardelli J, El-Osta H. A Novel High Content Imaging-Based Screen Identifies the Anti-Helminthic Niclosamide as an Inhibitor of Lysosome Anterograde Trafficking and Prostate Cancer Cell Invasion. PLoS One 2016; 11:e0146931. [PMID: 26784896 PMCID: PMC4718621 DOI: 10.1371/journal.pone.0146931] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/23/2015] [Indexed: 01/22/2023] Open
Abstract
Lysosome trafficking plays a significant role in tumor invasion, a key event for the development of metastasis. Previous studies from our laboratory have demonstrated that the anterograde (outward) movement of lysosomes to the cell surface in response to certain tumor microenvironment stimulus, such as hepatocyte growth factor (HGF) or acidic extracellular pH (pHe), increases cathepsin B secretion and tumor cell invasion. Anterograde lysosome trafficking depends on sodium-proton exchanger activity and can be reversed by blocking these ion pumps with Troglitazone or EIPA. Since these drugs cannot be advanced into the clinic due to toxicity, we have designed a high-content assay to discover drugs that block peripheral lysosome trafficking with the goal of identifying novel drugs that inhibit tumor cell invasion. An automated high-content imaging system (Cellomics) was used to measure the position of lysosomes relative to the nucleus. Among a total of 2210 repurposed and natural product drugs screened, 18 "hits" were identified. One of the compounds identified as an anterograde lysosome trafficking inhibitor was niclosamide, a marketed human anti-helminthic drug. Further studies revealed that niclosamide blocked acidic pHe, HGF, and epidermal growth factor (EGF)-induced anterograde lysosome redistribution, protease secretion, motility, and invasion of DU145 castrate resistant prostate cancer cells at clinically relevant concentrations. In an effort to identify the mechanism by which niclosamide prevented anterograde lysosome movement, we found that this drug exhibited no significant effect on the level of ATP, microtubules or actin filaments, and had minimal effect on the PI3K and MAPK pathways. Niclosamide collapsed intralysosomal pH without disruption of the lysosome membrane, while bafilomycin, an agent that impairs lysosome acidification, was also found to induce JLA in our model. Taken together, these data suggest that niclosamide promotes juxtanuclear lysosome aggregation (JLA) via modulation of pathways involved in lysosome acidification. In conclusion, we have designed a validated reproducible high-content assay to screen for drugs that inhibit lysosome trafficking and reduce tumor invasion and we summarize the action of one of these drugs.
Collapse
Affiliation(s)
- Magdalena L. Circu
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Samantha S. Dykes
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Jennifer Carroll
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Kinsey Kelly
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Floyd Galiano
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Adam Greer
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - James Cardelli
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Hazem El-Osta
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
44
|
Ramalho SD, Sharma R, White JK, Aggarwal N, Chalasani A, Sameni M, Moin K, Vieira PC, Turro C, Kodanko JJ, Sloane BF. Imaging Sites of Inhibition of Proteolysis in Pathomimetic Human Breast Cancer Cultures by Light-Activated Ruthenium Compound. PLoS One 2015; 10:e0142527. [PMID: 26562785 PMCID: PMC4643019 DOI: 10.1371/journal.pone.0142527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/22/2015] [Indexed: 11/21/2022] Open
Abstract
The cysteine protease cathepsin B has been causally linked to progression and metastasis of breast cancers. We demonstrate inhibition by a dipeptidyl nitrile inhibitor (compound 1) of cathepsin B activity and also of pericellular degradation of dye-quenched collagen IV by living breast cancer cells. To image, localize and quantify collagen IV degradation in real-time we used 3D pathomimetic breast cancer models designed to mimic the in vivo microenvironment of breast cancers. We further report the synthesis and characterization of a caged version of compound 1, [Ru(bpy)2(1)2](BF4)2 (compound 2), which can be photoactivated with visible light. Upon light activation, compound 2, like compound 1, inhibited cathepsin B activity and pericellular collagen IV degradation by the 3D pathomimetic models of living breast cancer cells, without causing toxicity. We suggest that caged inhibitor 2 is a prototype for cathepsin B inhibitors that can control both the site and timing of inhibition in cancer.
Collapse
Affiliation(s)
- Suelem D. Ramalho
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Rajgopal Sharma
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - Jessica K. White
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Neha Aggarwal
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Anita Chalasani
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Mansoureh Sameni
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Kamiar Moin
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Paulo C. Vieira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (BFS); (JJK)
| | - Bonnie F. Sloane
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (BFS); (JJK)
| |
Collapse
|
45
|
Dykes SS, Friday E, Pruitt K, Cardelli JA. The histone deacetylase inhibitor cambinol prevents acidic pH e-induced anterograde lysosome trafficking independently of sirtuin activity. Biochem Biophys Rep 2015; 3:83-93. [PMID: 29124170 PMCID: PMC5668693 DOI: 10.1016/j.bbrep.2015.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/17/2015] [Accepted: 07/23/2015] [Indexed: 01/03/2023] Open
Abstract
Common features of the solid tumor microenvironment, such as acidic extracellular pH and growth factors, are known to induce the redistribution of lysosomes from a perinuclear region to a position near the plasma membrane. Lysosome/plasma membrane juxtaposition facilitates invasion by allowing for the release of lysosomal proteases, including cathepsin B, which contribute to matrix degradation. In this study we identified the sirtuin 1/sirtuin 2 (SIRT1/2) inhibitor cambinol acts as a drug that inhibits lysosome redistribution and tumor invasion. Treatment of cells with cambinol resulted in a juxtanuclear lysosome aggregation (JLA) similar to that seen upon treatment with the PPARγ agonist, troglitazone (Tro). Like Tro, cambinol required the activity of ERK1/2 in order to induce this lysosome clustering phenotype. However, cambinol did not require the activity of Rab7, suggesting that this drug causes JLA by a mechanism different from what is known for Tro. Additionally, cambinol-induced JLA was not a result of autophagy induction. Further investigation revealed that cambinol triggered JLA independently of its activity as a SIRT1/2 inhibitor, suggesting that this drug could have effects in addition to SIRT1/2 inhibition that could be developed into a novel anti-cancer therapy. Cambinol prevents acidic pHe-induced anterograde lysosome trafficking. Cambinol-mediated lysosome aggregation is not dependent on sirtuin activity. ERK1/2 activity is necessary for cambinol-driven juxtanuclear lysosome aggregation.
Collapse
Affiliation(s)
- Samantha S. Dykes
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Ellen Friday
- Department of Medicine, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 7113, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Kevin Pruitt
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - James A. Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States
- Corresponding author at: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States.
| |
Collapse
|
46
|
Bian B, Mongrain S, Cagnol S, Langlois MJ, Boulanger J, Bernatchez G, Carrier JC, Boudreau F, Rivard N. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Mol Carcinog 2015; 55:671-87. [PMID: 25808857 PMCID: PMC4832390 DOI: 10.1002/mc.22312] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 12/14/2022]
Abstract
Cathepsin B is a cysteine proteinase that primarily functions as an endopeptidase within endolysosomal compartments in normal cells. However, during tumoral expansion, the regulation of cathepsin B can be altered at multiple levels, thereby resulting in its overexpression and export outside of the cell. This may suggest a possible role of cathepsin B in alterations leading to cancer progression. The aim of this study was to determine the contribution of intracellular and extracellular cathepsin B in growth, tumorigenesis, and invasion of colorectal cancer (CRC) cells. Results show that mRNA and activated levels of cathepsin B were both increased in human adenomas and in CRCs of all stages. Treatment of CRC cells with the highly selective and non‐permeant cathepsin B inhibitor Ca074 revealed that extracellular cathepsin B actively contributed to the invasiveness of human CRC cells while not essential for their growth in soft agar. Cathepsin B silencing by RNAi in human CRC cells inhibited their growth in soft agar, as well as their invasion capacity, tumoral expansion, and metastatic spread in immunodeficient mice. Higher levels of the cell cycle inhibitor p27Kip1 were observed in cathepsin B‐deficient tumors as well as an increase in cyclin B1. Finally, cathepsin B colocalized with p27Kip1 within the lysosomes and efficiently degraded the inhibitor. In conclusion, the present data demonstrate that cathepsin B is a significant factor in colorectal tumor development, invasion, and metastatic spreading and may, therefore, represent a potential pharmacological target for colorectal tumor therapy. © 2015 The Authors. Molecular Carcinogenesis, published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Bian
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Mongrain
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Cagnol
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Josée Langlois
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jim Boulanger
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gérald Bernatchez
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julie C Carrier
- Gastroenterology Service, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François Boudreau
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Rivard
- Department of Anatomy and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
47
|
Stock C, Schwab A. Ion channels and transporters in metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2638-46. [PMID: 25445667 DOI: 10.1016/j.bbamem.2014.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 12/23/2022]
Abstract
An elaborate interplay between ion channels and transporters, components of the cytoskeleton, adhesion molecules, and signaling cascades provides the basis for each major step of the metastatic cascade. Ion channels and transporters contribute to cell motility by letting through or transporting ions essential for local Ca2+, pH and--in cooperation with water permeable aquaporins--volume homeostasis. Moreover, in addition to the actual ion transport they, or their auxiliary subunits, can display non-conducting activities. They can exert kinase activity in order to phosphorylate cytoskeletal constituents or their associates. They can become part of signaling processes by permeating Ca2+, by generating local pH-nanodomains or by being final downstream effectors. A number of channels and transporters are found at focal adhesions, interacting directly or indirectly with proteins of the extracellular matrix, with integrins or with components of the cytoskeleton. We also include the role of aquaporins in cell motility. They drive the outgrowth of lamellipodia/invadopodia or control the number of β1 integrins in the plasma membrane. The multitude of interacting ion channels and transporters (called transportome) including the associated signaling events holds great potential as therapeutic target(s) for anticancer agents that are aimed at preventing metastasis. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| |
Collapse
|
48
|
Sung BH, Weaver AM. Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility. BIOARCHITECTURE 2014; 1:257-260. [PMID: 22545176 PMCID: PMC3337126 DOI: 10.4161/bioa.1.6.19197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Directional cellular movement is required for various organismal processes, including immune defense and cancer metastasis. Proper navigation of migrating cells involves responding to a complex set of extracellular cues, including diffusible chemical signals and physical structural information. In tissues, conflicting gradients and signals may require cells to not only respond to the environment but also modulate it for efficient adhesion formation and directional cell motility. Recently, we found that cells endocytose fibronectin (FN) and resecrete it from a late endosomal/lysosomal (LE/Lys) compartment to provide an autocrine extracellular matrix (ECM) substrate for cell motility. Branched actin assembly regulated by cortactin was required for trafficking of FN-containing vesicles from LE/Lys to the cell surface. These findings suggest a model in which migrating cells use lysosomal secretion as a versatile mechanism to modulate the ECM environment, promote adhesion assembly and enhance directional migration.
Collapse
|
49
|
The complex function of hsp70 in metastatic cancer. Cancers (Basel) 2013; 6:42-66. [PMID: 24362507 PMCID: PMC3980608 DOI: 10.3390/cancers6010042] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022] Open
Abstract
Elevated expression of the inducible heat shock protein 70 (Hsp70) is known to correlate with poor prognosis in many cancers. Hsp70 confers survival advantage as well as resistance to chemotherapeutic agents, and promotes tumor cell invasion. At the same time, tumor-derived extracellular Hsp70 has been recognized as a "chaperokine", activating antitumor immunity. In this review we discuss localization dependent functions of Hsp70 in the context of invasive cancer. Understanding the molecular principles of metastasis formation steps, as well as interactions of the tumor cells with the microenvironment and the immune system is essential for fighting metastatic cancer. Although Hsp70 has been implicated in different steps of the metastatic process, the exact mechanisms of its action remain to be explored. Known and potential functions of Hsp70 in controlling or modulating of invasion and metastasis are discussed.
Collapse
|
50
|
Belaid A, Ndiaye PD, Cerezo M, Cailleteau L, Brest P, Klionsky DJ, Carle GF, Hofman P, Mograbi B. Autophagy and SQSTM1 on the RHOA(d) again: emerging roles of autophagy in the degradation of signaling proteins. Autophagy 2013; 10:201-8. [PMID: 24300375 DOI: 10.4161/auto.27198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Degradation of signaling proteins is one of the most powerful tumor-suppressive mechanisms by which a cell can control its own growth, its survival, and its motility. Emerging evidence suggests that autophagy limits several signaling pathways by degrading kinases, downstream components, and transcription factors; however, this often occurs under stressful conditions. Our recent studies revealed that constitutive autophagy temporally and spatially controls the RHOA pathway. Specifically, inhibition of autophagosome degradation induces the accumulation of the GTP-bound form of RHOA. The active RHOA is sequestered via SQSTM1/p62 within autolysosomes, and accordingly fails to localize to the spindle midbody or to the cell surface, as we demonstrate herein. As a result, all RHOA-downstream responses are deregulated, thus driving cytokinesis failure, aneuploidy and motility, three processes that directly have an impact upon cancer progression. We therefore propose that autophagy acts as a degradative brake for RHOA signaling and thereby controls cell proliferation, migration, and genome stability.
Collapse
Affiliation(s)
- Amine Belaid
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France
| | - Papa Diogop Ndiaye
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France
| | - Michaël Cerezo
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; INSERM U895/C3M: Centre Méditerranéen de Médecine Moléculaire; Nice, France
| | - Laurence Cailleteau
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France
| | - Patrick Brest
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France
| | | | - Georges F Carle
- Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Centre Antoine Lacassagne; Nice, France; Laboratoire TIRO-MATOs UMR E4320; Commissariat à l'Energie Atomique; Nice, France
| | - Paul Hofman
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France; Centre Hospitalier Universitaire de Nice; Pasteur Hospital; Laboratory of Clinical and Experimental Pathology; Nice, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN); INSERM U1081; CNRS UMR7284; Nice, France; Université de Nice-Sophia Antipolis; Faculté de Médecine; Nice, France; Equipe Labellisée par l'ARC; Villejuif, France; Centre Antoine Lacassagne; Nice, France
| |
Collapse
|