1
|
Joshi G, Basu A. Epigenetic control of cell signalling in cancer stem cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:67-88. [PMID: 38359971 DOI: 10.1016/bs.ircmb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The self-renewing cancer stem cells (CSCs) represent one of the distinct cell populations occurring in a tumour that can differentiate into multiple lineages. This group of sparsely abundant cells play a vital role in tumour survival and resistance to different treatments during cancer. The lack of exclusive markers associated with CSCs makes diagnosis and prognosis in cancer patients extremely difficult. This calls for the identification of unique regulators and markers for CSCs. Various signalling pathways like the Wnt/β-catenin pathway, Hedgehog pathway, Notch pathway, and TGFβ/BMP play a major role in the regulation and maintenance of CSCs. Epigenetic regulatory mechanisms add another layer of complexity to control these signalling pathways. In this chapter, we discuss about the role of epigenetic mechanisms in regulating the cellular signalling pathways in CSCs. The epigenetic regulatory mechanisms such as DNA methylation, histone modification and microRNAs can modulate the diverse effectors of signalling pathways and consequently the growth, differentiation and tumorigenicity of CSCs. In the end, we briefly discuss the therapeutic potential of targeting these epigenetic regulators and their target genes in CSCs.
Collapse
Affiliation(s)
- Gaurav Joshi
- Institute of Molecular Biology (IMB), Mainz, Germany.
| | - Amitava Basu
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
2
|
Imai T, Naruse M, Machida Y, Fujii G, Mutoh M, Ochiai M, Takahashi M, Nakagama H. Feeding a High-Fat Diet for a Limited Duration Increases Cancer Incidence in a Breast Cancer Model. Nutr Cancer 2023; 75:713-725. [PMID: 36263881 DOI: 10.1080/01635581.2022.2132267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High-fat intake by young Asian women impacts the risk of breast cancer. Understanding the underlying molecular mechanisms may be essential for disease prevention in Asia as well as globally. We aimed to examine the effects of corn oil- and animal fat-based high-fat diets (32.9 and 31.4%, respectively, of fat energy ratio as compared to 12.3% in the standard diet) on mammary carcinogenesis and alterations in gene expression and epigenetic statuses in the mammary gland during the growth stages in a rat model. An increased incidence of carcinomas was observed after the cessation of high-fat feeding. In addition, rapid tumor growth and elevations in Celsr2 expression, which may be a result of DNA hypomethylation patterns in the 3' untranslated region of the gene were noted in the animal fat group. In the human breast carcinoma cell line MCF7, a marginal decrease in cell viability was observed following the knockdown of Celsr2, suggesting that the animal fat-associated risk of cancer is partly due to the deregulation of mammary cell proliferation via non-metabolic gene functions. The present results will contribute to the development of strategies for controlling the food-associated risk of breast cancer, particularly in younger age groups.
Collapse
Affiliation(s)
- Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,Department of Animal Experimentation, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Mie Naruse
- Department of Animal Experimentation, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Yukino Machida
- Central Animal Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Gen Fujii
- Division of Carcinogenesis and Prevention, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Michihiro Mutoh
- Division of Carcinogenesis and Prevention, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Masako Ochiai
- Department of Animal Experimentation, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | |
Collapse
|
3
|
Kondo M, Aboshi H, Yoshikawa M, Ogata A, Murayama R, Takei M, Aizawa S. A newly developed age estimation method based on CpG methylation of teeth-derived DNA using real-time methylation-specific PCR. J Oral Sci 2020; 63:54-58. [PMID: 33281149 DOI: 10.2334/josnusd.20-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Age estimation of unidentified bodies is important in forensic medicine and crime scenes. There is accumulating evidence that DNA methylation in the human genome isolated from body fluids changes with age. Most of the data have been obtained by pyrosequencing. In the forensic field, a simple, quick, and economical method is required to evaluate the age of various types of samples. In this study, an age estimation method based on methylation levels of DNA extracted from teeth using real-time methylation-specific PCR (MSP) was developed. The CpG island in the upstream region of ELOVL2, which is known as a validated biomarker in blood samples, was selected as a target site. The CpG methylation levels highly correlated with age (r = 0.843, n = 29). Age-related increase in DNA methylation levels was not affected by sex differences. In addition, the simple regression model based on methylation status of the CpG island exhibited moderate accuracy with a mean absolute deviation between chronological age and predicted age of 8.94 years. The results imply that real-time MSP can be a new tool to perform age prediction of unidentified bodies in forensic scenes.
Collapse
Affiliation(s)
- Masahiro Kondo
- Department of Legal Medicine, Nihon University School of Dentistry
| | - Hirofumi Aboshi
- Department of Legal Medicine, Nihon University School of Dentistry
| | - Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| | - Ayano Ogata
- Department of Legal Medicine, Nihon University School of Dentistry
| | - Ryosuke Murayama
- Department of Legal Medicine, Nihon University School of Dentistry
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine
| |
Collapse
|
4
|
Cao T, Jiang Y, Li D, Sun X, Zhang Y, Qin L, Tellides G, Taylor HS, Huang Y. H19/TET1 axis promotes TGF-β signaling linked to endothelial-to-mesenchymal transition. FASEB J 2020; 34:8625-8640. [PMID: 32374060 PMCID: PMC7364839 DOI: 10.1096/fj.202000073rrrrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
While emerging evidence suggests the link between endothelial activation of TGF-β signaling, induction of endothelial-to-mesenchymal transition (EndMT), and cardiovascular disease (CVD), the molecular underpinning of this connection remains enigmatic. Here, we report aberrant expression of H19 lncRNA and TET1 in endothelial cells (ECs) of human atherosclerotic coronary arteries. Using primary human umbilical vein endothelial cells (HUVECs) and aortic endothelial cells (HAoECs) we show that TNF-α, a known risk factor for endothelial dysfunction and CVD, induces H19 expression which in turn activates TGF-β signaling and EndMT via a TET1-dependent epigenetic mechanism. We also show that H19 regulates TET1 expression at the posttranscriptional level. Further, we provide evidence that this H19/TET1-mediated regulation of TGF-β signaling and EndMT occurs in mouse pulmonary microvascular ECs in vivo under hyperglycemic conditions. We propose that endothelial activation of the H19/TET1 axis may play an important role in EndMT and perhaps CVD.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Da Li
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Sun
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Zhang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA Interplay in Genitourinary Cancers. Cells 2019; 8:E1619. [PMID: 31842336 PMCID: PMC6952810 DOI: 10.3390/cells8121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Genitourinary cancers (GCs) include a large group of different types of tumors localizing to the kidney, bladder, prostate, testis, and penis. Despite highly divergent molecular patterns, most GCs share commonly disturbed signaling pathways that involve the activity of TGF-β (transforming growth factor beta). TGF-β is a pleiotropic cytokine that regulates key cancer-related molecular and cellular processes, including proliferation, migration, invasion, apoptosis, and chemoresistance. The understanding of the mechanisms of TGF-β actions in cancer is hindered by the "TGF-β paradox" in which early stages of cancerogenic process are suppressed by TGF-β while advanced stages are stimulated by its activity. A growing body of evidence suggests that these paradoxical TGF-β actions could result from the interplay with microRNAs: Short, non-coding RNAs that regulate gene expression by binding to target transcripts and inducing mRNA degradation or inhibition of translation. Here, we discuss the current knowledge of TGF-β signaling in GCs. Importantly, TGF-β signaling and microRNA-mediated regulation of gene expression often act in complicated feedback circuits that involve other crucial regulators of cancer progression (e.g., androgen receptor). Furthermore, recently published in vitro and in vivo studies clearly indicate that the interplay between microRNAs and the TGF-β signaling pathway offers new potential treatment options for GC patients.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education; 01-813 Warsaw, Poland;
| | - Piotr Kryst
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | - Slawomir Poletajew
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | | |
Collapse
|
6
|
Cao T, Jiang Y, Wang Z, Zhang N, Al-Hendy A, Mamillapalli R, Kallen AN, Kodaman P, Taylor HS, Li D, Huang Y. H19 lncRNA identified as a master regulator of genes that drive uterine leiomyomas. Oncogene 2019; 38:5356-5366. [PMID: 31089260 PMCID: PMC6755985 DOI: 10.1038/s41388-019-0808-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Uterine leiomyomas or fibroids (UFs) are benign tumors characterized by hyperplastic smooth muscle cells and excessive deposition of extracellular matrix (ECM). Afflicting ~80% of women, and symptomatic in 25%, UFs bring tremendous suffering and are an economic burden worldwide; they cause severe pain and bleeding, and are the leading cause of hysterectomy. Yet, UFs are severely understudied with few effective treatment options available; those that are available frequently have significant side effects such as menopausal symptoms. Recently, integrated genome-scale studies have revealed mutations and fibroid subtype-specific expression changes in key driver genes, with MED12 and HMGA2 together contributing to nearly 90% of all UFs, but their regulation of expression is poorly characterized. Here we report that the expression of H19 long noncoding RNA (lncRNA) is aberrantly increased in UFs. Using cell culture and genome-wide transcriptome and methylation profiling analyses, we demonstrate that H19 promotes expression of MED12, HMGA2, and key ECM-remodeling genes via multiple mechanisms including a new class of epigenetic modification by TET3. Our results mark the first example of an evolutionarily conserved lncRNA in pathogenesis of UFs and regulation of TET expression. Given the link between a H19 single-nucleotide polymorphism (SNP) and increased risk and tumor size of UFs, and the existence of multiple fibroid subtypes driven by key pathway genes regulated by H19, we propose a unifying mechanism for pathogenesis of uterine fibroids mediated by H19 and identify a pathway for future exploration of novel target therapies for uterine leiomyomas.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510070, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Zhangsheng Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Cardiology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Amanda N Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pinar Kodaman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
7
|
Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, Yang YA, Sridhar S, Lu X, Abdulkadir SA, Vessella RL, Morrissey C, Kuzel TM, Catalona W, Yang X, Yu J. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J Clin Invest 2019; 129:569-582. [PMID: 30511964 PMCID: PMC6355239 DOI: 10.1172/jci122367] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PC) progressed to castration resistance (CRPC) is a fatal disease. CRPC tumors develop resistance to new-generation antiandrogen enzalutamide through lineage plasticity, characterized by epithelial-mesenchymal transition (EMT) and a basal-like phenotype. FOXA1 is a transcription factor essential for epithelial lineage differentiation. Here, we demonstrate that FOXA1 loss leads to remarkable upregulation of transforming growth factor beta 3 (TGFB3), which encodes a ligand of the TGF-β pathway. Mechanistically, this is due to genomic occupancy of FOXA1 on an upstream enhancer of the TGFB3 gene to directly inhibit its transcription. Functionally, FOXA1 downregulation induces TGF-β signaling, EMT, and cell motility, which is effectively blocked by the TGF-β receptor I inhibitor galunisertib (LY2157299). Tissue microarray analysis confirmed reduced levels of FOXA1 protein and a concordant increase in TGF-β signaling, indicated by SMAD2 phosphorylation, in CRPC as compared with primary tumors. Importantly, combinatorial LY2157299 treatment sensitized PC cells to enzalutamide, leading to synergistic effects in inhibiting cell invasion in vitro and xenograft CRPC tumor growth and metastasis in vivo. Therefore, our study establishes FOXA1 as an important regulator of lineage plasticity mediated in part by TGF-β signaling, and supports a novel therapeutic strategy to control lineage switching and potentially extend clinical response to antiandrogen therapies.
Collapse
Affiliation(s)
- Bing Song
- Division of Hematology/Oncology, Department of Medicine, and
| | - Su-Hong Park
- Division of Hematology/Oncology, Department of Medicine, and
| | | | - Ka-wing Fong
- Division of Hematology/Oncology, Department of Medicine, and
| | - Shangze Li
- Division of Hematology/Oncology, Department of Medicine, and
| | - Yongik Lee
- Division of Hematology/Oncology, Department of Medicine, and
| | - Yeqing A. Yang
- Division of Hematology/Oncology, Department of Medicine, and
| | | | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, and
| | - Sarki A. Abdulkadir
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - William Catalona
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ximing Yang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, and
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Li S, Li C, Fang Z. MicroRNA 214 inhibits adipocyte enhancer-binding protein 1 activity and increases the sensitivity of chemotherapy in colorectal cancer. Oncol Lett 2018; 17:55-62. [PMID: 30655737 PMCID: PMC6313171 DOI: 10.3892/ol.2018.9623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2018] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to analyze adipocyte enhancer-binding protein 1 (AEBP1) expression in colorectal cancer (CRC), with a focus on its possible molecular mechanisms, in order to provide novel insight into the clinical treatment of CRC. Immunohistochemistry (IHC) was used to detect AEBP1 expression in 62 CRC tissues. Kaplan-Meier survival curves were used to analyze AEBP1 expression and the postoperative disease-free survival (DFS) and overall survival (OS) rates of CRC patients. HT-29 cells were treated with oxaliplatin to detect cell proliferation and apoptosis following a Cell Counting kit-8. Through bioinformatics prediction, microRNA 214 (miR214) was identified as an upstream microRNA of AEBP1 that regulates its expression. IHC revealed that the expression of AEBP1 in CRC tissues was significantly higher than that in adjacent healthy tissues, and that it is associated with Tumor-Node-Metastasis stage, recurrence and metastasis. The DFS and OS rates of patients with a low AEBP1 expression were significantly higher than those in patients with a high expression (P<0.05). Following depletion of AEBP1 and treatment with oxaliplatin, the HT-29 cell proliferation was lower than that of the blank control and the negative control groups. However, the cell apoptosis rate was higher than that of the control group at 72 h (P<0.05). Bioinformatics prediction revealed that miR-214 is negatively associated with AEBP1 expression, and co-transfection and luciferase report gene tests revealed that AEBP1 is a target gene of miR-214. Therefore, AEBP1 may become a novel treatment for CRC patients with chemoresistance and may act through the upstream miR-214 to participate in the progression of a tumor.
Collapse
Affiliation(s)
- Shouchao Li
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Chengren Li
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Zhiming Fang
- Department of Anorectal Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
9
|
DNA methylation marker to estimate the breast cancer cell fraction in DNA samples. Med Oncol 2018; 35:147. [PMID: 30218172 DOI: 10.1007/s12032-018-1207-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Estimation of the cancer cell fraction in breast cancer tissue is important for exclusion of samples unsuitable for multigene prognostic assays and a variety of molecular analyses for research. Here, we aimed to establish a breast cancer cell fraction marker based on DNA methylation. First, we screened genes unmethylated in non-cancerous mammary tissues and methylated in breast cancer tissues using microarray data from the TCGA database, and isolated 12 genes. Among them, four genes were selected as candidate marker genes without a high incidence of copy number alterations and with broad coverage across patients. Bisulfite pyrosequencing analysis of additional breast cancer biopsy specimens purified by laser capture microdissection (LCM) excluded two genes, and a combination of SIM1 and CCDC181 was finally selected as a fraction marker. In further additional specimens without LCM purification, the fraction marker was substantially methylated (≥ 20%) with high incidence (50/51). The cancer cell fraction estimated by the fraction marker was significantly correlated with that estimated by microscopic examination (p < 0.0001). Performance of a previously established marker, HSD17B4 methylation, which predicts therapeutic response of HER2-positive breast cancer to trastuzumab, was improved after the correction of cancer cell fraction by the fraction marker. In conclusion, we successfully established a breast cancer cell fraction marker based on DNA methylation.
Collapse
|
10
|
Zhou H, Wu G, Ma X, Xiao J, Yu G, Yang C, Xu N, Zhang B, Zhou J, Ye Z, Wang Z. Attenuation of TGFBR2 expression and tumour progression in prostate cancer involve diverse hypoxia-regulated pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:89. [PMID: 29699590 PMCID: PMC5921809 DOI: 10.1186/s13046-018-0764-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Background Dysregulation of transforming growth factor β (TGF-β) signaling and hypoxic microenvironment have respectively been reported to be involved in disease progression in malignancies of prostate. Emerging evidence indicates that downregulation of TGFBR2, a pivotal regulator of TGF-β signaling, may contribute to carcinogenesis and progression of prostate cancer (PCa). However, the biological function and regulatory mechanism of TGFBR2 in PCa remain poorly understood. In this study, we propose to investigate the crosstalk of hypoxia and TGF-β signaling and provide insight into the molecular mechanism underlying the regulatory pathways in PCa. Methods Prostate cancer cell lines were cultured in hypoxia or normoxia to evaluate the effect of hypoxia on TGFBR2 expression. Methylation specific polymerase chain reaction (MSP) and demethylation agents was used to evaluate the methylation regulation of TGFBR2 promoter. Besides, silencing of EZH2 via specific siRNAs or chemical inhibitor was used to validate the regulatory effect of EZH2 on TGFBR2. Moreover, we conducted PCR, western blot, and luciferase assays which studied the relationship of miR-93 and TGFBR2 in PCa cell lines and specimens. We also detected the impacts of hypoxia on EZH2 and miR-93, and further examined the tumorigenic functions of miR-93 on proliferation and epithelial-mesenchymal transition via a series of experiments. Results TGFBR2 expression was attenuated under hypoxia. Hypoxia-induced EZH2 promoted H3K27me3 which caused TGFBR2 promoter hypermethylation and contributed to its epigenetic silencing in PCa. Besides, miR-93 was significantly upregulated in PCa tissues and cell lines, and negatively correlated with the expression of TGFBR2. Ectopic expression of miR-93 promoted cell proliferation, migration and invasion in PCa, and its expression could also be induced by hypoxia. In addition, TGFBR2 was identified as a bona fide target of miR-93. Conclusions Our findings elucidate diverse hypoxia-regulated pathways including EZH2-mediated hypermethylation and miR-93-induced silencing contribute to attenuation of TGFBR2 expression and promote cancer progression in prostate cancer. Electronic supplementary material The online version of this article (10.1186/s13046-018-0764-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guanqing Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Urology, Aerospace Center Hospital(ASCH), Beijing, 100076, China
| | - Xueyou Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nan Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bao Zhang
- Department of Urology, Aerospace Center Hospital(ASCH), Beijing, 100076, China
| | - Jun Zhou
- Department of Urology, The third people Hospital of Hubei Province, Wuhan, 430030, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Okochi-Takada E, Hattori N, Ito A, Niwa T, Wakabayashi M, Kimura K, Yoshida M, Ushijima T. Establishment of a high-throughput detection system for DNA demethylating agents. Epigenetics 2018; 13:147-155. [PMID: 27935410 DOI: 10.1080/15592294.2016.1267887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic alterations underlie various human disorders, including cancer, and this has resulted in the development of drugs targeting epigenetic alterations. Although DNA demethylating agents are one of the major epigenetic drugs, only two compounds-5-azacytidine (5-aza-CR, azacitidine) and 5-aza-2'-deoxycytidine (5-aza-dC, decitabine)-have obtained clinical approval. Here, we aimed to establish a detection system for DNA demethylating agents suitable for a high-throughput screening (HTS) in mammalian cells. We inserted luciferase and EGFP reporter genes under the UCHL1 promoter, which is methylation-silenced in human colon cancers and can be readily demethylated to drive strong expression. Methylated UCHL1 promoter was introduced into HCT116 colon cancer cells, and transfectants with methylated exogenous UCHL1 promoter were obtained. By screening subclones from each of the epigenetically heterogeneous transfectant clones, we finally obtained three optimal subclones that expressed luciferase and EGFP after 5-aza-dC treatment with high signal-to-noise ratios. Nucleosomes with H3K9me2 were present around the exogenous UCHL1 promoter in all three subclones. Using one of the subclones (HML58-3), HTS was conducted using 19,840 small molecules. Two hit compounds were obtained, and these turned out to be 5-aza-dC and 5-aza-CR. The assay system constructed here demonstrates a robust response to DNA demethylating agents, along with high specificity, and will be useful for screening and biological assays in epigenetics.
Collapse
Affiliation(s)
- Eriko Okochi-Takada
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Naoko Hattori
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Akihiro Ito
- b Chemical Genetics Laboratory , RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan.,c Chemical Genomics Research Group , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan
| | - Tohru Niwa
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Mika Wakabayashi
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Kana Kimura
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| | - Minoru Yoshida
- b Chemical Genetics Laboratory , RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan.,c Chemical Genomics Research Group , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan.,d Seed Compounds Exploratory Unit for Drug Discovery Platform , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa, Wako, Saitama 351-0198 , Japan
| | - Toshikazu Ushijima
- a Division of Epigenomics , National Cancer Center Research Institute , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 , Japan
| |
Collapse
|
12
|
Johnson FK, Kaffman A. Early life stress perturbs the function of microglia in the developing rodent brain: New insights and future challenges. Brain Behav Immun 2018; 69:18-27. [PMID: 28625767 PMCID: PMC5732099 DOI: 10.1016/j.bbi.2017.06.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/21/2017] [Accepted: 06/14/2017] [Indexed: 11/24/2022] Open
Abstract
The role of the innate immune system in mediating some of the consequences of childhood abuse and neglect has received increasing attention in recent years. Most of the work to date has focused on the role that neuroinflammation plays in the long-term adult psychiatric and medical complications associated with childhood maltreatment. The effects of stress-induced neuroinflammation on neurodevelopment have received little attention because until recently this issue has not been studied systematically in animal models of early life stress. The primary goal of this review is to explore the hypothesis that elevated corticosterone during the first weeks of life in mice exposed to brief daily separation (BDS), which is a mouse model of early life stress, disrupts microglial function during a critical period of brain development. We propose that perturbations of microglial function lead to abnormal maturation of several neuronal and non-neuronal cellular processes resulting in behavioral abnormalities that emerge during the juvenile period and persist in adulthood. Here, we highlight recent work demonstrating that exposure to BDS alters microglial cell number, morphology, phagocytic activity, and gene expression in the developing hippocampus in a manner that extends into the juvenile period. These changes in microglial function are associated with abnormalities in developmental processes mediated by microglia including synaptogenesis, synaptic pruning, axonal growth, and myelination. We examine the changes in microglial gene expression in the context of previous work demonstrating developmental and behavioral abnormalities in BDS mice and in other animal models of early life stress. The possible utility of these findings for developing novel PET imaging to assess microglial function in individuals exposed to childhood maltreatment is also discussed.
Collapse
Affiliation(s)
- Frances K Johnson
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| |
Collapse
|
13
|
DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis. Viruses 2018; 10:v10020082. [PMID: 29438328 PMCID: PMC5850389 DOI: 10.3390/v10020082] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.
Collapse
|
14
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
15
|
LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget 2017; 8:11906-11916. [PMID: 28060757 PMCID: PMC5355314 DOI: 10.18632/oncotarget.14439] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer (CRC) is a serious public health problem and non-invasive biomarkers improving diagnosis or therapy are strongly required. Circulating cell-free DNA (cfDNA) has been a promising target for this purpose. In this study, we evaluated the potential of long interspersed nuclear element-1 (LINE-1) hypomethylation as a blood biomarker for CRC. LINE-1 hypomethylation level in plasma cfDNA in 114 CRC patients was retrospectively examined by absolute quantitative analysis of methylated alleles real-time PCR, and was expressed using LINE-1 hypomethylation index (LHI) [unmethylated copy number/ (methylated copy number + unmethylated copy number)]. Greater LHI values indicated enhanced hypomethylation. In our clinicopathological analysis, CRC patients with large tumors (≥6.0 cm), advanced N stage (≥2), and distant metastasis (M1) had statistically significantly higher cfDNA LHI than other CRC patients, suggesting cfDNA LHI as a disease progression biomarker for CRC. Furthermore, early stage I/II (n = 57) as well as advanced stage III/IV (n =57) CRC patients had significantly higher cfDNA LHI than healthy donors (n=53) [stage I/II: median 0.369 (95% confidence interval, 0.360–0.380) vs. 0.332 (0.325–0.339), P < 0.0001; stage III/IV: 0.372 (0.365–0.388) vs. 0.332 (0.325–0.339), P < 0.0001]. The receiver operating characteristic analysis showed that cfDNA LHI had the detection capacity of CRC with area under the curve(AUC) of 0.79 and 0.83 in stage I/II and stage III/IV CRC patients, respectively. The present study demonstrated for the first time the potential of plasma cfDNA LHI as a novel biomarker for CRC, particularly for early stage detection.
Collapse
|
16
|
Wu G, Ma Z, Hu W, Wang D, Gong B, Fan C, Jiang S, Li T, Gao J, Yang Y. Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis 2017; 8:e2700. [PMID: 28333143 PMCID: PMC5386520 DOI: 10.1038/cddis.2017.113] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/09/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
Since growth arrest-specific gene 6 (Gas6) was discovered in 1988, numerous studies have highlighted the role of the Gas6 protein and its receptors Tyro3, Axl and Mer (collectively referred to as TAM), in proliferation, apoptosis, efferocytosis, leukocyte migration, sequestration and platelet aggregation. Gas6 has a critical role in the development of multiple types of cancers, including pancreatic, prostate, oral, ovarian and renal cancers. Acute myelocytic leukaemia (AML) is a Gas6-dependent cancer, and Gas6 expression predicts poor prognosis in AML. Interestingly, Gas6 also has a role in establishing tumour dormancy in the bone marrow microenvironment and in suppressing intestinal tumorigenesis. Numerous studies regarding cancer therapy have targeted Gas6 and TAM receptors with good results. However, some findings have suggested that Gas6 is associated with the development of resistance to cancer therapies. Concerning these significant effects of Gas6 in numerous cancers, we discuss the roles of Gas6 in cancer development in this review. First, we introduce basic knowledge on Gas6 and TAM receptors. Next, we describe and discuss the involvement of Gas6 and TAM receptors in cancers from different organ systems. Finally, we highlight the progress in therapies targeting Gas6 and TAM receptors. This review presents the significant roles of Gas6 in cancers from different systems and may contribute to the continued promotion of Gas6 as a therapeutic target.
Collapse
Affiliation(s)
- Guiling Wu
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.,Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
17
|
Marwitz S, Depner S, Dvornikov D, Merkle R, Szczygieł M, Müller-Decker K, Lucarelli P, Wäsch M, Mairbäurl H, Rabe KF, Kugler C, Vollmer E, Reck M, Scheufele S, Kröger M, Ammerpohl O, Siebert R, Goldmann T, Klingmüller U. Downregulation of the TGFβ Pseudoreceptor BAMBI in Non-Small Cell Lung Cancer Enhances TGFβ Signaling and Invasion. Cancer Res 2016; 76:3785-801. [PMID: 27197161 DOI: 10.1158/0008-5472.can-15-1326] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 03/11/2016] [Indexed: 11/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is characterized by early metastasis and has the highest mortality rate among all solid tumors, with the majority of patients diagnosed at an advanced stage where curative therapeutic options are lacking. In this study, we identify a targetable mechanism involving TGFβ elevation that orchestrates tumor progression in this disease. Substantial activation of this pathway was detected in human lung cancer tissues with concomitant downregulation of BAMBI, a negative regulator of the TGFβ signaling pathway. Alterations of epithelial-to-mesenchymal transition (EMT) marker expression were observed in lung cancer samples compared with tumor-free tissues. Distinct alterations in the DNA methylation of the gene regions encoding TGFβ pathway components were detected in NSCLC samples compared with tumor-free lung tissues. In particular, epigenetic silencing of BAMBI was identified as a hallmark of NSCLC. Reconstitution of BAMBI expression in NSCLC cells resulted in a marked reduction of TGFβ-induced EMT, migration, and invasion in vitro, along with reduced tumor burden and tumor growth in vivo In conclusion, our results demonstrate how BAMBI downregulation drives the invasiveness of NSCLC, highlighting TGFβ signaling as a candidate therapeutic target in this setting. Cancer Res; 76(13); 3785-801. ©2016 AACR.
Collapse
Affiliation(s)
- Sebastian Marwitz
- Pathology of the University Hospital of Lübeck and the Leibniz Research Center Borstel, Borstel, Germany. Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany
| | - Sofia Depner
- Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany. BIOQUANT, University of Heidelberg, Heidelberg, Germany. Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Dmytro Dvornikov
- Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany. Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ruth Merkle
- Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany. BIOQUANT, University of Heidelberg, Heidelberg, Germany. Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Magdalena Szczygieł
- Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany. Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | | | - Philippe Lucarelli
- Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany. Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Marvin Wäsch
- Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany. Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany. Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus F Rabe
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany. LungenClinic Groβhansdorf, Groβhansdorf, Germany. Christian Albrechts University Kiel, Kiel, Germany
| | - Christian Kugler
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany. LungenClinic Groβhansdorf, Groβhansdorf, Germany
| | - Ekkehard Vollmer
- Pathology of the University Hospital of Lübeck and the Leibniz Research Center Borstel, Borstel, Germany. Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany
| | - Martin Reck
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany. LungenClinic Groβhansdorf, Groβhansdorf, Germany
| | - Swetlana Scheufele
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany. Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maren Kröger
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany. Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ole Ammerpohl
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany. Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reiner Siebert
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany. Institute of Human Genetics, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Torsten Goldmann
- Pathology of the University Hospital of Lübeck and the Leibniz Research Center Borstel, Borstel, Germany. Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Groβhansdorf, Germany
| | - Ursula Klingmüller
- Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany. BIOQUANT, University of Heidelberg, Heidelberg, Germany. Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
18
|
Establishment of a DNA methylation marker to evaluate cancer cell fraction in gastric cancer. Gastric Cancer 2016; 19:361-369. [PMID: 25678126 DOI: 10.1007/s10120-015-0475-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/01/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor samples are unavoidably contaminated with coexisting normal cells. Here, we aimed to establish a DNA methylation marker to estimate the fraction of gastric cancer (GC) cells in any DNA sample by isolating genomic regions specifically methylated in GC cells. METHODS Genome-wide and gene-specific methylation analyses were conducted with an Infinium HumanMethylation450 BeadChip array and by quantitative methylation-specific PCR, respectively. Purified cancer and noncancer cells were prepared by laser-capture microdissection. TP53 mutation data were obtained from our previous study using next-generation target sequencing. RESULTS Genome-wide DNA methylation analysis of 12 GC cell lines, 30 GCs, six normal gastric mucosae, one sample of peripheral leukocytes, and four noncancerous gastric mucosae identified OSR2, PPFIA3, and VAV3 as barely methylated in normal cells and highly methylated in cancer cells. Quantitative methylation-specific PCR using 26 independent GCs validated that one or more of them was highly methylated in all of the GCs. Using four pairs of purified cells, we confirmed the three genes were highly methylated (85 % or more) in cancer cells and barely methylated (5 % or less) in noncancer cells. The cancer cell fraction assessed by the panel of the three genes showed good correlation with that assessed by the TP53 mutant allele frequency in 13 GCs (r = 0.77). After correction of the GC cell fraction, unsupervised clustering analysis of the genome-wide DNA methylation profiles yielded clearer clustering. CONCLUSIONS A DNA methylation marker-namely, the panel of the three genes-is useful to estimate the cancer cell fraction in GCs.
Collapse
|
19
|
Busch S, Sims AH, Stål O, Fernö M, Landberg G. Loss of TGFβ Receptor Type 2 Expression Impairs Estrogen Response and Confers Tamoxifen Resistance. Cancer Res 2016; 75:1457-69. [PMID: 25833830 DOI: 10.1158/0008-5472.can-14-1583] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One third of the patients with estrogen receptor α (ERα)-positive breast cancer who are treated with the antiestrogen tamoxifen will either not respond to initial therapy or will develop drug resistance. Endocrine response involves crosstalk between ERα and TGFβ signaling, such that tamoxifen nonresponsiveness or resistance in breast cancer might involve aberrant TGFβ signaling. In this study, we analyzed TGFβ receptor type 2 (TGFBR2) expression and correlated it with ERα status and phosphorylation in a cohort of 564 patients who had been randomized to tamoxifen or no-adjuvant treatment for invasive breast carcinoma. We also evaluated an additional four independent genetic datasets in invasive breast cancer. In all the cohorts we analyzed, we documented an association of low TGFBR2 protein and mRNA expression with tamoxifen resistance. Functional investigations confirmed that cell cycle or apoptosis responses to estrogen or tamoxifen in ERα-positive breast cancer cells were impaired by TGFBR2 silencing, as was ERα phosphorylation, tamoxifen-induced transcriptional activation of TGFβ, and upregulation of the multidrug resistance protein ABCG2. Acquisition of low TGFBR2 expression as a contributing factor to endocrine resistance was validated prospectively in a tamoxifen-resistant cell line generated by long-term drug treatment. Collectively, our results established a central contribution of TGFβ signaling in endocrine resistance in breast cancer and offered evidence that TGFBR2 can serve as an independent biomarker to predict treatment outcomes in ERα-positive forms of this disease.
Collapse
Affiliation(s)
- Susann Busch
- Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh, Cancer Research UK Centre, United Kingdom
| | - Olle Stål
- Department of Clinical and Experimental Medicine, Institution of Surgery and Clinical Oncology, Linköpings Universitet, Linköping, Sweden
| | - Mårten Fernö
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Göran Landberg
- Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden. Molecular Pathology, Breakthrough Breast Cancer Research Unit, University of Manchester, United Kingdom.
| |
Collapse
|
20
|
Chiba N, Furukawa KI, Takayama S, Asari T, Chin S, Harada Y, Kumagai G, Wada K, Tanaka T, Ono A, Motomura S, Murakami M, Ishibashi Y. Decreased DNA methylation in the promoter region of the WNT5A and GDNF genes may promote the osteogenicity of mesenchymal stem cells from patients with ossified spinal ligaments. J Pharmacol Sci 2015; 127:467-73. [PMID: 25913759 DOI: 10.1016/j.jphs.2015.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from spinal ligaments with ectopic ossification have a propensity toward the osteogenic lineage. To explore epigenetic control of the osteogenic features of MSCs, we treated MSCs obtained from the spinal ligaments of ossification of yellow ligament (OYL) patients and non-OYL patients with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5AdC). We compared the non-OYL groups (untreated and treated with 5AdC) with the OYL groups (untreated and treated with 5AdC) by genome-wide microarray analysis. Next, we used methylated DNA immunoprecipitation combined with quantitative real-time PCR to assess gene methylation. Ninety-eight genes showed expression significantly increased by 5AdC treatment in MSCs from non-OYL patients but not from OYL patients. In contrast, only two genes, GDNF and WNT5A, showed significantly higher expression in OYL MSCs compared with non-OYL MSCs without 5AdC treatment. Both genes were hypermethylated in non-OYL MSCs but not in OYL MSCs. Small interfering RNA targeted to each gene decreased expression of the target gene and also several osteogenic genes. Both small interfering RNAs also suppressed the activity of alkaline phosphatase, a typical marker of osteogenesis. These results suggest that the osteogenic features of MSCs from OYL patients are promoted by unmethylated WNT5A and GDNF genes.
Collapse
Affiliation(s)
- Noriyuki Chiba
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken-Ichi Furukawa
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Shohei Takayama
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Toru Asari
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Shunfu Chin
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Yoshifumi Harada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Gentaro Kumagai
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kanichiro Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Toshihiro Tanaka
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Atsushi Ono
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Shigeru Motomura
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Manabu Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
21
|
Maeda O, Ando T, Ohmiya N, Ishiguro K, Watanabe O, Miyahara R, Hibi Y, Nagai T, Yamada K, Goto H. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer. Oncol Rep 2014; 31:1883-90. [PMID: 24504010 DOI: 10.3892/or.2014.3014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/15/2014] [Indexed: 01/27/2023] Open
Abstract
The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.
Collapse
Affiliation(s)
- Osamu Maeda
- Department of Advanced Research of Gastroenterology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takafumi Ando
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazuhiro Ishiguro
- Department of Advanced Research of Gastroenterology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Osamu Watanabe
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yoko Hibi
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Taku Nagai
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
22
|
TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 2013; 34:27-38. [PMID: 24336330 DOI: 10.1038/onc.2013.527] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 10/28/2013] [Accepted: 11/01/2013] [Indexed: 01/03/2023]
Abstract
Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine with the capability to act as tumour suppressor or tumour promoter depending on the cellular context. TGF-beta receptor type-2 (TGFBR2) is the ligand-binding receptor for all members of the TGF-β family. Data from mouse model experiments demonstrated that loss of Tgfbr2 expression in mammary fibroblasts was linked to tumour initiation and metastasis. Using a randomised tamoxifen trial cohort including in total 564 invasive breast carcinomas, we examined TGFBR2 expression (n=252) and phosphorylation level of downstream target SMAD2 (pSMAD2) (n=319) in cancer-associated fibroblasts (CAFs) and assessed links to clinicopathological markers, prognostic and treatment-predictive values. The study revealed that CAF-specific TGFBR2 expression correlated with improved recurrence-free survival. Multivariate analysis confirmed CAF-TGFBR2 to be an independent prognostic marker (multivariate Cox regression, hazard ratio: 0.534, 95% (CI): 0.360-0.793, P=0.002). CAF-specific pSMAD2 levels, however, did not associate with survival outcome. Experimentally, TGF-β signalling in fibroblasts was modulated using a TGF-β ligand and inhibitor or through lentiviral short hairpin RNA-mediated TGFBR2-specific knockdown. To determine the role of fibroblastic TGF-β pathway on breast cancer cells, we used cell contact-dependent cell growth and clonogenicity assays, which showed that knockdown of TGFBR2 in CAFs resulted in increased cell growth, proliferation and clonogenic survival. Further, in a mouse model transfected CAFs were co-injected with MCF7 and tumour weight and proportion was monitored. We found that mouse xenograft tumours comprising TGFBR2 knockdown fibroblasts were slightly bigger and displayed increased tumour cell capacity. Overall, our data demonstrate that fibroblast-related biomarkers possess clinically relevant information and that fibroblasts confer effects on breast cancer cell growth and survival. Regulation of tumour-stromal cross-talk through fibroblastic TGF-β pathway may depend on fibroblast phenotype, emphasising the importance to characterise tumour microenvironment subtypes.
Collapse
|
23
|
Niwa T, Toyoda T, Tsukamoto T, Mori A, Tatematsu M, Ushijima T. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent. Cancer Prev Res (Phila) 2013; 6:263-70. [PMID: 23559452 DOI: 10.1158/1940-6207.capr-12-0369] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Suppression of aberrant DNA methylation is a novel approach to cancer prevention, but, so far, the efficacy of the strategy has not been evaluated in cancers associated with chronic inflammation. Gastric cancers induced by Helicobacter pylori infection are known to involve aberrant DNA methylation and associated with severe chronic inflammation in their early stages. Here, we aimed to clarify whether suppression of aberrant DNA methylation can prevent H. pylori-induced gastric cancers using a Mongolian gerbil model. Administration of a DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), to gerbils (0.125 mg/kg for 50-55 weeks) decreased the incidence of gastric cancers induced by H. pylori infection and N-methyl-N-nitrosourea (MNU) treatment from 55.2% to 23.3% (P < 0.05). In gastric epithelial cells, DNA methylation levels of six CpG islands (HE6, HG2, SB1, SB5, SF12, and SH6) decreased to 46% to 68% (P < 0.05) of gerbils without 5-aza-dC treatment. Also, the global DNA methylation level decreased from 83.0% ± 4.5% to 80.3% ± 4.4% (mean ± SD) by 5-aza-dC treatment (P < 0.05). By 5-aza-dC treatment, Il1b and Nos2 were downregulated (42% and 58% of gerbils without, respectively) but Tnf was upregulated (187%), suggesting that 5-aza-dC treatment induced dysregulation of inflammatory responses. No obvious adverse effect of 5-aza-dC treatment was observed, besides testicular atrophy. These results showed that 5-aza-dC treatment can prevent H. pylori-induced gastric cancers and suggested that removal of induced DNA methylation and/or suppression of DNA methylation induction can become a target for prevention of chronic inflammation-associated cancers.
Collapse
Affiliation(s)
- Tohru Niwa
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 2013; 33:4097-106. [PMID: 24037531 PMCID: PMC3962713 DOI: 10.1038/onc.2013.374] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/04/2013] [Accepted: 07/16/2013] [Indexed: 12/24/2022]
Abstract
Prostate cancer cells escape growth inhibition from TGFβ by down-regulating TGFβ receptors. However, the mechanism by which cancer cells down-regulate TGFβ receptors in prostate is not clear. Here, we showed that coordinated action of miR-21 and androgen receptor (AR) signaling played a critical role in inhibiting TGFβ receptor II (TGFBR2) expression in prostate cancer cells. Our results revealed that miR-21 suppresses TGFBR2 levels by binding to its 3'UTR and AR signaling further potentiates this effect in both untransformed and transformed human prostate epithelial cells as well as in human prostate cancers. Analysis of primary prostate cancers showed that increased miR-21/AR expression parallel a significantly reduced expression of TGFBR2. Manipulation of androgen signaling or the expression levels of AR or miR-21 negatively altered TGFBR2 expression in untransformed and transformed human prostate epithelial cells, human prostate cancer xenografts, and mouse prostate glands. Importantly, we demonstrated that miR-21 and AR regulated each other's expression resulting in a positive feedback loop. Our results indicated that miR-21/AR mediate its tumor promoting function by attenuating TGFβ-mediated Smad2/3 activation, cell growth inhibition, cell migration, and apoptosis. Together, these results suggest that the AR and miR-21 axis exerts its oncogenic effects in prostate tumors by down-regulating TGFBR2, hence inhibiting the tumor suppressive activity of TGFβ pathway. Targeting miR-21 alone or in combination with AR may restore the tumor inhibitory activity of TGFβ in prostate cancer.
Collapse
|
25
|
Ricketts CJ, Morris MR, Gentle D, Shuib S, Brown M, Clarke N, Wei W, Nathan P, Latif F, Maher ER. Methylation profiling and evaluation of demethylating therapy in renal cell carcinoma. Clin Epigenetics 2013; 5:16. [PMID: 24034811 PMCID: PMC3848591 DOI: 10.1186/1868-7083-5-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/21/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Despite therapeutic advances in targeted therapy, metastatic renal cell carcinoma (RCC) remains incurable for the vast majority of patients. Key molecular events in the pathogenesis of RCC include inactivation of the VHL tumour suppressor gene (TSG), inactivation of chromosome 3p TSGs implicated in chromatin modification and remodelling and de novo tumour-specific promoter methylation of renal TSGs. In the light of these observations it can be proposed that, as in some haematological malignancies, demethylating agents such as azacitidine might be beneficial for the treatment of advanced RCC. RESULTS Here we report that the treatment of RCC cell lines with azacitidine suppressed cell proliferation in all 15 lines tested. A marked response to azacitidine therapy (>50% reduction in colony formation assay) was detected in the three cell lines with VHL promoter methylation but some RCC cell lines without VHL TSG methylation also demonstrated a similar response suggesting that multiple methylated TSGs might determine the response to demethylating therapies. To identify novel candidate methylated TSGs implicated in RCC we undertook a combined analysis of copy number and CpG methylation array data. Candidate novel epigenetically inactivated TSGs were further prioritised by expression analysis of RCC cell lines pre and post-azacitidine therapy and comparative expression analysis of tumour/normal pairs. Thus, with subsequent investigation two candidate genes were found to be methylated in more than 25% of our series and in the TCGA methylation dataset for 199 RCC samples: RGS7 (25.6% and 35.2% of tumours respectively) and NEFM in (25.6% and 30.2%). In addition three candidate genes were methylated in >10% of both datasets (TMEM74 (15.4% and 14.6%), GCM2 (41.0% and 14.6%) and AEBP1 (30.8% and 13.1%)). Methylation of GCM2 (P = 0.0324), NEFM (P = 0.0024) and RGS7 (P = 0.0067) was associated with prognosis. CONCLUSIONS These findings provide preclinical evidence that treatment with demethylating agents such as azacitidine might be useful for the treatment of advanced RCC and further insights into the role of epigenetic changes in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Christopher J Ricketts
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark R Morris
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Applied Sciences University of Wolverhampton, Wolverhampton WV1 1SV, UK
| | - Dean Gentle
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Salwati Shuib
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Pathology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Michael Brown
- Institute for Cancer Sciences, Cancer Research UK Paterson Institute for Cancer Research, Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX, UK
| | - Noel Clarke
- Institute for Cancer Sciences, Cancer Research UK Paterson Institute for Cancer Research, Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX, UK
- The Christie Hospital, Wilmslow Road, Manchester M20 4BX, UK
| | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Paul Nathan
- Mount Vernon Cancer Centre - Medical Oncology, Rickmansworth Road, Northwood, Middlesex HA6 2RN, UK
| | - Farida Latif
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eamonn R Maher
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- West Midlands Region Genetics Service, Birmingham Women’s Hospital, Edgbaston, Birmingham B15 2TG, UK
- Department of Medical Genetics, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| |
Collapse
|
26
|
|
27
|
Lee C, Zhang Q, Zi X, Dash A, Soares MB, Rahmatpanah F, Jia Z, McClelland M, Mercola D. TGF-β mediated DNA methylation in prostate cancer. Transl Androl Urol 2012; 1:78-88. [PMID: 25133096 PMCID: PMC4131550 DOI: 10.3978/j.issn.2223-4683.2012.05.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/04/2012] [Indexed: 12/15/2022] Open
Abstract
Almost all tumors harbor a defective negative feedback loop of signaling by transforming growth factor-β (TGF-β). Epigenetic mechanisms of gene regulation, including DNA methylation, are fundamental to normal cellular function and also play a major role in carcinogenesis. Recent evidence demonstrated that TGF-β signaling mediates cancer development and progression. Many key events in TGF-β signaling in cancer included auto-induction of TGF-β1 and increased expression of DNA methyltransferases (DNMTs), suggesting that DNA methylation plays a significant role in cancer development and progression. In this review, we performed an extensive survey of the literature linking TGF-β signaling to DNA methylation in prostate cancer. It appeared that almost all DNA methylated genes detected in prostate cancer are directly or indirectly related to TGF-β signaling. This knowledge has provided a basis for our future directions of prostate cancer research and strategies for prevention and therapy for prostate cancer.
Collapse
|
28
|
Kong D, Piao YS, Yamashita S, Oshima H, Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y, Satou K, Ushijima T, Ishikawa TO, Oshima M. Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene 2011; 31:3949-60. [PMID: 22139078 DOI: 10.1038/onc.2011.558] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammation has an important role in cancer development through various mechanisms. It has been shown that dysregulation of microRNAs (miRNAs) that function as oncogenes or tumor suppressors contributes to tumorigenesis. However, the relationship between inflammation and cancer-related miRNA expression in tumorigenesis has not yet been fully understood. Using K19-C2mE and Gan mouse models that develop gastritis and gastritis-associated tumors, respectively, we found that 21 miRNAs were upregulated, and that 29 miRNAs were downregulated in gastric tumors in an inflammation-dependent manner. Among these miRNAs, the expression of miR-7, a possible tumor suppressor, significantly decreased in both gastritis and gastric tumors. Moreover, the expression of miR-7 in human gastric cancer was inversely correlated with the levels of interleukin-1β and tumor necrosis factor-α, suggesting that miR-7 downregulation is related to the severity of inflammatory responses. In the normal mouse stomach, miR-7 expression was at a basal level in undifferentiated gastric epithelial cells, and was induced during differentiation. Moreover, transfection of a miR-7 precursor into gastric cancer cells suppressed cell proliferation and soft agar colony formation. These results suggest that suppression of miR-7 expression is important for maintaining the undifferentiated status of gastric epithelial cells, and thus contributes to gastric tumorigenesis. Although epigenetic changes were not found in the CpG islands around miR-7-1 of gastritis and gastric tumor cells, we found that activated macrophage-derived small molecule(s) (<3 kDa) are responsible for miR-7 repression in gastric cancer cells. Furthermore, the miR-7 expression level significantly decreased in the inflamed gastric mucosa of Helicobacter-infected mice, whereas it increased in the stomach of germfree K19-C2mE and Gan mice wherein inflammatory responses were suppressed. Taken together, these results indicate that downregulation of tumor suppressor miR-7 is a novel mechanism by which the inflammatory response promotes gastric tumorigenesis.
Collapse
Affiliation(s)
- D Kong
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shin E, Yoon Y, Ahn J, Park S. TC-VGC: a tumor classification system using variations in genes' correlation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 104:e87-e101. [PMID: 21531474 DOI: 10.1016/j.cmpb.2011.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 01/11/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
Classification analysis of microarray data is widely used to reveal biological features and to diagnose various diseases, including cancers. Most existing approaches improve the performance of learning models by removing most irrelevant and redundant genes from the data. They select the marker genes which are expressed differently in normal and tumor tissues. These techniques ignore the importance of the complex functional-dependencies between genes. In this paper, we propose a new method for cancer classification which uses distinguished variations of gene-gene correlation in two sample groups. The cancer specific genetic network composed of these gene pairs contains many literature-curated prostate cancer genes, and we were successful in identifying new candidate prostate cancer genes inferred by them. Furthermore, this method achieved a high accuracy with a small number of genes in cancer classification.
Collapse
Affiliation(s)
- Eunji Shin
- Department of Computer Science, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | | | | | | |
Collapse
|
30
|
Early-stage formation of an epigenetic field defect in a mouse colitis model, and non-essential roles of T- and B-cells in DNA methylation induction. Oncogene 2011; 31:342-51. [PMID: 21685942 DOI: 10.1038/onc.2011.241] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic fields for cancerization are involved in development of human cancers, especially those associated with inflammation and multiple occurrences. However, it is still unclear when such field defects are formed and what component of inflammation is involved in induction of aberrant DNA methylation. Here, in a mouse colitis model induced by dextran sulfate sodium (DSS), we identified three CpG islands specifically methylated in colonic epithelial cells exposed to colitis. Their methylation levels started to increase as early as 8 weeks after DSS treatment and continued to increase until colon cancers developed at 15 weeks. In contrast to the temporal profile of DNA methylation levels, infiltration of inflammatory cells spiked immediately after the DSS treatment and then gradually decreased. Exposure of cultured colonic epithelial cells to DSS did not induce DNA methylation and it was indicated that inflammation triggered by the DSS treatment was responsible for methylation induction. To clarify components of inflammation involved, severe combined immunodeficiency (SCID) mice that lack functional T- and B-cells were similarly treated. Even in SCID mice, DNA methylation, along with colon tumors, were induced at the same levels as in their background strain of mice (C.B17). Comparative analysis of inflammation-related genes showed that Ifng, Il1b and Nos2 had expression concordant with methylation induction whereas Il2, Il6, Il10, Tnf did not. These results showed that an epigenetic field defect is formed at early stages of colitis-associated carcinogenesis and that functional T and B cells are non-essential for the formation.
Collapse
|
31
|
Hattori N, Okochi-Takada E, Kikuyama M, Wakabayashi M, Yamashita S, Ushijima T. Methylation silencing of angiopoietin-like 4 in rat and human mammary carcinomas. Cancer Sci 2011; 102:1337-43. [PMID: 21489049 DOI: 10.1111/j.1349-7006.2011.01955.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aberrant DNA methylation is deeply involved in the development and progression of human breast cancers, but its inducers and molecular mechanisms are still unclear. To reveal such inducers and clarify the molecular mechanisms, animal models are indispensable. Here, to identify genes silenced by promoter DNA methylation in rat mammary carcinomas, we took a combined approach of methylated DNA immunoprecipitation (MeDIP)-CpG island (CGI) microarray analysis and expression microarray analysis after treatment with epigenetic drugs. MeDIP-CGI microarray revealed that among 5031 genes with promoter CGI, 465 were methylated in a carcinoma cell line induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), but not in normal mammary epithelial cells. By treatment of the cell line with 5-aza-2'-deoxycytidine and trichostatin A, 29 of the 465 genes were shown to be re-expressed. In primary mammary carcinomas, five (Angptl4, Coro1a, RGD1304982, Tmem37 and Ndn) of the 29 genes were methylated in one or more of 25 samples. Quantitative expression analysis revealed that Angptl4 had high expression in normal mammary glands, but low expression in primary carcinomas. Also in humans, ANGPTL4 was unmethylated and expressed in normal mammary epithelial cells, but was methylated in 11 of 91 (12%) primary breast cancers. This is the first study to identify genes aberrantly methylated in rat mammary carcinomas, and Angptl4 is a novel methylation-silenced gene both in rat and human mammary carcinomas. The combination of the MeDIP-CGI microarray analysis and expression microarray analysis after treatment with epigenetic drugs was effective in reducing the number of methylated genes that are not methylation silenced.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Gyobu K, Yamashita S, Matsuda Y, Igaki H, Niwa T, Oka D, Kushima R, Osugi H, Lee S, Suehiro S, Ushijima T. Identification and Validation of DNA Methylation Markers to Predict Lymph Node Metastasis of Esophageal Squamous Cell Carcinomas. Ann Surg Oncol 2010; 18:1185-94. [DOI: 10.1245/s10434-010-1393-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Indexed: 01/13/2023]
|
33
|
Pitchakarn P, Ogawa K, Suzuki S, Takahashi S, Asamoto M, Chewonarin T, Limtrakul P, Shirai T. Momordica charantia leaf extract suppresses rat prostate cancer progression in vitro and in vivo. Cancer Sci 2010; 101:2234-40. [PMID: 20731662 PMCID: PMC11158121 DOI: 10.1111/j.1349-7006.2010.01669.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer metastasis is a major cause of death in cancer patients, with invasion as a first step greatly contributing to the failure of clinical treatments. Any compounds with an inhibitory influence on this process are therefore of prime interest. Momordica charantia (bitter melon) is widely consumed as a vegetable and especially as a folk medicine in Asia. Here, we investigated the anti-invasive effects of bitter melon leaf extract (BMLE) on a rat prostate cancer cell line (PLS10) in vitro and in vivo. The results indicated that non-toxic concentrations of BMLE significantly inhibited the migration and invasion of cells in vitro. The results of zymography showed that BMLE inhibited the secretion of MMP-2, MMP-9 and urokinase plasminogen activator (uPA) from PLS10. Real-time RT-PCR revealed that BMLE not only significantly decreased gene expression of MMP-2 and MMP-9, but also markedly increased the mRNA level of TIMP-2, known to have inhibitory effects on the activity of MMP-2. An EnzChek gelatinase/collagenase assay showed that collagenase type IV activity was partially inhibited by BMLE. In the in vivo study, intravenous inoculation of PLS10 to nude mice resulted in a 100% survival rate in the mice given a BMLE-diet as compared with 80% in the controls. The incidence of lung metastasis did not show any difference, but the percentage lung area occupied by metastatic lesions was slightly decreased in the 0.1% BMLE treatment group and significantly decreased with 1% BMLE treatment as compared with the control. Thus, the results indicate for the first time an anti-metastatic effect of BMLE both in vitro and in vivo.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T, Ichinose M, Tatematsu M, Ushijima T. Inflammatory Processes Triggered by Helicobacter pylori Infection Cause Aberrant DNA Methylation in Gastric Epithelial Cells. Cancer Res 2010; 70:1430-40. [DOI: 10.1158/0008-5472.can-09-2755] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Yamashita S, Hosoya K, Gyobu K, Takeshima H, Ushijima T. Development of a novel output value for quantitative assessment in methylated DNA immunoprecipitation-CpG island microarray analysis. DNA Res 2009; 16:275-86. [PMID: 19767598 PMCID: PMC2762412 DOI: 10.1093/dnares/dsp017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In DNA methylation microarray analysis, quantitative assessment of intermediate methylation levels in samples with various global methylation levels is still difficult. Here, specifically for methylated DNA immunoprecipitation-CpG island (CGI) microarray analysis, we developed a new output value. The signal log ratio reflected the global methylation levels, but had only moderate linear correlation (r = 0.72) with the fraction of DNA molecules immunoprecipitated. By multiplying the signal log ratio using a coefficient obtained from the probability value that took account of signals in neighbouring probes, its linearity was markedly improved (r = 0.94). The new output value, Me value, reflected the global methylation level, had a strong correlation also with the fraction of methylated CpG sites obtained by bisulphite sequencing (r = 0.88), and had an accuracy of 71.8 and 83.8% in detecting completely methylated and unmethylated CGIs. Analysis of gastric cancer cell lines using the Me value showed that methylation of CGIs in promoters and gene bodies was associated with low and high, respectively, gene expression. The degree of demethylation of promoter CGIs after 5-aza-2'-deoxycytidine treatment had no association with that of induction of gene expression. The Me value was considered to be useful for analysis of intermediate methylation levels of CGIs.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Chowdhury S, Ammanamanchi S, Howell GM. Epigenetic Targeting of Transforming Growth Factor β Receptor II and Implications for Cancer Therapy. ACTA ACUST UNITED AC 2009; 1:57-70. [PMID: 20414468 DOI: 10.4255/mcpharmacol.09.07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transforming growth factor (TGF) β signaling pathway is involved in many cellular processes including proliferation, differentiation, adhesion, motility and apoptosis. The loss of TGFβ signaling occurs early in carcinogenesis and its loss contributes to tumor progression. The loss of TGFβ responsiveness frequently occurs at the level of the TGFβ type II receptor (TGFβRII) which has been identified as a tumor suppressor gene (TSG). In keeping with its TSG role, the loss of TGFβRII expression is frequently associated with high tumor grade and poor patient prognosis. Reintroduction of TGFβRII into tumor cell lines results in growth suppression. Mutational loss of TGFβRII has been characterized, particularly in a subset of colon cancers with DNA repair enzyme defects. However, the most frequent cause of TGFβRII silencing is through epigenetic mechanisms. Therefore, re-expression of TGFβRII by use of epigenetic therapies represents a potential therapeutic approach to utilizing the growth suppressive effects of the TGFβ signaling pathway. However, the restoration of TGFβ signaling in cancer treatment is challenging because in late stage disease, TGFβ is a pro-metastatic factor. This effect is associated with increased expression of the TGFβ ligand. In this Review, we discuss the mechanisms associated with TGFβRII silencing in cancer and the potential usefulness of histone deacetylase (HDAC) inhibitors in reversing this effect. The use of HDAC inhibitors may provide a unique opportunity to restore TGFβRII expression in tumors as their pleiotropic effects antagonize many of the cellular processes, which mediate the pro-metastatic effects associated with increased TGFβ expression.
Collapse
Affiliation(s)
- Sanjib Chowdhury
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, Nebraska
| | | | | |
Collapse
|