1
|
Mariner BL, McCoy BM, Greenier A, Brassington L, Silkas E, Adjangba C, Marye A, Harrison BR, Bamberger T, Algavi Y, Muller E, Harris A, Rout E, Avery A, Borenstein E, Promislow D, Snyder-Mackler N. DNA methylation of transposons pattern aging differences across a diverse cohort of dogs from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617286. [PMID: 39416178 PMCID: PMC11482827 DOI: 10.1101/2024.10.08.617286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Within a species, larger individuals often have shorter lives and higher rates of age-related disease. Despite this well-known link, we still know little about underlying age-related epigenetic differences, which could help us better understand inter-individual variation in aging and the etiology, onset, and progression of age-associated disease. Dogs exhibit this negative correlation between size, health, and longevity and thus represent an excellent system in which to test the underlying mechanisms. Here, we quantified genome-wide DNA methylation in a cohort of 864 dogs in the Dog Aging Project. Age strongly patterned the dog epigenome, with the majority (66% of age-associated loci) of regions associating age-related loss of methylation. These age effects were non-randomly distributed in the genome and differed depending on genomic context. We found the LINE1 (long interspersed elements) class of TEs (transposable elements) were the most frequently hypomethylated with age (FDR < 0.05, 40% of all LINE1 regions). This LINE1 pattern differed in magnitude across breeds of different sizes- the largest dogs lost 0.26% more LINE1 methylation per year than the smallest dogs. This suggests that epigenetic regulation of TEs, particularly LINE1s, may contribute to accelerated age and disease phenotypes within a species. Since our study focused on the methylome of immune cells, we looked at LINE1 methylation changes in golden retrievers, a breed highly susceptible to hematopoietic cancers, and found they have accelerated age-related LINE1 hypomethylation compared to other breeds. We also found many of the LINE1s hypomethylated with age are located on the X chromosome and are, when considering X chromosome inactivation, counter-intuitively more methylated in males. These results have revealed the demethylation of LINE1 transposons as a potential driver of inter-species, demographic-dependent aging variation.
Collapse
|
2
|
Deng J, Zhao HJ, Zhong Y, Hu C, Meng J, Wang C, Lan X, Wang X, Chen ZJ, Yan J, Wang W, Li Y. H3K27me3-modulated Hofbauer cell BMP2 signalling enhancement compensates for shallow trophoblast invasion in preeclampsia. EBioMedicine 2023; 93:104664. [PMID: 37331163 DOI: 10.1016/j.ebiom.2023.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a common hypertensive pregnancy disorder associated with shallow trophoblast invasion. Although bone morphogenetic protein 2 (BMP2) has been shown to promote trophoblast invasion in vitro, its cellular origin and molecular regulation in placenta, as well as its potential role in PE, has yet to be established. Additionally, whether BMP2 and/or its downstream molecules could serve as potential diagnostic or therapeutic targets for PE has not been explored. METHODS Placentas and sera from PE and healthy pregnant women were subjected to multi-omics analyses, immunoblots, qPCR, and ELISA assays. Immortalized trophoblast cells, primary cultures of human trophoblasts, and first-trimester villous explants were used for in vitro experiments. Adenovirus expressing sFlt-1 (Ad Flt1)-induced PE rat model was used for in vivo studies. FINDINGS We find globally decreased H3K27me3 modifications and increased BMP2 signalling in preeclamptic placentas, which is negatively correlated with clinical manifestations. BMP2 is derived from Hofbauer cells and epigenetically regulated by H3K27me3 modification. BMP2 promotes trophoblast invasion and vascular mimicry by upregulating BMP6 via BMPR1A-SMAD2/3-SMAD4 signalling. BMP2 supplementation alleviates high blood pressure and fetal growth restriction phenotypes in Ad Flt1-induced rat PE model. INTERPRETATION Our findings demonstrate that epigenetically regulated Hofbauer cell-derived BMP2 signalling enhancement in late gestation could serve as a compensatory response for shallow trophoblast invasion in PE, suggesting opportunities for diagnostic marker and therapeutic target applications in PE clinical management. FUNDING National Key Research and Development Program of China (2022YFC2702400), National Natural Science Foundation of China (82101784, 82171648, 31988101), and Natural Science Foundation of Shandong Province (ZR2020QH051, ZR2020MH039).
Collapse
Affiliation(s)
- Jianye Deng
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Jin Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Ying Zhong
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Cuiping Hu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jinlai Meng
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiangxin Lan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiyao Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Wei Wang
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02115, USA.
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Xie Y, Sahin M, Wakamatsu T, Inoue-Yamauchi A, Zhao W, Han S, Nargund AM, Yang S, Lyu Y, Hsieh JJ, Leslie CS, Cheng EH. SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis. JCI Insight 2023; 8:e154120. [PMID: 36810256 PMCID: PMC9977508 DOI: 10.1172/jci.insight.154120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
SETD2, a H3K36 trimethyltransferase, is the most frequently mutated epigenetic modifier in lung adenocarcinoma, with a mutation frequency of approximately 9%. However, how SETD2 loss of function promotes tumorigenesis remains unclear. Using conditional Setd2-KO mice, we demonstrated that Setd2 deficiency accelerated the initiation of KrasG12D-driven lung tumorigenesis, increased tumor burden, and significantly reduced mouse survival. An integrated chromatin accessibility and transcriptome analysis revealed a potentially novel tumor suppressor model of SETD2 in which SETD2 loss activates intronic enhancers to drive oncogenic transcriptional output, including the KRAS transcriptional signature and PRC2-repressed targets, through regulation of chromatin accessibility and histone chaperone recruitment. Importantly, SETD2 loss sensitized KRAS-mutant lung cancer to inhibition of histone chaperones, the FACT complex, or transcriptional elongation both in vitro and in vivo. Overall, our studies not only provide insight into how SETD2 loss shapes the epigenetic and transcriptional landscape to promote tumorigenesis, but they also identify potential therapeutic strategies for SETD2 mutant cancers.
Collapse
Affiliation(s)
- Yuchen Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Merve Sahin
- Computational and Systems Biology Program, MSKCC, New York, New York, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, USA
| | - Toru Wakamatsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Akane Inoue-Yamauchi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Wanming Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Song Han
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Amrita M. Nargund
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Shaoyuan Yang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Yang Lyu
- Molecular Oncology, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - James J. Hsieh
- Molecular Oncology, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | | | - Emily H. Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, MSKCC, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
Agnetti J, Bou Malham V, Desterke C, Benzoubir N, Peng J, Jacques S, Rahmouni S, Di Valentin E, Tan TZ, Samuel D, Thiery JP, Gassama-Diagne A. PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun Biol 2022; 5:740. [PMID: 35879421 PMCID: PMC9314410 DOI: 10.1038/s42003-022-03637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
The stem cells involved in formation of the complex human body are epithelial cells that undergo apicobasal polarization and form a hollow lumen. Epithelial plasticity manifests as epithelial to mesenchymal transition (EMT), a process by which epithelial cells switch their polarity and epithelial features to adopt a mesenchymal phenotype. The connection between the EMT program and acquisition of stemness is now supported by a substantial number of reports, although what discriminates these two processes remains largely elusive. In this study, based on 3D organoid culture of hepatocellular carcinoma (HCC)-derived cell lines and AAV8-based protein overexpression in the mouse liver, we show that activity modulation of isoform δ of phosphoinositide 3-kinase (PI3Kδ) controls differentiation and discriminates between stemness and EMT by regulating the transforming growth factor β (TGFβ) signaling. This study provides an important tool to control epithelial cell fate and represents a step forward in understanding the development of aggressive carcinoma.
Collapse
Affiliation(s)
- Jean Agnetti
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Vanessa Bou Malham
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | | | - Nassima Benzoubir
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Juan Peng
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
| | - Sophie Jacques
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of animal Genomics, GIGA-Medical Genomics, GIGA-institute, Université de Liège, Liège, Belgium
| | - Emanuel Di Valentin
- Plateforme des vecteurs viraux, GIGA B34, GIGA-institute, Université de Liège, Liège, Belgium
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore National University of Singapore, Center for Translational Medicine, 14 Medical Drive, #12-01, 117599, Singapore, Singapore
| | - Didier Samuel
- INSERM, Unité 1193, Villejuif, F-94800, France
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France
- AP-HP Hôpital Paul Brousse, Centre Hepato-Biliaire, F-94800, Villejuif, France
| | - Jean Paul Thiery
- Guangzhou Laboratory, International biological Island Guangzhou, 510005, Guangzhou, China
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, F-94800, France.
- Université Paris-Saclay, UMR-S 1193, Villejuif, F-94800, France.
| |
Collapse
|
5
|
Goya T, Horisawa K, Udono M, Ohkawa Y, Ogawa Y, Sekiya S, Suzuki A. Direct Conversion of Human Endothelial Cells Into Liver Cancer-Forming Cells Using Nonintegrative Episomal Vectors. Hepatol Commun 2022; 6:1725-1740. [PMID: 35220676 PMCID: PMC9234650 DOI: 10.1002/hep4.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular-cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer.
Collapse
Affiliation(s)
- Takeshi Goya
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan.,Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenichi Horisawa
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Miyako Udono
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Sayaka Sekiya
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Atsushi Suzuki
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
6
|
Jishage M, Ito K, Chu CS, Wang X, Yamaji M, Roeder RG. Transcriptional down-regulation of metabolic genes by Gdown1 ablation induces quiescent cell re-entry into the cell cycle. Genes Dev 2020; 34:767-784. [PMID: 32381628 PMCID: PMC7263145 DOI: 10.1101/gad.337683.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Here, Jishage et al. show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including cyclin D1). Their findings establish an important physiological function for a Pol II regulatory factor (Gdown1) in the maintenance of normal liver cell transcription through constraints on cell cycle re-entry of quiescent hepatocytes. Liver regeneration and metabolism are highly interconnected. Here, we show that hepatocyte-specific ablation of RNA polymerase II (Pol II)-associated Gdown1 leads to down-regulation of highly expressed genes involved in plasma protein synthesis and metabolism, a concomitant cell cycle re-entry associated with induction of cell cycle-related genes (including cyclin D1), and up-regulation of p21 through activation of p53 signaling. In the absence of p53, Gdown1-deficient hepatocytes show a severe dysregulation of cell cycle progression, with incomplete mitoses, and a premalignant-like transformation. Mechanistically, Gdown1 is associated with elongating Pol II on the highly expressed genes and its ablation leads to reduced Pol II recruitment to these genes, suggesting that Pol II redistribution may facilitate hepatocyte re-entry into the cell cycle. These results establish an important physiological function for a Pol II regulatory factor (Gdown1) in the maintenance of normal liver cell transcription through constraints on cell cycle re-entry of quiescent hepatocytes.
Collapse
Affiliation(s)
- Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Xiaoling Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Masashi Yamaji
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 49267, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
7
|
Taneja G, Maity S, Jiang W, Moorthy B, Coarfa C, Ghose R. Transcriptomic profiling identifies novel mechanisms of transcriptional regulation of the cytochrome P450 (Cyp)3a11 gene. Sci Rep 2019; 9:6663. [PMID: 31040347 PMCID: PMC6491424 DOI: 10.1038/s41598-019-43248-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 (CYP)3A is the most abundant CYP enzyme in the human liver, and a functional impairment of this enzyme leads to unanticipated adverse reactions and therapeutic failures; these reactions result in the early termination of drug development or the withdrawal of drugs from the market. The transcriptional regulation mechanism of the Cyp3a gene is not fully understood and requires a thorough investigation. We mapped the transcriptome of the Cyp3a gene in a mouse model. The Cyp3a gene was induced using the mPXR activator pregnenolone-16alpha-carbonitrile (PCN) and was subsequently downregulated using lipopolysaccharide (LPS). Our objective was to identify the transcription factors (TFs), epigenetic modulators and molecular pathways that are enriched or repressed by PCN and LPS based on a gene set enrichment analysis. Our analysis shows that 113 genes were significantly upregulated (by at least 1.5-fold) with PCN treatment, and that 834 genes were significantly downregulated (by at least 1.5-fold) with LPS treatment. Additionally, the targets of the 536 transcription factors were enriched by a combined treatment of PCN and LPS, and among these, 285 were found to have binding sites on Cyp3a11. Moreover, the repressed targets of the epigenetic markers HDAC1, HDAC3 and EZH2 were further suppressed by LPS treatment and were enhanced by PCN treatment. By identifying and contrasting the transcriptional regulators that are altered by PCN and LPS, our study provides novel insights into the transcriptional regulation of CYP3A in the liver.
Collapse
Affiliation(s)
- Guncha Taneja
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd., Houston, TX, 77204, USA
- DILIsym Services, A Simulations Plus Company, Research Triangle Park, North Carolina, 27709, USA
| | - Suman Maity
- Advanced Technology Cores, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, Suite 530, Houston, TX, 77030, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, Suite 530, Houston, TX, 77030, USA.
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Center for Precision Environmental Health, Molecular and Cellular Biology Department, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd., Houston, TX, 77204, USA.
| |
Collapse
|
8
|
Peraldo-Neia C, Ostano P, Cavalloni G, Pignochino Y, Sangiolo D, De Cecco L, Marchesi E, Ribero D, Scarpa A, De Rose AM, Giuliani A, Calise F, Raggi C, Invernizzi P, Aglietta M, Chiorino G, Leone F. Transcriptomic analysis and mutational status of IDH1 in paired primary-recurrent intrahepatic cholangiocarcinoma. BMC Genomics 2018; 19:440. [PMID: 29871612 PMCID: PMC5989353 DOI: 10.1186/s12864-018-4829-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Effective target therapies for intrahepatic cholangiocarcinoma (ICC) have not been identified so far. One of the reasons may be the genetic evolution from primary (PR) to recurrent (REC) tumors. We aim to identify peculiar characteristics and to select potential targets specific for recurrent tumors. Eighteen ICC paired PR and REC tumors were collected from 5 Italian Centers. Eleven pairs were analyzed for gene expression profiling and 16 for mutational status of IDH1. For one pair, deep mutational analysis by Next Generation Sequencing was also carried out. An independent cohort of patients was used for validation. Results Two class-paired comparison yielded 315 differentially expressed genes between REC and PR tumors. Up-regulated genes in RECs are involved in RNA/DNA processing, cell cycle, epithelial to mesenchymal transition (EMT), resistance to apoptosis, and cytoskeleton remodeling. Down-regulated genes participate to epithelial cell differentiation, proteolysis, apoptotic, immune response, and inflammatory processes. A 24 gene signature is able to discriminate RECs from PRs in an independent cohort; FANCG is statistically associated with survival in the chol-TCGA dataset. IDH1 was mutated in the RECs of five patients; 4 of them displayed the mutation only in RECs. Deep sequencing performed in one patient confirmed the IDH1 mutation in REC. Conclusions RECs are enriched for genes involved in EMT, resistance to apoptosis, and cytoskeleton remodeling. Key players of these pathways might be considered druggable targets in RECs. IDH1 is mutated in 30% of RECs, becoming both a marker of progression and a target for therapy. Electronic supplementary material The online version of this article (10.1186/s12864-018-4829-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Peraldo-Neia
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy. .,Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy.
| | - P Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - G Cavalloni
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy
| | - Y Pignochino
- Department of Oncology, University of Turin, Torino, Italy
| | - D Sangiolo
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Torino, Italy
| | - L De Cecco
- Functional Genomics and Bioinformatics, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - E Marchesi
- Functional Genomics and Bioinformatics, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - D Ribero
- Division of Hepatobilio-Pancreatic and Colorectal Surgery, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, Candiolo, Italy
| | - A Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Public Health - Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - A M De Rose
- Hepatobiliary Surgery Unit, Gemelli Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - A Giuliani
- Department of Health's Sciences and Medicine "V. Tiberio", University of Molise, Campobasso, Italy
| | - F Calise
- Hepatobiliary and Liver Transplant Unit, Cardarelli Hospital, Naples, Italy
| | - C Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - P Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.,UOC di Gastroenterologia, Azienda Ospedaliera San Gerardo, Monza, Italy
| | - M Aglietta
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Torino, Italy
| | - G Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - F Leone
- Medical Oncology Division, Candiolo Cancer Institute - FPO, IRCCS, Str. Prov. 142, km 3.95, 10060, Candiolo, Turin, Italy. .,Department of Oncology, University of Turin, Torino, Italy.
| |
Collapse
|
9
|
Chatterjee S, Verma SP, Pandey P. Profiling conserved biological pathways in Autosomal Dominant Polycystic Kidney Disorder (ADPKD) to elucidate key transcriptomic alterations regulating cystogenesis: A cross-species meta-analysis approach. Gene 2017; 627:434-450. [DOI: 10.1016/j.gene.2017.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
|
10
|
Kaji K, Factor VM, Andersen JB, Durkin ME, Tomokuni A, Marquardt JU, Matter MS, Hoang T, Conner EA, Thorgeirsson SS. DNMT1 is a required genomic regulator for murine liver histogenesis and regeneration. Hepatology 2016; 64:582-98. [PMID: 26999257 PMCID: PMC5841553 DOI: 10.1002/hep.28563] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED DNA methyltransferase 1 (DNMT1) is an essential regulator maintaining both epigenetic reprogramming during DNA replication and genome stability. We investigated the role of DNMT1 in the regulation of postnatal liver histogenesis under homeostasis and stress conditions. We generated Dnmt1 conditional knockout mice (Dnmt1(Δalb) ) by crossing Dnmt1(fl/fl) with albumin-cyclization recombination transgenic mice. Serum, liver tissues, and primary hepatocytes were collected from 1-week-old to 20-week old mice. The Dnmt1(Δalb) phenotype was assessed by histology, confocal and electron microscopy, biochemistry, as well as transcriptome and methylation profiling. Regenerative growth was induced by partial hepatectomy and exposure to carbon tetrachloride. The impact of Dnmt1 knockdown was also analyzed in hepatic progenitor cell lines; proliferation, apoptosis, DNA damage, and sphere formation were assessed. Dnmt1 loss in postnatal hepatocytes caused global hypomethylation, enhanced DNA damage response, and initiated a senescence state causing a progressive inability to maintain tissue homeostasis and proliferate in response to injury. The liver regenerated through activation and repopulation from progenitors due to lineage-dependent differences in albumin-cyclization recombination expression, providing a basis for selection of less mature and therefore less damaged hepatic progenitor cell progeny. Consistently, efficient knockdown of Dnmt1 in cultured hepatic progenitor cells caused severe DNA damage, cell cycle arrest, senescence, and cell death. Mx1-cyclization recombination-driven deletion of Dnmt1 in adult quiescent hepatocytes did not affect liver homeostasis. CONCLUSION These results establish the indispensable role of DNMT1-mediated epigenetic regulation in postnatal liver growth and regeneration; Dnmt1(Δalb) mice provide a unique experimental model to study the role of senescence and the contribution of progenitor cells to physiological and regenerative liver growth. (Hepatology 2016;64:582-598).
Collapse
Affiliation(s)
- Kosuke Kaji
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Valentina M. Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Jesper B. Andersen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen 2200, Denmark
| | - Marian E. Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Akira Tomokuni
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Jens U. Marquardt
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA,Department of Medicine I, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Matthias S. Matter
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Tanya Hoang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Elizabeth A. Conner
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|
11
|
Landau DA, Clement K, Ziller MJ, Boyle P, Fan J, Gu H, Stevenson K, Sougnez C, Wang L, Li S, Kotliar D, Zhang W, Ghandi M, Garraway L, Fernandes SM, Livak KJ, Gabriel S, Gnirke A, Lander ES, Brown JR, Neuberg D, Kharchenko PV, Hacohen N, Getz G, Meissner A, Wu CJ. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 2014; 26:813-825. [PMID: 25490447 PMCID: PMC4302418 DOI: 10.1016/j.ccell.2014.10.012] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 09/16/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023]
Abstract
Intratumoral heterogeneity plays a critical role in tumor evolution. To define the contribution of DNA methylation to heterogeneity within tumors, we performed genome-scale bisulfite sequencing of 104 primary chronic lymphocytic leukemias (CLLs). Compared with 26 normal B cell samples, CLLs consistently displayed higher intrasample variability of DNA methylation patterns across the genome, which appears to arise from stochastically disordered methylation in malignant cells. Transcriptome analysis of bulk and single CLL cells revealed that methylation disorder was linked to low-level expression. Disordered methylation was further associated with adverse clinical outcome. We therefore propose that disordered methylation plays a similar role to that of genetic instability, enhancing the ability of cancer cells to search for superior evolutionary trajectories.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- CpG Islands
- DNA Methylation
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Genetic Variation
- Genome, Human
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Molecular Sequence Data
- Sequence Analysis, DNA
- Sulfites/chemistry
Collapse
Affiliation(s)
- Dan A Landau
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02139, USA
| | - Kendell Clement
- Broad Institute, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Michael J Ziller
- Broad Institute, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Jean Fan
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Lili Wang
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shuqiang Li
- Fluidigm, South San Francisco, CA 94080, USA
| | - Dylan Kotliar
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wandi Zhang
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Levi Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02139, USA
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA
| | - Nir Hacohen
- Broad Institute, Cambridge, MA 02139, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gad Getz
- Broad Institute, Cambridge, MA 02139, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alexander Meissner
- Broad Institute, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Catherine J Wu
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Division of Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Kakihara Y, Saeki M. The R2TP chaperone complex: its involvement in snoRNP assembly and tumorigenesis. Biomol Concepts 2014; 5:513-20. [DOI: 10.1515/bmc-2014-0028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
AbstractR2TP was originally identified in yeast Saccharomyces cerevisiae as Hsp90 interacting complex, and is composed of four different proteins: Rvb1, Rvb2, Tah1, and Pih1. This complex is well-conserved in eukaryotes, and is involved in many cellular processes such as snoRNP biogenesis, RNA polymerase assembly, PIKK signaling, and apoptosis. An increasing number of research related to R2TP suggests a linkage of its function with tumorigenesis. In this review, we provide an overview of several recent studies on R2TP that are related to cell proliferation and carcinogenesis, and propose a possible role of R2TP in tumorigenesis through regulating snoRNA/snoRNP biogenesis.
Collapse
Affiliation(s)
- Yoshito Kakihara
- 1Division of Dental Pharmacology, Department of Dentistry, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makio Saeki
- 1Division of Dental Pharmacology, Department of Dentistry, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
13
|
Yoo S, Bieda MC. Differences among brain tumor stem cell types and fetal neural stem cells in focal regions of histone modifications and DNA methylation, broad regions of modifications, and bivalent promoters. BMC Genomics 2014; 15:724. [PMID: 25163646 PMCID: PMC4155105 DOI: 10.1186/1471-2164-15-724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/04/2014] [Indexed: 12/15/2022] Open
Abstract
Background Aberrational epigenetic marks are believed to play a major role in establishing the abnormal features of cancer cells. Rational use and development of drugs aimed at epigenetic processes requires an understanding of the range, extent, and roles of epigenetic reprogramming in cancer cells. Using ChIP-chip and MeDIP-chip approaches, we localized well-established and prevalent epigenetic marks (H3K27me3, H3K4me3, H3K9me3, DNA methylation) on a genome scale in several lines of putative glioma stem cells (brain tumor stem cells, BTSCs) and, for comparison, normal human fetal neural stem cells (fNSCs). Results We determined a substantial “core” set of promoters possessing each mark in every surveyed BTSC cell type, which largely overlapped the corresponding fNSC sets. However, there was substantial diversity among cell types in mark localization. We observed large differences among cell types in total number of H3K9me3+ positive promoters and peaks and in broad modifications (defined as >50 kb peak length) for H3K27me3 and, to a lesser extent, H3K9me3. We verified that a change in a broad modification affected gene expression of CACNG7. We detected large numbers of bivalent promoters, but most bivalent promoters did not display direct overlap of contrasting epigenetic marks, but rather occupied nearby regions of the proximal promoter. There were significant differences in the sets of promoters bearing bivalent marks in the different cell types and few consistent differences between fNSCs and BTSCs. Conclusions Overall, our “core set” data establishes sets of potential therapeutic targets, but the diversity in sets of sites and broad modifications among cell types underscores the need to carefully consider BTSC subtype variation in epigenetic therapy. Our results point toward substantial differences among cell types in the activity of the production/maintenance systems for H3K9me3 and for broad regions of modification (H3K27me3 or H3K9me3). Finally, the unexpected diversity in bivalent promoter sets among these multipotent cells indicates that bivalent promoters may play complex roles in the overall biology of these cells. These results provide key information for forming the basis for future rational drug therapy aimed at epigenetic processes in these cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-724) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Mark C Bieda
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Pilati C, Letouzé E, Nault JC, Imbeaud S, Boulai A, Calderaro J, Poussin K, Franconi A, Couchy G, Morcrette G, Mallet M, Taouji S, Balabaud C, Terris B, Canal F, Paradis V, Scoazec JY, de Muret A, Guettier C, Bioulac-Sage P, Chevet E, Calvo F, Zucman-Rossi J. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell 2014; 25:428-41. [PMID: 24735922 DOI: 10.1016/j.ccr.2014.03.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/14/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022]
Abstract
Hepatocellular adenomas (HCA) are benign liver tumors predominantly developed in women using oral contraceptives. Here, exome sequencing identified recurrent somatic FRK mutations that induce constitutive kinase activity, STAT3 activation, and cell proliferation sensitive to Src inhibitors. We also found uncommon recurrent mutations activating JAK1, gp130, or β-catenin. Chromosome copy number and methylation profiling revealed patterns that correlated with specific gene mutations and tumor phenotypes. Finally, integrative analysis of HCAs transformed to hepatocellular carcinoma revealed β-catenin mutation as an early alteration and TERT promoter mutations as associated with the last step of the adenoma-carcinoma transition. In conclusion, we identified the genomic diversity in benign hepatocyte proliferation, several therapeutic targets, and the key genomic determinants of the adenoma-carcinoma transformation sequence.
Collapse
Affiliation(s)
- Camilla Pilati
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Jean-Charles Nault
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Sandrine Imbeaud
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Anaïs Boulai
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Julien Calderaro
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France; Department of Pathology, Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, 94000 Créteil, France
| | - Karine Poussin
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Andrea Franconi
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Gabrielle Couchy
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Guillaume Morcrette
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Maxime Mallet
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France
| | - Saïd Taouji
- INSERM, UMR-1053, Université de Bordeaux, 33076 Bordeaux, France
| | - Charles Balabaud
- INSERM, UMR-1053, Université de Bordeaux, 33076 Bordeaux, France
| | - Benoit Terris
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, 75014 Paris, France
| | - Frédéric Canal
- Institut Cochin, INSERM U1016, Université Paris Descartes, CNRS UMR8104, 75014 Paris, France
| | - Valérie Paradis
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Beaujon Hospital, Université Paris Diderot, 92210 Clichy, France
| | - Jean-Yves Scoazec
- Department of Pathology, Edouard Herriot Hospital, 69437 Lyon, France
| | - Anne de Muret
- Department of Hepatogastroenterology, Centre Hospitalier de Tours, Trousseau Hospital, 37044 Tours, France
| | - Catherine Guettier
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, 94275 Le Kremlin-Bicêtre, France; Department of Pathology, Assistance Publique-Hôpitaux de Paris, CHU Paul Brousse, 94800 Villejuif, France
| | - Paulette Bioulac-Sage
- INSERM, UMR-1053, Université de Bordeaux, 33076 Bordeaux, France; Department of Pathology, CHU de Bordeaux, Pellegrin Hospital, 33076, Bordeaux, France
| | - Eric Chevet
- INSERM, UMR-1053, Université de Bordeaux, 33076 Bordeaux, France
| | - Fabien Calvo
- Institut National du Cancer, INCa, 92513 Boulogne, France
| | - Jessica Zucman-Rossi
- INSERM, UMR-1162, Génomique fonctionnelle des tumeurs solides, IUH, 75010 Paris, France; Labex Immuno-oncology, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France.
| |
Collapse
|
15
|
Guan P, Olaharski A, Fielden M, Roome N, Dragan Y, Sina J. Biomarkers of carcinogenicity and their roles in drug discovery and development. Expert Rev Clin Pharmacol 2014; 1:759-71. [DOI: 10.1586/17512433.1.6.759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Caiment F, Tsamou M, Jennen D, Kleinjans J. Assessing compound carcinogenicityin vitrousing connectivity mapping. Carcinogenesis 2013; 35:201-7. [DOI: 10.1093/carcin/bgt278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Kim H, Kim K, Yu SJ, Jang ES, Yu J, Cho G, Yoon JH, Kim Y. Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring. PLoS One 2013; 8:e63468. [PMID: 23717429 PMCID: PMC3661589 DOI: 10.1371/journal.pone.0063468] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/02/2013] [Indexed: 01/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further, multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation, somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3 groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A (C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment group from the healthy control group compared with AFP. We conclude that the combination of global data mining and MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy is applicable to the development of markers for cancer and other diseases.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunggon Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Sun Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiyoung Yu
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Geunhee Cho
- Departments of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (JHY); (YK)
| | - Youngsoo Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (JHY); (YK)
| |
Collapse
|
18
|
Gevaert O, Plevritis S. Identifying master regulators of cancer and their downstream targets by integrating genomic and epigenomic features. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2013:123-34. [PMID: 23424118 PMCID: PMC3911770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Vast amounts of molecular data characterizing the genome, epigenome and transcriptome are becoming available for a variety of cancers. The current challenge is to integrate these diverse layers of molecular biology information to create a more comprehensive view of key biological processes underlying cancer. We developed a biocomputational algorithm that integrates copy number, DNA methylation, and gene expression data to study master regulators of cancer and identify their targets. Our algorithm starts by generating a list of candidate driver genes based on the rationale that genes that are driven by multiple genomic events in a subset of samples are unlikely to be randomly deregulated. We then select the master regulators from the candidate driver and identify their targets by inferring the underlying regulatory network of gene expression. We applied our biocomputational algorithm to identify master regulators and their targets in glioblastoma multiforme (GBM) and serous ovarian cancer. Our results suggest that the expression of candidate drivers is more likely to be influenced by copy number variations than DNA methylation. Next, we selected the master regulators and identified their downstream targets using module networks analysis. As a proof-of-concept, we show that the GBM and ovarian cancer module networks recapitulate known processes in these cancers. In addition, we identify master regulators that have not been previously reported and suggest their likely role. In summary, focusing on genes whose expression can be explained by their genomic and epigenomic aberrations is a promising strategy to identify master regulators of cancer.
Collapse
|
19
|
Coban Z, Barton MC. Integrative genomics: liver regeneration and hepatocellular carcinoma. J Cell Biochem 2012; 113:2179-84. [PMID: 22345090 DOI: 10.1002/jcb.24104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Numerous genome wide profiles of gene expression changes in human hepatocellular carcinoma (HCC), compared to normal liver tissue, have been reported. Hierarchical clustering of these data reveal distinct patterns, which underscore conservation between human disease and mouse models of HCC, as well as suggest specific classification of subtypes within the heterogeneous disease of HCC. Global profiling of gene expression in mouse liver, challenged by partial hepatectomy to regenerate, reveals alterations in gene expression that occur in response to acute injury, inflammation, and re-entry into cell cycle. When we integrated datasets of gene expression changes in mouse models of HCC and those that are altered at specific times of liver regeneration, we saw shared, conserved alterations in gene expression within specific biological pathways, both up-regulated, for example, cell cycle, cell death, and cellular development, or down-regulated, for example, vitamin and mineral metabolism, lipid metabolism, and molecular transport. Additional molecular mechanisms shared by liver regeneration and HCC, as yet undiscovered, may have important implications in tumor development and recurrence. These comparisons may offer a way to judge how liver resection, in the treatment of HCC, introduces challenges to care of the disease. Further, uncovering the pathways conserved in inflammatory response, hypertrophy, proliferation, and architectural remodeling of the liver, which are shared in liver regeneration and HCC, versus those specific to tumor development and progression in HCC, may reveal new biomarkers or potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Zeynep Coban
- Graduate School for Biomedical Sciences, Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
20
|
Koch CM, Reck K, Shao K, Lin Q, Joussen S, Ziegler P, Walenda G, Drescher W, Opalka B, May T, Brümmendorf T, Zenke M, Saric T, Wagner W. Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res 2012; 23:248-59. [PMID: 23080539 PMCID: PMC3561866 DOI: 10.1101/gr.141945.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions, and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization, and reprogramming into induced pluripotent stem cells (iPSC) using high-density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and they are enriched in intergenic and nonpromoter regions of developmental genes. Furthermore, SA-hypomethylation in particular appears to be associated with H3K9me3, H3K27me3, and Polycomb-group 2 target genes. We demonstrate that ionizing irradiation, although associated with a senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40-TAg) result in telomere extension, but do not prevent SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevents almost the entire set of SA-DNAm changes. Our results indicate that long-term culture is associated with an epigenetically controlled process that stalls cells in a particular functional state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence.
Collapse
Affiliation(s)
- Carmen M Koch
- Helmholtz Institute for Biomedical Engineering, RWTH Medical School, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Klochendler A, Weinberg-Corem N, Moran M, Swisa A, Pochet N, Savova V, Vikeså J, Van de Peer Y, Brandeis M, Regev A, Nielsen FC, Dor Y, Eden A. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation. Dev Cell 2012; 23:681-90. [PMID: 23000141 DOI: 10.1016/j.devcel.2012.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/15/2012] [Accepted: 08/14/2012] [Indexed: 12/26/2022]
Abstract
Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of replicating cells in their in vivo niche.
Collapse
Affiliation(s)
- Agnes Klochendler
- Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The histone demethylase Jhdm1a regulates hepatic gluconeogenesis. PLoS Genet 2012; 8:e1002761. [PMID: 22719268 PMCID: PMC3375226 DOI: 10.1371/journal.pgen.1002761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/30/2012] [Indexed: 11/19/2022] Open
Abstract
Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes. Histones are small proteins that are essential for packaging and ordering genetic information (DNA) into high-order chromatin structures. Methylation of specific lysine residues of histones alters chromatin structure, serving as an important epigenetic mechanism for regulation of gene expression. The dynamic nature of histone methylation is controlled by a balance of methyltransferases and demethylases. We have discovered here that the demethylase Jhdm1a negatively regulates gluconeogenesis (de novo glucose synthesis) through suppressing the expression of two rate-limiting gluconeogenic enzymes. Gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to hyperglycemia. Indeed, we have found that manipulation of Jhdm1a level in liver affects glucose production in normal mice and hyperglycemia in diabetic mice. Mechanistically, Jhdm1a actively removes dimethyl groups from histone H3K36 along the locus of a key gluconeogenic regulator, C/EBPα, which in turn results in decreased C/EBPα expression. Our findings thus identify histone demethylation as a novel regulatory mechanism for gluconeogenesis and have important implications for the treatment of diabetes.
Collapse
|
23
|
Stropp T, McPhillips T, Ludäscher B, Bieda M. Workflows for microarray data processing in the Kepler environment. BMC Bioinformatics 2012; 13:102. [PMID: 22594911 PMCID: PMC3431220 DOI: 10.1186/1471-2105-13-102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/08/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. RESULTS We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. CONCLUSIONS We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Collapse
Affiliation(s)
- Thomas Stropp
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | | | | |
Collapse
|
24
|
Acevedo LG, Sanz A, Jelinek MA. Novel DNA binding domain-based assays for detection of methylated and nonmethylated DNA. Epigenomics 2012; 3:93-101. [PMID: 22126156 DOI: 10.2217/epi.10.69] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Methylation of cytosine in the context of CpG dinucleotides is an epigenetic phenomenon in eukaryotes that plays important roles in genome function and transcription regulation. Aberrant changes in DNA methylation is an important feature of several human diseases such as cancer and neurological disorders. These discoveries have opened a new field of new therapies and diagnostics. During recent years, there has been a revolution in DNA methylation analysis technologies. This article focuses on methods with which to study DNA methylation that employ protein domains that specifically recognize either 5-methyl-cytosine in the CpG context or nonmethylated DNA, and methods developed for the detection of 5-hydroxymethylcytosine, the recently described epigenetic mark known as the sixth base of the epigenome.
Collapse
Affiliation(s)
- Luis G Acevedo
- Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA.
| | | | | |
Collapse
|
25
|
Boyd ME, Heimer BW, Sikes HD. Functional heterologous expression and purification of a mammalian methyl-CpG binding domain in suitable yield for DNA methylation profiling assays. Protein Expr Purif 2012; 82:332-8. [PMID: 22326799 DOI: 10.1016/j.pep.2012.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/21/2012] [Accepted: 01/24/2012] [Indexed: 02/08/2023]
Abstract
DNA methylation is a major epigenetic modification in mammalian cells, and patterns involving methylation of cytosine bases, known as CpG methylation, have been implicated in the development of many types of cancer. Methyl binding domains (MBDs) excised from larger mammalian methyl-CpG-binding proteins specifically recognize methyl-cytosine bases of CpG dinucleotides in duplex DNA. Previous molecular diagnostic studies involving MBDs have employed Escherichia coli for protein expression with either low soluble yields or the use of time-consuming denaturation-renaturation purification procedures to improve yields. Efficient MBD-based diagnostics require expression and purification methods that maximize protein yield and minimize time and resource expenditure. This study is a systematic optimization analysis of MBD expression using both SDS-PAGE and microscopy and it provides a comparison of protein yield from published procedures to that from the conditions found to be optimal in these experiments. Protein binding activity and specificity were verified using a DNA electrophoretic mobility shift assay, and final protein yield was improved from the starting conditions by a factor of 65 with a simple, single-step purification.
Collapse
Affiliation(s)
- Mary E Boyd
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | |
Collapse
|
26
|
Enroth S, Rada-Iglesisas A, Andersson R, Wallerman O, Wanders A, Påhlman L, Komorowski J, Wadelius C. Cancer associated epigenetic transitions identified by genome-wide histone methylation binding profiles in human colorectal cancer samples and paired normal mucosa. BMC Cancer 2011; 11:450. [PMID: 22011431 PMCID: PMC3216894 DOI: 10.1186/1471-2407-11-450] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 10/19/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Despite their well-established functional roles, histone modifications have received less attention than DNA methylation in the cancer field. In order to evaluate their importance in colorectal cancer (CRC), we generated the first genome-wide histone modification profiles in paired normal colon mucosa and tumor samples. METHODS Chromatin immunoprecipitation and microarray hybridization (ChIP-chip) was used to identify promoters enriched for histone H3 trimethylated on lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in paired normal colon mucosa and tumor samples from two CRC patients and for the CRC cell line HT29. RESULTS By comparing histone modification patterns in normal mucosa and tumors, we found that alterations predicted to have major functional consequences were quite rare. Furthermore, when normal or tumor tissue samples were compared to HT29, high similarities were observed for H3K4me3. However, the differences found for H3K27me3, which is important in determining cellular identity, indicates that cell lines do not represent optimal tissue models. Finally, using public expression data, we uncovered previously unknown changes in CRC expression patterns. Genes positive for H3K4me3 in normal and/or tumor samples, which are typically already active in normal mucosa, became hyperactivated in tumors, while genes with H3K27me3 in normal and/or tumor samples and which are expressed at low levels in normal mucosa, became hypersilenced in tumors. CONCLUSIONS Genome wide histone modification profiles can be used to find epigenetic aberrations in genes associated with cancer. This strategy gives further insights into the epigenetic contribution to the oncogenic process and may identify new biomarkers.
Collapse
Affiliation(s)
- Stefan Enroth
- The Linnaeus Centre for Bioinformatics, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta Rev Cancer 2011; 1815:147-57. [DOI: 10.1016/j.bbcan.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
|
28
|
Irvine RA, Okitsu C, Hsieh CL. Q-PCR in combination with ChIP assays to detect changes in chromatin acetylation. Methods Mol Biol 2011; 791:213-223. [PMID: 21913082 DOI: 10.1007/978-1-61779-316-5_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quantitative polymerase chain reaction (Q-PCR) allows for the accurate and reproducible determination of the amount of target DNA in a sample through the measurement of PCR product accumulation in "real time." This method determines starting target DNA quantity over a large assay dynamic range and requires no post-PCR sample manipulation. When used in combination with the method of chromatin immunoprecipitation (ChIP), the amount of protein binding to a specific region of DNA can be accurately and rapidly determined. A method for quantifying the presence of acetylated histones H3 and H4 on different regions of a target locus using Q-PCR after ChIP is described.
Collapse
Affiliation(s)
- Ryan A Irvine
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
29
|
Sandgren J, Andersson R, Rada-Iglesias A, Enroth S, Akerstrom G, Dumanski JP, Komorowski J, Westin G, Wadelius C. Integrative epigenomic and genomic analysis of malignant pheochromocytoma. Exp Mol Med 2010; 42:484-502. [PMID: 20534969 DOI: 10.3858/emm.2010.42.7.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenomic and genomic changes affect gene expression and contribute to tumor development. The histone modifications trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) are epigenetic regulators associated to active and silenced genes, respectively and alterations of these modifications have been observed in cancer. Furthermore, genomic aberrations such as DNA copy number changes are common events in tumors. Pheochromocytoma is a rare endocrine tumor of the adrenal gland that mostly occurs sporadic with unknown epigenetic/genetic cause. The majority of cases are benign. Here we aimed to combine the genome-wide profiling of H3K4me3 and H3K27me3, obtained by the ChIP-chip methodology, and DNA copy number data with global gene expression examination in a malignant pheochromocytoma sample. The integrated analysis of the tumor expression levels, in relation to normal adrenal medulla, indicated that either histone modifications or chromosomal alterations, or both, have great impact on the expression of a substantial fraction of the genes in the investigated sample. Candidate tumor suppressor genes identified with decreased expression, a H3K27me3 mark and/or in regions of deletion were for instance TGIF1, DSC3, TNFRSF10B, RASSF2, HOXA9, PTPRE and CDH11. More genes were found with increased expression, a H3K4me3 mark, and/or in regions of gain. Potential oncogenes detected among those were GNAS, INSM1, DOK5, ETV1, RET, NTRK1, IGF2, and the H3K27 trimethylase gene EZH2. Our approach to associate histone methylations and DNA copy number changes to gene expression revealed apparent impact on global gene transcription, and enabled the identification of candidate tumor genes for further exploration.
Collapse
Affiliation(s)
- Johanna Sandgren
- Department of Surgical Sciences, Uppsala University, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
An increasing number of arguments, including altered microRNA expression, support the idea that post-transcriptional deregulation participates in gene disturbances found in diseased tissues. To evaluate this hypothesis, we developed a method which facilitates post-transcriptional investigations in a wide range of human cells and experimental conditions. This method, called FunREG (functional, integrated and quantitative method to measure post-transcriptional regulation), connects lentiviral transduction with a fluorescent reporter system and quantitative PCR. Using FunREG, we efficiently measured post-transcriptional regulation mediated either by selected RNA sequences or regulatory factors (microRNAs), and then evaluated the contribution of mRNA decay and translation efficiency in the observed regulation. We demonstrated the existence of gene-specific post-transcriptional deregulation in liver tumour cells, and also reported a molecular link between a transcript variant abrogating HDAC6 (histone deacetylase 6) regulation by miR-433 and a rare familial genetic disease. Because FunREG is sensitive, quantitative and easy to use, many applications can be envisioned in fundamental and pathophysiological research.
Collapse
|
31
|
Smith ML, Lynch AG. BeadDataPackR: A Tool to Facilitate the Sharing of Raw Data from Illumina BeadArray Studies. Cancer Inform 2010; 9:217-27. [PMID: 20981138 PMCID: PMC2956622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microarray technologies have been an increasingly important tool in cancer research in the last decade, and a number of initiatives have sought to stress the importance of the provision and sharing of raw microarray data. Illumina BeadArrays provide a particular problem in this regard, as their random construction simultaneously adds value to analysis of the raw data and obstructs the sharing of those data.We present a compression scheme for raw Illumina BeadArray data, designed to ease the burdens of sharing and storing such data, that is implemented in the BeadDataPackR BioConductor package (http://bioconductor.org/packages/release/bioc/html/BeadDataPackR.html). It offers two key advantages over off-the-peg compression tools. First it uses knowledge of the data formats to achieve greater compression than other approaches, and second it does not need to be decompressed for analysis, but rather the values held within can be directly accessed.
Collapse
|
32
|
Berasain C, Goñi S, Castillo J, Latasa MU, Prieto J, Ávila MA. Impairment of pre-mRNA splicing in liver disease: Mechanisms and consequences. World J Gastroenterol 2010; 16:3091-102. [PMID: 20593494 PMCID: PMC2896746 DOI: 10.3748/wjg.v16.i25.3091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pre-mRNA splicing is an essential step in the process of gene expression in eukaryotes and consists of the removal of introns and the linking of exons to generate mature mRNAs. This is a highly regulated mechanism that allows the alternative usage of exons, the retention of intronic sequences and the generation of exonic sequences of variable length. Most human genes undergo splicing events, and disruptions of this process have been associated with a variety of diseases, including cancer. Hepatocellular carcinoma (HCC) is a molecularly heterogeneous type of tumor that usually develops in a cirrhotic liver. Alterations in pre-mRNA splicing of some genes have been observed in liver cancer, and although still scarce, the available data suggest that splicing defects may have a role in hepatocarcinogenesis. Here we briefly review the general mechanisms that regulate pre-mRNA splicing, and discuss some examples that illustrate how this process is impaired in liver tumorigenesis, and may contribute to HCC development. We believe that a more thorough examination of pre-mRNA splicing is still needed to accurately draw the molecular portrait of liver cancer. This will surely contribute to a better understanding of the disease and to the development of new effective therapies.
Collapse
|
33
|
Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS One 2010; 5:e9150. [PMID: 20161773 PMCID: PMC2818844 DOI: 10.1371/journal.pone.0009150] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 01/25/2010] [Indexed: 12/15/2022] Open
Abstract
First lineage specification in the mammalian embryo leads to formation of the inner cell mass (ICM) and trophectoderm (TE), which respectively give rise to embryonic and extraembryonic tissues. We show here that this first differentiation event is accompanied by asymmetric distribution of trimethylated histone H3 lysine 27 (H3K27me3) on promoters of signaling and developmentally-regulated genes in the mouse ICM and TE. A genome-wide survey of promoter occupancy by H3K4me3 and H3K27me3 indicates that both compartments harbor promoters enriched in either modification, and promoters co-enriched in trimethylated H3K4 and H3K27 linked to developmental and signaling functions. The majority of H3K4/K27me3 co-enriched promoters are distinct between the two lineages, primarily due to differences in the distribution of H3K27me3. Derivation of embryonic stem cells leads to significant losses and gains of H3K4/K27me3 co-enriched promoters relative to the ICM, with distinct contributions of (de)methylation events on K4 and K27. Our results show histone trimethylation asymmetry on promoters in the first two developmental lineages, and highlight an epigenetic skewing associated with embryonic stem cell derivation.
Collapse
|
34
|
Smith ML, Lynch AG. BeadDatapackR: A Tool to Facilitate the Sharing of Raw Data from Illumina BeadArray Studies. Cancer Inform 2010. [DOI: 10.1177/117693511000900001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microarray technologies have been an increasingly important tool in cancer research in the last decade, and a number of initiatives have sought to stress the importance of the provision and sharing of raw microarray data. Illumina BeadArrays provide a particular problem in this regard, as their random construction simultaneously adds value to analysis of the raw data and obstructs the sharing of those data. We present a compression scheme for raw Illumina BeadArray data, designed to ease the burdens of sharing and storing such data, that is implemented in the BeadDataPackR BioConductor package ( http://bioconductor.org/packages/release/bioc/html/BeadDataPackR.html ). It offers two key advantages over off-the-peg compression tools. First it uses knowledge of the data formats to achieve greater compression than other approaches, and second it does not need to be decompressed for analysis, but rather the values held within can be directly accessed.
Collapse
Affiliation(s)
- Mike L. Smith
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Andy G. Lynch
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Research Institute, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
35
|
Chen X, Jorgenson E, Cheung ST. New tools for functional genomic analysis. Drug Discov Today 2009; 14:754-60. [PMID: 19477290 DOI: 10.1016/j.drudis.2009.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/29/2009] [Accepted: 05/13/2009] [Indexed: 12/28/2022]
Abstract
For the past decade, the development of genomic technology has revolutionized modern biological research and drug discovery. Functional genomic analyses enable biologists to perform analysis of genetic events on a global scale and they have been widely used in gene discovery, biomarker determination, disease classification, and drug target identification. In this article, we provide an overview of the current and emerging tools involved in genomic studies, including expression arrays, microRNA arrays, array CGH, ChIP-on-chip, methylation arrays, mutation analysis, genome-wide association studies, proteomic analysis, integrated functional genomic analysis and related bioinformatic and biostatistical analyses. Using human liver cancer as an example, we provide further information of how these genomic approaches can be applied in cancer research.
Collapse
Affiliation(s)
- Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States.
| | | | | |
Collapse
|
36
|
Dahl JA, Reiner AH, Collas P. Fast genomic muChIP-chip from 1,000 cells. Genome Biol 2009; 10:R13. [PMID: 19208222 PMCID: PMC2688267 DOI: 10.1186/gb-2009-10-2-r13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/16/2009] [Accepted: 02/10/2009] [Indexed: 01/17/2023] Open
Abstract
A new method for rapid genome-wide μChIP-chip from as few as 1,000 cells. Genome-wide location analysis of histone modifications and transcription factor binding relies on chromatin immunoprecipitation (ChIP) assays. These assays are, however, time-consuming and require large numbers of cells, hindering their application to the analysis of many interesting cell types. We report here a fast microChIP (μChIP) assay for 1,000 cells in combination with microarrays to produce genome-scale surveys of histone modifications. μChIP-chip reliably reproduces data obtained by large-scale assays: H3K9ac and H3K9m3 enrichment profiles are conserved and nucleosome-free regions are revealed.
Collapse
Affiliation(s)
- John Arne Dahl
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | | | | |
Collapse
|
37
|
Rabinovich A, Jin VX, Rabinovich R, Xu X, Farnham PJ. E2F in vivo binding specificity: comparison of consensus versus nonconsensus binding sites. Genome Res 2008; 18:1763-77. [PMID: 18836037 DOI: 10.1101/gr.080622.108] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously shown that most sites bound by E2F family members in vivo do not contain E2F consensus motifs. However, differences between in vivo target sites that contain or lack a consensus E2F motif have not been explored. To understand how E2F binding specificity is achieved in vivo, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) assays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are (1) the site must be in a core promoter and (2) the region must be utilized as a promoter in that cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including (1) indirect recruitment, (2) looping to the core promoter mediated by an E2F bound to a distal motif, and (3) assisted binding of E2F to a site that weakly resembles an E2F motif. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated fragments. Our findings suggest that in vivo (1) a consensus motif is not sufficient to recruit E2Fs, (2) E2Fs can bind to isolated regions that lack a consensus motif, and (3) binding can require regions other than the best match to the E2F motif.
Collapse
Affiliation(s)
- Alina Rabinovich
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
38
|
Komashko VM, Acevedo LG, Squazzo SL, Iyengar SS, Rabinovich A, O'Geen H, Green R, Farnham PJ. Using ChIP-chip technology to reveal common principles of transcriptional repression in normal and cancer cells. Genome Res 2008; 18:521-32. [PMID: 18347325 DOI: 10.1101/gr.074609.107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We compared 12 different cell populations, including embryonic stem cells before and during differentiation into embryoid bodies as well as various types of normal and tumor cells to determine if pluripotent versus differentiated cell types use different mechanisms to establish their transcriptome. We first identified genes that were not expressed in the 12 different cell populations and then determined which of them were regulated by histone methylation, DNA methylation, at the step of productive elongation, or by the inability to establish a preinitiation complex. For these experiments, we performed chromatin immunoprecipitation using antibodies to H3me3K27, H3me3K9, 5-methyl-cytosine, and POLR2A. We found that (1) the percentage of low expressed genes bound by POLR2A, H3me3K27, H3me3K9, or 5-methyl-cytosine is similar in all 12 cell types, regardless of differentiation or neoplastic state; (2) a gene is generally repressed by only one mechanism; and (3) distinct classes of genes are repressed by certain mechanisms. We further characterized two transitioning cell populations, 3T3 cells progressing from G0/G1 into S phase and mES cells differentiating into embryoid bodies. We found that the transient regulation through the cell cycle was achieved predominantly by changes in the recruitment of the general transcriptional machinery or by post-POLR2A recruitment mechanisms. In contrast, changes in chromatin silencing were critical for the permanent changes in gene expression in cells undergoing differentiation.
Collapse
Affiliation(s)
- Vitalina M Komashko
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|