1
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Kumar M, Leekha A, Nandy S, Kulkarni R, Martinez-Paniagua M, Rahman Sefat KMS, Willson RC, Varadarajan N. Enzymatic depletion of circulating glutamine is immunosuppressive in cancers. iScience 2024; 27:109817. [PMID: 38770139 PMCID: PMC11103382 DOI: 10.1016/j.isci.2024.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Although glutamine addiction in cancer cells is extensively reported, there is controversy on the impact of glutamine metabolism on the immune cells within the tumor microenvironment (TME). To address the role of extracellular glutamine, we enzymatically depleted circulating glutamine using PEGylated Helicobacter pylori gamma-glutamyl transferase (PEG-GGT) in syngeneic mouse models of breast and colon cancers. PEG-GGT treatment inhibits growth of cancer cells in vitro, but in vivo it increases myeloid-derived suppressor cells (MDSCs) and has no significant impact on tumor growth. By deriving a glutamine depletion signature, we analyze diverse human cancers within the TCGA and illustrate that glutamine depletion is not associated with favorable clinical outcomes and correlates with accumulation of MDSC. Broadly, our results help clarify the integrated impact of glutamine depletion within the TME and advance PEG-GGT as an enzymatic tool for the systemic and selective depletion (no asparaginase activity) of circulating glutamine in live animals.
Collapse
Affiliation(s)
- Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - K. M. Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Lin X, Zhou W, Liu Z, Cao W, Lin C. Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Dis 2023; 29:3101-3120. [PMID: 36263514 DOI: 10.1111/odi.14411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancer worldwide, with the most severe impact on quality of life of patients. Despite the development of multimodal therapeutic approaches, the clinical outcomes of HNSCC are still unsatisfactory, mainly caused by relatively low responsiveness to treatment and severe drug resistance. Metabolic reprogramming is currently considered to play a pivotal role in anticancer therapeutic resistance. This review aimed to define the specific metabolic programs and adaptations in HNSCC therapy resistance. An extensive literature review of HNSCC was conducted via the PubMed including metabolic reprogramming, chemo- or immune-therapy resistance. Glucose metabolism, fatty acid metabolism, and amino acid metabolism are closely related to the malignant biological characteristics of cancer, anti-tumor drug resistance, and adverse clinical results. For HNSCC, pyruvate, lactate and almost all lipid categories are related to the occurrence and maintenance of drug resistance, and targeting amino acid metabolism can prevent tumor development and enhance the response of drug-resistant tumors to anticancer therapy. This review will provide a better understanding of the altered metabolism in therapy resistance of HNSCC and promote the development of new therapeutic strategies against HNSCC, thereby contribute to a more efficacious precision medicine.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Chengzhong Lin
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Yang C, Chen Y, Wu T, Gao Y, Liu X, Yang Y, Ling Y, Jia Y, Deng M, Wang J, Zhou Y. Discovery of N-(2-chloro-5-(3-(pyridin-4-yl)-1H-pyrazolo[3,4-b]pyridin-5-yl)pyridin-3-yl)-4-fluorobenzenesulfonamide (FD274) as a highly potent PI3K/mTOR dual inhibitor for the treatment of acute myeloid leukemia. Eur J Med Chem 2023; 258:115543. [PMID: 37329712 DOI: 10.1016/j.ejmech.2023.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/19/2023]
Abstract
PI3K-Akt-mTOR pathway is a highly activated signal transduction pathway in human hematological malignancies and has been validated as a promising target for acute myeloid leukemia (AML) therapy. Herein, we designed and synthesized a series of 7-azaindazole derivatives as potent PI3K/mTOR dual inhibitors based on our previously reported FD223. Among them, compound FD274 showed excellent dual PI3K/mTOR inhibitory activity, with IC50 values against PI3Kα/β/γ/δ and mTOR of 0.65 nM, 1.57 nM, 0.65 nM, 0.42 nM, and 2.03 nM, respectively, superior to compound FD223. Compared to the positive drug Dactolisib, FD274 exhibited significant anti-proliferation of AML cell lines (HL-60 and MOLM-16 with IC50 values of 0.092 μM and 0.084 μM, respectively) in vitro. Furthermore, FD274 demonstrated dose-dependent inhibition of tumor growth in the HL-60 xenograft model in vivo, with 91% inhibition of tumor growth at an intraperitoneal injection dose of 10 mg/kg and no observable toxicity. All of these results suggest that FD274 has potential for further development as a promising PI3K/mTOR targeted anti-AML drug candidate.
Collapse
Affiliation(s)
- Chengbin Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China; Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Yi Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Tianze Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yunjian Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaofeng Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yongtai Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yu Jia
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingli Deng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
6
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
7
|
Joshi DC, Gosse C, Huang SY, Lin JH. A Curvilinear-Path Umbrella Sampling Approach to Characterizing the Interactions Between Rapamycin and Three FKBP12 Variants. Front Mol Biosci 2022; 9:879000. [PMID: 35874613 PMCID: PMC9304761 DOI: 10.3389/fmolb.2022.879000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Rapamycin is an immunosuppressant macrolide that exhibits anti-proliferative properties through inhibiting the mTOR kinase. In fact, the drug first associates with the FKBP12 enzyme before interacting with the FRB domain of its target. Despite the availability of structural and thermodynamic information on the interaction of FKBP12 with rapamycin, the energetic and mechanistic understanding of this process is still incomplete. We recently reported a multiple-walker umbrella sampling simulation approach to characterizing the protein–protein interaction energetics along curvilinear paths. In the present paper, we extend our investigations to a protein-small molecule duo, the FKBP12•rapamycin complex. We estimate the binding free energies of rapamycin with wild-type FKBP12 and two mutants in which a hydrogen bond has been removed, D37V and Y82F. Furthermore, the underlying mechanistic details are analyzed. The calculated standard free energies of binding agree well with the experimental data, and the roles of the hydrogen bonds are shown to be quite different for each of these two mutated residues. On one hand, removing the carboxylate group of D37 strongly destabilizes the association; on the other hand, the hydroxyl group of Y82 is nearly unnecessary for the stability of the complex because some nonconventional, cryptic, indirect interaction mechanisms seem to be at work.
Collapse
Affiliation(s)
| | - Charlie Gosse
- Institut de Biologie de l’Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Shu-Yu Huang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Jung-Hsin Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center, National Biotechnology Research Park, Academia Sinica, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- College of Engineering Sciences, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Jung-Hsin Lin,
| |
Collapse
|
8
|
Ponatinib, Lestaurtinib and mTOR/PI3K inhibitors are promising repurposing candidates against Entamoeba histolytica. Antimicrob Agents Chemother 2021; 66:e0120721. [PMID: 34871094 DOI: 10.1128/aac.01207-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysentery caused by Entamoeba histolytica affects millions of people annually. Current treatment regimens are based on metronidazole to treat invasive parasites combined with paromomycin for luminal parasites. Issues with treatment include significant side effects, inability to easily treat breastfeeding and pregnant women, the use of two sequential agents, and concern that all therapy is based on nitroimidazole agents with no alternatives if clinical resistance emerges. Thus, the need for new drugs against amebiasis is urgent. To identify new therapeutic candidates, we screened the ReFRAME library (11,948 compounds assembled for Repurposing, Focused Rescue, and Accelerated Medchem) against E. histolytica trophozoites. We identified 159 hits in the primary screen at 10 μM and 46 compounds were confirmed in secondary assays. Overall, 26 were selected as priority molecules for further investigation including 6 FDA approved, 5 orphan designation, and 15 which are currently in clinical trials (3 phase III, 7 phase II and 5 phase I). We found that all 26 compounds are active against metronidazole resistant E. histolytica and 24 are able to block parasite recrudescence after drug removal. Additionally, 14 are able to inhibit encystation and 2 (lestaurtinib and LY-2874455) are active against mature cysts. Two classes of compounds are most interesting for further investigations: the Bcr-Abl TK inhibitors, with the ponatinib (EC50 0.39) as most potent and mTOR or PI3K inhibitors with 8 compounds in clinical development, of which 4 have nanomolar potency. Overall, these are promising candidates and represent a significant advance for drug development against E. histolytica.
Collapse
|
9
|
Nian Z, Zheng X, Dou Y, Du X, Zhou L, Fu B, Sun R, Tian Z, Wei H. Rapamycin Pretreatment Rescues the Bone Marrow AML Cell Elimination Capacity of CAR-T Cells. Clin Cancer Res 2021; 27:6026-6038. [PMID: 34233960 PMCID: PMC9401534 DOI: 10.1158/1078-0432.ccr-21-0452] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Ongoing clinical trials show limited efficacy for Chimeric antigen receptor (CAR) T treatment for acute myeloid leukemia (AML). The aim of this study was to identify potential causes of the reported limited efficacy from CAR-T therapies against AML. EXPERIMENTAL DESIGN We generated CAR-T cells targeting Epithelial cell adhesion molecule (EpCAM) and evaluated their killing activity against AML cells. We examined the impacts of modulating mTORC1 and mTORC2 signaling in CAR-T cells in terms of CXCR4 levels. We examined the effects of a rapamycin pretreatment of EpCAM CAR-T cells (during ex vivo expansion) and assessed the in vivo antitumor efficacy of rapamycin-pretreated EpCAM CAR-T cells (including CXCR4 knockdown cells) and CD33 CAR-T cells in leukemia xenograft mouse models. RESULTS EpCAM CAR-T exhibited killing activity against AML cells but failed to eliminate AML cells in bone marrow. Subsequent investigations revealed that aberrantly activated mTORC1 signaling in CAR-T cells results in decreased bone marrow infiltration and decreased the levels of the rapamycin target CXCR4. Attenuating mTORC1 activity with the rapamycin pretreatment increased the capacity of CAR-T cells to infiltrate bone marrow and enhanced the extent of bone marrow AML cell elimination in leukemia xenograft mouse models. CXCR4 knockdown experiments showed that CXCR4 contributes to the enhanced bone marrow infiltration capacity of EpCAM CAR-T cells and the observed reduction in bone marrow AML cells. CONCLUSIONS Our study reveals a potential cause for the limited efficacy of CAR-T reported from current AML clinical trials and illustrates an easy-to-implement pretreatment strategy, which enhances the anti-AML efficacy of CAR-T cells.See related commentary by Maiti and Daver, p. 5739.
Collapse
Affiliation(s)
- Zhigang Nian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Corresponding Authors: Haiming Wei, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China. Phone: 0551-6360-7379; E-mail: ; and Xiaohu Zheng, E-mail:
| | - Yingchao Dou
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xianghui Du
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Li Zhou
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Corresponding Authors: Haiming Wei, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China. Phone: 0551-6360-7379; E-mail: ; and Xiaohu Zheng, E-mail:
| |
Collapse
|
10
|
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small Molecule Kinase Inhibitor Drugs (1995-2021): Medical Indication, Pharmacology, and Synthesis. J Med Chem 2021; 65:1047-1131. [PMID: 34624192 DOI: 10.1021/acs.jmedchem.1c00963] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.
Collapse
Affiliation(s)
- Cecilia C Ayala-Aguilera
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Stephen Croke
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| |
Collapse
|
11
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
12
|
Giraud F, Pereira E, Anizon F, Moreau P. Recent Advances in Pain Management: Relevant Protein Kinases and Their Inhibitors. Molecules 2021; 26:molecules26092696. [PMID: 34064521 PMCID: PMC8124620 DOI: 10.3390/molecules26092696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to underline the protein kinases that have been established, either in fundamental approach or clinical trials, as potential biological targets in pain management. Protein kinases are presented according to their group in the human kinome: TK (Trk, RET, EGFR, JAK, VEGFR, SFK, BCR-Abl), CMGC (p38 MAPK, MEK, ERK, JNK, ASK1, CDK, CLK2, DYRK1A, GSK3, CK2), AGC (PKA, PKB, PKC, PKMζ, PKG, ROCK), CAMK, CK1 and atypical/other protein kinases (IKK, mTOR). Examples of small molecule inhibitors of these biological targets, demonstrating an analgesic effect, are described. Altogether, this review demonstrates the fundamental role that protein kinase inhibitors could play in the development of new pain treatments.
Collapse
|
13
|
el Hage A, Dormond O. Combining mTOR Inhibitors and T Cell-Based Immunotherapies in Cancer Treatment. Cancers (Basel) 2021; 13:1359. [PMID: 33802831 PMCID: PMC8002586 DOI: 10.3390/cancers13061359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
mTOR regulates several processes that control tumor development, including cancer cell growth, angiogenesis and the immune response to tumor. Accordingly, mTOR inhibitors have been thoroughly explored in cancer therapy but have failed to provide long-lasting anticancer benefits. Several resistance mechanisms that counteract the antitumor effect of mTOR inhibitors have been identified and have highlighted the need to use mTOR inhibitors in combination therapies. In this context, emerging evidence has demonstrated that mTOR inhibitors, despite their immunosuppressive properties, provide anticancer benefits to immunotherapies. In fact, mTOR inhibitors also display immunostimulatory effects, in particular by promoting memory CD8+ T cell generation. Hence, mTOR inhibitors represent a therapeutic opportunity to promote antitumor CD8 responses and to boost the efficacy of different modalities of cancer immunotherapy. In this context, strategies to reduce the immunosuppressive activity of mTOR inhibitors and therefore to shift the immune response toward antitumor immunity will be useful. In this review, we present the different classes of mTOR inhibitors and discuss their effect on immune cells by focusing mainly on CD8+ T cells. We further provide an overview of the different preclinical studies that investigated the anticancer effects of mTOR inhibitors combined to immunotherapies.
Collapse
Affiliation(s)
| | - Olivier Dormond
- Department of Visceral Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
14
|
Exner S, Arrey G, Prasad V, Grötzinger C. mTOR Inhibitors as Radiosensitizers in Neuroendocrine Neoplasms. Front Oncol 2021; 10:578380. [PMID: 33628728 PMCID: PMC7897674 DOI: 10.3389/fonc.2020.578380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Peptide receptor radioligand therapy (PRRT) has evolved as an important second-line treatment option in the management of inoperable and metastatic neuroendocrine neoplasms (NEN). Though high radiation doses can be delivered to the tumors, complete remission is still rare. Radiosensitization prior to PRRT is therefore considered to be a promising strategy to improve the treatment effect. In this study, effect and mechanism of mTOR inhibitors were investigated in a comprehensive panel of five NEN cell lines (BON, QGP-1, LCC-18, H727, UMC-11), employing assays for cellular proliferation, clonogenic survival, cell cycle modification and signaling. mTOR inhibition lead to growth arrest with a biphasic concentration-response pattern: a partial response at approximately 1 nM and full response at micromolar concentrations (8-48 µM). All cell lines demonstrated elevated p70S6K phosphorylation yet also increased phosphorylation of counterregulatory Akt. The pulmonary NEN cell line UMC-11 showed the lowest induction of phospho-Akt and strongest growth arrest by mTOR inhibitors. Radiation sensitivity of the cells (50% reduction versus control) was found to range between 4 and 8 Gy. Further, mTOR inhibition was employed together with irradiation to evaluate radiosensitizing effects of this combination treatment. mTOR inhibition was found to radiosensitize all five NEN cells in an additive manner with a moderate overall effect. The radiation-induced G2/M arrest was diminished under combination treatment, leading to an increased G1 arrest. Further investigation involving a suitable animal model as well as radioligand application such as 177Lu-DOTATATE or 177Lu-DOTATOC will have to demonstrate the full potential of this strategy for radiosensitization in NEN.
Collapse
Affiliation(s)
- Samantha Exner
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gerard Arrey
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vikas Prasad
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Kangussu-Marcolino MM, Ehrenkaufer GM, Chen E, Debnath A, Singh U. Identification of plicamycin, TG02, panobinostat, lestaurtinib, and GDC-0084 as promising compounds for the treatment of central nervous system infections caused by the free-living amebae Naegleria, Acanthamoeba and Balamuthia. Int J Parasitol Drugs Drug Resist 2019; 11:80-94. [PMID: 31707263 PMCID: PMC6849155 DOI: 10.1016/j.ijpddr.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
The free-living amebae Naegleria, Acanthamoeba, and Balamuthia cause rare but life-threatening infections. All three parasites can cause meningoencephalitis. Acanthamoeba can also cause chronic keratitis and both Balamuthia and Acanthamoeba can cause skin and systemic infections. There are minimal drug development pipelines for these pathogens despite a lack of available treatment regimens and high fatality rates. To identify anti-amebic drugs, we screened 159 compounds from a high-value repurposed library against trophozoites of the three amebae. Our efforts identified 38 compounds with activity against at least one ameba. Multiple drugs that bind the ATP-binding pocket of mTOR and PI3K are active, highlighting these compounds as important inhibitors of these parasites. Importantly, 24 active compounds have progressed at least to phase II clinical studies and overall 15 compounds were active against all three amebae. Based on central nervous system (CNS) penetration or exceptional potency against one amebic species, we identified sixteen priority compounds for the treatment of meningoencephalitis caused by these pathogens. The top five compounds are (i) plicamycin, active against all three free-living amebae and previously U.S. Food and Drug Administration (FDA) approved, (ii) TG02, active against all three amebae, (iii and iv) FDA-approved panobinostat and FDA orphan drug lestaurtinib, both highly potent against Naegleria, and (v) GDC-0084, a CNS penetrant mTOR inhibitor, active against at least two of the three amebae. These results set the stage for further investigation of these clinically advanced compounds for treatment of infections caused by the free-living amebae, including treatment of the highly fatal meningoencephalitis.
Collapse
Affiliation(s)
- Monica M Kangussu-Marcolino
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Gretchen M Ehrenkaufer
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Emily Chen
- uHTS Laboratory Rm 101, 11119 N Torrey Pines Rd. Calibr, A Division of the Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA, 94305, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Chen Z, Yang H, Li Z, Xia Q, Nie Y. Temsirolimus as a dual inhibitor of retinoblastoma and angiogenesis via targeting mTOR signalling. Biochem Biophys Res Commun 2019; 516:726-732. [PMID: 31253398 DOI: 10.1016/j.bbrc.2019.06.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
Targeting the mammalian target of rapamycin (mTOR) is a promising strategy for cancer therapy. Temsirolimus, a FDA-approved anticancer drug with efficacy in certain solid tumors and hematologic malignancies, is a potent mTOR inhibitor. In this work, we are the first to provide preclinical evidence that temsirolimus is an attractive candidate for retinoblastoma treatment as a dual inhibitor of retinoblastoma and angiogenesis. We show that temsirolimus selectively inhibits growth, survival and migration of retinoblastoma cells while sparing normal retinal and fibroblast cells, with IC50 value that is within the clinically achievable range. Temsirolimus potently inhibits retinal angiogenesis via targeting biological functions of retinal endothelial cells. Our mechanism analysis demonstrates that temsirolimus inhibits retinoblastoma and angiogenesis via suppressing mTOR signalling and secretion of proangiogenic cytokines. In line with in vitro data, we further demonstrate the inhibitory effects of temsirolimus on retinoblastoma and angiogenesis in in vivo xenograft mouse model. Our findings provide a preclinical rationale to explore temsirolimus as a strategy to treat retinoblastoma and highlight the therapeutic value of targeting mTOR in retinoblastoma.
Collapse
Affiliation(s)
- Zhen Chen
- The Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| | - Hongxia Yang
- The Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China, 430060
| | - Qinyun Xia
- The Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuhong Nie
- The Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| |
Collapse
|
17
|
Dietz KJ, Wesemann C, Wegener M, Seidel T. Toward an Integrated Understanding of Retrograde Control of Photosynthesis. Antioxid Redox Signal 2019; 30:1186-1205. [PMID: 29463103 DOI: 10.1089/ars.2018.7519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Photosynthesis takes place in the chloroplast of eukaryotes, which occupies a large portion of the photosynthetic cell. The chloroplast function and integrity depend on intensive material and signal exchange between all genetic compartments and conditionally secure efficient photosynthesis and high fitness. Recent Advances: During the last two decades, the concept of mutual control of plastid performance by extraplastidic anterograde signals acting on the chloroplast and the feedback from the chloroplast to the extraplastidic space by retrograde signals has been profoundly revised and expanded. It has become clear that a complex set of diverse signals is released from the chloroplast and exceeds the historically proposed small number of information signals. Thus, it is also recognized that redox compounds and reactive oxygen species play a decisive role in retrograde signaling. CRITICAL ISSUES The diversity of processes controlled or modulated by the retrograde network covers all molecular levels, including RNA fate and translation, and also includes subcellular heterogeneity, indirect gating of other organelles' metabolism, and specific signaling routes and pathways, previously not considered. All these processes must be integrated for optimal adjustment of the chloroplast processes. Thus, evidence is presented suggesting that retrograde signaling affects translation, stress granule, and processing body (P-body) dynamics. FUTURE DIRECTIONS Redundancy of signal transduction elements, parallelisms of pathways, and conditionally alternative mechanisms generate a robust network and system that only tentatively can be assessed by use of single-site mutants.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Corinna Wesemann
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Melanie Wegener
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Thorsten Seidel
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
18
|
Abstract
Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity in vitro Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.
Collapse
|
19
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
20
|
Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat 2018; 169:397-406. [DOI: 10.1007/s10549-018-4697-y] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
|
21
|
You K, Yi Y, Kwak SJ, Seong YS. Inhibition of RPTOR overcomes resistance to EGFR inhibition in triple-negative breast cancer cells. Int J Oncol 2018; 52:828-840. [DOI: 10.3892/ijo.2018.4244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kyu You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Yong Yi
- ExoCoBio Inc, Seoul 08594, Republic of Korea
| | - Sahng-June Kwak
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
22
|
Orellana A, García-González V, López R, Pascual-Guiral S, Lozoya E, Díaz J, Casals D, Barrena A, Paris S, Andrés M, Segarra V, Vilella D, Malhotra R, Eastwood P, Planagumà A, Miralpeix M, Nueda A. Application of a phenotypic drug discovery strategy to identify biological and chemical starting points for inhibition of TSLP production in lung epithelial cells. PLoS One 2018; 13:e0189247. [PMID: 29320511 PMCID: PMC5761851 DOI: 10.1371/journal.pone.0189247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a cytokine released by human lung epithelium in response to external insult. Considered as a master switch in T helper 2 lymphocyte (Th2) mediated responses, TSLP is believed to play a key role in allergic diseases including asthma. The aim of this study was to use a phenotypic approach to identify new biological and chemical starting points for inhibition of TSLP production in human bronchial epithelial cells (NHBE), with the objective of reducing Th2-mediated airway inflammation. To this end, a phenotypic screen was performed using poly I:C / IL-4 stimulated NHBE cells interrogated with a 44,974 compound library. As a result, 85 hits which downregulated TSLP protein and mRNA levels were identified and a representative subset of 7 hits was selected for further characterization. These molecules inhibited the activity of several members of the MAPK, PI3K and tyrosine kinase families and some of them have been reported as modulators of cellular phenotypic endpoints like cell-cell contacts, microtubule polymerization and caspase activation. Characterization of the biological profile of the hits suggested that mTOR could be a key activity involved in the regulation of TSLP production in NHBE cells. Among other targeted kinases, inhibition of p38 MAPK and JAK kinases showed different degrees of correlation with TSLP downregulation, while Syk kinase did not seem to be related. Overall, inhibition of TSLP production by the selected hits, rather than resulting from inhibition of single isolated targets, appeared to be due to a combination of activities with different levels of relevance. Finally, a hit expansion exercise yielded additional active compounds that could be amenable to further optimization, providing an opportunity to dissociate TSLP inhibition from other non-desired activities. This study illustrates the potential of phenotypic drug discovery to complement target based approaches by providing new chemistry and biology leads.
Collapse
Affiliation(s)
- Adelina Orellana
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Rosa López
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Estrella Lozoya
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Julia Díaz
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Daniel Casals
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Antolín Barrena
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Stephane Paris
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Miriam Andrés
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Victor Segarra
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Dolors Vilella
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Rajneesh Malhotra
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Paul Eastwood
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | - Anna Planagumà
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Arsenio Nueda
- Almirall R&D Center, Almirall S.A., Sant Feliu de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
23
|
Nishikawa M, Miyake H, Gleave M, Fujisawa M. Effect of Targeting Clusterin Using OGX-011 on Antitumor Activity of Temsirolimus in a Human Renal Cell Carcinoma Model. Target Oncol 2017; 12:69-79. [PMID: 27526062 DOI: 10.1007/s11523-016-0448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND It has not been well documented that the modulation of stress response mediates the efficacy of the mammalian target of rapamycin (mTOR) inhibitor in renal cell carcinoma (RCC). OBJECTIVE The objective of this study was to investigate whether the activity of the mTOR inhibitor temsirolimus against RCC could be enhanced by OGX-011, an antisense oligodeoxynucleotide (ODN) targeting the stress-activated chaperone clusterin. METHODS We investigated the efficacy of combined treatment with temsirolimus plus OGX-011 in a human RCC Caki-1 model focusing on the effects on apoptotic and autophagic pathways. RESULTS Although clusterin expression was increased by temsirolims, additional treatment of Caki-1 with OGX-011 significantly inhibited clusterin upregulation (p < 0.05). Combined treatment of temsirolimus and OGX-011 synergistically enhanced the sensitivity of Caki-1 to temsirolimus (p < 0.01), reducing the IC50 by approximately 50 %. Apoptotic changes were marked in Caki-1 following combined treatment with a sublethal dose of temsirolimus and OGX-011, accompanying the significant downregulation of Mcl-1 (p < 0.05), but not with either agent alone. Furthermore, this combined treatment markedly blocked the temsirolimus-induced activation of autophagy in Caki-1 (p < 0.01). In-vivo systemic administration of temsirolimus plus OGX-011 significantly inhibited the growth of Caki-1 tumors compared with that of temsirolimus plus control ODN (p < 0.05). CONCLUSIONS Silencing of clusterin using OGX-011 resulted in the further enhancement of proapoptotic activity as well as the marked attenuation of the autophagic pathway induced by temsirolimus in a human RCC model. Thus, the combined use of OGX-011 could be a promising strategy through the enhanced cytotoxic activity of temsirolimus against RCC.
Collapse
Affiliation(s)
- Masatomo Nishikawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, 431-3192, Japan.
| | - Martin Gleave
- Vancouver Prostate Centre and University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
24
|
Briggs JW, Ren L, Chakrabarti KR, Tsai YC, Weissman AM, Hansen RJ, Gustafson DL, Khan YA, Dinman JD, Khanna C. Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus. PLoS One 2017; 12:e0185089. [PMID: 28926611 PMCID: PMC5605117 DOI: 10.1371/journal.pone.0185089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/06/2017] [Indexed: 01/21/2023] Open
Abstract
Activation of the unfolded protein response (UPR) in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus) and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.
Collapse
Affiliation(s)
- Joseph W. Briggs
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Ling Ren
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kristi R. Chakrabarti
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ryan J. Hansen
- Colorado State University Flint Animal Cancer Center, Fort Collins, Colorado, United States of America
| | - Daniel L. Gustafson
- Colorado State University Flint Animal Cancer Center, Fort Collins, Colorado, United States of America
| | - Yousuf A. Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Chand Khanna
- Tumor Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
25
|
Goltsov A, Tashkandi G, Langdon SP, Harrison DJ, Bown JL. Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002. Eur J Pharm Sci 2017; 97:170-181. [PMID: 27832967 DOI: 10.1016/j.ejps.2016.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/28/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC50 on ATP concentration that allows prediction of the IC50 at different ATP concentrations in enzyme and cellular assays. Comparison of drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K/PTEN/AKT/mTOR1 network in order to understand mechanisms of drug sensitivity and resistance in different cancer cell lines. We suggest that using these models in a systems biology investigation of the PI3K/AKT/mTOR1 signalling in cancer cells can bridge the gap between direct drug target action and the therapeutic response to these drugs and their combinations.
Collapse
Affiliation(s)
- Alexey Goltsov
- School of Science, Engineering and Technology, University of Abertay, Dundee, UK.
| | - Ghassan Tashkandi
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | | | - James L Bown
- School of Science, Engineering and Technology, University of Abertay, Dundee, UK; School of Arts, Media and Computer Games, University of Abertay, Dundee, UK.
| |
Collapse
|
26
|
Abstract
The phosphoinositide 3-kinase (PI3K) pathway plays an integral role in many cellular processes and is frequently altered in cancer, contributing to tumor growth and survival. Small molecule inhibitors have been developed that target the three major nodes of this pathway: PI3K, AKT, and mammalian target of rapamycin. However, because oncogenic PI3K pathway activation is achieved in diverse, potentially redundant ways, the clinical efficacy of these inhibitors as monotherapies has, so far, been limited, despite demonstrating promising preclinical activity. Moreover, pathway activation is associated with resistance to other therapies; thus, in combination, PI3K pathway inhibitors could restore therapeutic sensitivity to these agents. To maximize therapeutic benefit, drug combinations and schedules must be explored to identify those with the highest efficacy and lowest toxicity overlap. In addition, defining appropriate patient subpopulations, for both monotherapy and drug combinations, will be important. However, identifying predictive biomarkers remains a challenge.
Collapse
|
27
|
Roohi A, Hojjat-Farsangi M. Recent advances in targeting mTOR signaling pathway using small molecule inhibitors. J Drug Target 2016; 25:189-201. [PMID: 27632356 DOI: 10.1080/1061186x.2016.1236112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted-based cancer therapy (TBCT) or personalized medicine is one of the main treatment modalities for cancer that has been developed to decrease the undesirable effects of chemotherapy. Targeted therapy inhibits the growth of tumor cells by interrupting with particular molecules required for tumorigenesis and proliferation of tumor cells rather than interfering with dividing normal cells. Therefore, targeted therapies are anticipated to be more efficient than former tumor treatment agents with minimal side effects on non-tumor cells. Small molecule inhibitors (SMIs) are currently one of the most investigated anti-tumor agents of TBCT. These small organic agents target several vital molecules involved in cell biological processes and induce target cells apoptosis and necrosis. Mechanistic (mammalian) target of rapamycin (mTOR) complexes (mTORC1/2) control different intracellular processes, including growth, proliferation, angiogenesis and metabolism. Signaling pathways, in which mTOR complexes are involved in are usually dysregulated in various tumors and have been shown to be ideal targets for SMIs. Currently, different mTOR-SMIs are in the clinic for the treatment of cancer patients, and several others are in preclinical or clinical settings. In this review, we summarize recent advances in developing different mTOR inhibitors, which are currently in preclinical and clinical investigations or have been approved for cancer treatment.
Collapse
Affiliation(s)
- Azam Roohi
- a Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Hojjat-Farsangi
- b Department of Oncology-Pathology, Immune and Gene therapy Lab , Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute , Stockholm , Sweden.,c Department of Immunology, School of Medicine , Bushehr University of Medical Sciences , Bushehr , Iran
| |
Collapse
|
28
|
Pinto-Leite R, Arantes-Rodrigues R, Sousa N, Oliveira PA, Santos L. mTOR inhibitors in urinary bladder cancer. Tumour Biol 2016; 37:11541-11551. [PMID: 27235118 DOI: 10.1007/s13277-016-5083-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite the great scientific advances that have been made in cancer treatment, there is still much to do, particularly with regard to urinary bladder cancer. Some of the drugs used in urinary bladder cancer treatment have been in use for more than 30 years and show reduced effectiveness and high recurrence rates. There have been several attempts to find new and more effective drugs, to be used alone or in combination with the drugs already in use, in order to overcome this situation.The biologically important mammalian target of rapamycin (mTOR) pathway is altered in cancer and mTOR inhibitors have raised many expectations as potentially important anticancer drugs. In this article, the authors will review the mTOR pathway and present their experiences of the use of some mTOR inhibitors, sirolimus, everolimus and temsirolimus, in isolation and in conjunction with non-mTOR inhibitors cisplatin and gemcitabine, on urinary bladder tumour cell lines. The non-muscle-invasive cell line, 5637, is the only one that exhibits a small alteration in the mTOR and AKT phosphorylation after rapalogs exposure. Also, there was a small inhibition of cell proliferation. With gemcitabine plus everolimus or temsirolimus, the results were encouraging as a more effective response was noticed with both combinations, especially in the 5637 and T24 cell lines. Cisplatin associated with everolimus or temsirolimus also gave promising results, as an antiproliferative effect was observed when the drugs were associated, in particular on the 5637 and HT1376 cell lines. Everolimus or temsirolimus in conjunction with gemcitabine or cisplatin could have an important role to play in urinary bladder cancer treatment, depending on the tumour grading.
Collapse
Affiliation(s)
- R Pinto-Leite
- Genetic Service, Cytogenetic Laboratory, Hospital Center of Trás-os-Montes and Alto Douro, Vila Real, Portugal. .,Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.
| | - R Arantes-Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Institute for Research and Innovation in Health (I3S), Porto, Portugal
| | - Nuno Sousa
- Health School, University Fernando Pessoa, Porto, Portugal
| | - P A Oliveira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School, University Fernando Pessoa, Porto, Portugal.,Medical Oncology Department, Portuguese Institute of Oncology, Porto, Portugal
| |
Collapse
|
29
|
Abstract
mTOR (mechanistic target of rapamycin) functions as the central regulator for cell proliferation, growth and survival. Up-regulation of proteins regulating mTOR, as well as its downstream targets, has been reported in various cancers. This has promoted the development of anti-cancer therapies targeting mTOR, namely fungal macrolide rapamycin, a naturally occurring mTOR inhibitor, and its analogues (rapalogues). One such rapalogue, everolimus, has been approved in the clinical treatment of renal and breast cancers. Although results have demonstrated that these mTOR inhibitors are effective in attenuating cell growth of cancer cells under in vitro and in vivo conditions, subsequent sporadic response to rapalogues therapy in clinical trials has promoted researchers to look further into the complex understanding of the dynamics of mTOR regulation in the tumour environment. Limitations of these rapalogues include the sensitivity of tumour subsets to mTOR inhibition. Additionally, it is well known that rapamycin and its rapalogues mediate their effects by inhibiting mTORC (mTOR complex) 1, with limited or no effect on mTORC2 activity. The present review summarizes the pre-clinical, clinical and recent discoveries, with emphasis on the cellular and molecular effects of everolimus in cancer therapy.
Collapse
|
30
|
Altman MK, Alshamrani AA, Jia W, Nguyen HT, Fambrough JM, Tran SK, Patel MB, Hoseinzadeh P, Beedle AM, Murph MM. Suppression of the GTPase-activating protein RGS10 increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Cancer Lett 2015; 369:175-83. [PMID: 26319900 DOI: 10.1016/j.canlet.2015.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
The regulator of G protein signaling 10 (RGS10) protein is a GTPase activating protein that accelerates the hydrolysis of GTP and therefore canonically inactivates G proteins, ultimately terminating signaling. Rheb is a small GTPase protein that shuttles between its GDP- and GTP-bound forms to activate mTOR. Since RGS10 suppression augments ovarian cancer cell viability, we sought to elucidate the molecular mechanism. Following RGS10 suppression in serum-free conditions, phosphorylation of mTOR, the eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), p70S6K and S6 Ribosomal Protein appear. Furthermore, suppressing RGS10 increases activated Rheb, suggesting RGS10 antagonizes mTOR signaling via the small G-protein. The effects of RGS10 suppression are enhanced after stimulating cells with the growth factor, lysophosphatidic acid, and reduced with mTOR inhibitors, temsirolimus and INK-128. Suppression of RGS10 leads to an increase in cell proliferation, even in the presence of etoposide. In summary, the RGS10 suppression increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Our results suggest that RGS10 could serve in a novel, and previously unknown, role by accelerating the hydrolysis of GTP from Rheb in ovarian cancer cells.
Collapse
Affiliation(s)
- Molly K Altman
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Ali A Alshamrani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Wei Jia
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Jada M Fambrough
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Sterling K Tran
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Mihir B Patel
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Pooya Hoseinzadeh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA
| | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, 240 W. Green Street, Athens, GA 30602, USA.
| |
Collapse
|
31
|
Rapamycin increases CCN2 expression of lung fibroblasts via phosphoinositide 3-kinase. J Transl Med 2015; 95:846-59. [PMID: 26192087 DOI: 10.1038/labinvest.2015.68] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/27/2015] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Excessive production of connective tissue growth factor (CTGF, CCN2) and increased motor ability of the activated fibroblast phenotype contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, molecules and signal pathways regulating CCN2 expression and migration of lung fibroblasts are still elusive. We hypothesize that rapamycin, via binding and blocking mammalian target of rapamycin (mTOR) complex (mTORC), affects CCN2 expression and migration of lung fibroblasts in vitro. Primary normal and fibrotic human lung fibroblasts were isolated from lung tissues of three patients with primary spontaneous pneumothorax and three with IPF. Cells were incubated with regular medium, or medium containing rapamycin, human recombinant transforming growth factor (TGF)-β1, or both. CCN2 and tissue inhibitor of metalloproteinase (TIMP)-1 expression in cells or supernatant was detected. Wound healing and migration assay was used to measure the migratory potential. TGF-β type I receptor (TβRI)/Smad inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. We demonstrated that rapamycin amplified basal or TGF-β1-induced CCN2 mRNA and protein expression in normal or fibrotic fibroblasts by Smad-independent but PI3K-dependent pathway. Additionally, rapamycin also enhanced TIMP-1 expression as indicated by ELISA. However, wound healing and migrating assay showed rapamycin did not affect the mobility of fibroblasts. Collectively, this study implies a significant fibrogenic induction activity of rapamycin by activating AKT and inducing CCN2 expression in vitro and provides the possible mechanisms for the in vivo findings which previously showed no antifibrotic effect of rapamycin on lung fibrosis.
Collapse
|
32
|
Chon HJ, Bae KJ, Lee Y, Kim J. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front Pharmacol 2015; 6:70. [PMID: 25873900 PMCID: PMC4379896 DOI: 10.3389/fphar.2015.00070] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
The casein kinase 2 (CK2) protein kinase is a pro-survival kinase and therapeutic target in treatment of various human cancers. CK2 overexpression has been demonstrated in hematological malignancies, including chronic lymphocytic leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma. CX-4945, also known as Silmitasertib, is an orally administered, highly specific, ATP-competitive inhibitor of CK2. CX-4945 induces cytotoxicity and apoptosis and is currently being evaluated in clinical trials for treatment of many cancer types. In the past 2 years, the focus on the therapeutic potential of CX-4945 has shifted from solid tumors to hematological malignancies. CX-4945 exerts anti-proliferative effects in hematological tumors by downregulating CK2 expression and suppressing activation of CK2-mediated PI3K/Akt/mTOR signaling pathways. Furthermore, combination of CX-4945 with other inhibitors yielded synergistic effects in cell death induction. These new findings demonstrate that CK2 overexpression contributes to blood cancer cell survival and resistance to chemotherapy. Combinatorial use of CX-4945 is a promising therapeutic tool for treatment of hematological malignancies.
Collapse
Affiliation(s)
- Hae J Chon
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Kyoung J Bae
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Yura Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| |
Collapse
|
33
|
Price KAR, Cohen EEW. Mechanisms of and therapeutic approaches for overcoming resistance to epidermal growth factor receptor (EGFR)-targeted therapy in squamous cell carcinoma of the head and neck (SCCHN). Oral Oncol 2015; 51:399-408. [PMID: 25725588 DOI: 10.1016/j.oraloncology.2015.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 01/07/2023]
Abstract
The majority of squamous cell carcinoma of the head and neck (SCCHN) overexpress epidermal growth factor receptor (EGFR), which has been associated with poor treatment response and survival. However, only modest success has been achieved with the use of single agents that target EGFR, possibly due to primary and acquired resistance. This review will discuss key mechanisms of and therapeutic approaches to overcoming resistance to EGFR-targeted therapy in SCCHN. Recent preclinical and clinical investigations have demonstrated that other ErbB family receptors (eg, HER2 and HER3) and other horizontal resistance mechanisms, as well as activation of downstream signaling pathways, epigenetic events, and nuclear EGFR, are possible mediators of resistance to anti-EGFR therapeutics. Key downstream pathways that may be implicated in EGFR resistance include phosphatidylinositol-3-kinase/protein kinase B, vascular endothelial growth factor (VEGF), and mammalian target of rapamycin (mTOR). Multiple agents that target EGFR and other ErbB family members (ie, lapatinib, afatinib, and dacomitinib), as well as combination therapies that target EGFR and selected other pathways (eg, VEGF, mTOR, and c-Met) are being investigated clinically. In addition, several phase II and III trials continue to investigate strategies to enhance the efficacy of EGFR-targeted therapy in SCCHN.
Collapse
Affiliation(s)
| | - Ezra E W Cohen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
Gruber JJ, Colevas AD. Differentiated thyroid cancer: focus on emerging treatments for radioactive iodine-refractory patients. Oncologist 2015; 20:113-26. [PMID: 25616432 PMCID: PMC4319630 DOI: 10.1634/theoncologist.2014-0313] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/01/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The treatment of differentiated thyroid cancer refractory to radioactive iodine (RAI) had been hampered by few effective therapies. Recently, tyrosine kinase inhibitors (TKIs) have shown activity in this disease. Clinical guidance on the use of these agents in RAI-refractory thyroid cancer is warranted. MATERIALS AND METHODS Molecular mutations found in RAI-refractory thyroid cancer are summarized. Recent phase II and III clinical trial data for TKIs axitinib, lenvatinib, motesanib, pazopanib, sorafenib, sunitinib, and vandetinib are reviewed including efficacy and side effect profiles. Molecular targets and potencies of these agents are compared. Inhibitors of BRAF, mammalian target of rapamycin, and MEK are considered. RESULTS Routine testing for molecular alterations prior to therapy is not yet recommended. TKIs produce progression-free survival of approximately 1 year (range: 7.7-19.6 months) and partial response rates of up to 50% by Response Evaluation Criteria in Solid Tumors. Pazopanib and lenvatinib are the most active agents. The majority of patients experienced tumor shrinkage with TKIs. Common adverse toxicities affect dermatologic, gastrointestinal, and cardiovascular systems. CONCLUSION Multiple TKIs have activity in RAI-refractory differentiated thyroid cancer. Selection of a targeted agent should depend on disease trajectory, side effect profile, and goals of therapy.
Collapse
Affiliation(s)
- Joshua J Gruber
- Stanford Cancer Center, Stanford University Medical Center, Stanford, California, USA
| | - A Dimitrios Colevas
- Stanford Cancer Center, Stanford University Medical Center, Stanford, California, USA
| |
Collapse
|
35
|
mTOR kinase: a possible pharmacological target in the management of chronic pain. BIOMED RESEARCH INTERNATIONAL 2015; 2015:394257. [PMID: 25685786 PMCID: PMC4313067 DOI: 10.1155/2015/394257] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022]
Abstract
Chronic pain represents a major public health problem worldwide. Current pharmacological treatments for chronic pain syndromes, including neuropathic pain, are only partially effective, with significant pain relief achieved in 40-60% of patients. Recent studies suggest that the mammalian target of rapamycin (mTOR) kinase and downstream effectors may be implicated in the development of chronic inflammatory, neuropathic, and cancer pain. The expression and activity of mTOR have been detected in peripheral and central regions involved in pain transmission. mTOR immunoreactivity was found in primary sensory axons, in dorsal root ganglia (DRG), and in dorsal horn neurons. This kinase is a master regulator of protein synthesis, and it is critically involved in the regulation of several neuronal functions, including the synaptic plasticity that is a major mechanism leading to the development of chronic pain. Enhanced activation of this pathway is present in different experimental models of chronic pain. Consistently, pharmacological inhibition of the kinase activity turned out to have significant antinociceptive effects in several experimental models of inflammatory and neuropathic pain. We will review the main evidence from animal and human studies supporting the hypothesis that mTOR may be a novel pharmacological target for the management of chronic pain.
Collapse
|
36
|
Galat A, Thai R. Rapamycin-binding FKBP25 associates with diverse proteins that form large intracellular entities. Biochem Biophys Res Commun 2014; 450:1255-60. [DOI: 10.1016/j.bbrc.2014.06.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/22/2014] [Indexed: 11/25/2022]
|
37
|
Pinto-Leite R, Arantes-Rodrigues R, Ferreira R, Palmeira C, Oliveira PA, Santos L. Treatment of muscle invasive urinary bladders tumors: A potential role of the mTOR inhibitors. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Akcakanat A, Hong DS, Meric-Bernstam F. Targeting translation initiation in breast cancer. ACTA ACUST UNITED AC 2014; 2:e28968. [PMID: 26779407 PMCID: PMC4705830 DOI: 10.4161/trla.28968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/09/2014] [Accepted: 04/22/2014] [Indexed: 12/23/2022]
Abstract
Over the past 20 years, a better understanding of cancer biology, screening for early detection, improved adjuvant treatment, and targeted therapies have decreased the rate of breast cancer deaths. However, resistance to treatment is common, and new approaches are needed. Deregulation of translation initiation is associated with the commencement and progression of cancer. Often, translation initiation factors are overexpressed and the related signaling pathways activated in human tumors. Recently, a significant number of inhibitors that target translation factors and pathways have become available. These inhibitors are being tested alone or in combination with chemotherapeutic agents in clinical trials. The results are varied, and it is not yet clear which drug treatments most effectively inhibit tumor growth. This review highlights the pathways and downstream effects of the activation of translation and discusses targeting the control of translation initiation as a therapeutic approach in cancer, focusing on breast cancer clinical trials.
Collapse
Affiliation(s)
- Argun Akcakanat
- Department of Investigational Cancer Therapeutics; Houston, TX USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics; Houston, TX USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics; Houston, TX USA; Department of Surgical Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
39
|
Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci 2014; 7:28. [PMID: 24795562 PMCID: PMC4005960 DOI: 10.3389/fnmol.2014.00028] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/30/2014] [Indexed: 11/15/2022] Open
Abstract
Target of rapamycin (TOR) was first identified in yeast as a target molecule of rapamycin, an anti-fugal and immunosuppressant macrolide compound. In mammals, its orthologue is called mammalian TOR (mTOR). mTOR is a serine/threonine kinase that converges different extracellular stimuli, such as nutrients and growth factors, and diverges into several biochemical reactions, including translation, autophagy, transcription, and lipid synthesis among others. These biochemical reactions govern cell growth and cause cells to attain an anabolic state. Thus, the disruption of mTOR signaling is implicated in a wide array of diseases such as cancer, diabetes, and obesity. In the central nervous system, the mTOR signaling cascade is activated by nutrients, neurotrophic factors, and neurotransmitters that enhances protein (and possibly lipid) synthesis and suppresses autophagy. These processes contribute to normal neuronal growth by promoting their differentiation, neurite elongation and branching, and synaptic formation during development. Therefore, disruption of mTOR signaling may cause neuronal degeneration and abnormal neural development. While reduced mTOR signaling is associated with neurodegeneration, excess activation of mTOR signaling causes abnormal development of neurons and glia, leading to brain malformation. In this review, we first introduce the current state of molecular knowledge of mTOR complexes and signaling in general. We then describe mTOR activation in neurons, which leads to translational enhancement, and finally discuss the link between mTOR and normal/abnormal neuronal growth during development.
Collapse
Affiliation(s)
- Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| |
Collapse
|
40
|
Abstract
Cells possess adaptive biosynthetic systems to maintain cellular energy levels for survival under adverse environmental conditions. Autophagy is an evolutionarily conserved cellular catabolic process that breaks down and recycles cytosolic material including macromolecules and organelles through lysosomal degradation. This catabolic process, represented by macroautophagy, is induced by a variety of cellular stresses such as nutrient starvation, which causes a shortage of cellular energy for cells to maintain cellular homeostasis and essential biological activities. In contrast, upon nutrient availability, cells stimulate anabolic processes. The mechanistic/mammalian target of rapamycin, a serine/threonine protein kinase, is a key player in stimulating cellular anabolism in response to nutrients and growth factors, and plays a crucial role in suppressing autophagy activity. Growing evidence has suggested that autophagy activity is required for the maintenance and physiological functions of renal cells including proximal tubular cells and podocytes. In this article, we discuss recent progress in the regulation of autophagy by mechanistic/mammalian target of rapamycin signaling.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute, Department of Molecular and Integrative Physiology, Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
41
|
Danesi R, Boni JP, Ravaud A. Oral and intravenously administered mTOR inhibitors for metastatic renal cell carcinoma: Pharmacokinetic considerations and clinical implications. Cancer Treat Rev 2013; 39:784-92. [DOI: 10.1016/j.ctrv.2012.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
|
42
|
Tuval-Kochen L, Paglin S, Keshet G, Lerenthal Y, Nakar C, Golani T, Toren A, Yahalom J, Pfeffer R, Lawrence Y. Eukaryotic initiation factor 2α--a downstream effector of mammalian target of rapamycin--modulates DNA repair and cancer response to treatment. PLoS One 2013; 8:e77260. [PMID: 24204783 PMCID: PMC3808413 DOI: 10.1371/journal.pone.0077260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
In an effort to circumvent resistance to rapamycin – an mTOR inhibitor - we searched for novel rapamycin-downstream-targets that may be key players in the response of cancer cells to therapy. We found that rapamycin, at nM concentrations, increased phosphorylation of eukaryotic initiation factor (eIF) 2α in rapamycin-sensitive and estrogen-dependent MCF-7 cells, but had only a minimal effect on eIF2α phosphorylation in the rapamycin-insensitive triple-negative MDA-MB-231 cells. Addition of salubrinal – an inhibitor of eIF2α dephosphorylation – decreased expression of a surface marker associated with capacity for self renewal, increased senescence and induced clonogenic cell death, suggesting that excessive phosphorylation of eIF2α is detrimental to the cells' survival. Treating cells with salubrinal enhanced radiation-induced increase in eIF2α phosphorylation and clonogenic death and showed that irradiated cells are more sensitive to increased eIF2α phosphorylation than non-irradiated ones. Similar to salubrinal - the phosphomimetic eIF2α variant - S51D - increased sensitivity to radiation, and both abrogated radiation-induced increase in breast cancer type 1 susceptibility gene, thus implicating enhanced phosphorylation of eIF2α in modulation of DNA repair. Indeed, salubrinal inhibited non-homologous end joining as well as homologous recombination repair of double strand breaks that were induced by I-SceI in green fluorescent protein reporter plasmids. In addition to its effect on radiation, salubrinal enhanced eIF2α phosphorylation and clonogenic death in response to the histone deacetylase inhibitor – vorinostat. Finally, the catalytic competitive inhibitor of mTOR - Ku-0063794 - increased phosphorylation of eIF2α demonstrating further the involvement of mTOR activity in modulating eIF2α phosphorylation. These experiments suggest that excessive phosphorylation of eIF2α decreases survival of cancer cells; making eIF2α a worthy target for drug development, with the potential to enhance the cytotoxic effects of established anti-neoplastic therapies and circumvent resistance to rapalogues and possibly to other drugs that inhibit upstream components of the mTOR pathway.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cellular Senescence/drug effects
- Cinnamates/pharmacology
- DNA Repair/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/radiation effects
- Eukaryotic Initiation Factor-2/antagonists & inhibitors
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Female
- Gamma Rays
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Morpholines/pharmacology
- Peptidomimetics/pharmacology
- Phosphorylation/drug effects
- Phosphorylation/radiation effects
- Pyrimidines/pharmacology
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- Transgenes
- Vorinostat
Collapse
Affiliation(s)
- Liron Tuval-Kochen
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Paglin
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- * E-mail:
| | - Gilmor Keshet
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaniv Lerenthal
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Charles Nakar
- Department of Oncology, Memorial Sloan-Kettering, New-York, New York, United States of America
| | - Tamar Golani
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Amos Toren
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Tel-Hashomer, Ramat-Gan, Israel
| | - Joachim Yahalom
- Department of Oncology, Memorial Sloan-Kettering, New-York, New York, United States of America
| | - Raphael Pfeffer
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaacov Lawrence
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| |
Collapse
|
43
|
Zhang MH, Man HT, Zhao XD, Dong N, Ma SL. Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials (Review). Biomed Rep 2013; 2:41-52. [PMID: 24649067 DOI: 10.3892/br.2013.187] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
In this review, the advances in the study of breast cancer molecular classifications and the molecular signatures of the luminal subtypes A and B of breast cancer were summarized. Effective clinical outcomes depend mainly on successful preclinical diagnosis and therapeutic decisions. Over the last few years, the ever-expanding investigations focusing on breast cancer diagnosis and the clinical trials have provided accumulating information on the molecular characteristics of breast cancer. Specifically, among the estrogen receptor (ER)-positive types of breast cancer, the luminal subtype A breast cancer has been shown to exhibit good clinical outcomes with endocrine therapy, whereas the luminal subtype B breast cancer represents the more complicated type, diagnostically as well as therapeutically. Furthermore, even in luminal subtype A breast cancer, the resistance to treatment has become the major limitation for endocrine-based therapy. Accumulating molecular data and further clinical trials may enable more accurate diagnostic and therapeutic decisions. The molecular signatures have emerged as a powerful tool for future diagnosis and therapeutic decisions, although currently available data are limited.
Collapse
Affiliation(s)
- Mei Hong Zhang
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Hong Tao Man
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Xiao Dan Zhao
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Ni Dong
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Shi Liang Ma
- College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| |
Collapse
|
44
|
Temsirolimus improves cytotoxic efficacy of cisplatin and gemcitabine against urinary bladder cancer cell lines. Urol Oncol 2013; 32:41.e11-22. [PMID: 24035472 DOI: 10.1016/j.urolonc.2013.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To analyze the cytotoxic action of temsirolimus using 3 established human bladder cancer cell lines and to assess whether temsirolimus potentiates the anticancer activity of gemcitabine and cisplatin. METHODS Temsirolimus (500, 1,000, 2,000, and 4,000 nM), in isolation, and combined with gemcitabine (100 nM) and cisplatin (2.5 µg/ml), was given to 5637, T24, and HT1376 bladder cancer cell lines. Cell proliferation, autophagy, early apoptosis, and cell cycle distribution were analyzed after a 72-hour period. The expression of mammalian target of rapamycin baseline, Akt, and their phosphorylated forms, before and after treatment with temsirolimus, was evaluated by immunoblotting. RESULTS Temsirolimus slightly decreased the bladder cancer cell proliferation in all 3 cell lines. No significant differences in the expression of mammalian target of rapamycin, Akt, and their phosphorylated forms because of temsirolimus exposure were found in the 3 cell lines. As part of a combined regime along with gemcitabine, and especially with cisplatin, there was a more pronounced antiproliferative effect. This pattern of response was similar to the other parameters analyzed (increased autophagy and apoptosis). Also, in the combined regime, an enhanced cell cycle arrest in the G0/G1 phase was observed. The non-muscle invasive 5637 bladder cancer cell line was most sensitive to both combinations. CONCLUSIONS Temsirolimus makes a moderate contribution in terms of cell proliferation, apoptosis, and autophagy. However, it does potentiate the activity of gemcitabine and particularly cisplatin. Therefore, cisplatin- or gemcitabine-based chemotherapy regimen used in combination with temsirolimus to treat bladder cancer represents a novel and valuable treatment option, which should be tested for future studies in urinary bladder xenograft models.
Collapse
|
45
|
Miyake H, Harada KI, Kumano M, Fujisawa M. Assessment of efficacy, safety and quality of life of 55 patients with metastatic renal cell carcinoma treated with temsirolimus: a single-center experience in Japan. Int J Clin Oncol 2013; 19:679-85. [PMID: 24019183 DOI: 10.1007/s10147-013-0617-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND To evaluate experience of the use of temsirolimus for metastatic renal cell carcinoma (mRCC) in a single center in Japan. METHODS This study included 55 consecutive patients with mRCC who received temsirolimus in a routine clinical setting, and retrospectively reviewed the comprehensive outcomes of these patients. RESULTS Of the 55 patients, 20 had a Karnofsky performance status of ≤80, and 5, 41 and 9 were classified into favorable, intermediate and poor risk groups, respectively, according to the Memorial Sloan-Kettering Cancer Center model. Initially, 25 mg of temsirolimus was applied weekly; however, dose modification was required in 19 patients, resulting in a relative dose intensity of 90.5 % throughout this series. As the best responses to temsirolimus, 4, 44 and 7 were judged to have a partial response, stable disease and progressive disease, respectively. The median progression-free survival (PFS) and overall survival (OS) of these patients following the introduction of temsirolimus was 7.0 and 25.0 months, respectively. Of several factors examined, only the pretreatment C-reactive protein level was shown to be independently associated with both PFS and OS. The common adverse events related to temsirolimus corresponding to ≥grade 3 were anemia in 4, thrombocytopenia in 3, stomatitis in 3 and hyperglycemia in 3. Quality of life analysis using 36-Item Short Form showed that there were no significant differences in any scale scores between surveys performed before and 3 months after the introduction of temsirolimus. CONCLUSIONS Temsirolimus was well tolerated and facilitated comparatively favorable cancer control in Japanese patients with mRCC.
Collapse
Affiliation(s)
- Hideaki Miyake
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan,
| | | | | | | |
Collapse
|
46
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
47
|
Coiffier B. Clinical efficacy and management of temsirolimus in patients with relapsed or refractory mantle cell lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 13:351-9. [PMID: 23763923 DOI: 10.1016/j.clml.2013.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/10/2013] [Accepted: 04/17/2013] [Indexed: 11/30/2022]
Abstract
Most patients with mantle cell lymphoma (MCL) relapse within a few years of treatment. Conventional agents provide little benefit, thus identification of new therapies is critical to improve patient outcomes. Temsirolimus, an inhibitor of mammalian target of rapamycin, is an effective, well-tolerated option authorized in Europe for treatment of patients with relapsed/refractory MCL. Intravenous temsirolimus has been extensively studied in MCL and has consistently demonstrated single-agent antitumor activity. In the pivotal phase III trial, treatment with temsirolimus 175 mg weekly for 3 weeks followed by 75 mg weekly (175/75 mg) resulted in significant improvements in progression-free survival (P = .0009) and objective response rate (P = .002) vs. investigator's choice of therapy. Hematologic toxicities (thrombocytopenia, neutropenia) were the principal grade 3/4 adverse events associated with temsirolimus 175/75 mg. Other toxicities included increases in serum cholesterol and triglycerides, hyperglycemia, fatigue, and dyspnea. Overall, the safety profile of temsirolimus is acceptable in this setting, and most toxicities are manageable with dose modification or medical intervention. Clinical studies of temsirolimus in relapsed or refractory MCL patients aim to clarify the optimal treatment schedule and to assess rational combinations with other therapeutic agents, such as rituximab or chemotherapy. Practical considerations are discussed for the clinical use of temsirolimus in patients with MCL.
Collapse
Affiliation(s)
- Bertrand Coiffier
- Hematology Department, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France.
| |
Collapse
|
48
|
Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. mTOR kinase structure, mechanism and regulation. Nature 2013; 497:217-23. [PMID: 23636326 PMCID: PMC4512754 DOI: 10.1038/nature12122] [Citation(s) in RCA: 773] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/26/2013] [Indexed: 12/30/2022]
Abstract
The mammalian target of rapamycin (mTOR), a phosphoinositide 3-kinase-related protein kinase, controls cell growth in response to nutrients and growth factors and is frequently deregulated in cancer. Here we report co-crystal structures of a complex of truncated mTOR and mammalian lethal with SEC13 protein 8 (mLST8) with an ATP transition state mimic and with ATP-site inhibitors. The structures reveal an intrinsically active kinase conformation, with catalytic residues and a catalytic mechanism remarkably similar to canonical protein kinases. The active site is highly recessed owing to the FKBP12-rapamycin-binding (FRB) domain and an inhibitory helix protruding from the catalytic cleft. mTOR-activating mutations map to the structural framework that holds these elements in place, indicating that the kinase is controlled by restricted access. In vitro biochemistry shows that the FRB domain acts as a gatekeeper, with its rapamycin-binding site interacting with substrates to grant them access to the restricted active site. Rapamycin-FKBP12 inhibits the kinase by directly blocking substrate recruitment and by further restricting active-site access. The structures also reveal active-site residues and conformational changes that underlie inhibitor potency and specificity.
Collapse
Affiliation(s)
- Haijuan Yang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
49
|
Wang HJ, Zhang D, Tan YZ, Li T. Autophagy in endothelial progenitor cells is cytoprotective in hypoxic conditions. Am J Physiol Cell Physiol 2013; 304:C617-26. [DOI: 10.1152/ajpcell.00296.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endothelial progenitor cells (EPCs) may be incorporated into local vessels to enhance angiogenesis within ischemic tissue. Recently, EPC transplantation has become a potential therapy for improving tissue function in cardiovascular disease. However, the mechanisms of proliferation, differentiation, and survival of EPCs in a hypoxic microenvironment remain unclear. In this study, CD34+VEGFR-2+ EPCs were isolated from mononuclear cells of human umbilical cord blood, and differentiation to endothelial cells was induced with VEGF. When EPC autophagy was inhibited with 3-methyladenine (3-MA) under normoxic conditions, proliferation and viability of the cells were decreased, and the cells failed to differentiate into endothelial cells. Under hypoxic conditions (1% O2), Beclin-1 expression of the cells was upregulated and both MDC-labeled and LC3-positive puncta and autophagic ultrastructures in the cells increased significantly. The number of lysosomes also increased in hypoxia-exposed cells. When autophagy was inhibited with 3-MA under hypoxic conditions, the number of apoptotic cells increased, and the number and size of lysosomes decreased. Conversely, apoptosis of the hypoxic EPCs was reduced when autophagy was induced by pretreatment with rapamycin. These results demonstrate that autophagy is involved in proliferation and differentiation of EPCs. Furthermore, hypoxia activates autophagy, promoting EPC survival by inhibiting apoptosis. Enhancing autophagy with hypoxic preconditioning may be beneficial for survival of the transplanted EPCs in a local hypoxic environment.
Collapse
Affiliation(s)
- Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| | - Dan Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| | - Ting Li
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| |
Collapse
|
50
|
Wazir U, Newbold RF, Jiang WG, Sharma AK, Mokbel K. Prognostic and therapeutic implications of mTORC1 and Rictor expression in human breast cancer. Oncol Rep 2013; 29:1969-74. [PMID: 23503572 DOI: 10.3892/or.2013.2346] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/12/2012] [Indexed: 11/06/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) plays a key role in the regulation of cellular metabolism, growth and proliferation. It forms two multi-protein complexes known as complex 1 (mTORC1) and 2 (mTORC2). Raptor and Rictor are the core proteins for mTORC1 and mTORC2, respectively. This study examines the relationship between mTORC1, Rictor and Raptor mRNA expression and human breast cancer. Furthermore, the correlation between mTORC1 and hTERT was investigated. Breast cancer tissues (n=150) and normal tissues (n=31) were analysed using reverse transcription and quantitative PCR. Transcript levels were correlated with clinicopathological data. Higher mTOR expression was noted in breast cancer tissue (P=0.0018), higher grade tumours (grade 2 vs. 3, P=0.047), in ductal tumours (P=0.0014), and was associated with worse overall survival (P=0.01). Rictor expression was significantly higher in background breast tissues compared with tumours and was inversely related to the Nottingham Prognostic Index (NPI1 vs. 2, P=0.03) and tumour grade (grade 1 vs. 3, P=0.01) and was associated with better overall (P=0.037) and disease-free survival (P=0.048). The mRNA expression of Raptor was higher in tumours compared with normal tissues. Furthermore, the expression of Raptor was associated with a higher tumour grade (grade 1 vs. 3, P=0.027). A highly significant positive correlation between mTOR and hTERT (P<0.00001) was observed. These observations are consistent with the role of mTORC1 in the anti-apoptosis pathway and suggest that selective inhibitors of mTORC1 may be more efficacious in human breast cancer. Our findings support the hypothesis that mTORC1 is an important upregulator of telomerase in breast cancer.
Collapse
Affiliation(s)
- U Wazir
- The London Breast Institute, Princess Grace Hospital, London, UK
| | | | | | | | | |
Collapse
|