1
|
Eftekharifar M, Heidari R, Mohaghegh N, Najafabadi AH, Heidari H. Advances in photoactivated carbon-based nanostructured materials for targeted cancer therapy. Adv Drug Deliv Rev 2025; 222:115604. [PMID: 40354939 DOI: 10.1016/j.addr.2025.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/15/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
In this review, we explore key innovations in photoactivated therapeutic programming of carbon-based nanomaterials (CBNs), focusing on their diverse nanostructural configurations and their exceptional photothermal, photochemical, and photoacoustic properties. These attributes position CBNs as remarkable phototherapeutic agents, capable of addressing critical challenges in targeted cancer therapy through their precision, multifunctionality, and adaptability to specific therapeutic modalities. We will explore their diverse derivatives, and the role of chemical augmentation and site-specific surface functionalisation, which are pivotal in optimising the targeting and efficacy of phototherapeutic interventions. The biological and physical relevance of this ever-growing library of nanomaterials in targeted phototherapy will be thoroughly explored. Dynamic photo-triggering of the underlying molecular mechanisms of action e.g., energy conversion modalities lie at the heart of these therapeutic innovations. We will further discuss the tunability and programming of these carriers and structure-function alterations at specific therapeutic wavelengths. The application space of phototherapies is thoroughly mapped exploring the three primary approaches of photothermal therapy, photodynamic therapy and photochemical internalisation as well as emerging techniques and promising multimodal approaches that combine two or more of these processes. The specificity of the target tissue site and the approach under study forms another critical focus area of this review, with an emphasis on three types of cancer-breast cancer, lung cancer, and gliomas-that have demonstrated some of the most promising outcomes from photomedicine. We also provide a perspective on in vitro and in vivo validation and preclinical testing of CBNs for phototherapeutic applications. Finally, we reflect on the potential of CBNs to revolutionise targeted cancer therapy through data-driven materials design and integration with computational tools for biophysical performance optimisation. The exciting integration of machine learning into nanoparticle research and phototherapy has potential to fundamentally transform the landscape of nanomedicine. These techniques ranging from supervised learning algorithms such as random forests and support vector machines to more advanced neural networks and deep learning, can enable unprecedented precision in predicting, optimising, and tailoring the properties of nanoparticles for targeted applications. The transformative impact of photoactivated CBNs in advancing cancer treatment, paves the way for their clinical application and widespread adoption in personalised photomedicine. We conclude with a section on the current challenges facing the reproducibility, manufacturing throughput, and biocompatibility of these nanostructured materials including their long-term effects in trials and degradation profiles in biological systems as evaluated in vitro and in vivo.
Collapse
Affiliation(s)
| | - Reza Heidari
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 90024, USA
| | | | - Hossein Heidari
- Institute for Materials Discovery, University College London, London E20 2AE, UK.
| |
Collapse
|
2
|
Yadav PK, Chauhan D, Yadav P, Tiwari AK, Sultana N, Gupta D, Mishra K, Gayen JR, Wahajuddin M, Chourasia MK. Nanotechnology Assisted Drug Delivery Strategies for Chemotherapy: Recent Advances and Future Prospects. ACS APPLIED BIO MATERIALS 2025; 8:3601-3622. [PMID: 40318022 DOI: 10.1021/acsabm.5c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In pursuit of the treatment of cancer, nanotechnology engineering has emerged as the simplest and most effective means, with the potential to deliver antitumor chemotherapeutics at the targeted site. Employing nanotechnology for drug delivery provides diverse nanosize particles ranging from one to a thousand nanometers. Reduced size improves drug bioavailability by increasing drug diffusion and decreasing the efflux rate. These nanocarriers offer an enormous scope for modification following the chemical and biological properties of both the drug and its disease. Moreover, these nanoformulations assist in targeting pharmaceutically active drug molecules to the desired site and have gained importance in recent years. Their modern use has revolutionized the antitumor action of many therapeutic agents. Higher drug loading efficiency, thermal stability, easy fabrication, low production cost, and large-scale industrial production draw attention to the application of nanotechnology as a better platform for the delivery of drug molecules. Furthermore, the interaction of nanocarrier technology-assisted agents lowers a drug's toxicity and therapeutic dosage, reduces drug tolerance, and enhances active drug concentration in neoplasm tissue, thus decreasing the concentration in healthy tissue. Nanotechnology-based medications are being widely explored and have depicted effective cancer management in vivo and in vitro systems, leading to many clinical trials with promising results. This review summarizes the innovative impact and application of different nanocarriers developed in recent years in cancer therapy. Subsequently, it also describes the essential findings and methodologies and their effects on cancer treatment. Compared with conventional therapy, nanomedicines can significantly improve the therapeutic effectiveness of antitumor drugs. Thus, the adverse effects associated with healthy tissues are decreased, and adverse effects are scaled back through enhanced permeability and retention effects. Lastly, future insights assisting nanotechnology in active therapeutics delivery and their scope in cancer chemotherapeutics have also been discussed.
Collapse
Affiliation(s)
- Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pooja Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Deepak Gupta
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Jaiswal N, Mahata N, Chanda N. Nanogold-albumin conjugates: transformative approaches for next-generation cancer therapy and diagnostics. NANOSCALE 2025; 17:11191-11220. [PMID: 40237258 DOI: 10.1039/d4nr05279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanogold-albumin conjugates have garnered significant attention as a highly adaptable theranostic platform, capable of delivering a wide range of therapeutics, from small-molecule drugs to larger biomolecules, while offering promising applications for monitoring and managing cancer. The remarkable theranostic capabilities of these conjugates stem from the combined strengths of gold and albumin, which provide low toxicity, a large surface area, customizable surface chemistry, and unique optical properties, all contributing to their potential in cancer therapy. This review delves into the design and development of two primary types of nanogold-albumin conjugate: supramolecular albumin-coated gold nanoparticles (GNP-BSA/HSA) and albumin-templated ultra-small gold nanoclusters (GNC-BSA/HSA). Each strategy offers distinct advantages, enabling the fine-tuning of conjugate properties to optimize therapeutic delivery and facilitate cancer-specific bio-sensing. The integration of gold and albumin further improves biocompatibility, extends circulation time, and enhances tumor targeting, making these conjugates an attractive option for cancer treatment. The review also focuses on the refinement of surface chemistry to achieve precise targeting of cancer cells, as well as the challenges and future prospects for advancing nanogold-albumin systems in clinical applications.
Collapse
Affiliation(s)
- Namita Jaiswal
- Human Centered Robotics and Cybernetics Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.
- Department of Biotechnology, National Institute of Technology (NIT), Durgapur, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology (NIT), Durgapur, India
| | - Nripen Chanda
- Human Centered Robotics and Cybernetics Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India.
| |
Collapse
|
4
|
Razavi ZS, Razavi FS, Alizadeh SS. Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem 2025; 287:117357. [PMID: 39947054 DOI: 10.1016/j.ejmech.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The blood-brain barrier (BBB) is a protective barrier that complicates the treatment of neurological disorders. Pharmaceutical compounds encounter significant challenges in crossing the central nervous system (CNS). Nanoparticles (NPs) are promising candidates for treating neurological conditions as they help facilitate drug delivery. This review explores the diverse characteristics and mechanisms of inorganic NPs (INPs), including metal-based, ferric-oxide, and carbon-based nanoparticles, which facilitate their passage through the BBB. Emphasis is placed on the physicochemical properties of NPs such as size, shape, surface charge, and surface modifications and their role in enhancing drug delivery efficacy, reducing immune clearance, and improving BBB permeability. Specific synthesis approaches are demonstrated, with an emphasis on the influence of each one on NP property, biological activity and the capability of an NP for its intended application. As for the advances in the field, the review emphasizes those characterized the NP formulation and surface chemistry that conquered the BBB and tested the need for its alteration. Current findings indicate that NP therapy can in the future enable effective targeting of specific brain disorders and eventually evolve this drug delivery system, which would allow for lower doses with less side effects.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
5
|
Thomas MR, Badekila AK, Pai V, S N, Bhandary Y, Rai A, Kini S. Navigating Tumor Microenvironment Barriers with Nanotherapeutic Strategies for Targeting Metastasis. Adv Healthc Mater 2025; 14:e2403107. [PMID: 39840497 DOI: 10.1002/adhm.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC). The heterogeneity and genetic evolution of metastatic tumors can substantially impact the clinical effectiveness of therapeutic agents. Therefore, the therapeutic strategy shall target TME of all metastatic stages. Since the advent of nanotechnology, smart drug delivery strategies are employed to deliver effective drug formulations directly into tumors, ensuring controlled and sustained therapeutic efficacy. The state-of-the-art nano-drug delivery systems are shown to have innocuous modes of action in targeting the metastatic players of TME. Therefore, this review provides insight into the mechanism of cancer metastasis involving invasion, intravasation, systemic transport of circulating tumor cells (CTCs), extravasation, metastatic colonization, and angiogenesis. Further, the novel perspectives associated with current nanotherapeutic strategies are highlighted on different stages of metastasis.
Collapse
Affiliation(s)
- Mahima Rachel Thomas
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Anjana Kaveri Badekila
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Vishruta Pai
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Nijil S
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Yashodhar Bhandary
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575 018, India
| | - Ankit Rai
- Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| |
Collapse
|
6
|
De Lucia A, Mazzotti L, Gaimari A, Zurlo M, Maltoni R, Cerchione C, Bravaccini S, Delmonte A, Crinò L, Borges de Souza P, Pasini L, Nicolini F, Bianchi F, Juan M, Calderon H, Magnoni C, Gazzola L, Ulivi P, Mazza M. Non-small cell lung cancer and the tumor microenvironment: making headway from targeted therapies to advanced immunotherapy. Front Immunol 2025; 16:1515748. [PMID: 39995659 PMCID: PMC11847692 DOI: 10.3389/fimmu.2025.1515748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past decades, significant progress has been made in the understanding of non-small cell lung cancer (NSCLC) biology and tumor progression mechanisms, resulting in the development of novel strategies for early detection and wide-ranging care approaches. Since their introduction, over 20 years ago, targeted therapies with tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for NSCLC. Nowadays, targeted therapies remain the gold standard for many patients, but still they suffer from many adverse effects, including unexpected toxicity and intrinsic acquired resistance mutations, which lead to relapse. The adoption of immune checkpoint inhibitors (ICIs) in 2015, has offered exceptional survival benefits for patients without targetable alterations. Despite this notable progress, challenges remain, as not all patients respond favorably to ICIs, and resistance to therapy can develop over time. A crucial factor influencing clinical response to immunotherapy is the tumor microenvironment (TME). The TME is pivotal in orchestrating the interactions between neoplastic cells and the immune system, influencing tumor growth and treatment outcomes. In this review, we discuss how the understanding of this intricate relationship is crucial for the success of immunotherapy and survey the current state of immunotherapy intervention, with a focus on forthcoming and promising chimeric antigen receptor (CAR) T cell therapies in NSCLC. The TME sets major obstacles for CAR-T therapies, creating conditions that suppress the immune response, inducing T cell exhaustion. To enhance treatment efficacy, specific efforts associated with CAR-T cell therapy in NSCLC, should definitely focus TME-related immunosuppression and antigen escape mechanisms, by combining CAR-T cells with immune checkpoint blockades.
Collapse
Affiliation(s)
- Anna De Lucia
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucia Mazzotti
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Gaimari
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zurlo
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- Department of Medicine and Surgery, “Kore” University of Enna, Enna, Italy
| | - Angelo Delmonte
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Medical Oncology Department, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Patricia Borges de Souza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luigi Pasini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Manel Juan
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hugo Calderon
- Department of Immunology, Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Magnoni
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Gazzola
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Ulivi
- Translational Oncology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Mazza
- Advanced Cellular Therapies and Rare Tumors Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
7
|
Das P, Chakraborty G, Kaur J, Mandal SK. Nano-Scale Anti-Cancer Drug Delivery by a Zn-Based Metal Organic Framework Carrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408810. [PMID: 39916512 DOI: 10.1002/smll.202408810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Indexed: 02/26/2025]
Abstract
Porous functional metal organic frameworks (MOFs) have showcased their potential in biomedical applications, specifically in drug delivery systems (DDSs), due to high surface area, tailorable pore size, tunable functionality, etc. In this work, the efficient nano drug carrier behavior of a Zn-MOF is reported for two highly utilized drugs, 5-fluorouracil and calcein. It exhibits a high drug loading capacity and a slow, sustained release profile as monitored by the spectroscopic and microscopic techniques. Utilizing these two drugs, its good anticancer activity against the human breast cancer MCF-7 cell is established.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| | - Gouri Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| | - Jasreen Kaur
- Center for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar Mohali, Punjab, 140306, India
| |
Collapse
|
8
|
Ibrahim M, Fathalla Z, Fatease AA, Alamri AH, Abdelkader H. Breast cancer epidemiology, diagnostic barriers, and contemporary trends in breast nanotheranostics and mechanisms of targeting. Expert Opin Drug Deliv 2024; 21:1735-1754. [PMID: 39361257 DOI: 10.1080/17425247.2024.2412823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Breast cancer is one of the main causes of mortality in women globally. Early and accurate diagnosis represents a milestone in cancer management. Several breast cancer diagnostic agents are available. Many chemotherapeutic agents in conventional dosage forms are approved; nevertheless, they lack cancer cell specificity, resulting in improper treatment and undesirable side effects. Recently, nanotheranostics has emerged as a new paradigm to achieve safe and effective cancer diagnosis and management. AREA COVERED This review provides insight into breast cancer epidemiology, barriers hindering the early diagnosis, and effective delivery of chemotherapeutics. Also, conventional diagnostic agents and recent nanotheranostic platforms have been used in breast cancer. In addition, mechanisms of cancer cell targeting and nano-carrier surface functionalization as an effective approach for chemotherapeutic targeting were reviewed along with future perspectives. EXPERT OPINION We proposed that modified nano-carriers may provide an efficacious approach for breast cancer drug targeting. These nanotheranostics need more clinical evaluations to confirm their efficacy in cancer management. In addition, we recommend the use of artificial intelligence (AI) as a promising approach for early and efficient assessment of breast lesions. AI allows better interpretation and analysis of nanotheranostic data, which minimizes misdiagnosis and avoids the belated intervention of health care providers.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Zeinab Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Utpal BK, Dehbia Z, Zidan BMRM, Sweilam SH, Singh LP, Arunkumar MS, Sona M, Panigrahy UP, Keerthana R, Mandadi SR, Rab SO, Alshehri MA, Koula D, Suliman M, Nafady MH, Emran TB. Carotenoids as modulators of the PI3K/Akt/mTOR pathway: innovative strategies in cancer therapy. Med Oncol 2024; 42:4. [PMID: 39549201 DOI: 10.1007/s12032-024-02551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Cancer progression is primarily driven by the uncontrolled activation of cellular signaling pathways, with the PI3K/Akt/mTOR (PAMT) pathway playing a central role. This pathway significantly contributes to the proliferation and survival of cancer cells, and its hyperactivity is a major challenge in managing several types of malignancies. This article delves into the promising potential of carotenoids, natural pigments found in abundance in fruits and vegetables, as a novel therapeutic strategy for cancer treatment. By specifically targeting and inhibiting the PAMT pathway, carotenoids may effectively disrupt the growth and survival of cancer cells. The article examines the complex mechanisms underlying these interactions and highlights the obstacles faced in cancer treatment. It proposes a compelling approach to developing therapies that leverage natural products to target this critical pathway, offering a fresh perspective on cancer treatment. Further research is essential to enhance the therapeutic efficacy of these compounds.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - B M Redwan Matin Zidan
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram (Rohtas) Bihar, Jamuhar, 821305, India
| | - M S Arunkumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - M Sona
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, India
| | - R Keerthana
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sandhya Rani Mandadi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Tuljaraopet, Telangana , 502313, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Doukani Koula
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt.
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
11
|
Kheiriabad S, Jafari A, Namvar Aghdash S, Ezzati Nazhad Dolatabadi J, Andishmand H, Jafari SM. Applications of Advanced Nanomaterials in Biomedicine, Pharmaceuticals, Agriculture, and Food Industry. BIONANOSCIENCE 2024; 14:4298-4321. [DOI: 10.1007/s12668-024-01506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 01/06/2025]
|
12
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024; 18:618-644. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
13
|
Chen Q, Zhou J, Sun R. Carbon Nanotube Loading Strategies for Peptide Drugs: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13515-13526. [PMID: 38887887 DOI: 10.1021/acs.langmuir.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Carbon nanotubes (CNTs) can be regarded as a potential platform for transmembrane drug delivery as many experimental works have demonstrated their capability to effectively transport bioactive molecules into living cells. Within this framework, the loading of a peptide drug onto either the interior or exterior of CNTs has gained considerable interest. This study aims to conduct a comprehensive comparison of these two loading methods. To this end, we performed molecular dynamics simulations and the umbrella sampling technique to investigate the interaction energy, conformational changes, and free energy changes of a model peptide drug containing α-helical structure interacting with the inner or outer walls of a 14.7-nm-long (20,20) CNT. Our finding reveals that, for a tube of such dimensions, it is thermodynamically more favorable for the peptide to be loaded onto the inner tube wall than the outer tube wall, primarily due to a larger free energy change for the former strategy. Conversely, unloading the drug from the tube interior poses greater challenges. Moreover, the tube's curvature plays an essential role in influencing the conformation of the adsorbed peptide. Despite the relatively weaker van der Waals interaction between the CNT exterior and the peptide, loading the peptide onto the exterior may induce significant conformational changes, particularly affecting the peptide's α-helix structure. In contrast, loading of the peptide on the CNT interior could maintain most of the α-helical content. CNTs do not typically attract specific peptide residues, with adsorbed groups primarily determined by the peptide's configurations and orientations. Finally, we offer a guideline for selecting an optimal loading strategy for CNT-based drug delivery.
Collapse
Affiliation(s)
- Qu Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Jianping Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Rong Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|
14
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
15
|
Rahimkhoei V, Alzaidy AH, Abed MJ, Rashki S, Salavati-Niasari M. Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics. Adv Colloid Interface Sci 2024; 329:103204. [PMID: 38797070 DOI: 10.1016/j.cis.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Theranostic nanoparticles (NPs) have the potential to dramatically improve cancer management by providing personalized medicine. Inorganic NPs have attracted widespread interest from academic and industrial communities because of their unique physicochemical properties (including magnetic, thermal, and catalytic performance) and excellent functions with functional surface modifications or component dopants (e.g., imaging and controlled release of drugs). To date, only a restricted number of inorganic NPs are deciphered into clinical practice. This review highlights the recent advances of inorganic NPs in breast cancer therapy. We believe that this review can provides various approaches for investigating and developing inorganic NPs as promising compounds in the future prospects of applications in breast cancer treatment and material science.
Collapse
Affiliation(s)
- Vahid Rahimkhoei
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Asaad H Alzaidy
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - May Jaleel Abed
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Somaye Rashki
- Department of Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
16
|
Fu D, Zhong L, Xu J, Mo A, Yang M. Hydrazone-functionalized nanoscale covalent organic frameworks as a nanocarrier for pH-responsive drug delivery enhanced anticancer activity. RSC Adv 2024; 14:20799-20808. [PMID: 38952941 PMCID: PMC11215751 DOI: 10.1039/d4ra01955e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
Nanoscale covalent organic frameworks (NCOFs) as emerging drug-delivery nanocarriers have received much attention in biomedicine in recent years. However, there are few reports on the application of pH-responsive NCOFs for drug delivery nanosystems. In this work, hydrazone-decorated NCOFs as pH-triggered molecular switches are designed for efficient cancer therapy. These functionalized NCOFs with hydrazone groups on the channel walls (named NCOFs-NHNH2) are obtained via a post-synthetic modification strategy. Subsequently, the anticancer drug doxorubicin (DOX) as the model molecule is loaded through covalent linkage to yield NCOFs-NN-DOX. Finally, soybean phospholipid (SP) is coated on the surface of HNTs-NN-DOX, named NCOFs-NN-DOX@SP, to further enhance the dispersibility, stability and biocompatibility of HNTs in physiological solution. NCOFs-NN-DOX@SP showed an excellent and intelligent sustained-release effect with an almost sixfold increase at pH = 5.2 than at pH = 7.4. In vitro cell toxicity and imaging assays of NCOFs-NN-DOX@SP exhibited an enhanced therapeutic effect on Lewis lung carcinoma (LLC) cells, demonstrating that the fabricated NCOFs have a great potential in cancer therapy. Thus, this work provides a new way toward designing stimulus-responsive functionalized NCOFs and promotes their potential application as an on-demand drug delivery system in the field of cancer treatment.
Collapse
Affiliation(s)
- Datian Fu
- Department of Pharmacy, Hainan Women and Children's Medical Center Haikou Hainan 570312 China
| | - LiLi Zhong
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570311 China
| | - Jin Xu
- Pharmaceutical and Bioengineering School, Hunan Chemical Vocational Technology College Zhuzhou 412006 China
| | - Anwei Mo
- Department of Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University) Haikou Hainan 570311 China
| | - Min Yang
- Department of Oncology, Hainan Cancer Hospital Haikou Hainan 570312 China
| |
Collapse
|
17
|
Kashyap A, Kumari M, Singh A, Mukherjee K, Maity D. Current development of theragnostic nanoparticles for women's cancer treatment. Biomed Mater 2024; 19:042001. [PMID: 38471150 DOI: 10.1088/1748-605x/ad3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
In the biomedical industry, nanoparticles (NPs-exclusively small particles with size ranging from 1-100 nanometres) are recently employed as powerful tools due to their huge potential in sophisticated and enhanced cancer theragnostic (i.e. therapeutics and diagnostics). Cancer is a life-threatening disease caused by carcinogenic agents and mutation in cells, leading to uncontrolled cell growth and harming the body's normal functioning while affecting several factors like low levels of reactive oxygen species, hyperactive antiapoptotic mRNA expression, reduced proapoptotic mRNA expression, damaged DNA repair, and so on. NPs are extensively used in early cancer diagnosis and are functionalized to target receptors overexpressing cancer cells for effective cancer treatment. This review focuses explicitly on how NPs alone and combined with imaging techniques and advanced treatment techniques have been researched against 'women's cancer' such as breast, ovarian, and cervical cancer which are substantially occurring in women. NPs, in combination with numerous imaging techniques (like PET, SPECT, MRI, etc) have been widely explored for cancer imaging and understanding tumor characteristics. Moreover, NPs in combination with various advanced cancer therapeutics (like magnetic hyperthermia, pH responsiveness, photothermal therapy, etc), have been stated to be more targeted and effective therapeutic strategies with negligible side effects. Furthermore, this review will further help to improve treatment outcomes and patient quality of life based on the theragnostic application-based studies of NPs in women's cancer treatment.
Collapse
Affiliation(s)
- Ananya Kashyap
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Madhubala Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Arnika Singh
- Department of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, IN 46202, United States of America
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, IN 46202, United States of America
| |
Collapse
|
18
|
Nunes PP, Almeida MR, Pacheco FG, Fantini C, Furtado CA, Ladeira LO, Jorio A, Júnior APM, Santos RL, Borges ÁM. Detection of carbon nanotubes in bovine raw milk through Fourier transform Raman spectroscopy. J Dairy Sci 2024; 107:2681-2689. [PMID: 37923204 DOI: 10.3168/jds.2023-23481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The potential use of carbon-based methodologies for drug delivery and reproductive biology in cows raises concerns about residues in milk and food safety. This study aimed to assess the potential of Fourier transform Raman spectroscopy and discriminant analysis using partial least squares (PLS-DA) to detect functionalized multiwalled carbon nanotubes (MWCNT) in bovine raw milk. Oxidized MWCNT were diluted in milk at different concentrations from 25.00 to 0.01 µg/mL. Raman spectroscopy measurements and PLS-DA were performed to identify low concentrations of MWCNT in milk samples. The PLS-DA model was characterized by the analysis of the variable importance in projection (VIP) scores. All the training samples were correctly classified by the model, resulting in no false-positive or false-negative classifications. For test samples, only one false-negative result was observed, for 0.01 µg/mL MWCNT dilution. The association between Raman spectroscopy and PLS-DA was able to identify MWCNT diluted in milk samples up to 0.1 µg/mL. The PLS-DA model was built and validated using a set of test samples and spectrally interpreted based on the highest VIP scores. This allowed the identification of the vibrational modes associated with the D and G bands of MWCNT, as well as the milk bands, which were the most important variables in this analysis.
Collapse
Affiliation(s)
- Philipe P Nunes
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mariana R Almeida
- Department of Chemistry, Institute of Exact Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Flávia G Pacheco
- Laboratory of Carbon Nanostructure Chemistry, Nuclear Technology Development Center, Belo Horizonte, MG 31270-901, Brazil
| | - Cristiano Fantini
- Department of Physics, Institute of Exact Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Clascídia A Furtado
- Laboratory of Carbon Nanostructure Chemistry, Nuclear Technology Development Center, Belo Horizonte, MG 31270-901, Brazil
| | - Luiz O Ladeira
- Department of Physics, Institute of Exact Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ado Jorio
- Department of Physics, Institute of Exact Science, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Antônio P M Júnior
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Renato L Santos
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Álan M Borges
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
19
|
García-Hevia L, Soltani R, González J, Chaloin O, Ménard-Moyon C, Bianco A, L. Fanarraga M. Carbon nanotubes targeted to the tumor microenvironment inhibit metastasis in a preclinical model of melanoma. Bioact Mater 2024; 34:237-247. [PMID: 38223536 PMCID: PMC10787223 DOI: 10.1016/j.bioactmat.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024] Open
Abstract
Despite notable progress in cancer therapy, metastatic diseases continue to be the primary cause of cancer-related mortality. Multi-walled carbon nanotubes (MWCNTs) can enter tissues and cells and interfere with the dynamics of the cytoskeletal nanofilaments biomimetically. This endows them with intrinsic anti-tumoral effects comparable to those of microtubule-binding chemotherapies such as Taxol®. In this study, our focus was on exploring the potential of oxidized MWCNTs in selectively targeting the vascular endothelial growth factor receptor (VEGFR). Our objective was to evaluate their effectiveness in inhibiting metastatic growth by inducing anti-proliferative, anti-migratory, and cytotoxic effects on both cancer and tumor microenvironment cells. Our findings demonstrated a significant reduction of over 80 % in malignant melanoma lung metastases and a substantial enhancement in overall animal welfare following intravenous administration of the targeted biodegradable MWCNTs. Furthermore, the combination of these nanomaterials with the conventional chemotherapy agent Taxol® yielded a remarkable 90 % increase in the antimetastatic effect. These results highlight the promising potential of this combined therapeutic approach against metastatic disease and are of paramount importance as metastasis is responsible for nearly 60,000 deaths each year.
Collapse
Affiliation(s)
- Lorena García-Hevia
- The Nanomedicine Group, Universidad de Cantabria-IDIVAL, Avda Herrera Oria s/n, 39011, Santander, Spain
| | - Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Jesús González
- The Nanomedicine Group, Universidad de Cantabria-IDIVAL, Avda Herrera Oria s/n, 39011, Santander, Spain
| | - Olivier Chaloin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Mónica L. Fanarraga
- The Nanomedicine Group, Universidad de Cantabria-IDIVAL, Avda Herrera Oria s/n, 39011, Santander, Spain
| |
Collapse
|
20
|
Shankar D, Jambagi SC, Gowda N, Lakshmi KS, Jayanthi KJ, Chaudhary VK. Effect of Surface Chemistry on Hemolysis, Thrombogenicity, and Toxicity of Carbon Nanotube Doped Thermally Sprayed Hydroxyapatite Implants. ACS Biomater Sci Eng 2024; 10:1403-1417. [PMID: 38308598 DOI: 10.1021/acsbiomaterials.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Assessing blood compatibility is crucial before in vivo procedures and is considered more reliable than many in vitro tests. This study examines the physiochemical properties and blood compatibility of bioactive powders ((0.5-2 wt % carbon nanotube (CNT)/alumina)-20 wt %)) produced through a heterocoagulation colloidal technique followed by ball milling with hydroxyapatite (HAp). The 1 wt % CNT composite demonstrated a surface charge ∼5 times higher than HAp at pH 7.4, with a value of -11 mV compared to -2 mV. This increase in electrostatic charge is desirable for achieving hemocompatibility, as evidenced by a range of blood compatibility assessments, including hemolysis, blood clotting, platelet adhesion, platelet activation, and coagulation assays (prothrombin time (PT) and activated partial thrombin time (aPTT)). The 1 wt % CNT composite exhibited hemolysis ranging from 2 to 7%, indicating its hemocompatibility. In the blood clot investigation, the absorbance values for 1-2 wt % CNT samples were 0.927 ± 0.038 and 1.184 ± 0.128, respectively, indicating their nonthrombogenicity. Additionally, the percentage of platelet adhered on the 1 wt % CNT sample (∼5.67%) showed a ∼2.5-fold decrement compared to the clinically used negative control, polypropylene (∼13.73%). The PT and aPTT experiments showed no difference in the coagulation time for CNT samples even at higher concentrations, unlike HAC2 (80 mg). In conclusion, the 1 wt % CNT sample was nontoxic to human blood, making it more hemocompatible, nonhemolytic, and nonthrombogenic than other samples. This reliable study reduces the need for additional in vitro and in vivo studies before clinical trials, saving time and cost.
Collapse
Affiliation(s)
- Deep Shankar
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, Surathkal 575025, India
| | - Sudhakar C Jambagi
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, Surathkal 575025, India
| | - Niranjan Gowda
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - K S Lakshmi
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - K J Jayanthi
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - Vikash Kumar Chaudhary
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, Surathkal 575025, India
| |
Collapse
|
21
|
Gazo Hanna E, Younes K, Roufayel R, Khazaal M, Fajloun Z. Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions. Heliyon 2024; 10:e26154. [PMID: 38390063 PMCID: PMC10882044 DOI: 10.1016/j.heliyon.2024.e26154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The overlap between mechanical engineering and medicine is expanding more and more over the years. Engineers are now using their expertise to design and create functional biomaterials and are continually collaborating with physicians to improve patient health. In this review, we explore the state of scientific knowledge in the areas of biomaterials, biomechanics, nanomechanics, and computational fluid dynamics (CFD) in relation to the pharmaceutical and medical industry. Focusing on current research and breakthroughs, we provide an overview of how these fields are being used to create new technologies for medical treatments of human patients. Barriers and constraints in these fields, as well as ways to overcome them, are also described in this review. Finally, the potential for future advances in biomaterials to fundamentally change the current approach to medicine and biology is also discussed.
Collapse
Affiliation(s)
- Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Mickael Khazaal
- École Supérieure des Techniques Aéronautiques et de Construction Automobile, ISAE-ESTACA, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| |
Collapse
|
22
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
23
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
24
|
Paramasivam G, Sanmugam A, Palem VV, Sevanan M, Sairam AB, Nachiappan N, Youn B, Lee JS, Nallal M, Park KH. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol 2024; 254:127904. [PMID: 37939770 DOI: 10.1016/j.ijbiomac.2023.127904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Nachiappan Nachiappan
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Republic of Korea; School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
25
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
26
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
27
|
Komane P, Kumar P, Choonara Y. Functionalised Carbon Nanotubes: Promising Drug Delivery Vehicles for Neurovascular Disorder Intervention. AAPS PharmSciTech 2023; 24:201. [PMID: 37783896 DOI: 10.1208/s12249-023-02651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Neurovascular diseases are linked to the brain's blood vessels. These disorders are complicated to treat due to the strict selective characteristics of the blood-brain barrier. Consequently, the potency of the pharmacological treatments for these conditions is immensely diminished, leading to a rise in neurovascular-associated morbidity and mortality. Carbon nanotubes are regarded as essential nanoparticles with a promise of treating neurovascular disorders. Current findings have demonstrated the effectiveness of carbon nanotubes as vehicles for ferrying drugs to the site of interest. This review accentuates the theoretical utilisation of carbon nanotubes as drug nanocarriers equipped with the penetrating capability to the blood-brain barrier for treating neurovascular disorders such as ischemic stroke. The success of the carbon nanotube system may result in the development of a new and highly relevant drug delivery procedure. This review will also cover carbon nanotube functionalisation for applications in the biomedical fields, toxicity, in vitro and in vivo drugs and biomolecule delivery, and the future outlook of carbon nanotubes.
Collapse
Affiliation(s)
- Patrick Komane
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| | - Yahya Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| |
Collapse
|
28
|
Al Baroot A, Elsayed KA, Khan FA, Haladu SA, Ercan F, Çevik E, Drmosh QA, Almessiere MA. Anticancer Activity of Au/CNT Nanocomposite Fabricated by Nanosecond Pulsed Laser Ablation Method on Colon and Cervical Cancer. MICROMACHINES 2023; 14:1455. [PMID: 37512767 PMCID: PMC10384248 DOI: 10.3390/mi14071455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Gold nanoparticles (AuNPs) and carbon nanotubes (CNTs) are increasingly being investigated for cancer management due to their physicochemical properties, low toxicity, and biocompatibility. This study used an eco-friendly technique (laser synthesis) to fabricate AuNP and Au/CNT nanocomposites. AuNPs, Au/CNTs, and CNTs were tested as potential cancer nanotherapeutics on colorectal carcinoma cells (HCT-116) and cervical cancer cells (HeLa) using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. In addition, the non-cancer embryonic kidney cells HEK-293 were taken as a control in the study. The cell viability assay demonstrated a significant reduction in cancer cell population post 48 h treatments of AuNPs, and Au/CNTs. The average cell viabilities of AuNPs, Au/CNTs, and CNTs for HCT-116 cells were 50.62%, 65.88%, 93.55%, and for HeLa cells, the cell viabilities were 50.88%, 66.51%, 91.73%. The cell viabilities for HEK-293 were 50.44%, 65.80%, 93.20%. Both AuNPs and Au/CNTs showed higher cell toxicity and cell death compared with CNT nanomaterials. The treatment of AuNPs and Au/CNTs showed strong inhibitory action on HCT-116 and HeLa cells. However, the treatment of CNTs did not significantly decrease HCT-116 and HeLa cells, and there was only a minor decrease. The treatment of AuNPs, and Au/CNTs, on normal HEK-293 cells also showed a significant decrease in cell viability, but the treatment of CNTs did not produce a significant decrease in the HEK-293 cells. This study shows that a simplified synthesis technique like laser synthesis for the preparation of high-purity nanomaterials has good efficacy for possible future cancer therapy with minimal toxicity.
Collapse
Affiliation(s)
- Abbad Al Baroot
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Khaled A Elsayed
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shamsuddeen A Haladu
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Filiz Ercan
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Emre Çevik
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Q A Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Centre for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
29
|
Mobasheri K, Zaefizadeh M, Ghobeh M, Eidi A. Synthesis of Novel Magnetic Quercetin-Neuropeptide Nanocomposite as a Smart Nano-Drug Shuttle System: Investigation of Its Effect on Behavior, Histopathological Characteristics, and Expression of MAPT and APP Genes in Alzheimer's Disease Rats. J Alzheimers Dis 2023:JAD221095. [PMID: 37393494 DOI: 10.3233/jad-221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The drugs introduced for this disease have many side effects and limitations in use, so the production of a suitable herbal medicine to cure AD patients is essential. OBJECTIVE The aim of this research is to make a magnetic neuropeptide nano shuttle as a targeted carrier for the transfer of quercetin to the brains of AD model rats. METHODS In this work, a magnetic quercetin-neuropeptide nanocomposite (MQNPN) was fabricated and administered to the rat's brain by the shuttle drug of the Margatoxin scorpion venom neuropeptide, and will be a prospect for targeted drug delivery in AD. The MQNPN has been characterized by FTIR, spectroscopy, FE-SEM, XRD, and VSM. Investigations into the efficacy of MQNPN, MTT, and real Time PCR for MAPT and APP genes expression were performed. After 7 days treatment with Fe3O4 (Ctr) and MQNPN treatment in AD rat, superoxide dismutase activity and quercetin in blood serum and brain was detected. Hematoxylin-Eosin staining was applied for histopathological analysis. RESULTS Analysis of data showed that MQNPN increased the activity of superoxide dismutase. The histopathology results of the hippocampal region of AD rats also confirmed their improvement after treatment with MQNPN. MQNPN treatment caused a significant decrease in the relative expression of MAPT and APP genes. CONCLUSION MQNPN is a suitable carrier for the transfer of quercetin to the rat hippocampus, and has a significant effect in reducing AD symptoms in terms of histopathology, behavioral testing, and changing the expression of AD-related genes.
Collapse
Affiliation(s)
- Kamelia Mobasheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Zaefizadeh
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Kaur N, Tiwari P, Kumar P, Biswas M, Sonawane A, Mobin SM. Multifaceted Carbon Dots: toward pH-Responsive Delivery of 5-Fluorouracil for In Vitro Antiproliferative Activity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37366546 DOI: 10.1021/acsabm.3c00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The synthesis of smart hybrid material to assimilate diagnosis and treatment is crucial in nanomedicine. Herein, we present a simple and facile method to synthesize multitalented blue-emissive nitrogen-doped carbon dots N@PEGCDs. The as-prepared carbon dots N@PEGCDs show enhanced biocompatibility, small size, high fluorescence, and high quantum yield. The N@PEGCDs are used as a drug carrier for 5-fluorouracil (5-FU) with more release at acidic pH. Furthermore, the mode of action of drug-loaded CD (5FU-N@PEGCDs) has also been explored by performing wound healing assay, DCFDA assay for ROS generation, and Hoechst staining. The drug loaded with carbon dots showed less toxicity to normal cells compared to cancer cells, making it a perfect candidate to be studied for designing next-generation drug delivery systems.
Collapse
Affiliation(s)
- Navpreet Kaur
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pranav Tiwari
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pawan Kumar
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Avinash Sonawane
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shaikh M Mobin
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
31
|
Gul G, Faller R, Ileri-Ercan N. Coarse-grained modeling of polystyrene-modified CNTs and their interactions with lipid bilayers. Biophys J 2023; 122:1748-1761. [PMID: 37056052 PMCID: PMC10209035 DOI: 10.1016/j.bpj.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
In the present work, we describe Martini3 coarse-grained models of polystyrene and carboxyl-terminated polystyrene functionalized carbon nanotubes (CNTs) and investigate their interactions with lipid bilayers with and without cholesterol (CHOL) using molecular dynamics simulations. By changing the polystyrene chain length and grafting density at the end ring of the CNTs at two different nanotube concentrations, we observe the translocation of nanoparticles as well as changes in the lipid bilayer properties. Our results show that all developed models passively diffuse into the membranes without causing any damage to the membrane integrity, although high concentrations of CNTs induce structural and elastic changes in lipid bilayers. In the presence of CHOL, increasing CNT concentration results in decreased rates of CHOL transmembrane motions. On the other hand, CNTs are prone to lipid and polystyrene blockage, which affects their equilibrated configurations, and tilting behavior within the membranes. Hence, we demonstrate that polystyrene-functionalized CNTs are promising drug-carrier agents. However, polystyrene chain length and grafting density are important factors to consider to enhance the efficiency of drug delivery.
Collapse
Affiliation(s)
- Gulsah Gul
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey; Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, California
| | - Nazar Ileri-Ercan
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
32
|
Elkodous MA, Olojede SO, Sahoo S, Kumar R. Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chem Biol Interact 2023; 379:110517. [PMID: 37149208 DOI: 10.1016/j.cbi.2023.110517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, carbon-based materials owing to great interest in biomedical science/biotechnology and applied for effective diagnosis and treatment of disease. To enhance the effectiveness of carbon nanotubes (CNTs)/graphene-based materials for bio-medical science/technology applications, different kinds of surface modification/functionalization were developed for the attachment of metal oxides nanostructures, biomolecules and polymers. The attachment of pharmaceutical agents with CNTs/graphene, make it a favorable candidate in research field of bio-medical science/technology applications. Surface modified/functionalized CNTs and graphene derivatives materials integrated with pharmaceutical agents has been developed for the purpose of cancer therapy, antibacterial action, pathogens bio detection, drug and gene delivery. Surface modification or functionalization of CNT/graphene materials provides good platform for pharmaceutical agents attachment with improved surface Raman scattering, fluorescence and its quenching capability. Graphene-based biosensing and bioimaging technologies are widely applied to identify numerous trace level analytes. These fluorescent and electrochemical sensors are utilized primarily for detecting organic, inorganic, and biomolecules. In this article, we highlights and summarized overview of the current research progress concerned on the CNTs/graphene-based materials as a new generation materials for detection and treatment of diseases.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Samuel Oluwaseun Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
33
|
Duan C, Yu M, Xu J, Li BY, Zhao Y, Kankala RK. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother 2023; 162:114643. [PMID: 37031496 DOI: 10.1016/j.biopha.2023.114643] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Multi-drug resistance (MDR) in cancer cells, either intrinsic or acquired through various mechanisms, significantly hinders the therapeutic efficacy of drugs. Typically, the reduced therapeutic performance of various drugs is predominantly due to the inherent over expression of ATP-binding cassette (ABC) transporter proteins on the cell membrane, resulting in the deprived uptake of drugs, augmenting drug detoxification, and DNA repair. In addition to various physiological abnormalities and extensive blood flow, MDR cancer phenotypes exhibit improved apoptotic threshold and drug efflux efficiency. These severe consequences have substantially directed researchers in the fabrication of various advanced therapeutic strategies, such as co-delivery of drugs along with various generations of MDR inhibitors, augmented dosage regimens and frequency of administration, as well as combinatorial treatment options, among others. In this review, we emphasize different reasons and mechanisms responsible for MDR in cancer, including but not limited to the known drug efflux mechanisms mediated by permeability glycoprotein (P-gp) and other pumps, reduced drug uptake, altered DNA repair, and drug targets, among others. Further, an emphasis on specific cancers that share pathogenesis in executing MDR and effluxed drugs in common is provided. Then, the aspects related to various nanomaterials-based supramolecular programmable designs (organic- and inorganic-based materials), as well as physical approaches (light- and ultrasound-based therapies), are discussed, highlighting the unsolved issues and future advancements. Finally, we summarize the review with interesting perspectives and future trends, exploring further opportunities to overcome MDR.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China.
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China
| | - Jiyuan Xu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan 528137, PR China
| | - Bo-Yi Li
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ying Zhao
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
34
|
Yang X, Xu G, Liu X, Zhou G, Zhang B, Wang F, Wang L, Li B, Li L. Carbon nanomaterial-involved EMT and CSC in cancer. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:1-13. [PMID: 34619029 DOI: 10.1515/reveh-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanomaterials (CNMs) are ubiquitous in our daily lives because of the outstanding physicochemical properties. CNMs play curial parts in industrial and medical fields, however, the risks of CNMs exposure to human health are still not fully understood. In view of, it is becoming extremely difficult to ignore the existence of the toxicity of CNMs. With the increasing exploitation of CNMs, it's necessary to evaluate the potential impact of these materials on human health. In recent years, more and more researches have shown that CNMs are contributed to the cancer formation and metastasis after long-term exposure through epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) which is associated with cancer progression and invasion. This review discusses CNMs properties and applications in industrial and medical fields, adverse effects on human health, especially the induction of tumor initiation and metastasis through EMT and CSCs procedure.
Collapse
Affiliation(s)
- Xiaotong Yang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Gongquan Xu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolong Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Guiming Zhou
- Tianjin Medical University General Hospital, Tianjin, China
| | - Bing Zhang
- Rushan Hospital of Traditional Chinese Medicine, Weihai, China
| | - Fan Wang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liming Li
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
35
|
Baildya N, Mazumdar S, Mridha NK, Chattopadhyay AP, Khan AA, Dutta T, Mandal M, Chowdhury SK, Reza R, Ghosh NN. Comparative study of the efficiency of silicon carbide, boron nitride and carbon nanotube to deliver cancerous drug, azacitidine: A DFT study. Comput Biol Med 2023; 154:106593. [PMID: 36746115 DOI: 10.1016/j.compbiomed.2023.106593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Herein we have made a comparative study of the efficiency of three different nanotubes viz. Carbon nanotube (CNT), boron nitride nanotube (BNNT) and silicon carbide nanotube (SiCNT) to deliver the cancerous drug, Azacitidine (AZD). The atomistic description of the encapsulation process of AZD in these nanotubes has been analyzed by evaluating parameters like adsorption energy, electrostatic potential map, reduced density gradient (RDG). Higher adsorption energy of AZD with BNNT (-0.66eV), SiCNT (-0.92eV) compared to CNT (-0.56eV) confirms stronger binding affinity of the drug for the former than the later. Charge density and electrostatic potential map suggest that charge separation involving BNNT and CNT is more prominent than SiCNT. Evaluation of different thermodynamic parameters like Gibbs free energy, enthalpy change revealed that the overall encapsulation process is spontaneous and exothermic in nature and much favorable with BNNT and SiCNT. Stabilizing interactions of the drug with BNNT and SiCNT has been confirmed from RDG analysis. ADMP molecular dynamics simulation supports that the encapsulation process of the drug within the NT at room temperature. These results open up unlimited opportunities for the applications of these NTs as a drug delivery system in the field of nanomedicine.
Collapse
Affiliation(s)
- Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda, West Bengal, 732209, India
| | - Sourav Mazumdar
- Department of Physics, Dukhulal Nibaran Chandra College, Suti, West Bengal, 742201, India
| | | | - Asoke P Chattopadhyay
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Abdul Ashik Khan
- Department of Chemistry, Darjeeling Government College, West Bengal, 734101, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Manab Mandal
- Department of Botany, Dukhulal Nibaran Chandra College, Suti, West Bengal, 742201, India
| | | | - Rahimasoom Reza
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | | |
Collapse
|
36
|
Górnicka J, Mika M, Wróblewska O, Siudem P, Paradowska K. Methods to Improve the Solubility of Curcumin from Turmeric. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010207. [PMID: 36676157 PMCID: PMC9862957 DOI: 10.3390/life13010207] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Turmeric is a strong-taste component of spices characteristic of Indian cuisine. It is obtained from the turmeric rhizome (Curcumae longae rhizoma) and has been used for thousands of years not only for culinary purposes, but also for medicinal purposes. It contains a group of organic compounds called curcuminoids. Curcumin is the main representative of this group of compounds which is also most frequently studied. In recent years, bioactive curcuminoids (including curcumin in the first place) have become more and more popular due to a wide spectrum of their biological activity. The anticancer, antibacterial, anti-inflammatory, and antiaging effects of curcumin have been confirmed by numerous in vitro and in vivo studies, as well as in clinical trials. However, an obstacle to simple, clinical application of curcumin is its poor bioavailability (which is due to its hydrophobic nature) and its very weak water solubility. Therefore, many scientists are working on improving the solubility of curcumin in water, which is the topic of the present article. Attempts have been made to combine curcumin with nanoparticles (polysaccharide or silica). Nanosuspensions or complexes with cyclodextrins are also considered. A promising direction is the search for new polymorphic varieties as well as obtaining cocrystals with curcumin which are characterized by better water solubility.
Collapse
Affiliation(s)
- Julia Górnicka
- Student Research Group “Free Radicals”, Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Martyna Mika
- Student Research Group “Free Radicals”, Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Oliwia Wróblewska
- Student Research Group “Free Radicals”, Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Paweł Siudem
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Correspondence:
| | - Katarzyna Paradowska
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
37
|
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2023; 10:1095598. [PMID: 36688039 PMCID: PMC9846181 DOI: 10.3389/fchem.2022.1095598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy is the mainstay of cancer treatment today. Chemotherapeutic drugs are non-selective and can harm both cancer and healthy cells, causing a variety of adverse effects such as lack of specificity, cytotoxicity, short half-life, poor solubility, multidrug resistance, and acquiring cancer stem-like characteristics. There is a paradigm shift in drug delivery systems (DDS) with the advent of smarter ways of targeted cancer treatment. Smart Drug Delivery Systems (SDDSs) are stimuli responsive and can be modified in chemical structure in response to light, pH, redox, magnetic fields, and enzyme degradation can be future of translational medicine. Therefore, SDDSs have the potential to be used as a viable cancer treatment alternative to traditional chemotherapy. This review focuses mostly on stimuli responsive drug delivery, inorganic nanocarriers (Carbon nanotubes, gold nanoparticles, Meso-porous silica nanoparticles, quantum dots etc.), organic nanocarriers (Dendrimers, liposomes, micelles), antibody-drug conjugates (ADC) and small molecule drug conjugates (SMDC) based SDDSs for targeted cancer therapy and strategies of targeted drug delivery systems in cancer cells.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meheli Adhikary
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Praveen Kumar Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C. Das
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Seema Bhatnagar,
| |
Collapse
|
38
|
Ruiu A, González-Méndez I, Sorroza-Martínez K, Rivera E. Drug delivery aspects of carbon nanotubes. EMERGING APPLICATIONS OF CARBON NANOTUBES IN DRUG AND GENE DELIVERY 2023:119-155. [DOI: 10.1016/b978-0-323-85199-2.00008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Khalid A, Yi W, Yoo S, Abbas S, Si J, Hou X, Hou J. Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. NEW J CHEM 2023. [DOI: 10.1039/d2nj04056e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gel chromatography is used to separate single-chirality and selective-diameter SWCNTs. We also explore the use of photothermal therapy and biosensor applications based on single-chirality, selected-diameter, and unique geometric shape.
Collapse
Affiliation(s)
- Asif Khalid
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Sweejiang Yoo
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Shakeel Abbas
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jinhai Si
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Xun Hou
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Science, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| |
Collapse
|
40
|
Sapino S, Chindamo G, Chirio D, Morel S, Peira E, Vercelli C, Gallarate M. Nanocarriers in Veterinary Medicine: A Challenge for Improving Osteosarcoma Conventional Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4501. [PMID: 36558354 PMCID: PMC9785518 DOI: 10.3390/nano12244501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In recent years, several nanocarrier-based drug delivery systems, such as polymeric nanoparticles, solid lipid nanoparticles, metallic nanoparticles, liposomes, and others, have been explored to target and treat a wide variety of diseases. Their employment has brought many benefits, not only to human medicine but also to veterinary medicine, albeit at a slower rate. Soon, the use of nanocarriers could revolutionize the animal health sector, and many veterinary therapies will be more effective as a result. The purpose of this review is to offer an overview of the main applications of nanocarriers in the veterinary field, from supplements for animal health and reproduction to nanovaccines and nanotherapies. Among the major pathologies that can affect animals, special attention is given to canine osteosarcoma (OSA): a comparison with human OSA is provided and the main treatment options are reviewed emphasizing the benefits that nanocarriers could bring in the treatment of this widespread disease.
Collapse
Affiliation(s)
- Simona Sapino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Giulia Chindamo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Daniela Chirio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Silvia Morel
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | - Elena Peira
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Cristina Vercelli
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, 10095 Grugliasco, Italy
| | - Marina Gallarate
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
41
|
Eskandari S, Barzegar A, Mahnam K. Absorption of daunorubicin and etoposide drugs by hydroxylated and carboxylated carbon nanotube for drug delivery: theoretical and experimental studies. J Biomol Struct Dyn 2022; 40:10057-10064. [PMID: 34166598 DOI: 10.1080/07391102.2021.1938232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anti-cancer daunorubicin and etoposide drugs are mostly used in chemotherapy medicine to treat a wide variety of cancers. Many of the side effects and specific delivery to a target tissue are the main challenges of using chemotherapeutic agents. To avoid serious toxic side effects and improve treatment outcomes, functionalized carbon nanotubes (f-CNTs) are considered promising nano-carriers for the delivery of chemotherapeutic drugs to cancerous cells. We examined the effects of -OH and -COO- groups on CNTs surface for absorption of two anticancer drugs including daunorubicin and etoposide using molecular dynamics simulation and experimental assays. To evaluate the absorption of each drug in each CNT, the complexes of drugs/CNTs in water were simulated separately. Theoretical investigation demonstrated that CNT-OH and CNT-COO- are more suitable for absorption of daunorubicin and etoposide, respectively. Experimental findings also confirmed molecular dynamics simulation results. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sara Eskandari
- Research Center of Bioscience and Biotechnology (RBB), University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Center of Bioscience and Biotechnology (RBB), University of Tabriz, Tabriz, Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.,Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
42
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
43
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
44
|
Sumetpipat K, Baowan D. Stable Configurations of DOXH Interacting with Graphene: Heuristic Algorithm Approach Using NSGA-II and U-NSGA-III. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4097. [PMID: 36432383 PMCID: PMC9693072 DOI: 10.3390/nano12224097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticles in drug delivery have been widely studied and have become a potential technique for cancer treatment. Doxorubicin (DOX) and carbon graphene are candidates as a drug and a nanocarrier, respectively, and they can be modified or decorated by other molecular functions to obtain more controllable and stable systems. A number of researchers focus on investigating the energy, atomic distance, bond length, system formation and their properties using density function theory and molecular dynamic simulation. In this study, we propose metaheuristic optimization algorithms, NSGA-II and U-NSGA-III, to find the interaction energy between DOXH molecules and pristine graphene in three systems: (i) interacting between two DOXHs, (ii) one DOXH interacting with graphene and (iii) two DOXHs interacting with graphene. The result shows that the position of the carbon ring plane of DOXH is noticeably a key factor of stability. In the first system, there are three possible, stable configurations where their carbon ring planes are oppositely parallel, overlapping and perpendicular. In the second system, the most stable configuration is the parallel form between the DOXH carbon ring plane and graphene, and the spacing distance from the closest atom on the DOXH to the graphene is 2.57 Å. In the last system, two stable configurations are formed, where carbon ring planes from the two DOXHs lie either in the opposite direction or in the same direction and are parallel to the graphene sheet. All numerical results show good agreement with other studies.
Collapse
Affiliation(s)
- Kanes Sumetpipat
- Department of Mathematics and Computer Science, Kamnoetvidya Science Academy, Rayong 21210, Thailand
| | - Duangkamon Baowan
- Department of Mathematics, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| |
Collapse
|
45
|
Benková Z, Čakánek P, Cordeiro MNDS. Adsorption of Peptides onto Carbon Nanotubes Grafted with Poly(ethylene Oxide) Chains: A Molecular Dynamics Simulation Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3795. [PMID: 36364570 PMCID: PMC9655739 DOI: 10.3390/nano12213795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes (CNTs) display exceptional properties that predispose them to wide use in technological or biomedical applications. To remove the toxicity of CNTs and to protect them against undesired protein adsorption, coverage of the CNT sidewall with poly(ethylene oxide) (PEO) is often considered. However, controversial results on the antifouling effectiveness of PEO layers have been reported so far. In this work, the interactions of pristine CNT and CNT covered with the PEO chains at different grafting densities with polyglycine, polyserine, and polyvaline are studied using molecular dynamics simulations in vacuum, water, and saline environments. The peptides are adsorbed on CNT in all investigated systems; however, the adsorption strength is reduced in aqueous environments. Save for one case, addition of NaCl at a physiological concentration to water does not appreciably influence the adsorption and structure of the peptides or the grafted PEO layer. It turns out that the flexibility of the peptide backbone allows the peptide to adopt more asymmetric conformations which may be inserted deeper into the grafted PEO layer. Water molecules disrupt the internal hydrogen bonds in the peptides, as well as the hydrogen bonds formed between the peptides and the PEO chains.
Collapse
Affiliation(s)
- Zuzana Benková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Peter Čakánek
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Maria Natália D. S. Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
46
|
Ma B, Xu Y, Hu F, Zhai L, Huang Y, Qiao H, Xiong J, Yang D, Ni Z, Zheng X, Mi L. Fluorinated covalent organic frameworks for efficient drug delivery. RSC Adv 2022; 12:31276-31281. [PMID: 36349051 PMCID: PMC9623553 DOI: 10.1039/d2ra05534a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, two novel fluorine-functionalized crystalline covalent organic frameworks (COFs), namely DF-TAPB-COF and DF-TATB-COF, were synthesized, and their ordered structure, porosity, suitable pore size, and abundant fluorine groups were expected to serve as effective carriers in drug delivery. The excellent cell viability of DF-TAPB-COF and DF-TATB-COF was verified using MTT assays. Both COFs exhibited very high loading capacities in terms of drug loading performance, in particular the drug loading rate of DF-TAPB-COF for 5-fluorouracil (5-FU) was up to 69%. They also exhibited efficient drug release performance in a simulated body fluid environment. Cell endocytosis experiments demonstrated that DF-TAPB-COF and DF-TATB-COF could be effectively endocytosed by cells. Hence, this study offers new insight into the design and development of COF-based drug carrier systems.
Collapse
Affiliation(s)
- Baiwei Ma
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Yimeng Xu
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Fujia Hu
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Lipeng Zhai
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China,Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Yongyu Huang
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Huijie Qiao
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Jiabin Xiong
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Dehong Yang
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Zhihui Ni
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| | - Xiaofei Zheng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052 P. R. China
| | - Liwei Mi
- School of Material and Chemical Engineering, Zhongyuan University of TechnologyZhengzhou450007 P. R. China,Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of TechnologyZhengzhou450007 P. R. China
| |
Collapse
|
47
|
Abstract
Carbon nanotubes (CNTs) mimicking the structure of aquaporins support fast water transport, making them strong candidates for building next-generation high-performance membranes for water treatment. The diffusion and transport behavior of water through CNTs or nanoporous graphene can be fundamentally different from those of bulk water through a macroscopic tube. To date, the nanotube-length-dependent physical transport behavior of water is still largely unexplored. Herein, on the basis of molecular dynamics simulations, we show that the flow rate of water through 0.83-nm-diameter (6,6) and 0.96-nm-diameter (7,7) CNTs exhibits anomalous transport behavior, whereby the flow rate increases markedly first and then either slowly decreases or changes slightly as the CNT length l increases. The critical range of l for the flow-rate transition is 0.37 to 0.5 nm. This anomalous water transport behavior is attributed to the l-dependent mechanical stability of the transient hydrogen-bonding chain that connects water molecules inside and outside the CNTs and bypasses the CNT orifice. The results unveil a microscopic mechanism governing water transport through subnanometer tubes, which has important implications for nanofluidic manipulation.
Collapse
|
48
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
49
|
Zheng S, Tian Y, Ouyang J, Shen Y, Wang X, Luan J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem 2022; 10:990362. [PMID: 36171994 PMCID: PMC9510755 DOI: 10.3389/fchem.2022.990362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Carbon nanomaterials are some of the state-of-the-art materials used in drug-delivery and tissue-engineering research. Compared with traditional materials, carbon nanomaterials have the advantages of large specific surface areas and unique properties and are more suitable for use in drug delivery and tissue engineering after modification. Their characteristics, such as high drug loading and tissue loading, good biocompatibility, good targeting and long duration of action, indicate their great development potential for biomedical applications. In this paper, the synthesis and application of carbon dots (CDs), carbon nanotubes (CNTs) and graphene in drug delivery and tissue engineering are reviewed in detail. In this review, we discuss the current research focus and existing problems of carbon nanomaterials in order to provide a reference for the safe and effective application of carbon nanomaterials in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shaolie Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuan Tian
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Ouyang
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yuan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, China
- *Correspondence: Xiaoyu Wang, ; Jian Luan,
| |
Collapse
|
50
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|