1
|
Ma Z, Sun Q, Zhang C, Zheng Q, Liu Y, Xu H, He Y, Yao C, Chen J, Xia H. RHOJ Induces Epithelial-to-Mesenchymal Transition by IL-6/STAT3 to Promote Invasion and Metastasis in Gastric Cancer. Int J Biol Sci 2023; 19:4411-4426. [PMID: 37781036 PMCID: PMC10535698 DOI: 10.7150/ijbs.81972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 07/20/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Recently, the molecular classification of gastric cancer (GC) promotes the advances of GC patients' precision therapy and prognosis prediction. According to the Asian Cancer Research Group (ACRG), GC is classified as microsatellite instable (MSI) subtype GC, microsatellite stable/epithelial-to-mesenchymal transition (MSS/EMT) subtype GC, MSS/TP53- subtype GC, and MSS/TP53+ subtype GC. Due to the easy metastasis of EMT-subtype GC, it has the worst prognosis, the highest recurrence rate, and the tendency to occur at a younger age. Therefore, it is curious and crucial for us to understand the molecular basis of EMT-subtype GC. Methods: The expression of RHOJ was detected by quantitative real-time PCR (qPCR) and immunohistochemistry (IHC) in GC cells and tissues. Western blotting and immunofluorescence (IF) were conducted to examine the effects of RHOJ on the EMT markers' expression of GC cells. The GC cells' migration and invasion were investigated by transwell assay. The tumor growth and metastasis were demonstrated correspondingly in different xenograft models. Results: Firstly, it was noticed that RHOJ was significantly upregulated in EMT-subtype GC and RHOJ has close relationships with the EMT process of GC, based on the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases. Next, transwell assay and tail vein metastasis models were conducted to verify that RHOJ mediates the EMT to regulate the invasion and metastasis of GC in vitro and in vivo. In addition, weakened tumor angiogenesis was observed after RHOJ knockdown by the angiogenesis assay of HUVEC. RNA-seq and further study unveiled that RHOJ aggravates the malignant progression of GC by inducing EMT through IL-6/STAT3 to promote invasion and metastasis. Finally, blocking the IL-6/STAT3 signaling overcame RHOJ-mediated GC cells' growth and migration. Conclusions: These results indicate that the upregulation of RHOJ contributes to EMT-subtype GC invasion and metastasis via IL-6/STAT3 signaling, and RHOJ is expected to become a promising biomarker and therapeutic target for EMT-subtype GC patients.
Collapse
Affiliation(s)
- Zhijie Ma
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Chengfei Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Qian Zheng
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Yixuan Liu
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Haojun Xu
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Yiting He
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Chengyun Yao
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Hongping Xia
- Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Ullah S, Rahman W, Ullah F, Ullah A, Ahmad G, Ijaz M, Ullah H, Zheng Z, Gao T. AVPCD: a plant-derived medicine database of antiviral phytochemicals for cancer, Covid-19, malaria and HIV. Database (Oxford) 2023; 2023:baad056. [PMID: 37594855 PMCID: PMC10437090 DOI: 10.1093/database/baad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Serious illnesses caused by viruses are becoming the world's most critical public health issues and lead millions of deaths each year in the world. Thousands of studies confirmed that the plant-derived medicines could play positive therapeutic effects on the patients with viral diseases. Since thousands of antiviral phytochemicals have been identified as lifesaving drugs in medical research, a comprehensive database is highly desirable to integrate the medicinal plants with their different medicinal properties. Therefore, we provided a friendly antiviral phytochemical database AVPCD covering 2537 antiviral phytochemicals from 383 medicinal compounds and 319 different families with annotation of their scientific, family and common names, along with the parts used, disease information, active compounds, links of relevant articles for COVID-19, cancer, HIV and malaria. Furthermore, each compound in AVPCD was annotated with its 2D and 3D structure, molecular formula, molecular weight, isomeric SMILES, InChI, InChI Key and IUPAC name and 21 other properties. Each compound was annotated with more than 20 properties. Specifically, a scoring method was designed to measure the confidence of each phytochemical for the viral diseases. In addition, we constructed a user-friendly platform with several powerful modules for searching and browsing the details of all phytochemicals. We believe this database will facilitate global researchers, drug developers and health practitioners in obtaining useful information against viral diseases.
Collapse
Affiliation(s)
- Shahid Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Wajeeha Rahman
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Farhan Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Anees Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Gulzar Ahmad
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Muhammad Ijaz
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Hameed Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Zilong Zheng
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Tianshun Gao
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
3
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Siangcham T, Prathaphan P, Ruangtong J, Thongsepee N, Martviset P, Chantree P, Sornchuer P, Sangpairoj K. Camboginol and Morelloflavone from Garcinia dulcis (Roxb.) Kurz Flower Extract Promote Autophagic Cell Death against Human Glioblastoma Cells through Endoplasmic Reticulum Stress. Prev Nutr Food Sci 2022; 27:376-383. [PMID: 36721749 PMCID: PMC9843714 DOI: 10.3746/pnf.2022.27.4.376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 01/03/2023] Open
Abstract
Garcinia dulcis is a tropical plant native to Southeast Asia that is traditionally used as a folk remedy to cure several pathological symptoms. Camboginol and morelloflavone have been revealed by previous studies as the principal bioactive compounds from the flower extract of G. dulcis. The disease-preventing properties of camboginol or morelloflavone, including anti-cancer, from various parts of G. dulcis have been revealed by recent studies. Glioblastoma is the aggressive malignant stage of brain cancer and suffers from chemotherapeutic resistance. This study aimed to test the anti-cancer effect of G. dulcis flower extract against the proliferation of A172 human glioblastoma cells. The extract had cytotoxic activity and promoted cell cycle arrest at the S and G2/M phases. Autophagic cell death was promoted by cytotoxic concentrations of the extract, as observed by enhancing autophagic flux and the expression of autophagic markers. Autophagic cell death induced by the extract might be associated with endoplasmic reticulum (ER) stress. Conclusively, it was indicated by this study that the extract from the flower of G. dulcis had a protective effect against the proliferation of A172 human glioblastoma cells through the induction of ER stress-mediated cytotoxic autophagy.
Collapse
Affiliation(s)
- Tanapan Siangcham
- Faculty of Allied Health Sciences, Burapha University, Chonburi 20130, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Nattaya Thongsepee
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand,Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand,Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand,Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Phornphan Sornchuer
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand,Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand,Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand,
Correspondence to Kant Sangpairoj, E-mail:
| |
Collapse
|
5
|
Bader A, Santoro V, Parisi V, Malafronte N, Al-Sheikh I, Cacciola A, Germanò MP, D'Angelo V. The anti-angiogenic effect of polyphenols from the roots of Daphne mucronata Royle subsp. linearifolia (Hart) Halda (Thymelaeaceae). Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Darwati, Nurlelasari, Mayanti T, Ambardhani N, Kurnia D. Morelloflavone as Potential Anticancer Agent Against MCF-7 Breast
Cancer Cell Lines: In vitro and In silico Studies. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210706110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Breast cancer is most commonly reported to contribute to people's death. Nowadays,
cancer treatment is focused on investigating anticancer drugs from natural compounds. Various
methods, including in vitro, in vivo, and in silico methods, are used to assess the potential of anticancer
compounds. The efficacy of bioactive compounds from medicinal plant origin lies in their affordability
and minimized side effects. The Garcinia genus contains bioactive compounds, such as xanthones, benzophenones,
triterpenes, biflavonoids, and benzoquinones.
Purpose:
The study aimed at investigating an active compound that can inhibit cancer cell growth and
proteins that contribute to cancer cell growth, such as Caspase-9, TNF-α, ER-α, and HER-2.
Methods:
This study is divided into three steps. The first step is the isolation of the active compound from
G. cymosa. The second step is an assessment of cytotoxic activity against MCF-7 cell by using MTT assay,
and the last one is an investigation of the molecular mechanism of an active compound against
Caspase-9, TNF-α, ER-α, and HER-2 by using in silico studies utilizing various programs, such as PyRx
0.8, PYMOL, and Discovery Studio.
Results:
Morelloflavone from G. cymosa stem barks has exhibited anticancer activity (55.84 μg/mL)
eight times lower than doxorubicin (6.99 μg/mL), but it can block the activity of Caspase-9, TNF-α, ER-
α, and HER-2. The binding affinity of morelloflavone is the strongest of all ligands.
Conclusion:
The natural flavonoid, morelloflavone, may be a new lead candidate for anticancer agent
inhibiting action mechanism of Caspase-9, TNF-α, ER-α, and HER-2, respectively.
Collapse
Affiliation(s)
- Darwati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Nurlelasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Nurul Ambardhani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjdjaran, Jatinangor 45363,
Jawa Barat, Indonesia
| |
Collapse
|
7
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
8
|
Alrazi IMD, Ogunwa TH, Kolawole AO, Elekofehinti OO, Omotuyi OI, Miyanishi T, Maruta S. Kolaflavanone, a biflavonoid derived from medicinal plant Garcinia, is an inhibitor of mitotic kinesin Eg5. J Biochem 2021; 170:611-622. [PMID: 34264310 DOI: 10.1093/jb/mvab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Mitotic kinesin Eg5 remains a validated target in antimitotic therapy because of its essential role in the formation and maintenance of bipolar mitotic spindles. Although numerous Eg5 inhibitors of synthetic origin are known, only a few inhibitors derived from natural products have been reported. In our study, we focused on identifying novel Eg5 inhibitors from medicinal plants, particularly Garcinia species. Herein, we report the inhibitory effect of kolaflavanone (KLF), a Garcinia biflavonoid, on the ATPase and microtubule-gliding activities of mitotic kinesin Eg5. Additionally, we showed the interaction mechanism between Eg5 and KLF via in vitro and in silico analyses. The results revealed that KLF inhibited both the basal and microtubule-activated ATPase activities of Eg5. The inhibitory mechanism is allosteric, without a direct competition with adenosine-5'-diphosphate for the nucleotide-binding site. KLF also suppressed the microtubule gliding of Eg5 in vitro. The Eg5-KLF model obtained from molecular docking showed that the biflavonoid exists within the α2/α3/L5 (α2: Lys111-Glu116 and Ile135-Asp149, α3: Asn206-Thr226; L5: Gly117-Gly134) pocket, with a binding pose comparable to known Eg5 inhibitors. Overall, our data suggest that KLF is a novel allosteric inhibitor of mitotic kinesin Eg5.
Collapse
Affiliation(s)
- Islam M D Alrazi
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Tomisin H Ogunwa
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Ayodele O Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, PMB 704, Nigeria
| | - Olusola O Elekofehinti
- Department of Biochemistry, The Federal University of Technology, Akure, Ondo State, PMB 704, Nigeria
| | - Olaposi I Omotuyi
- Centre for Biocomputing and Drug Design, Biochemistry Department, Adekunle Ajasin University, Akungba-Akoko, Ondo State, PMB 001, Nigeria
| | - Takayuki Miyanishi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Shinsaku Maruta
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
9
|
Hou XX, Ren YP, Luo ZH, Jiang BL, Lu TT, Huang FP, Qin XY. Two novel chiral tetranucleate copper-based complexes: syntheses, crystal structures, inhibition of angiogenesis and the growth of human breast cancer in vitro and in vivo. Dalton Trans 2021; 50:14684-14694. [PMID: 34596186 DOI: 10.1039/d1dt02033a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The single crystals of two novel chiral tetranucleate copper(II)-based complexes (TNCu-A and TNCu-B) containing L-methioninol-derived Schiff-bases were obtained. Their single structures were characterized by X-ray single crystal diffraction, infrared (IR) rays, elemental analysis, and liquid chromatography-mass spectrometry analysis. TNCu-A can effectively inhibit human umbilical vein endothelial cells (HUVECs) to form a tubular structure and it induces apoptosis of human triple-negative breast cancer MDA-MB-231 cells and HUVECs in vitro in a mitochondria dependent manner. Moreover, in vivo TNCu-A can remarkably inhibit the growth of triple-negative breast cancer from which MDA-MB-231 cells were xenografted into severely immunodeficient nude mice by inhibiting proliferation, inducing apoptosis of MDA-MB-231 cells by dramatically inhibiting the expression of the anti-apoptotic protein Bcl-2 and up-regulating the expressions of proapoptotic proteins caspase-9 and Bax, and simultaneously inhibiting tumor angiogenesis by decreasing the density of vascular endothelial cells and suppressing migration and even partially inducing apoptosis.
Collapse
Affiliation(s)
- Xiao-Xiao Hou
- College of Pharmacy, Department of Histology and Embryology, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Ya-Ping Ren
- College of Pharmacy, Department of Histology and Embryology, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Zhao-Hui Luo
- College of Pharmacy, Department of Histology and Embryology, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Bing-Li Jiang
- College of Pharmacy, Department of Histology and Embryology, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Tian-Tian Lu
- College of Pharmacy, Department of Histology and Embryology, Guilin Medical University, Guangxi, Guilin, 541004, China.
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guangxi, Guilin, 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Department of Histology and Embryology, Guilin Medical University, Guangxi, Guilin, 541004, China.
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guangxi, Guilin, 541004, China
| |
Collapse
|
10
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
12
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
13
|
Zhang J, Li A, Sun H, Xiong X, Qin S, Wang P, Dai L, Zhang Z, Li X, Liu Z. Amentoflavone triggers cell cycle G2/M arrest by interfering with microtubule dynamics and inducing DNA damage in SKOV3 cells. Oncol Lett 2020; 20:168. [PMID: 32934735 PMCID: PMC7471765 DOI: 10.3892/ol.2020.12031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is the seventh most common cancer and the second most common cause of cancer-associated mortality among gynecological malignancies worldwide. The combination of antimitotic agents, such as taxanes, and the DNA-damaging agents, such as platinum compounds, is the standard treatment for ovarian cancer. However, due to chemoresistance, development of novel therapeutic strategies for the treatment of ovarian cancer remains critical. Amentoflavone (AMF) is a biflavonoid derived from the extracts of Selaginella tamariscina, which has been used as a Chinese herb for thousands of years. A previous study demonstrated that AMF inhibits angiogenesis of endothelial cells and induces apoptosis in hypertrophic scar fibroblasts. In order to check the influence of AMF on cell proliferation, the effects of AMF on cell cycle and DNA damage were measured by cell viability, flow cytometry, immunofluorescence and western blotting assays in SKOV3 cells, an ovarian cell line. In the present study, treatment with AMF inhibited ovarian cell proliferation, increased P21 expression, decreased CDK1/2 expression, interrupted the balance of microtubule dynamics and arrested cells at the G2 phase. Furthermore, treatment with AMF increased the expression levels of phospho-Histone H2AX (γ-H2AX; a variant of histone 2A, that belongs to the histone 2A family member X) and the DNA repair protein RAD51 homolog 1 (Rad51), indicating the occurrence of DNA damage since γ-H2AX and Rad51 are both key markers of DNA damage. Consistent with previous findings, the results of the present study suggest that AMF is a potential therapeutic agent for the treatment of ovarian cancer. In addition, the effects of AMF on cell cycle arrest and DNA damage induction may be the molecular mechanisms by which AMF might exert its potential therapeutic benefits in ovarian cancer.
Collapse
Affiliation(s)
- Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Hanjing Sun
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Libing Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhi Zhang
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaojian Li
- Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
14
|
Zhang PL, Hou XX, Liu MR, Huang FP, Qin XY. Two novel chiral tetranucleate copper-based complexes: crystal structures, nanoparticles, and inhibiting angiogenesis and the growth of human breast cancer by regulating the VEGF/VEGFR2 signal pathway in vitro. Dalton Trans 2020; 49:6043-6055. [PMID: 32319484 DOI: 10.1039/d0dt00380h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The single crystals of two novel copper(ii)-based complexes containing l-methioninol-derived Schiff bases were obtained and characterized. The nanoparticles of these complexes were prepared and their cellular uptake was measured in MDA-MB-231 cells and HUVECs. It was found that these complexes could remarkably induce apoptosis, inhibit proliferation, suppress migration and metastasis, and inhibit angiogenesis and the growth of triple-negative breast cancer derived from MDA-MB-231 cells in vitro. Meanwhile, these complexes exhibit anticancer and antiangiogenic functions by activating the important protein molecules VEGFR2, FAK, AKT and Erk1/2 or their phosphorylated molecules p-VEGFR2, p-FAK, p-AKT, and p-Erk1/2 in the VEGF/VEGFR2 signaling pathway, collapsing the mitochondrial membrane potential, and damaging the level of reactive oxygen species.
Collapse
Affiliation(s)
- Pei-Lu Zhang
- College of Pharmacy, Guilin Medical University, Guangxi Guilin, 541004, China.
| | | | | | | | | |
Collapse
|
15
|
John OD, Mouatt P, Majzoub ME, Thomas T, Panchal SK, Brown L. Physiological and Metabolic Effects of Yellow Mangosteen ( Garcinia dulcis) Rind in Rats with Diet-Induced Metabolic Syndrome. Int J Mol Sci 2019; 21:E272. [PMID: 31906096 PMCID: PMC6981489 DOI: 10.3390/ijms21010272] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is a cluster of disorders that increase the risk of cardiovascular disease and diabetes. This study has investigated the responses to rind of yellow mangosteen (Garcinia dulcis), usually discarded as waste, in a rat model of human metabolic syndrome. The rind contains higher concentrations of phytochemicals (such as garcinol, morelloflavone and citric acid) than the pulp. Male Wistar rats aged 8-9 weeks were fed either corn starch diet or high-carbohydrate, high-fat diet for 16 weeks, which were supplemented with 5% freeze-dried G. dulcis fruit rind powder during the last 8 weeks. We characterised metabolic, cardiovascular, liver and gut microbiota parameters. High-carbohydrate, high-fat diet-fed rats developed abdominal obesity, hypertension, increased left ventricular diastolic stiffness, decreased glucose tolerance, fatty liver and reduced Bacteroidia with increased Clostridia in the colonic microbiota. G. dulcis fruit rind powder attenuated these changes, improved cardiovascular and liver structure and function, and attenuated changes in colonic microbiota. G. dulcis fruit rind powder may be effective in metabolic syndrome by appetite suppression, inhibition of inflammatory processes and increased fat metabolism, possibly related to changes in the colonic microbiota. Hence, we propose the use of G. dulcis fruit rind as a functional food to ameliorate symptoms of metabolic syndrome.
Collapse
Affiliation(s)
- Oliver D. John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
16
|
Ogunwa TH, Taii K, Sadakane K, Kawata Y, Maruta S, Miyanishi T. Morelloflavone as a novel inhibitor of mitotic kinesin Eg5. J Biochem 2019; 166:129-137. [PMID: 30785183 DOI: 10.1093/jb/mvz015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Among 40 plant-derived biflavonoids with inhibitory potential against Eg5, morelloflavone from Garcinia dulcis leaves was selected for further testing based on in silico analysis of binding modes, molecular interactions, binding energies and functional groups that interact with Eg5. Computational models predicted that morelloflavone binds the putative allosteric pocket of Eg5, within the cavity surrounded by amino acid residues of Ile-136, Glu-116, Glu-118, Trp-127, Gly-117, Ala-133, Glu-215, Leu-214 and Tyr-211. Binding energy was -8.4 kcal/mol, with a single hydrogen bond formed between morelloflavone and Tyr-211. The binding configuration was comparable to that of a reference inhibitor, S-trityl-L-cysteine. Subsequent biochemical analysis in vitro confirmed that morelloflavone inhibited both the basal and microtubule-activated ATPase activity of Eg5 in a manner that does not compete with ATP binding. Morelloflavone also suppressed Eg5 gliding along microtubules. These results suggest that morelloflavone binds the allosteric binding site in Eg5 and thereby inhibits ATPase activity and motor function of Eg5.
Collapse
Affiliation(s)
- Tomisin Happy Ogunwa
- Department of Environmental Studies, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Kenichi Taii
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo, Japan
| | - Kei Sadakane
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo, Japan
| | - Yuka Kawata
- Department of Environmental Studies, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| | - Shinsaku Maruta
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo, Japan
| | - Takayuki Miyanishi
- Department of Environmental Studies, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Japan
| |
Collapse
|
17
|
Cho HD, Lee KW, Won YS, Shin DY, Seo KI. Studies on the Anti-Angiogenic Activities of Wild and Cultivated Orostachys japonicus Extracts in Human Umbilical Vein Endothelial Cells. J Food Sci 2019; 84:1764-1775. [PMID: 31218702 DOI: 10.1111/1750-3841.14675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/24/2019] [Accepted: 05/05/2019] [Indexed: 11/30/2022]
Abstract
Orostachys japonicus has traditionally been used as a food product and a fork medicine in Asia to treat various diseases. Angiogenesis is a critical process that contributes to various chronic diseases via excessive delivery of oxygen and nutrients. Common anti-angiogenic drugs have serious problems related to high costs and side effects; thus, natural products with low costs and no cytotoxicity have garnered increasing interest. In this study, we evaluated and compared the anti-angiogenic effects and phenolic compound contents between wild (WOEs) and cultivated O. japonicus extracts (COEs) prepared under various extract conditions. WOEs and COEs suppressed cell proliferation of human umbilical vein endothelial cells (HUVECs) and inhibited vascular endothelial growth factor-induced chemotactic migration, invasion, and capillary-like tube formation in HUVECs. Among COEs, that prepared by 70% EtOH (70% CE) showed the most effective anti-angiogenic activity in HUVECs. When compared to WOEs, total polyphenol and total flavonoid contents were 1.28 to 4.38 times higher in COEs, and 70% CE contained the greatest flavonoid contents (28.28 ± 0.93 mg%), as well as the highest levels of major phenolic compounds including gallic acid (21.84 µg/mL), epicatechin-gallate (6.58 µg/mL), kaempferol (6.32 µg/mL), and quercetin (8.55 µg/mL). Although further studies are required to identify the molecular mechanisms behind these anti-angiogenic effects, 70% CE could be used as an herbal medicine, functional food ingredient, and potent angiogenesis inhibitor. PRACTICAL APPLICATION: Environmental factors such as altitude, nutrients, exposure to sunlight, and temperature can influence the type and quantity of bioactive components in plants. The advantage of cultivated plants is that the above-mentioned factors can be artificially adjusted compared to wild plants. Based on economic efficiency, productivity, and consistent quality, anti-angiogenesis activity of cultivated O. japonicus is of greater commercial value as a functional food than wild O. japonicus.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Industry-Academy Cooperation, Dong-A Univ., Busan, 49315, Republic of Korea
| | - Kwan-Woo Lee
- Dept. of Biotechnology, Dong-A Univ., Busan, 49315, Republic of Korea
| | - Yeong-Seon Won
- Dept. of Biotechnology, Dong-A Univ., Busan, 49315, Republic of Korea
| | - Dong-Young Shin
- Dept. of Development in Oriental Medicine Resources, Sunchon Natl. Univ., Suncheon, 57922, Republic of Korea
| | - Kwon-Il Seo
- Dept. of Biotechnology, Dong-A Univ., Busan, 49315, Republic of Korea
| |
Collapse
|
18
|
Ren Y, Carcache de Blanco EJ, Fuchs JR, Soejarto DD, Burdette JE, Swanson SM, Kinghorn AD. Potential Anticancer Agents Characterized from Selected Tropical Plants. JOURNAL OF NATURAL PRODUCTS 2019; 82:657-679. [PMID: 30830783 PMCID: PMC6441492 DOI: 10.1021/acs.jnatprod.9b00018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants are well known for their value in affording clinically useful anticancer agents, with such compounds acting against cancer cells by a range of mechanisms of action. There remains a strong interest in the discovery and development of plant secondary metabolites as additional cancer chemotherapeutic lead compounds. In the present review, progress on the discovery of plant-derived compounds of the biflavonoid, lignan, sesquiterpene, steroid, and xanthone structural types is presented. Several potential anticancer leads of these types have been characterized from tropical plants collected in three countries as part of our ongoing collaborative multi-institutional project. Preliminary structure-activity relationships and work on in vivo testing and cellular mechanisms of action are also discussed. In addition, the relevant work reported by other groups on the same compound classes is included herein.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Esperanza J. Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Djaja D. Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Science and Education, Field Museum of Natural History, Chicago, IL 60605, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Steven M. Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
19
|
Li Y, Wang W, Zhang Y, Wang X, Gao X, Yuan Z, Li Y. Chitosan sulfate inhibits angiogenesis via blocking the VEGF/VEGFR2 pathway and suppresses tumor growth in vivo. Biomater Sci 2019; 7:1584-1597. [DOI: 10.1039/c8bm01337c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SCTS inhibits neovascularization by blocking the VEGF/VEGFR2 signal pathway and exerts anti-tumor effects.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yapei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xinyu Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xuefeng Gao
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yu Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
20
|
Nucleus-enriched Ruthenium Polypyridine Complex Acts as a Potent Inhibitor to Suppress Triple-negative Breast Cancer Metastasis In vivo. Comput Struct Biotechnol J 2018; 17:21-30. [PMID: 30581541 PMCID: PMC6297906 DOI: 10.1016/j.csbj.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Polypyridine Ru(II) complexes have long been deemed to excellent antitumor agents that inhibit the proliferation of breast cancer cells. Nevertheless, their effects on the metastatic potency of breast cancer cells need further research. Herein, a class of polypyridine Ru(II) complexes coordinated with phenazine derivates (DPPZ) ([Ru(bpy)2(DPPZ-R)](ClO4)2, Ru(bpy)2DPPZ: R = -H, Ru(bpy)2BrDPPZ: R = -Br, Ru(bpy)2MDPPZ: R = -CH3, Ru(bpy)2BnDPPZ: R = −acene, Ru(bpy)2BEDPPZ: R = -C ≡ C(C6H5)) was synthesized by introducing different substituent groups to regulate the electron cloud density and planarity of the main ligands. Results indicated that this class of DPPZ-based Ru(II) complexes exhibited promising inhibitory effect against MDA-MB-231 triple-negative breast cancer cells, especially for Ru(bpy)2BEDPPZ, which is comparable with that of cisplatin. In addition, Ru(bpy)2BEDPPZ effectively inhibited the migration and invasion of MDA-MB-231 cells in vitro and suppressed focal adhesion and stress fiber formation. Moreover, it effectively blocked MDA-MB-231 cell metastasis in blood vessels and restrained angiogenesis formation in a zebrafish xenograft breast cancer model. Further studies showed that the mechanisms may involve DNA damage-mediated apoptosis probably due to Ru(bpy)2BEDPPZ, which was enriched in the cell nucleus and induced DNA damage. All these results suggested that the DPPZ-based Ru(II) complexes can act as potent anti-metastasis agents.
Collapse
|
21
|
Farzaei MH, Tewari D, Momtaz S, Argüelles S, Nabavi SM. Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Food Chem Toxicol 2018; 120:183-195. [PMID: 29981370 DOI: 10.1016/j.fct.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/23/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Numerous chemicals, such as phenolic compounds are strong radical scavengers, capable of alleviating oxidative stress induced neurodegeneration. Dietary antioxidants, especially flavonoids, are being considered as a promising approach to prevent or slow the pathological development of neurological illness and aging. One of the major advantage of natural products is that of their anti-amyloid effects over synthetic counterpart, however a healthy diet provides these beneficial natural substances as nutraceuticals. The extracellular-signal-regulated kinase (ERK) is one of the main pharmacological target of natural phenolic compounds, participating in several therapeutic effects. Mounting evidence revealed that numerous bioflavonoids, obtained from a variety of dietary fruits or plants as well as medicinal herbal sources, exhibit protective or therapeutic functions versus development of neurodegenerative diseases mainly through modulation of different compartments of ERK signaling pathway. Currently, there is remarkable interest in the beneficial effects of natural flavonoids to improve neural performance and prevent the onset and development of major neurodegenerative diseases. Natural products originated from medicinal plants, in particular antioxidants, have gained a great deal of attention due to their safe and non-toxic natures. Here, we summarized the effect of natural bioflavonoids on ERK signaling pathway and their molecular mechanism.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Wang Y, Duan M, Zhao L, Ma P. Guajadial inhibits NSCLC growth and migration following activation of the VEGF receptor-2. Fitoterapia 2018; 129:73-77. [PMID: 29928966 DOI: 10.1016/j.fitote.2018.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/27/2022]
Abstract
Guajadial, one of natural dialdehyde meroterpenoids, demonstrated significant antineoplasmic activity. The present research was to investigate the inhibitory effects of guajadial by using two NSCLC cells (A549 and H1650) proliferation and migration. Western blotting was employed to explore the underlying mechanisms of VEGF receptor (VEGFR)2-mediated. This research indicated that guajadial not only inhibited endothelial cell proliferation and migration but also suppress tumor growth in human NSCLC xenograft mouse models. It is also suggested that guajadial inhibited A549 proliferation via blocking the Ras/MAPK pathway.
Collapse
Affiliation(s)
- Yongfeng Wang
- Department of Respiratory Medicine, Linyi Central Hospital, No. 17 Jiankang Road, 276400 Linyi, China.
| | - Meiling Duan
- Department of Respiratory Medicine, Linyi Central Hospital, No. 17 Jiankang Road, 276400 Linyi, China
| | - Lijiang Zhao
- Department of Respiratory Medicine, Linyi Central Hospital, No. 17 Jiankang Road, 276400 Linyi, China
| | - Ping Ma
- Department of Respiratory Medicine, Linyi Central Hospital, No. 17 Jiankang Road, 276400 Linyi, China
| |
Collapse
|
23
|
Abstract
Celastrol is a highly investigated anticancer moiety. It is a pentacyclic triterpenoid, isolated several decades ago with promising role in chemoprevention. Celastrol has been found to target multiple proinflammatory, angiogenic and metastatic proteins. Inhibition of these targets results in significant reduction of cancer growth, survival and metastasis. This review summarizes the varied molecular targets of celastrol along with insight into the various recently published clinical, preclinical and industrial patents (2011-2017).
Collapse
|
24
|
Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways. J Transl Med 2018; 98:783-798. [PMID: 29463877 DOI: 10.1038/s41374-018-0025-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 11/08/2022] Open
Abstract
The bark of Cinnamomum cassia (C. cassia) has been used for the management of coronary heart disease (CHD) and diabetes mellitus. C. cassia may target the vasculature, as it stimulates angiogenesis, promotes blood circulation and wound healing. However, the active components and working mechanisms of C. cassia are not fully elucidated. The Shexiang Baoxin pill (SBP), which consists of seven medicinal materials, including C. cassia etc., is widely used as a traditional Chinese patent medicine for the treatment of CHD. Here, 22 single effective components of SBP were evaluated against the human umbilical vein endothelial cells (HUVECs). We demonstrated that in HUVECs, cinnamaldehyde (CA) stimulated proliferation, migration, and tube formation. CA also activated the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Furthermore, the secretion of vascular endothelial growth factor (VEGF) from HUVECs was increased by CA. In vivo, CA partially restored intersegmental vessels in zebrafish pretreated with PTK787, which is a selective inhibitor for vascular endothelial growth factor receptor (VEGFR). CA also showed pro-angiogenic efficacy in the Matrigel plug assay. Additionally, CA attenuated wound sizes in a cutaneous wound model, and elevated VEGF protein and CD31-positive vascular density at the margin of these wounds. These results illustrate that CA accelerates wound healing by inducing angiogenesis in the wound area. The potential mechanism involves activation of the PI3K/AKT and MAPK signaling pathways. Such a small non-peptide molecule may have clinical applications for promoting therapeutic angiogenesis in chronic diabetic wounds and myocardial infarction.
Collapse
|
25
|
Li P, Yue GGL, Kwok HF, Long CL, Lau CBS, Kennelly EJ. Using Ultra-Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry-Based Chemometrics for the Identification of Anti-angiogenic Biflavonoids from Edible Garcinia Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8348-8355. [PMID: 28926234 DOI: 10.1021/acs.jafc.7b02867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Garcinia xanthochymus fruits are edible and also used in traditional medicine. Our previous work showed that the isolated natural products from G. xanthochymus fruits have displayed antioxidant activity and cytotoxicity in the colon cancer cells. In this study, we developed a strategy to correlate a zebrafish angiogenesis assay with ultra-performance liquid chromatography quadrupole time of flight mass spectrometry-based chemometric analysis to identify potential anti-angiogenic activity compounds from G. xanthochymus fruits. Primary bioactivity results showed that the methanolic extracts from aril and pericarp but not from seed have significant inhibitory effects on the growth of subintestinal vessels (SIVs) in zebrafish embryos. A total of 13 markers, including benzophenones and biflavonoids, were predicted by untargeted principal component analysis and orthogonal partial least squares discriminate analysis, which were tentatively identified as priority markers for the bioactivity related in aril and pericarp. Amentoflavone, a biflavonoid, has been found to significantly inhibit the growth of SIVs at 10 and 20 μM and downregulate the expressions of Angpt2 and Tie2 genes of zebrafish embryos. Furthermore, seven biflavonoids, volkensiflavone, fukugetin, fukugeside, GB 1a, GB 1a glucoside, GB 2a, and GB 2a glucoside, isolated from Garcinia species were evaluated for their structure-activity relationship using the zebrafish model. Only fukugetin, which was previously shown to be anticancer, was active in inhibiting the SIV growth. In this report, both amentoflavone and fukugetin, for the first time, displayed anti-angiogenic effects on zebrafish, thus demonstrating an effective and rapid strategy to identify natural products for anti-angiogenesis activity.
Collapse
Affiliation(s)
- Ping Li
- College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, People's Republic of China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | | | | | - Chun-Lin Long
- College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, People's Republic of China
- Kunming Institute of Botany, Chinese Academy of Sciences , Kunming, Yunnan 650201, People's Republic of China
| | | | - Edward J Kennelly
- College of Life and Environmental Sciences, Minzu University of China , Beijing 100081, People's Republic of China
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York , New York City, New York 10468, United States
| |
Collapse
|
26
|
Methylseleninic Acid Provided at Nutritional Selenium Levels Inhibits Angiogenesis by Down-regulating Integrin β3 Signaling. Sci Rep 2017; 7:9445. [PMID: 28842587 PMCID: PMC5573405 DOI: 10.1038/s41598-017-09568-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022] Open
Abstract
Targeting angiogenesis has emerged as a promising strategy for cancer treatment. Methylseleninic acid (MSA) is a metabolite of selenium (Se) in animal cells that exhibits anti-oxidative and anti-cancer activities at levels exceeding Se nutritional requirements. However, it remains unclear whether MSA exerts its effects on cancer prevention by influencing angiogenesis within Se nutritional levels. Herein, we demonstrate that MSA inhibited angiogenesis at 2 µM, which falls in the range of moderate Se nutritional status. We found that MSA treatments at 2 µM increased cell adherence, while inhibiting cell migration and tube formation of HUVECs in vitro. Moreover, MSA effectively inhibited the sprouts of mouse aortic rings and neoangiogenesis in chick embryo chorioallantoic membrane. We also found that MSA down-regulated integrin β3 at the levels of mRNA and protein, and disrupted clustering of integrin β3 on the cell surface. Additionally, results showed that MSA inhibited the phosphorylation of AKT, IκBα, and NFκB. Overall, our results suggest that exogenous MSA inhibited angiogenesis at nutritional Se levels not only by down-regulating the expression of integrin β3 but also by disorganizing the clustering of integrin β3, which further inhibited the phosphorylation involving AKT, IκBα, NFκB. These findings provide novel mechanistic insight into the function of MSA for regulating angiogenesis and suggest that MSA could be a potential candidate or adjuvant for anti-tumor therapy in clinical settings.
Collapse
|
27
|
Tabares-Guevara JH, Lara-Guzmán OJ, Londoño-Londoño JA, Sierra JA, León-Varela YM, Álvarez-Quintero RM, Osorio EJ, Ramirez-Pineda JR. Natural Biflavonoids Modulate Macrophage-Oxidized LDL Interaction In Vitro and Promote Atheroprotection In Vivo. Front Immunol 2017; 8:923. [PMID: 28824646 PMCID: PMC5543092 DOI: 10.3389/fimmu.2017.00923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
The accumulation of oxidized ApoB-100-containing lipoproteins in the vascular intima and its subsequent recognition by macrophages results in foam cell formation and inflammation, key events during atherosclerosis development. Agents targeting this process are considered potentially atheroprotective. Since natural biflavonoids exert antioxidant and anti-inflammatory effects, we evaluated the atheroprotective effect of biflavonoids obtained from the tropical fruit tree Garcinia madruno. To this end, the pure biflavonoid aglycones morelloflavone (Mo) and volkensiflavone (Vo), as well as the morelloflavone's glycoside fukugiside (Fu) were tested in vitro in primary macrophages, whereas a biflavonoid fraction with defined composition (85% Mo, 10% Vo, and 5% Amentoflavone) was tested in vitro and in vivo. All biflavonoid preparations were potent reactive oxygen species (ROS) scavengers in the oxygen radical absorbance capacity assay, and most importantly, protected low-density lipoprotein particle from both lipid and protein oxidation. In biflavonoid-treated macrophages, the surface expression of the oxidized LDL (oxLDL) receptor CD36 was significantly lower than in vehicle-treated macrophages. Uptake of fluorescently labeled oxLDL and cholesterol accumulation were also attenuated in biflavonoid-treated macrophages and followed a pattern that paralleled that of CD36 surface expression. Fu and Vo inhibited oxLDL-induced ROS production and interleukin (IL)-6 secretion, respectively, whereas all aglycones, but not the glucoside Fu, inhibited the secretion of one or more of the cytokines IL-1β, IL-12p70, and monocyte chemotactic protein-1 (MCP-1) in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, in macrophages primed with low-dose LPS and stimulated with cholesterol crystals, IL-1β secretion was significantly and comparably inhibited by all biflavonoid preparations. Intraperitoneal administration of the defined biflavonoid fraction into ApoE-/- mice was atheroprotective, as evidenced by the reduction of the atheromatous lesion size and the density of T cells and macrophages infiltrating the aortic root; moreover, this treatment also lowered the circulating levels of cholesterol and the lipid peroxidation product malondialdehyde. These results reveal the potent atheroprotective effects exerted by biflavonoids on key events of the oxLDL-macrophage interphase: (i) atheroligand formation, (ii) atheroreceptor expression, (iii) foam cell transformation, and (iv) prooxidant/proinflammatory macrophage response. Furthermore, our results also evidence the antioxidant, anti-inflammatory, hypolipemiant, and atheroprotective effects of Garcinia madruno's biflavonoids in vivo.
Collapse
Affiliation(s)
| | - Oscar J Lara-Guzmán
- Grupo Inmunomodulación, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - Julian A Londoño-Londoño
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - Jelver A Sierra
- Grupo Inmunomodulación, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Yudy M León-Varela
- Grupo Inmunomodulación, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Rafael M Álvarez-Quintero
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - Edison J Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - José R Ramirez-Pineda
- Grupo Inmunomodulación, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
28
|
Khamthong N, Hutadilok-Towatana N. Phytoconstituents and Biological Activities of Garcinia Dulcis (Clusiaceae): A Review. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Garcinia dulcis (Roxb.) Kurz is a tropical fruit tree native to Southeast Asia where it has a long history of use as a traditional medicine for the treatment of ailments such as lymphatitis, parotitis, struma, scurvy, cough, and sore throat. Despite its medicinal values, this plant is not well known and rarely found nowadays. Research on the phytochemical constituents and biological activities of G. dulcis have demonstrated that various parts of the plant contain an abundance of bioactive compounds mainly xanthones and flavonoids, with significant pharmacological properties such as anti-atherosclerosis, anti-bacterial, anti-cancer, anti-hypertension, and anti-malarial. In the present review, current knowledge of the phytochemistry of G. dulcis and biological activities of its active constituents based on the available literature are summarized in order to explore application potentials and prospective research works on this plant.
Collapse
|
29
|
Cao Q, Qin L, Huang F, Wang X, Yang L, Shi H, Wu H, Zhang B, Chen Z, Wu X. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol Appl Pharmacol 2017; 319:80-90. [PMID: 28185818 DOI: 10.1016/j.taap.2017.01.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP+)-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP+ in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP+-induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation.
Collapse
Affiliation(s)
- Qin Cao
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Liyue Qin
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Fei Huang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| | - Xiaoshuang Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Liu Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Hailian Shi
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Hui Wu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Beibei Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Ziyu Chen
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Xiaojun Wu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| |
Collapse
|
30
|
Inhibitors of multidrug efflux pumps of Pseudomonas aeruginosa from natural sources: An in silico high-throughput virtual screening and in vitro validation. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1761-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Li Z, Li J, Zhu L, Zhang Y, Zhang J, Yao L, Liang D, Wang L. Celastrol nanomicelles attenuate cytokine secretion in macrophages and inhibit macrophage-induced corneal neovascularization in rats. Int J Nanomedicine 2016; 11:6135-6148. [PMID: 27920521 PMCID: PMC5125761 DOI: 10.2147/ijn.s117425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the inhibitory effects of celastrol-loaded nanomicelles (CNMs) on activated macrophage-induced corneal neovascularization (CNV) in rats and cytokine secretion in macrophages. Using an angiogenesis assay in vitro, we detected the effects of CNMs on human umbilical vein endothelial cell (HUVEC) migration and invasion. In addition, the expression levels of cytokines secreted from hypoxia-induced macrophages were assessed through cytokine array analysis. The expression of hypoxia-inducible factors-1α (HIF-1α), nuclear factor-kappa B p65 (NF-κB p65), phospho-nuclear factor-kappa B p65 (phospho-NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-ERK1/2 was analyzed by western blotting. Activated macrophages were elicited through mineral oil lumbar injection, labeled with 1,19-dioctadecyl-3-3-39,39-tetramethylindocarbocyanine (DiI) and implanted into the corneal micro-pocket to induce CNV and to assess the antiangiogenic effect in rats. CNV was morphometrically analyzed using ImageJ software. Histopathological features were evaluated by immunofluorescence immunostaining for vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) on day 2 after surgery. In the present study, the results indicated that CNMs significantly inhibited the migration and invasion of HUVECs; remarkably attenuated the expression of VEGF, tumor necrosis factor-α, interleukin-1α, monocyte chemoattractant protein 1, cytokine-induced neutrophil chemoattractant 3, and MMP-9 protein; and downregulated ERK1/2, p38 MAPK, NF-κB activation, and HIF-1α expression in macrophages. The peritoneal cells elicited using mineral oil were highly purified macrophages, and the length and area of CNV were significantly decreased in the CNMs group compared with the control group. There was a significant reduction in the expression of VEGF and MMP-9 in activated macrophages and corneal tissue after pretreatment with CNMs in this model. In conclusion, CNMs potently suppressed macrophage-induced CNV via the inhibition of VEGF and MMP-9 expression. This effect might be mediated through attenuating macrophages via HIF-1α, MAPK, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhanrong Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Jingguo Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Lei Zhu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Ying Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Lin Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Liya Wang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| |
Collapse
|
32
|
Discovery and Optimization of N-Substituted 2-(4-pyridinyl)thiazole carboxamides against Tumor Growth through Regulating Angiogenesis Signaling Pathways. Sci Rep 2016; 6:33434. [PMID: 27633259 PMCID: PMC5025770 DOI: 10.1038/srep33434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022] Open
Abstract
Inhibition of angiogenesis is considered as one of the desirable pathways for the treatment of tumor growth and metastasis. Herein we demonstrated that a series of pyridinyl-thiazolyl carboxamide derivatives were designed, synthesized and examined against angiogenesis through a colony formation and migration assays of human umbilical vein endothelial cells (HUVECs) in vitro. A structure-activity relationship (SAR) study was carried out and optimization toward this series of compounds resulted in the discovery of N-(3-methoxyphenyl)-4-methyl-2-(2-propyl-4-pyridinyl)thiazole-5-carboxamide (3k). The results indicated that compound 3k showed similar or better effects compared to Vandetanib in suppressing HUVECs colony formation and migration as well as VEGF-induced angiogenesis in the aortic ring spreading model and chick embryo chorioallantoic membrane (CAM) model. More importantly, compound 3k also strongly blocked tumor growth with the dosage of 30 mg/kg/day, and subsequent mechanism exploration suggested that this series of compounds took effect mainly through angiogenesis signaling pathways. Together, these results suggested compound 3k may serve as a lead for a novel class of angiogenesis inhibitors for cancer treatments.
Collapse
|
33
|
Li X, Ai H, Sun D, Wu T, He J, Xu Z, Ding L, Wang L. Anti-tumoral activity of native compound morelloflavone in glioma. Oncol Lett 2016; 12:3373-3377. [PMID: 27900007 PMCID: PMC5103953 DOI: 10.3892/ol.2016.5094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the study was to investigate the anti-tumoral activity of morelloflavone substances with different structures. We also studied the possible link between morelloflavone structure and its function. Various types of chromatographic techniques were used to isolate and screen morelloflavone substances from the extracts of gambogic tree trunk and the morelloflavone structures were identified by analytical techniques such as high resolution mass spectrometry and nuclear magnetism. Anti-tumoral activities of different compounds were investigated and the link between the antitumor activity and the structure of compound was exaimed. Our results showed that the isolated morelloflavone substances demonstrated a certain level of antitumor activity. The compound no. 1 had the strongest effect to inhibit glioma U87 and C6 cells followed by compound no. 2 while compound no. 5 was the weakest among them. We conducted a preliminary analysis on the structure-function relationship through the structure comparison and we concluded that the antitumor effects of morelloflavone substances with different structures were significantly different from each other. Thus, the glucose chain in C4 position of biflavone structure can enhance the antitumor activity of the compound in glioma cells. Additionally, the formation of intramolecular hydrogen bonds in biflavone compounds may also play a role in enhancing the antitumor activity and inhibition rate.
Collapse
Affiliation(s)
- Xianfeng Li
- Neurosurgery Ward 2, Linyi City Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Hongyan Ai
- Neurosurgery Ward 2, Linyi City Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Deke Sun
- Neurosurgery Ward 2, Linyi City Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Tao Wu
- Neurosurgery Ward 2, Linyi City Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jian He
- Neurosurgery Ward 2, Linyi City Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Zhai Xu
- Department of Neurological Surgery Unit 1, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Li Ding
- Intensive Care Unit, Linyi Municipal People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Ling Wang
- Intensive Care Unit, Linyi Municipal People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
34
|
Chen Y, Lv J, Li K, Xu J, Li M, Zhang W, Pang X. Sporoderm-Broken Spores of Ganoderma lucidum Inhibit the Growth of Lung Cancer: Involvement of the Akt/mTOR Signaling Pathway. Nutr Cancer 2016; 68:1151-60. [PMID: 27618151 DOI: 10.1080/01635581.2016.1208832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sporoderm-broken spores of Ganoderma lucidum (SBGS) and their extracts exhibited a wide range of biological activities. In the present study, we prepare ethanol/ethanol extract (E/E-SBGS) and ethanol/aqueous extract (E/A-SBGS) from SBGS and examine their antitumor activities against human lung cancer. Our results showed that E/E-SBGS, not E/A-SBGS, inhibited the survival and migration of lung cancer cells in a dose-dependent manner. E/E-SBGS arrested cell cycle at G2/M phase and triggered apoptosis by decreasing the expression and activity of cell cycle regulators, cyclin B1 and cdc2, as well as anti-apoptotic proteins, Bcl-2 and Bcl-xl. Consequently, colony formation of lung cancer cells was markedly blocked by E/E-SBGS at subtoxic concentrations. Oral administration of both E/E-SBGS and SBGS significantly suppressed tumor volume and tumor weight without gross toxicity in mice. Mechanism study showed that E/E-SBGS dose-dependently suppressed the activation of Akt, the mammalian target of rapamycin (mTOR) and their downstream molecules S6 kinase and 4E-BP1 in treated tumor cells. Taken together, these results indicate that the ethanol extract of sporoderm-broken spores of G. lucidum suppresses the growth of human lung cancer, at least in part, through inhibition of the Akt/mTOR signaling pathway, suggesting its potential role in cancer treatments.
Collapse
Affiliation(s)
- Yali Chen
- a Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University , Shanghai , China
| | - Jing Lv
- b Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai , China
| | - Kun Li
- c National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University , Nanning , China
| | - Jing Xu
- d Zhejiang Rare Herb Medicine Engineering Research Center , Jinhua , Zhejiang , China
| | - Mingyan Li
- e Shouxiangu Pharmaceutical Company Limited , Jinhua , Zhejiang , China
| | - Wen Zhang
- f Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai , China
| | - Xiufeng Pang
- f Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai , China
| |
Collapse
|
35
|
Lin CM, Lin YL, Ho SY, Chen PR, Tsai YH, Chung CH, Hwang CH, Tsai NM, Tzou SC, Ke CY, Chang J, Chan YL, Wang YS, Chi KH, Liao KW. The inhibitory effect of 7,7″-dimethoxyagastisflavone on the metastasis of melanoma cells via the suppression of F-actin polymerization. Oncotarget 2016; 8:60046-60059. [PMID: 28947953 PMCID: PMC5601121 DOI: 10.18632/oncotarget.10960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/29/2016] [Indexed: 11/25/2022] Open
Abstract
7,7″-Dimethoxyagastisflavone (DMGF), a biflavonoid isolated from Taxus × media cv. Hicksii, induces apoptotic and autophagic cell death. However, whether DMGF suppresses tumor metastasis is unclear. The aim of this study was to investigate the anti-metastatic activities of DMGF on the metastatic processes of melanoma cells in vivo and in vitro. A transwell assay showed that DMGF could effectively attenuate the motility of B16F10 cells, and the results of real-time PCR revealed that DMGF also suppressed the expressions of matrix metalloproteinase-2 (MMP-2). Moreover, DMGF did not influence tube formation but inhibited the migration of endothelial cells. Furthermore, animal models were used to monitor the effects of DMGF on tumor metastasis, and all models showed that DMGF significantly suppressed the metastatic behaviors of B16F10 cells, including intravasation, colonization, and invasion of the lymphatic duct. In addition, DMGF could also reduce the densities of the blood vessels in the tumor area in vivo. Further investigation of the molecular mechanisms of anti-metastatic activity revealed that DMGF can down-regulate the levels of key modulators of the Cdc42/Rac1 pathway to interfere in F-actin polymerization and suppress the formation of lamellipodia by reducing the phosphorylation of CREB. These data suggested that DMGF presents anti-metastatic activities in B16F10 melanoma cells. Here, we demonstrated that DMGF can inhibit the metastasis of highly invasive melanoma cancer cells through the down-regulation of F-actin polymerization. Considering these findings, DMGF may be further developed to serve as a chemoprevention drug for patients with metastatic melanoma.
Collapse
Affiliation(s)
- Ching-Min Lin
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ling Lin
- Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shu-Yi Ho
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Pin-Rong Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Hsuan Tsai
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chen-Han Chung
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | | | - Nu-Man Tsai
- Department of Medical and Laboratory Biotechnology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shey-Cherng Tzou
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Yen Ke
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Jung Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taichung, Taiwan
| | - Yu-Shan Wang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kuang-Wen Liao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Graduate Institut of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Chen J, Guo J, Chen Z, Wang J, Liu M, Pang X. Linifanib (ABT-869) Potentiates the Efficacy of Chemotherapeutic Agents through the Suppression of Receptor Tyrosine Kinase-Mediated AKT/mTOR Signaling Pathways in Gastric Cancer. Sci Rep 2016; 6:29382. [PMID: 27387652 PMCID: PMC4937412 DOI: 10.1038/srep29382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer, highly dependent on tumor angiogenesis, causes uncontrolled lethality, in part due to chemoresistance. Here, we demonstrate that linifanib (ABT-869), a novel multi-targeted receptor tyrosine kinase inhibitor, markedly augments cytotoxicity of chemotherapies in human gastric cancer. ABT-869 and chemotherapeutic agents exhibited a strong synergy to inhibit the viability of several gastric cancer cell lines, with combination index values ranging from 0.017 to 0.589. Additionally, the combination of ABT-869 and chemotherapeutic agents led to remarkable suppression of vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo. Importantly, in a preclinical gastric cancer xenograft mouse model, drug co-treatments led to increased mouse survival as well as a synergistic reduction in tumor size and the inhibition of tumor angiogenesis. Mechanistic studies further revealed that all of the co-treatments containing ABT-869 resulted in decreased activation of the VEGF receptor, the epidermal growth factor receptor and the insulin growth factor receptor. Inhibition of these receptor tyrosine kinases consequently attenuated the activation of the downstream AKT/mTOR signaling pathway both in cultured gastric cancer cells and in gastric cancer xenografts. Collectively, our findings suggest that the addition of ABT-869 to traditional chemotherapies may be a promising strategy for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Jing Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China
| | - Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhi Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jieqiong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
37
|
Wu Y, Wang X, Chang S, Lu W, Liu M, Pang X. -Lapachone Induces NAD(P)H:Quinone Oxidoreductase-1- and Oxidative Stress-Dependent Heat Shock Protein 90 Cleavage and Inhibits Tumor Growth and Angiogenesis. J Pharmacol Exp Ther 2016; 357:466-475. [DOI: 10.1124/jpet.116.232694] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
38
|
Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, Bond VC, Chen YE, Liu D. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Transl Med 2016; 5:440-50. [PMID: 26933040 PMCID: PMC4798737 DOI: 10.5966/sctm.2015-0177] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/19/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Cell secretion is an important mechanism for stem cell-based therapeutic angiogenesis, along with cell differentiation to vascular endothelial cells or smooth muscle cells. Cell-released microvesicles (MVs) have been recently implicated to play an essential role in intercellular communication. The purpose of this study was to explore the potential effects of stem cell-released MVs in proangiogenic therapy. We observed for the first time that MVs were released from adipose-derived stem cells (ASCs) and were able to increase the migration and tube formation of human umbilical vein endothelial cells (HUVECs). Endothelial differentiation medium (EDM) preconditioning of ASCs upregulated the release of MVs and enhanced the angiogenic effect of the released MVs in vitro. RNA analysis revealed that microRNA was enriched in ASC-released MVs and that the level of microRNA-31 (miR-31) in MVs was notably elevated upon EDM-preconditioning of MV-donor ASCs. Further studies exhibited that miR-31 in MVs contributed to the migration and tube formation of HUVECs, microvessel outgrowth of mouse aortic rings, and vascular formation of mouse Matrigel plugs. Moreover, factor-inhibiting HIF-1, an antiangiogenic gene, was identified as the target of miR-31 in HUVECs. Our findings provide the first evidence that MVs from ASCs, particularly from EDM-preconditioned ASCs, promote angiogenesis and the delivery of miR-31 may contribute the proangiogenic effect. SIGNIFICANCE This study provides the evidence that microvesicles (MVs) from adipose-derived stem cells (ASCs), particularly from endothelial differentiation medium (EDM)-preconditioned ASCs, promote angiogenesis. An underlying mechanism of the proangiogenesis may be the delivery of microRNA-31 via MVs from ASCs to vascular endothelial cells in which factor-inhibiting HIF-1 is targeted and suppressed. The study findings reveal the role of MVs in mediating ASC-induced angiogenesis and suggest a potential MV-based angiogenic therapy for ischemic diseases.
Collapse
Affiliation(s)
- Ting Kang
- Division of Cardiology, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Tia M Jones
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Clayton Naddell
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Methode Bacanamwo
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John W Calvert
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Mostafa NM, Ashour ML, Eldahshan OA, Singab ANB. Cytotoxic activity and molecular docking of a novel biflavonoid isolated from Jacaranda acutifolia (Bignoniaceae). Nat Prod Res 2015; 30:2093-100. [DOI: 10.1080/14786419.2015.1114938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nada M. Mostafa
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Cairo, Egypt
| | - Mohamed L. Ashour
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Cairo, Egypt
| | - Omayma A. Eldahshan
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
40
|
Ding Q, Tian XG, Li Y, Wang QZ, Zhang CQ. Carvedilol may attenuate liver cirrhosis by inhibiting angiogenesis through the VEGF-Src-ERK signaling pathway. World J Gastroenterol 2015; 21:9566-76. [PMID: 26327764 PMCID: PMC4548117 DOI: 10.3748/wjg.v21.i32.9566] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/15/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of carvedilol on angiogenesis and the underlying signaling pathways. METHODS The effect of carvedilol on angiogenesis was examined using a human umbilical vascular endothelial cell (HUVEC) model. The effect of carvedilol on cell viability was measured by CCK8 assay. Flow cytometry was used to assess the effect of carvedilol on cell cycle progression. Cell migration, transwell migration and tube formation assays were performed to analyze the effect of carvedilol on HUVEC function. Vascular endothelial growth factor (VEGF) induced activation of HUVECs, which were pretreated with different carvedilol concentrations or none. Western blot analysis detected the phosphorylation levels of three cell signaling pathway proteins, VEGFR-2, Src, and extracellular signal-regulated kinase (ERK). The specific Src inhibitor PP2 was used to assess the role of Src in the VEGF-induced angiogenic pathway. RESULTS Carvedilol inhibited HUVEC proliferation in a dose-dependent manner (IC50 = 38.5 mmol/L). The distribution of cells in the S phase decreased from 43.6% to 37.2%, 35.6% and 17.8% by 1, 5 and 10 μmol/L carvedilol for 24 h, respectively. Carvedilol (10 μmol/L) reduced VEGF-induced HUVEC migration from 67.54 ± 7.83 to 37.11 ± 3.533 (P < 0.001). Carvedilol concentrations of 5 μmol/L and 10 μmol/L reduced cell invasion from 196.3% ± 18.76% to 114.0% ± 12.20% and 51.68% ± 8.28%, respectively. VEGF-induced tube formation was also reduced significantly by 5 μmol/L and 10 μmol/L carvedilol from 286.0 ± 36.72 to 135.7 ± 18.13 (P < 0.05) and 80.27 ± 11.16 (P < 0.01) respectively. We investigated several intracellular protein levels to determine the reason for these reductions. Treatment with 10 μmol/L carvedilol reduced VEGF-induced tyrosine phosphorylation of VEGFR-2 from 175.5% ± 8.54% to 52.67% ± 5.33% (P < 0.01). Additionally, 10 μmol/L carvedilol reduced VEGF-induced ERK 1/2 phosphorylation from 181.9% ± 18.61% to 56.45% ± 7.64% (P < 0.01). The VEGF-induced increase in Src kinase activity was alleviated by carvedilol [decreased from 141.8% ± 15.37% to 53.57 ± 7.18% (P < 0.01) and 47.04% ± 9.74% (P < 0.01) at concentrations of 5 and 10 μmol/L, respectively]. Pretreatment of HUVECs with Src kinase inhibitor almost completely prevented the VEGF-induced ERK upregulation [decreased from 213.2% ± 27.68% to 90.96% ± 17.16% (P < 0.01)]. CONCLUSION Carvedilol has an anti-angiogenic effect on HUVECs. This inhibitory effect is mediated by VEGF-induced Src-ERK signaling pathways.
Collapse
|
41
|
Acetyl-11-keto-β-boswellic acid reduces retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Exp Eye Res 2015; 135:67-80. [DOI: 10.1016/j.exer.2015.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 02/27/2015] [Accepted: 04/21/2015] [Indexed: 11/22/2022]
|
42
|
Kong L, Rao M, Ou J, Yin J, Lu W, Liu M, Pang X, Gao S. Total synthesis and biological studies of cryptocin and derivatives of equisetin and fusarisetin A. Org Biomol Chem 2015; 12:7591-7. [PMID: 25139438 DOI: 10.1039/c4ob01149j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total synthesis of cryptocin, a fungus metabolite, was achieved based on the biosynthetic hypothesis. A variety of derivatives of cryptocin, equisetin and fusarisetin A were prepared, wherein the racemization of C-3 and diastereoselectivity of C-5 were investigated. We further examined their inhibitory effects on breast cancer cell survival and metastasis, and summarized the structure-activity relationship.
Collapse
Affiliation(s)
- Lili Kong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nagaraj SRM, Shilpa P, Rachaiah K, Salimath BP. Crosstalk between VEGF and MTA1 signaling pathways contribute to aggressiveness of breast carcinoma. Mol Carcinog 2015; 54:333-50. [PMID: 24265228 DOI: 10.1002/mc.22104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 09/09/2013] [Accepted: 10/15/2013] [Indexed: 11/11/2022]
Abstract
The expression of metastasis associated protein (MTA1) correlates well with tumor metastasis; however its role as a proangiogenic protein and the molecular mechanisms underlying the same are not fully understood. In this study the MTA1 protein was expressed and purified to evaluate its angiogenic potential. In both MCF-7 and MDA-MB-231 cells, endogenous MTA1 protein was localized in the nucleus; while added recombinant MTA1 protein was bound to cell membrane as per immunofluorescence data. MTA1 was detected both in conditioned media and in human serum samples. Recombinant MTA1 regulated cellular functions of HUVEC's such as, proliferation, tube formation, and migration. MTA1 was more potent than VEGF in inducing invasion of breast cancer cells. Analogous to VEGF, MTA1 could induce angiogenesis in both non-tumor and tumor context, as verified by rat cornea, shell less CAM and xenograft models respectively. However MTA-1 was more potent an inducer of angiogenesis. VEGF or Flt-1 gene promoter, luciferase gene reporter analysis revealed that MTA1 up regulates the expression of VEGF and its receptor Flt-1 genes. Kinetics of VEGF-induced expression of MTA1 and qPCR studies showed that there is an increased expression of MTA1 in tumor cells. VEGF induced phosphorylation of endogenous MTA1 on tyrosine residues; phosphorylation was mediated through VEGFR2 and p38-MAP kinase. Recombinant MTA1 activated signaling, in MCF-7 and MDA-MB-231 cells, involved ERK and JNK pathways. In conclusion, MTA1 is a potent angiogenic molecule and cross talk between VEGF and MTA1 protein regulates tumor angiogenesis and metastasis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Chorioallantoic Membrane
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Neovascularization, Pathologic
- Phosphorylation
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Rats
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Trans-Activators
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Wound Healing
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sachin Raj M Nagaraj
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, India
| | | | | | | |
Collapse
|
44
|
Tong Q, Zhao Q, Qing Y, Hu X, Jiang L, Wu X. Deltonin inhibits angiogenesis by regulating VEGFR2 and subsequent signaling pathways in endothelial cells. Steroids 2015; 96:30-6. [PMID: 25554580 DOI: 10.1016/j.steroids.2014.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/08/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
Deltonin is a steroidal saponin which could suppress tumor growth through suppressing angiogenesis, but the mechanisms have not been directly elucidated yet. In the present study, we showed that deltonin inhibited the proliferation of primary cultured human umbilical vein endothelial cells (HUVECs) in vitro; notably, it could significantly inhibit HUVECs migration, invasion, and tube formation, which are indispensable progresses of angiogenesis. We further demonstrated that deltonin could inhibit VEGF-induced blood vessel formation in vivo. What is more, we found that deltonin blocked VEGF triggered phosphorylation of key intracellular angiogenic molecules, such as VEGFR2, Src family kinase, focal adhesion kinase (FAK), extracellular signal-related kinase (Erk1/2) and AKT kinase, accompanied with the increase of phosphorylated P38MAPK. Taken together, the present study demonstrates that deltonin inhibits angiogenesis through regulating VEGFR2 signaling pathway as well as AKT/MAPK signaling pathways in endothelial cells.
Collapse
Affiliation(s)
- Qingyi Tong
- Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingbing Zhao
- Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Qing
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaojuan Hu
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Jiang
- Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaohua Wu
- Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
45
|
Rapid Screening and Structural Characterization of Antioxidants from the Extract of Selaginella doederleinii Hieron with DPPH-UPLC-Q-TOF/MS Method. Int J Anal Chem 2015; 2015:849769. [PMID: 25792983 PMCID: PMC4352518 DOI: 10.1155/2015/849769] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/18/2015] [Indexed: 01/30/2023] Open
Abstract
2,2-Diphenyl-1-picrylhydrazyl-ultra-high performance liquid chromatography-Q-time-of-flight mass spectrometry (DPPH-UPLC-Q-TOF/MS), as a rapid and efficient means, now was used for the first time to screen antioxidants from Selaginella doederleinii. The nine biflavone compounds were screened as potential antioxidants. The biflavones were structurally identified and divided into the three types, that is, amentoflavone-type, robustaflavone-type, and hinokiflavone-type biflavonoids. Among the compounds bilobetin (3) and putraflavone (8) were found from Selaginella doederleinii for the first time and others including amentoflavone (1), robustaflavone (2), 4'-methoxy robustaflavone (4), podocarpusflavone A (5), hinokiflavone (6), ginkgetin (7), and heveaflavone (9) were identified previously in the plant. Moreover, nine biflavones possessed a good antioxidant activity via their DPPH free radical scavenging. It demonstrates that DPPH-UPLC-Q-TOF/MS exhibits strong capacity in separation and identification for small molecule. The method is suitable for rapid screening of antioxidants without the need for complicated systems and additional instruments.
Collapse
|
46
|
Shilpa P, Kaveri K, Salimath BP. Anti-metastatic action of anacardic acid targets VEGF-induced signalling pathways in epithelial to mesenchymal transition. Drug Discov Ther 2015; 9:53-65. [DOI: 10.5582/ddt.2014.01042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Keshavaiah Kaveri
- Maharani’s PU College
- Department of Studies in Biotechnology, University of Mysore
| | - Bharathi P Salimath
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
- Department of Studies in Biotechnology, University of Mysore
| |
Collapse
|
47
|
Lai H, Zhao Z, Li L, Zheng W, Chen T. Antiangiogenic ruthenium(ii) benzimidazole complexes, structure-based activation of distinct signaling pathways. Metallomics 2015; 7:439-47. [DOI: 10.1039/c4mt00312h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of ruthenium(ii) benzimidazole complexes has been synthesized and identified as antiangiogenic agents with distinct structure-based action mechanisms.
Collapse
Affiliation(s)
- Haoqiang Lai
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| | - Zhennan Zhao
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| | - Linlin Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| | - Wenjie Zheng
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632, China
| |
Collapse
|
48
|
Wang B, Yu W, Guo J, Jiang X, Lu W, Liu M, Pang X. The antiparasitic drug, potassium antimony tartrate, inhibits tumor angiogenesis and tumor growth in nonsmall-cell lung cancer. J Pharmacol Exp Ther 2015; 352:129-138. [PMID: 25352499 DOI: 10.1124/jpet.114.218644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Repurposing existing drugs not only accelerates drug discovery but rapidly advances clinical therapeutic strategies. In this article, we identified potassium antimonyl tartrate (PAT), an antiparasitic drug, as a novel agent to block angiogenesis by screening US Food and Drug Administration-approved chemical drugs. By comparing the cytotoxicity of PAT in various nonsmall-cell lung cancer (NSCLC) cells with that observed in primary cultured human umbilical vein endothelial cells (HUVECs), we found that HUVECs were much more sensitive to the PAT treatment. In in vivo tumor xenograft mouse models established either by PAT-resistant A549 cells or by patient primary tumors, PAT significantly decreased the tumor volume and tumor weight of NSCLC xenografts at dosage of 40 mg/kg (i.p., daily) and, more importantly, augmented the antitumor efficacy of cisplatin chemotherapy. Remarkable loss of vascularization in the treated xenografts indicated the in vivo antiangiogenesis property of PAT, which was well correlated with its tumor growth inhibition in NSCLC cells. Furthermore, in the in vitro angiogenic assays, PAT exhibited dose-dependent inhibition of HUVEC proliferation, migration, and tube formation in response to different stimuli. Consistently, PAT also abolished the vascular endothelial cell growth factor-induced angiogenesis in the Matrigel plugs assay. Mechanistically, we found that PAT inhibited the activities of several receptor tyrosine kinases and specifically blocked the activation of downstream Src and focal adhesion kinases in HUVECs. Taken together, our results characterized the novel antiangiogenic and antitumor function of PAT in NSCLC cells. Further study of PAT in anticancer clinical trials may be warranted.
Collapse
Affiliation(s)
- Beibei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (B.W., W.Y., J.G., X.J., W.L., M.L., X.P.); and Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Weiwei Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (B.W., W.Y., J.G., X.J., W.L., M.L., X.P.); and Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (B.W., W.Y., J.G., X.J., W.L., M.L., X.P.); and Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (B.W., W.Y., J.G., X.J., W.L., M.L., X.P.); and Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (B.W., W.Y., J.G., X.J., W.L., M.L., X.P.); and Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (B.W., W.Y., J.G., X.J., W.L., M.L., X.P.); and Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (B.W., W.Y., J.G., X.J., W.L., M.L., X.P.); and Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas (M.L.)
| |
Collapse
|
49
|
Xuan ZX, Li LN, Zhang Q, Xu CW, Yang DX, Yuan Y, An YH, Wang SS, Li XW, Yuan SJ. Fully human VEGFR2 monoclonal antibody BC001 attenuates tumor angiogenesis and inhibits tumor growth. Int J Oncol 2014; 45:2411-20. [PMID: 25269419 DOI: 10.3892/ijo.2014.2690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/19/2014] [Indexed: 11/06/2022] Open
Abstract
The critical role of VEGFR2 in tumor neovascularization and progression has allowed the design of clinically beneficial therapies based on it. Here we show that BC001, a new fully human anti-VEGFR2 monoclonal antibody, inhibits VEGF-stimulated endothelial cell migration, tube formation, and effectively suppressed the transdifferentiation of cancer stem cells into endothelial cells in vitro. Since BC001 exhibited no activity against the mouse VEGFR2 and mouse based study was required to confirm its efficacy in vivo, BC101, the mouse analogue of BC001, was developed. BC101 significantly attenuated angiogenesis according to Matrigel plug assay and resulted in ~80% growth inhibition of mouse B16F10 homograft tumors relative to vehicle control. Similarly, human analogue BC001 suppressed the growth of human xenograft tumors HCT116 and BGC823. Furthermore, immunohistochemical results showed reduced expression of CD31, VEGFR2 and Ki-67, as well as increased expression of Caspase 3 in BC001-treated tumor, which indicated BC001 was able to significantly decrease microvessel density, suppress proliferation and promote apoptosis. These results demonstrate the fully human VEGFR2 monoclonal antibody BC001 can work as an effective inhibitor of tumor angiogenesis and tumor growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Zi-Xue Xuan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Lin-Na Li
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Qi Zhang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cheng-Wang Xu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - De-Xuan Yang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Ye Yuan
- Department of Production Technology, Shandong Buchang Shenzhou Pharmaceutical Co., Ltd., Heze 274000, P.R. China
| | - Ying-Hong An
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shan-Shan Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiao-Wen Li
- Department of Production Technology, Shandong Buchang Shenzhou Pharmaceutical Co., Ltd., Heze 274000, P.R. China
| | - Shou-Jun Yuan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
50
|
Tong Q, Qing Y, Wu Y, Hu X, Jiang L, Wu X. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways. Toxicol Appl Pharmacol 2014; 281:166-73. [DOI: 10.1016/j.taap.2014.07.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/15/2014] [Accepted: 07/31/2014] [Indexed: 02/02/2023]
|