1
|
Kobrossy L, Xu W, Zhang C, Feng W, Turner CE, Cosgrove MS. Unraveling MLL1-fusion leukemia: Epigenetic revelations from an iPS cell point mutation. J Biol Chem 2024; 300:107825. [PMID: 39342993 DOI: 10.1016/j.jbc.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Our understanding of acute leukemia pathology is heavily dependent on 11q23 chromosomal translocations involving the mixed lineage leukemia-1 (MLL1) gene, a key player in histone H3 lysine 4 (H3K4) methylation. These translocations result in MLL1-fusion (MLL1F) proteins that are thought to drive leukemogenesis. However, the mechanism behind increased H3K4 trimethylation in MLL1F-leukemic stem cells (MLL1F-LSCs), following loss of the catalytic SET domain of MLL1 (known for H3K4 monomethylation and dimethylation) remains unclear. In our investigation, we introduced a homozygous loss-of-function point mutation in MLL1 within human-induced pluripotent stem cells. This mutation mimics the histone methylation, gene expression, and epithelial-mesenchymal transition phenotypes of MLL1F-LSCs-without requiring a translocation or functional WT MLL1. The mutation caused a genome-wide redistribution of the H3K4 trimethyl mark and upregulated LSC-maintenance genes like HoxA9-A13, Meis1, and the HOTTIP long noncoding RNA. Epithelial-mesenchymal transition markers such as ZEB1, SNAI2, and HIC-5 were also increased leading to enhanced cellular migration and invasiveness. These observations underscore the essential role of MLL1's enzymatic activity in restraining the cascade of epigenetic changes associated with the gene-activating H3K4 trimethylation mark, which we show may be catalyzed by mislocalized SETd1a H3K4 trimethyltransferase in the absence of MLL1's enzymatic activity. Challenging existing models, our findings imply that MLL1F-induced leukemias arise from a dominant-negative impact on MLL1's histone methyltransferase activity. We propose targeting SETd1a in precision medicine as a new therapeutic approach for MLL1-associated leukemias.
Collapse
Affiliation(s)
- Laila Kobrossy
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Michael S Cosgrove
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States.
| |
Collapse
|
2
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
3
|
Wang LL, Tang X, Zhou G, Liu S, Wang Y, Chen F, Li T, Wen F, Liu S, Mai H. PROM1 and CTGF Expression in Childhood MLL-Rearrangement Acute Lymphoblastic Leukemia. JOURNAL OF ONCOLOGY 2022; 2022:5896022. [PMID: 36276286 PMCID: PMC9586771 DOI: 10.1155/2022/5896022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
The prognosis of over 90% of infant acute lymphoblastic leukemia (ALL) remains poor because of harboring the mixed-lineage leukemia gene (MLL) fusion. To give insight into the critical coexpressed genes related to the MLL-rearrangement (MLL-R) gene in childhood acute lymphoblastic leukemia, we integrated different bioinformatic methods. First, the gene expression data of MLL-R ALL and normal samples from GSE13159 and GSE13164 were analyzed using "compare" function in the Oncomine database. The top 150 overexpressed and 150 underexpressed genes were identified by the Oncomine website. Then, we employed the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) to define functional genes for the 300 DEGs. The Cytoscape identified two important networks for overexpressed genes, including 35 functional genes, among which PROM1, FLT3, CTGF, LGALS1, IGFBP7, ZNRF1, and RUNX2 were considered as the key genes because of their high expression in MLL-R ALL compared to the expression in other subclassification of leukemia in the MILE dataset. Further analysis of GSE68720, GSE19475, and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) ALL (phase I) database confirmed the robust expression of 7 key genes in MLL-R compared to MLL-germline (MLL-G) childhood ALL. Kaplan-Meier analysis indicated that childhood ALL patients with high PROM1 and CTGF expression had significantly poor overall survival. These findings suggest that PROM1 and CTGF represent two potential therapeutic targets for childhood MLL-R ALL.
Collapse
Affiliation(s)
- Lu-lu Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Xue Tang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Guichi Zhou
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Shilin Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ying Wang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Tonghui Li
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Huirong Mai
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| |
Collapse
|
4
|
Xiang C, Wu J, Yu L. Construction of three-gene-based prognostic signature and analysis of immune cells infiltration in children and young adults with B-acute lymphoblastic leukemia. Mol Genet Genomic Med 2022; 10:e1964. [PMID: 35603962 PMCID: PMC9266608 DOI: 10.1002/mgg3.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Although B‐acute lymphoblastic leukemia (B‐ALL) patients' survival has been improved dramatically, some cases still relapse. This study aimed to explore the prognosis‐related novel differentially expressed genes (DEGs) for predicting the overall survival (OS) of children and young adults (CAYAs) with B‐ALL and analyze the immune‐related factors contributing to poor prognosis. Methods GSE48558 and GSE79533 from Gene Expression Omnibus (GEO) and clinical sample information and mRNA‐seq from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database were retrieved. Prognosis‐related key genes were enrolled to build a Cox proportional model using multivariate Cox regression. Five‐year OS of patients, clinical characteristic relevance and clinical independence were assessed based on the model. The mRNA levels of prognosis‐related genes were validated in our samples and the difference of immune cells composition between high‐risk and low‐risk patients were compared. Results One hundred and twelve DEGs between normal B cells and B‐ALL cells were identified based on GSE datasets. They were mainly participated in protein binding and HIF‐1 signaling pathway. One hundred and eighty‐nine clinical samples were enrolled in the study, both Kaplan–Meier (KM) analysis and univariate Cox regression analysis showed that CYBB, BCL2A1, IFI30, and EFNB1 were associated with prognosis, CYBB, BCL2A1, and EFNB1 were used to construct prognostic risk model. Moreover, compared to clinical indicators, the three‐gene signature was an independent prognostic factor for CAYAs with B‐ALL. Finally, the mRNA levels of CYBB, BCL2A1, and EFNB1 were significantly lower in B‐ALL group as compared to controls. The high‐risk group had a significantly higher percentage of infiltrated immune cells. Conclusion We constructed a novel three‐gene signature with independent prognostic factor for predicting 5‐year OS of CAYAs with B‐ALL. Additionally, we discovered the difference of immune cells composition between high‐risk and low‐risk groups. This study may help to customize individual treatment and improve prognosis of CAYAs with B‐ALL.
Collapse
Affiliation(s)
- Chunli Xiang
- Department of Hematology, Huai'an First People's Hospital Affiliated to Nanjing Medical University, Huai'an, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Liang Yu
- Department of Hematology, Huai'an First People's Hospital Affiliated to Nanjing Medical University, Huai'an, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Liu X, Li N, Zhang C, Wu X, Zhang S, Dong G, Liu G. Identification of metastasis-associated exoDEPs in colorectal cancer using label-free proteomics. Transl Oncol 2022; 19:101389. [PMID: 35303583 PMCID: PMC8927999 DOI: 10.1016/j.tranon.2022.101389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes play essential role in the metastasis of colorectal cancer from TME aspect. Finding out the prominent regulating exoDEPs by label-free proteomics in this research provided a lot of key information of CRC metastases. Metabolism, cytoskeleton-related pathways and immunosuppression are two key mechanisms by which exosomes regulate CRC malignant behavior. The discovery of the “all or none” exoDEPs was of great significance. The exoDEPs expressed only in SW620 cells can more clearly show their ability to promote the invasion and metastasis of CRC cells.
Exosomes are secreted nanovesicles consisting of biochemical molecules, including proteins, RNAs, lipids, and metabolites that play a prominent role in tumor progression. In this study, we performed a label-free proteomic analysis of exosomes from a pair of homologous human colorectal cancer cell line with different metastatic abilities. A total of 115 exoDEPs were identified, with 31 proteins upregulated and 84 proteins downregulated in SW620 exosome. We also detected 30 proteins expressed only in SW620 exosomes and 60 proteins expressed only in SW480 exosomes. Bioinformatics analysis enriched the components and pathways associated with the extracellular matrix, cytoskeleton-related pathways, and immune system changes of colorectal cancer (CRC). Cellular function experiments confirmed the role of SW620 exosomes in promoting the proliferation, migration, and invasion of SW480 cells. Further verifications were performed on six upregulated exoDEPs (FGFBP1, SIPA1, THBS1, TGFBI, COL6A1, and RPL10), three downregulated exoDEPs (SLC2A3, MYO1D, and RBP1), and three exoDEPs (SMOC2, GLG1, and CEMIP) expressed only in SW620 by WB and IHC. This study provides a complete and novel basis for exploring new drug targets to inhibit the invasion and metastasis of CRC.
Collapse
Affiliation(s)
- Xinlu Liu
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian City, Liaoning Province, China
| | - Chi Zhang
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Xiaoyu Wu
- Operating Room, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Shoujia Zhang
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Gang Dong
- Anorectal surgery, Central Hospital of Jinzhou City, No. 51, Section 2, Shanghai Road, Guta District, Jinzhou City, Liaoning Province, China
| | - Ge Liu
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China.
| |
Collapse
|
6
|
Kurtz KJ, Conneely SE, O'Keefe M, Wohlan K, Rau RE. Murine Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:854973. [PMID: 35756660 PMCID: PMC9214208 DOI: 10.3389/fonc.2022.854973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and genetically heterogeneous hematologic malignancy. Extensive sequencing efforts have mapped the genomic landscape of adult and pediatric AML revealing a number of biologically and prognostically relevant driver lesions. Beyond identifying recurrent genetic aberrations, it is of critical importance to fully delineate the complex mechanisms by which they contribute to the initiation and evolution of disease to ultimately facilitate the development of targeted therapies. Towards these aims, murine models of AML are indispensable research tools. The rapid evolution of genetic engineering techniques over the past 20 years has greatly advanced the use of murine models to mirror specific genetic subtypes of human AML, define cell-intrinsic and extrinsic disease mechanisms, study the interaction between co-occurring genetic lesions, and test novel therapeutic approaches. This review summarizes the mouse model systems that have been developed to recapitulate the most common genomic subtypes of AML. We will discuss the strengths and weaknesses of varying modeling strategies, highlight major discoveries emanating from these model systems, and outline future opportunities to leverage emerging technologies for mechanistic and preclinical investigations.
Collapse
Affiliation(s)
- Kristen J Kurtz
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Madeleine O'Keefe
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
7
|
Loss of MBD2 attenuates MLL-AF9-driven leukemogenesis by suppressing the leukemic cell cycle via CDKN1C. Oncogenesis 2021; 10:79. [PMID: 34789717 PMCID: PMC8599466 DOI: 10.1038/s41389-021-00366-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Acute myeloid leukemia (AML) is a deadly cancer characterized by an expanded self-renewal capacity that is associated with the accumulation of immature myeloid cells. Emerging evidence shows that methyl-CpG-binding domain protein 2 (MBD2), a DNA methylation reader, often participates in the transcriptional silencing of hypermethylated genes in cancer cells. Nevertheless, the role of MBD2 in AML remains unclear. Herein, by using an MLL-AF9 murine model and a human AML cell line, we observed that loss of MBD2 could delay the initiation and progression of leukemia. MBD2 depletion significantly reduced the leukemia burden by decreasing the proportion of leukemic stem cells (LSCs) and inhibiting leukemia cell proliferation in serial transplantation experiments, thereby allowing leukemic blasts to transition to a more mature state reflecting normal myelopoiesis. Both gene expression analyses and bioinformatic studies revealed that MBD2 negatively modulated genes related to myeloid differentiation, and was necessary to sustain the MLL-AF9 oncogene-induced gene program. We further demonstrated that MBD2 could promote LSC cell cycle progression through epigenetic regulation of CDKN1C transcription probably by binding to its promoter region. Taken together, our data suggest that MBD2 promotes AML development and could be a therapeutic target for myeloid malignancies.
Collapse
|
8
|
Guo C, Gao YY, Ju QQ, Zhang CX, Gong M, Li ZL. The landscape of gene co-expression modules correlating with prognostic genetic abnormalities in AML. J Transl Med 2021; 19:228. [PMID: 34051812 PMCID: PMC8164775 DOI: 10.1186/s12967-021-02914-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background The heterogenous cytogenetic and molecular variations were harbored by AML patients, some of which are related with AML pathogenesis and clinical outcomes. We aimed to uncover the intrinsic expression profiles correlating with prognostic genetic abnormalities by WGCNA. Methods We downloaded the clinical and expression dataset from BeatAML, TCGA and GEO database. Using R (version 4.0.2) and ‘WGCNA’ package, the co-expression modules correlating with the ELN2017 prognostic markers were identified (R2 ≥ 0.4, p < 0.01). ORA detected the enriched pathways for the key co-expression modules. The patients in TCGA cohort were randomly assigned into the training set (50%) and testing set (50%). The LASSO penalized regression analysis was employed to build the prediction model, fitting OS to the expression level of hub genes by ‘glmnet’ package. Then the testing and 2 independent validation sets (GSE12417 and GSE37642) were used to validate the diagnostic utility and accuracy of the model. Results A total of 37 gene co-expression modules and 973 hub genes were identified for the BeatAML cohort. We found that 3 modules were significantly correlated with genetic markers (the ‘lightyellow’ module for NPM1 mutation, the ‘saddlebrown’ module for RUNX1 mutation, the ‘lightgreen’ module for TP53 mutation). ORA revealed that the ‘lightyellow’ module was mainly enriched in DNA-binding transcription factor activity and activation of HOX genes. The ‘saddlebrown’ module was enriched in immune response process. And the ‘lightgreen’ module was predominantly enriched in mitosis cell cycle process. The LASSO- regression analysis identified 6 genes (NFKB2, NEK9, HOXA7, APRC5L, FAM30A and LOC105371592) with non-zero coefficients. The risk score generated from the 6-gene model, was associated with ELN2017 risk stratification, relapsed disease, and prior MDS history. The 5-year AUC for the model was 0.822 and 0.824 in the training and testing sets, respectively. Moreover, the diagnostic utility of the model was robust when it was employed in 2 validation sets (5-year AUC 0.743–0.79). Conclusions We established the co-expression network signature correlated with the ELN2017 recommended prognostic genetic abnormalities in AML. The 6-gene prediction model for AML survival was developed and validated by multiple datasets. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02914-2.
Collapse
Affiliation(s)
- Chao Guo
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ya-Yue Gao
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Qian-Qian Ju
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Chun-Xia Zhang
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Ming Gong
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China
| | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Yinghua East Street, Beijing, China.
| |
Collapse
|
9
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
10
|
O’Garro C, Igbineweka L, Ali Z, Mezei M, Mujtaba S. The Biological Significance of Targeting Acetylation-Mediated Gene Regulation for Designing New Mechanistic Tools and Potential Therapeutics. Biomolecules 2021; 11:biom11030455. [PMID: 33803759 PMCID: PMC8003229 DOI: 10.3390/biom11030455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023] Open
Abstract
The molecular interplay between nucleosomal packaging and the chromatin landscape regulates the transcriptional programming and biological outcomes of downstream genes. An array of epigenetic modifications plays a pivotal role in shaping the chromatin architecture, which controls DNA access to the transcriptional machinery. Acetylation of the amino acid lysine is a widespread epigenetic modification that serves as a marker for gene activation, which intertwines the maintenance of cellular homeostasis and the regulation of signaling during stress. The biochemical horizon of acetylation ranges from orchestrating the stability and cellular localization of proteins that engage in the cell cycle to DNA repair and metabolism. Furthermore, lysine acetyltransferases (KATs) modulate the functions of transcription factors that govern cellular response to microbial infections, genotoxic stress, and inflammation. Due to their central role in many biological processes, mutations in KATs cause developmental and intellectual challenges and metabolic disorders. Despite the availability of tools for detecting acetylation, the mechanistic knowledge of acetylation-mediated cellular processes remains limited. This review aims to integrate molecular and structural bases of KAT functions, which would help design highly selective tools for understanding the biology of KATs toward developing new disease treatments.
Collapse
Affiliation(s)
- Chenise O’Garro
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Loveth Igbineweka
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Zonaira Ali
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
| | - Mihaly Mezei
- Department of Pharmaceutical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Shiraz Mujtaba
- Department of Biology, Medgar Evers College, City University of New York, Brooklyn, NY 11225, USA; (C.O.); (L.I.); (Z.A.)
- Correspondence:
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Rearrangements of the histone lysine [K]-MethylTransferase 2A gene (KMT2A) gene on chromosome 11q23, formerly known as the mixed-lineage leukemia (MLL) gene, are found in 10% and 5% of adult and children ALL cases, respectively. The most common translocated genes are AFF1 (formerly AF4), MLLT3 (formerly AF9), and MLLT1 (formerly ENL). The bimodal incidence of MLL-r-ALL usually peaks in infants in their first 2 years of life and then declines thereafter during the pediatric/young adult phase until it increases again with age. MLL-rearranged ALL (MLL-r-ALL) is characterized by hyperleukocytosis, aggressive behavior with early relapse, relatively high incidence of central nervous system (CNS) involvement, and poor prognosis. RECENT FINDINGS MLL-r-ALL cells are characterized by relative resistance to corticosteroids (due to Src kinase-induced phosphorylation of annexin A2) and L-asparaginase therapy, but they are sensitive to cytarabine chemotherapy (due to increased levels of hENT1 expression). Potential therapeutic targets include FLT3 inhibitors, MEK inhibitors, HDAC inhibitors, BCL-2 inhibitors, MCL-1 inhibitors, proteasome inhibitors, hypomethylating agents, Dot1L inhibitors, and CDK inhibitors. In this review, we discuss MLL-r-ALL focusing on clinical presentation, risk stratification, drug resistance, and treatment strategies, including potential novel therapeutic targets.
Collapse
Affiliation(s)
- Firas El Chaer
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA
| | - Michael Keng
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA
| | - Karen K Ballen
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22903, USA.
| |
Collapse
|
12
|
Wang H, Shah CA, Hu L, Huang W, Platanias LC, Eklund EA. An aberrantly sustained emergency granulopoiesis response accelerates postchemotherapy relapse in MLL1-rearranged acute myeloid leukemia in mice. J Biol Chem 2020; 295:9663-9675. [PMID: 32467231 PMCID: PMC7363149 DOI: 10.1074/jbc.ra120.013206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/21/2020] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia (AML) with mixed lineage leukemia 1 (MLL1) gene rearrangement is characterized by increased expression of a set of homeodomain transcription factors, including homeobox A9 (HOXA9) and HOXA10. The target genes for these regulators include fibroblast growth factor 2 (FGF2) and Ariadne RBR E3 ubiquitin ligase 2 (ARIH2). FGF2 induces leukemia stem cell expansion in MLL1-rearranged AML. ARIH2 encodes TRIAD1, an E3 ubiquitin ligase required for termination of emergency granulopoiesis and leukemia suppressor function in MLL1-rearranged AML. Receptor tyrosine kinases (RTKs), including the FGF receptor, are TRIAD1 substrates that are possibly relevant to these activities. Using transcriptome analysis, we found increased activity of innate immune response pathways and RTK signaling in bone marrow progenitors from mice with MLL1-rearranged AML. We hypothesized that sustained RTK signaling, because of decreased TRIAD1 activity, impairs termination of emergency granulopoiesis during the innate immune response and contributes to leukemogenesis in this AML subtype. Consistent with this, we found aberrantly sustained emergency granulopoiesis in a murine model of MLL1-rearranged AML, associated with accelerated leukemogenesis. Treating these mice with an inhibitor of TRIAD1-substrate RTKs terminated emergency granulopoiesis, delayed leukemogenesis during emergency granulopoiesis, and normalized innate immune responses when combined with chemotherapy. Emergency granulopoiesis also hastened postchemotherapy relapse in mice with MLL1-rearranged AML, but remission was sustained by ongoing RTK inhibition. Our findings suggest that the physiological stress of infectious challenges may drive AML progression in molecularly defined subsets and identify RTK inhibition as a potential therapeutic approach to counteract this process.
Collapse
Affiliation(s)
- Hao Wang
- Department of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Chirag A Shah
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liping Hu
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Weiqi Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Leonidas C Platanias
- Department of Medicine, Northwestern University, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Elizabeth A Eklund
- Department of Medicine, Northwestern University, Chicago, Illinois, USA .,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
13
|
Bhunia S, Gupta S, Shrivastava BR, Tiwari PK. Identification of S100 calcium binding protein A9 as a prognostic biomarker in gallbladder cancer. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Ranjbar R, Karimian A, Aghaie Fard A, Tourani M, Majidinia M, Jadidi-Niaragh F, Yousefi B. The importance of miRNAs and epigenetics in acute lymphoblastic leukemia prognosis. J Cell Physiol 2018; 234:3216-3230. [PMID: 29384211 DOI: 10.1002/jcp.26510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/19/2022]
Abstract
Acute lymphoblastic leukemia (ALL), one of the most common malignant human disorders, originates in different important genetic lesions in T-cell or B-cell progenitors. ALL is a malignant lymphoid progenitor with peak prevalence in children (2-5 years). The rate of survival when one is suffering from ALL depends on various agents including the age of the patient, responses to anti-leukemic therapy, and cell biology. miRNAs and epigenetics are important regulatory factors in the expression of genes. miRNAs are noncoding RNA with inhibitory effectors on specific mRNA. Patterns of DNA methylation are profoundly changed in ALL by epigenetic mechanisms. The deciphering of miRNA and the epigenetic pathogenesis in ALL could revolutionize response to the therapy and outcome, and create an enormous promise for novel approaches to reduce the toxic side-effects of intensive leukemia. Hence, pathogenetic miRNAs and epigenetics leading to the initiation and the progression of ALL are summarized in this review.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Arad Aghaie Fard
- Faculty of Medical Science, Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Tourani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Suzuki M, Yokobori T, Gombodorj N, Yashiro M, Turtoi A, Handa T, Ogata K, Oyama T, Shirabe K, Kuwano H. High stromal transforming growth factor β-induced expression is a novel marker of progression and poor prognosis in gastric cancer. J Surg Oncol 2018; 118:966-974. [DOI: 10.1002/jso.25217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/01/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Masaki Suzuki
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Takehiko Yokobori
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
- Department of Innovative Cancer Immunotherapy; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Navchaa Gombodorj
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology Molecular Oncology and Therapeutics; Osaka City University Graduate School of Medicine; Osaka Japan
| | - Andrei Turtoi
- Institut du Cancer; Montpellier France
- INSERM U1194; Montpellier France
- Institut de Recherche en Cancérologie de Montpellier; Montpellier France
- Université Montpellier; Montpellier France
| | - Tadashi Handa
- Department of Diagnostic Pathology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Kyoichi Ogata
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
| |
Collapse
|
16
|
Maes T, Mascaró C, Tirapu I, Estiarte A, Ciceri F, Lunardi S, Guibourt N, Perdones A, Lufino MMP, Somervaille TCP, Wiseman DH, Duy C, Melnick A, Willekens C, Ortega A, Martinell M, Valls N, Kurz G, Fyfe M, Castro-Palomino JC, Buesa C. ORY-1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia. Cancer Cell 2018; 33:495-511.e12. [PMID: 29502954 DOI: 10.1016/j.ccell.2018.02.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/17/2017] [Accepted: 02/01/2018] [Indexed: 01/02/2023]
Abstract
The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia. Surrogate pharmacodynamic biomarkers developed based on expression changes in leukemia cell lines were translated to samples from patients treated with ORY-1001. ORY-1001 is a selective KDM1A inhibitor in clinical trials and is currently being evaluated in patients with leukemia and solid tumors.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain.
| | - Cristina Mascaró
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Iñigo Tirapu
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Angels Estiarte
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Filippo Ciceri
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Serena Lunardi
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Nathalie Guibourt
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Alvaro Perdones
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Michele M P Lufino
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Dan H Wiseman
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Cihangir Duy
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, 10065 NY, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, 10065 NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, 10065 NY, USA
| | - Christophe Willekens
- Drug Development Department (DITEP) and Hematology Department, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Alberto Ortega
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Marc Martinell
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Nuria Valls
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Guido Kurz
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Matthew Fyfe
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | | | - Carlos Buesa
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
17
|
Lozano E, Díaz T, Mena MP, Suñe G, Calvo X, Calderón M, Pérez-Amill L, Rodríguez V, Pérez-Galán P, Roué G, Cibeira MT, Rosiñol L, Isola I, Rodríguez-Lobato LG, Martin-Antonio B, Bladé J, Fernández de Larrea C. Loss of the Immune Checkpoint CD85j/LILRB1 on Malignant Plasma Cells Contributes to Immune Escape in Multiple Myeloma. THE JOURNAL OF IMMUNOLOGY 2018. [DOI: 10.4049/jimmunol.1701622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Hasan S, Naqvi AR, Rizvi A. Transcriptional Regulation of Emergency Granulopoiesis in Leukemia. Front Immunol 2018; 9:481. [PMID: 29593731 PMCID: PMC5858521 DOI: 10.3389/fimmu.2018.00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Neutropenic conditions are prevalent in leukemia patients and are often associated with increased susceptibility to infections. In fact, emergency granulopoiesis (EG), a process regulating neutrophil homeostasis in inflammatory conditions and infections, may occur improperly in leukemic conditions, leading to reduced neutrophil counts. Unfortunately, the mechanisms central to dysfunctional EG remain understudied in both leukemia patients and leukemic mouse models. However, despite no direct studies on EG response in leukemia are reported, recently certain transcription factors (TFs) have been found to function at the crossroads of leukemia and EG. In this review, we present an update on TFs that can potentially govern the fate of EG in leukemia. Transcriptional control of Fanconi DNA repair pathway genes is also highlighted, as well as the newly discovered role of Fanconi proteins in innate immune response and EG. Identifying the TFs regulating EG in leukemia and dissecting their underlying mechanisms may facilitate the discovery of therapeutic drugs for the treatment of neutropenia.
Collapse
Affiliation(s)
- Shirin Hasan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Afsar R Naqvi
- Department of Periodontics, University of Illinois at Chicago, Chicago, IL, United States
| | - Asim Rizvi
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
19
|
Shang D, Song B, Liu Y. Epirubicin suppresses proliferative and metastatic potential by downregulating transforming growth factor-β-induced expression in urothelial carcinoma. Cancer Sci 2018; 109:980-987. [PMID: 28940965 PMCID: PMC5891197 DOI: 10.1111/cas.13403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor‐β‐induced (TGFΒI) is considered to be a vital gene in several carcinomas. In this study we determined the effect of TGFBI on the proliferative and metastatic potential of human urothelial carcinoma (UC) cells as well as its mRNA and protein expression, which were detected by RT‐PCR and western blot, respectively. UC cell proliferation was analyzed by WST‐1 assay and Hoechst 33258 staining. The effect of TGFBI on UC cell metastasis was analyzed using adhesion, migration and invasion assays. We found that TGFBI increased the proliferation of UC cells. Moreover, TGFBI enhanced the adhesion, migration and invasion of UC cells by upregulating MMP‐2, MMP‐9 and calpain‐2 expression. We evaluated the effect of Epirubicin (EPI) on the regulation of TGFBI expression and found that TGFBI acts as a downstream target of EPI and is suppressed by EPI in UC cells. EPI is more effective in inhibiting the proliferation and metastasis of UC cells with high TGFBI expression. This study demonstrates that TGFBI might lead to tumorigenesis and progression of UC and those cells with high TGFBI expression may be vulnerable to relapse. EPI could prove to be a therapeutic option in patients with high TGFBI expressing UC cells.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Friendship Hospital, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Capital Medical University, Beijing, China
| | - Bo Song
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuting Liu
- Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Wang H, Bei L, Shah CA, Huang W, Platanias LC, Eklund EA. The E3 ubiquitin ligase Triad1 influences development of Mll-Ell-induced acute myeloid leukemia. Oncogene 2018; 37:2532-2544. [PMID: 29459712 PMCID: PMC5945580 DOI: 10.1038/s41388-018-0131-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/22/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023]
Abstract
Chromosomal translocations involving the MLL1 gene characterize a poor prognosis subset of acute myeloid leukemia (AML), referred to as 11q23-AML. Transcription of the HOXA9 and HOXA10 genes is enhanced in hematopoietic stem and progenitor cells in these leukemias. We previously found the ARIH2 gene was repressed by HoxA9 in myeloid progenitors, but activated by HoxA10 during granulopoiesis. ARIH2 encodes the Triad1 protein, an anti-proliferative E3 ubiquitin ligase. In the current study, we investigate the role of Triad1 in leukemogenesis induced by an MLL1 fusion protein (Mll-Ell). We found Mll-Ell increased expression of HoxA9, HoxA10, and Triad1 because HoxA9 represses only one of two ARIH2 cis elements that are activated by HoxA10. Although Triad1 antagonized the generally pro-proliferative effects of the Mll-Ell oncoprotein, we found blocking HoxA9 and HoxA10 phosphorylation shifted the balance to ARIH2 repression in Mll-Ell+ cells. We investigated the significance of these in vitro results in a murine bone marrow transplant model. We found Triad1 knockdown significantly shortened the latency to development of AML in mice transplanted with Mll-Ell-transduced bone marrow. And, Triad1 expression fell during the prolonged AML latency period in mice transplanted with bone marrow expressing Mll-Ell alone. Our studies identify Triad1 as a leukemia suppressor in 11q23-AML. This suggests defining relevant Triad1 substrates may indicate novel therapeutic targets in this disease.
Collapse
Affiliation(s)
- Hao Wang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ling Bei
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Chirag A Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Weiqi Huang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leonidas C Platanias
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Elizabeth A Eklund
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA.
| |
Collapse
|
21
|
Shah CA, Bei L, Wang H, Altman JK, Platanias LC, Eklund EA. Cooperation between AlphavBeta3 integrin and the fibroblast growth factor receptor enhances proliferation of Hox-overexpressing acute myeloid leukemia cells. Oncotarget 2018; 7:54782-54794. [PMID: 27340869 PMCID: PMC5342381 DOI: 10.18632/oncotarget.10189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
A poor prognosis subtype of acute myeloid leukemia (AML) is characterized by increased expression of a set of homeodomain (HD) transcription factors, including HoxA9, HoxA10 and Cdx4. This encompasses AML with MLL1 gene translocations, because Mll1-fusion proteins aberrantly activate HOX transcription. We previously identified FGF2 (Fibroblast Growth Factor 2) as a target gene for HoxA9 and HoxA10 that was indirectly activated by Mll-Ell (an Mll1-fusion protein). Autocrine stimulation of Mll-Ell+ myeloid progenitor cells by Fgf2 stabilized βcatenin and increased expression of βcatenin target genes, including CDX4. Since HOXA9 and HOXA10 are Cdx4 target genes, Fgf2 indirectly augmented direct effects of Mll-Ell on these genes. ITGB3, encoding β3 integrin, is another HoxA10 target gene. In the current studies, we found activation of ITGB3 transcription in Mll-Ell+ myeloid progenitor cells via HoxA9 and HoxA10. Increased expression of αvβ3 integrin increased Syk-activation; contributing to cytokine hypersensitivity. However, inhibiting Fgf-R partly reversed αvβ3 activity in Mll-Ell+ progenitor cells by decreasing ITGB3 promoter activity in a βcatenin- and Cdx4-dependent manner. Inhibitors of Fgf-R or Syk impaired proliferation of CD34+ bone marrow cells from AML subjects with increased Hox-expression; with a greater combined effect. These studies identified a rational therapeutic approach to this AML subtype.
Collapse
Affiliation(s)
- Chirag A Shah
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Ling Bei
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Hao Wang
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Jessica K Altman
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Leonidas C Platanias
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| | - Elizabeth A Eklund
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA
| |
Collapse
|
22
|
Tague RG. Proximate cause, anatomical correlates, and obstetrical implication of a supernumerary lumbar vertebra in humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:444-456. [PMID: 29159938 DOI: 10.1002/ajpa.23361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Three issues are considered on variation in number of presacral vertebrae (PSV) in humans: (1) sexual difference in number of PSV, (2) inactivation of Hoxd-11 gene as etiology for a supernumerary lumbar vertebra, and (3) anatomical correlates of a supernumerary lumbar vertebra, including lumbar-sacral nearthrosis, and pelvic size. MATERIALS AND METHODS Sample was 407 skeletonized females and 1,318 males from United States; ages at death were 20 to 49 years. Two subsamples of males were used: (1) 98 with modal numbers of cervical, thoracic, lumbar, and sacral vertebrae (PSV = 24) and (2) 45 with a supernumerary lumbar vertebra but modal numbers for other vertebral segments (PSV = 25). Measurements were taken of ulna, second metacarpal, vertebrae, femur, and pelvis; presence of lumbar-sacral nearthrosis was observed. RESULTS Although 90% of females and males have 24 PSV, females have higher frequency of 23 PSV and males have higher frequency of 25 PSV. Compared to males with 24 PSV, males with 25 PSV and supernumerary lumbar vertebra show (1) no difference in anatomies associated with inactivation of Hoxd-11, and (2) higher frequency of lumbar-sacral nearthrosis and smaller pelvic inlet circumference. DISCUSSION Sexual difference in number of PSV may be due to tempo of somite formation and Hox gene activation. Hypothesis is not supported that a supernumerary lumbar vertebra is due to inactivation of Hoxd-11. The presence of a supernumerary lumbar vertebra is associated with small pelvic inlet circumference, which can be obstetrically disadvantageous.
Collapse
Affiliation(s)
- Robert G Tague
- Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
23
|
Bigh3 silencing increases retinoblastoma tumor growth in the murine SV40-TAg-Rb model. Oncotarget 2017; 8:15490-15506. [PMID: 28099942 PMCID: PMC5362501 DOI: 10.18632/oncotarget.14659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/24/2016] [Indexed: 11/25/2022] Open
Abstract
BIGH3, a secreted protein of the extracellular matrix interacts with collagen and integrins on the cell surface. BIGH3 can have opposing functions in cancer, acting either as tumor suppressor or promoter by enhancing tumor progression and angiogenesis. In the eye, BIGH3 is expressed in the cornea and the retinal pigment epithelium and could impact on the development of retinoblastoma, the most common paediatric intraocular neoplasm. Retinoblastoma initiation requires the inactivation of both alleles of the RB1 tumor suppressor gene in the developing retina and tumor progression involves additional genomic changes. To determine whether BIGH3 affects retinoblastoma development, we generated a retinoblastoma mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing in these mice resulted in enhanced tumor development in the retina. A decrease in apoptosis is involved in the initial events of tumorigenesis, followed by an increased activity of the pro-survival ERK pathway as well as an upregulation of cyclin-dependent kinases (CDKs). Taken together, these data suggest that BIGH3 acts as a tumor suppressor in the retina.
Collapse
|
24
|
Zhu Y, Zhang F, Zhang S, Deng W, Fan H, Wang H, Zhang J. Regulatory mechanism and functional analysis of S100A9 in acute promyelocytic leukemia cells. Front Med 2017; 11:87-96. [PMID: 28063140 DOI: 10.1007/s11684-016-0469-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022]
Abstract
S100A9, a calcium-binding protein, participates in the inflammatory process and development of various tumors, thus attracting much attention in the field of cancer biology. This study aimed to investigate the regulatory mechanism of S100A9 and its function involvement in APL. We used real-time quantitative PCR to determine whether PML/RARα affects the expression of S100A9 in NB4 and PR9 cells upon ATRA treatment. ChIP-based PCR and dual-luciferase reporter assay system were used to detect how PML/RARα and PU.1 regulate S100A9 promoter activity. CCK-8 assay and flow cytometry were employed to observe the viability and apoptosis of NB4 cells when S100A9 was overexpressed. Results showed that S100A9 was an ATRA-responsive gene, and PML/RARα was necessary for the ATRA-induced expression of S100A9 in APL cells. In addition, PU.1 could bind to the promoter of S100A9, especially when treated with ATRA in NB4 cells, and promote its activity. More importantly, overexpression of S100A9 induced the apoptosis of NB4 cells and inhibited cell growth. Collectively, our data indicated that PML/RARα and PU.1 were necessary for the ATRA-induced expression of S100A9 in APL cells. Furthermore, S100A9 promoted apoptosis in APL cells and affected cell growth.
Collapse
Affiliation(s)
- Yonglan Zhu
- State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Zhang
- State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shanzhen Zhang
- Medical Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Wanglong Deng
- State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huiyong Fan
- State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haiwei Wang
- State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Medical Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Ji Zhang
- State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Medical Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
| |
Collapse
|
25
|
Winters AC, Bernt KM. MLL-Rearranged Leukemias-An Update on Science and Clinical Approaches. Front Pediatr 2017; 5:4. [PMID: 28232907 PMCID: PMC5299633 DOI: 10.3389/fped.2017.00004] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-specific MethylTransferase 2A or KMT2A) on chromosome 11q23 is disrupted in a unique group of acute leukemias. More than 80 different partner genes in these fusions have been described, although the majority of leukemias result from MLL1 fusions with one of about six common partner genes. Approximately 10% of all leukemias harbor MLL1 translocations. Of these, two patient populations comprise the majority of cases: patients younger than 1 year of age at diagnosis (primarily acute lymphoblastic leukemias) and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer subgroup of patients with MLL1 rearrangements develop leukemia that is attributable to prior treatment with certain chemotherapeutic agents-so-called therapy-related leukemias. In general, outcomes for all of these patients remain poor when compared to patients with non-MLL1 rearranged leukemias. In this review, we will discuss the normal biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of this group of leukemias. We will go on to discuss the progress in clinical management and promising new avenues of research, which may lead to more effective targeted therapies for affected patients.
Collapse
Affiliation(s)
- Amanda C Winters
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Kathrin M Bernt
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|
26
|
Singh SK, Lupo PJ, Scheurer ME, Saxena A, Kennedy AE, Ibrahimou B, Barbieri MA, Mills KI, McCauley JL, Okcu MF, Dorak MT. A childhood acute lymphoblastic leukemia genome-wide association study identifies novel sex-specific risk variants. Medicine (Baltimore) 2016; 95:e5300. [PMID: 27861356 PMCID: PMC5120913 DOI: 10.1097/md.0000000000005300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) occurs more frequently in males. Reasons behind sex differences in childhood ALL risk are unknown. In the present genome-wide association study (GWAS), we explored the genetic basis of sex differences by comparing genotype frequencies between male and female cases in a case-only study to assess effect-modification by sex.The case-only design included 236 incident cases of childhood ALL consecutively recruited at the Texas Children's Cancer Center in Houston, Texas from 2007 to 2012. All cases were non-Hispanic whites, aged 1 to 10 years, and diagnosed with confirmed B-cell precursor ALL. Genotyping was performed using the Illumina HumanCoreExome BeadChip on the Illumina Infinium platform. Besides the top 100 statistically most significant results, results were also analyzed by the top 100 highest effect size with a nominal statistical significance (P <0.05).The statistically most significant sex-specific association (P = 4 × 10) was with the single nucleotide polymorphism (SNP) rs4813720 (RASSF2), an expression quantitative trait locus (eQTL) for RASSF2 in peripheral blood. rs4813720 is also a strong methylation QTL (meQTL) for a CpG site (cg22485289) within RASSF2 in pregnancy, at birth, childhood, and adolescence. cg22485289 is one of the hypomethylated CpG sites in ALL compared with pre-B cells. Two missense SNPs, rs12722042 and 12722039, in the HLA-DQA1 gene yielded the highest effect sizes (odds ratio [OR] ∼ 14; P <0.01) for sex-specific results. The HLA-DQA1 SNPs belong to DQA1*01 and confirmed the previously reported male-specific association with DQA1*01. This finding supports the proposed infection-related etiology in childhood ALL risk for males. Further analyses revealed that most SNPs (either direct effect or through linkage disequilibrium) were within active enhancers or active promoter regions and had regulatory effects on gene expression levels.Cumulative data suggested that RASSF2 rs4813720, which correlates with increased RASSF2 expression, may counteract the suppressor effect of estrogen-regulated miR-17-92 on RASSF2 resulting in protection in males. Given the amount of sex hormone-related mechanisms suggested by our findings, future studies should examine prenatal or early postnatal programming by sex hormones when hormone levels show a large variation.
Collapse
Affiliation(s)
- Sandeep K. Singh
- Department of Environmental and Occupational Health, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Philip J. Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center
| | - Michael E. Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Anshul Saxena
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| | - Amy E. Kennedy
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Boubakari Ibrahimou
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| | | | - Ken I. Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Jacob L. McCauley
- Dr. John T. Macdonald Foundation, Department of Human Genetics, John P. Hussman Institute for Human Genomics, Biorepository Facility, Center for Genome Technology University of Miami, Miller School of Medicine
| | - Mehmet Fatih Okcu
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Mehmet Tevfik Dorak
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| |
Collapse
|
27
|
Kessels JE, Wessels I, Haase H, Rink L, Uciechowski P. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins. J Trace Elem Med Biol 2016; 37:125-133. [PMID: 26905204 DOI: 10.1016/j.jtemb.2016.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Abstract
The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.
Collapse
Affiliation(s)
- Jana Elena Kessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Peter Uciechowski
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
28
|
Mian YA, Zeleznik-Le NJ. The miR-17∼92 cluster contributes to MLL leukemia through the repression of MEIS1 competitor PKNOX1. Leuk Res 2016; 46:51-60. [PMID: 27123834 DOI: 10.1016/j.leukres.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022]
Abstract
Mixed lineage leukemias have a relatively poor prognosis and arise as a result of translocations between the MLL(KMT2A) gene and one of multiple partner genes. Downstream targets of MLL are aberrantly upregulated and include the developmentally important HOX genes and MEIS1, as well as multiple microRNAs (miRNAs), including the miR-17∼92 cluster. Here we examined the contribution of specific miRNAs to MLL leukemias through knockdown studies utilizing custom anti-microRNA oligonucleotides. Combinatorial treatment against miR-17-5p and miR-19a-3p of the miR-17∼92 cluster dramatically reduces colony forming ability of MLL-fusion containing cell lines relative to non-MLL acute myeloid leukemia (AML) controls. To determine the mechanism by which these miRNAs contribute to leukemia, we validated PKNOX1 as a target of both miR-17-5p and miR-19a-3p. MEIS1 and PKNOX1 are TALE domain proteins that participate in ternary complexes with HOX and PBX partners. Here we establish the competitive relationship between PKNOX1 and MEIS1 in PBX-containing complex formation and determine the antagonistic role of PKNOX1 to leukemia in a murine MLL-AF9 model. These data implicate the miR-17∼92 cluster as part of a regulatory mechanism necessary to maintain MEIS1/HOXA9 -mediated transformation in MLL leukemia, indicating that targeting multiple non-homologous miRNAs may be utilized as a novel therapeutic regimen.
Collapse
Affiliation(s)
- Yousaf A Mian
- Molecular Biology Program, Loyola University Chicago, Maywood, IL 60153, United States
| | - Nancy J Zeleznik-Le
- Molecular Biology Program, Loyola University Chicago, Maywood, IL 60153, United States; Department of Medicine, Loyola University Chicago, Maywood, IL 60153, United States.
| |
Collapse
|
29
|
Han B, Cai H, Chen Y, Hu B, Luo H, Wu Y, Wu J. The role of TGFBI (βig-H3) in gastrointestinal tract tumorigenesis. Mol Cancer 2015; 14:64. [PMID: 25889002 PMCID: PMC4435624 DOI: 10.1186/s12943-015-0335-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 03/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TGFβ-induced (TGFBI/βig-H3) is a protein inducible by TGFβ1 and secreted by many types of cells. It binds to collagen, forms part of the extracellular matrix (ECM), and interacts with integrins on cell surfaces. In this study, we investigated the role of TGFBI in tumorigenesis and the underlying mechanisms. METHODS Patient serum TGFBI levels were determined by ELISA. TGFBI transgenic and gene knockout mice and TGFBI-overexpressing liver cells were used for mechanistic studies. RESULTS We demonstrated that patients with cholangiocarcinomas, hepatic carcinomas or gastric carcinomas presented significantly elevated serum TGFBI levels, and the excess TGFBI was derived from the tumor masses. TGFBI overexpression in mice resulted in increased incidence of spontaneous tumors and N,N-diethylnitrosamine (DEN)-induced liver tumor nodules, compared to that in wild type (WT) mice, while TGFBI knockout mice were comparable to WT controls in these 2 aspects. TGFBI promoted the survival of Aml-12 liver cells with DNA damage after irradiation, and augmented their post-irradiation proliferation. It activated the FAK/AKT/AKT1S1/PRS6/EIF4EBP pathway, which is known to modulate cell survival and proliferation. CONCLUSIONS Our data suggest that TGFBI functions as a promoter of certain gastrointestinal tract cancers. It provides a survival advantage to cells with DNA damage. Over a long time span, this advantage could translate into increased tumor risks.
Collapse
Affiliation(s)
- Bing Han
- Laboratory of Immunology and Cardiovascular Research, Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Stain-Denis Street, Montreal, Quebec, Canada.
| | - Haolei Cai
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| | - Ying Chen
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| | - Bing Hu
- Anatomic Pathology, AmeriPath Central Florida, 8150 Chancellor Dr, Orlando, FL, USA.
| | - Hongyu Luo
- Laboratory of Immunology and Cardiovascular Research, Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Stain-Denis Street, Montreal, Quebec, Canada.
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| | - Jiangping Wu
- Laboratory of Immunology and Cardiovascular Research, Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Stain-Denis Street, Montreal, Quebec, Canada. .,Nephrology Service, Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Stain-Denis Street, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Sakamoto KM, Grant S, Saleiro D, Crispino JD, Hijiya N, Giles F, Platanias L, Eklund EA. Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol Genet Metab 2015; 114:397-402. [PMID: 25533111 PMCID: PMC4355162 DOI: 10.1016/j.ymgme.2014.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 01/23/2023]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy that is the most common type of acute leukemia diagnosed in adults and the second most common type in children. The overall survival is poor and treatment is associated with significant complications and even death. In addition, a significant number of patients will not respond to therapy or relapse. In this review, several new signaling proteins aberrantly regulated in AML are described, including CREB, Triad1, Bcl-2 family members, Stat3, and mTOR/MEK. Identifying more effective and less toxic agents will provide novel approaches to treat AML.
Collapse
Affiliation(s)
- Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven Grant
- Division of Hematology/Oncology and Palliative Care, Department of Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - John D Crispino
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - Nobuko Hijiya
- Division of Hematology/Oncology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis Giles
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - Leonidas Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
31
|
Regulation of CDX4 gene transcription by HoxA9, HoxA10, the Mll-Ell oncogene and Shp2 during leukemogenesis. Oncogenesis 2014; 3:e135. [PMID: 25531430 PMCID: PMC4275563 DOI: 10.1038/oncsis.2014.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/08/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022] Open
Abstract
Cdx and Hox proteins are homeodomain transcription factors that regulate hematopoiesis. Transcription of the HOX and CDX genes decreases during normal myelopoiesis, but is aberrantly sustained in leukemias with translocation or partial tandem duplication of the MLL1 gene. Cdx4 activates transcription of the HOXA9 and HOXA10 genes, and HoxA10 activates CDX4 transcription. The events that break this feedback loop, permitting a decreased Cdx4 expression during normal myelopoiesis, were previously undefined. In the current study, we find that HoxA9 represses CDX4 transcription in differentiating myeloid cells, antagonizing activation by HoxA10. We determine that tyrosine phosphorylation of HoxA10 impairs transcriptional activation of CDX4, but tyrosine phosphorylation of HoxA9 facilitates repression of this gene. As HoxA9 and HoxA10 are phosphorylated during myelopoiesis, this provides a mechanism for differentiation stage-specific Cdx4 expression. HoxA9 and HoxA10 are increased in cells expressing Mll-Ell, a leukemia-associated MLL1 fusion protein. We find that Mll-Ell induces a HoxA10-dependent increase in Cdx4 expression in myeloid progenitor cells. However, Cdx4 decreases in a HoxA9-dependent manner on exposure of Mll-Ell-expressing cells to differentiating cytokines. Leukemia-associated, constitutively active mutants of Shp2 block cytokine-induced tyrosine phosphorylation of HoxA9 and HoxA10. In comparison with myeloid progenitor cells that are expressing Mll-Ell alone, we find increased CDX4 transcription and Cdx4 expression in cells co-expressing Mll-Ell plus constitutively active Shp2. Increased Cdx4 expression is sustained on exposure of these cells to differentiating cytokines. Our results identify a mechanism for increased and sustained CDX4 transcription in leukemias co-overexpressing HoxA9 and HoxA10 in combination with constitutive activation of Shp2. This is clinically relevant, because MLL1 translocations and constitutive Shp2 activation co-exist in human myeloid leukemias.
Collapse
|
32
|
Abstract
The study of a class of small non-coding RNA molecules, named microRNAs (miRNAs), has advanced our understanding of many of the fundamental processes of cancer biology and the molecular mechanisms underlying tumor initiation and progression. MiRNA research has become more and more attractive as evidence is emerging that miRNAs likely play important regulatory roles virtually in all essential bioprocesses. Looking at this field over the past decade it becomes evident that our understanding of miRNAs remains rather incomplete. As research continues to reveal the mechanisms underlying cancer therapy efficacy, it is clear that miRNAs contribute to responses to drug therapy and are themselves modified by drug therapy. One important area for miRNA research is to understand the functions of miRNAs and the relevant signaling pathways in the initiation, progression and drug-resistance of tumors to be able to design novel, effective targeted therapeutics that directly target pathologically essential miRNAs and/or their target genes. Another area of increasing importance is the use of miRNA signatures in the diagnosis and prognosis of various types of cancers. As the study of non-coding RNAs is increasingly more popular and important, it is without doubt that the next several years of miRNA research will provide more fascinating results.
Collapse
|
33
|
Braekeleer ED, Douet-Guilbert N, Basinko A, Bris MJL, Morel F, Braekeleer MD. Hox gene dysregulation in acute myeloid leukemia. Future Oncol 2014; 10:475-95. [DOI: 10.2217/fon.13.195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT: In humans, class I homeobox genes (HOX genes) are distributed in four clusters. Upstream regulators include transcriptional activators and members of the CDX family of transcription factors. HOX genes encode proteins and need cofactor interactions, to increase their specificity and selectivity. HOX genes contribute to the organization and regulation of hematopoiesis by controlling the balance between proliferation and differentiation. Changes in HOX gene expression can be associated with chromosomal rearrangements generating fusion genes, such as those involving MLL and NUP98, or molecular defects, such as mutations in NPM1 and CEBPA for example. Several miRNAs are involved in the control of HOX gene expression and their expression correlates with HOX gene dysregulation. HOX genes dysregulation is a dominant mechanism of leukemic transformation. A better knowledge of their target genes and the mechanisms by which their dysregulated expression contributes to leukemogenesis could lead to the development of new drugs.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | - Nathalie Douet-Guilbert
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | - Audrey Basinko
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | - Marie-Josée Le Bris
- Service de Cytogénétique, Cytologie et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| | - Frédéric Morel
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | - Marc De Braekeleer
- Laboratoire d’Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| |
Collapse
|
34
|
Nakashima K, Arai S, Suzuki A, Nariai Y, Urano T, Nakayama M, Ohara O, Yamamura KI, Yamamoto K, Miyazaki T. PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression. Nat Commun 2013; 4:1836. [PMID: 23673621 PMCID: PMC3674250 DOI: 10.1038/ncomms2862] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/04/2013] [Indexed: 01/08/2023] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) functions as a transcriptional coregulator by catalyzing the conversion of histone H3 arginine residues to citrulline residues. Although the high level of PAD4 expression in bone marrow cells suggests its involvement in haematopoiesis, its precise contribution remains unclear. Here we show that PAD4, which is highly expressed in lineage− Sca-1+ c-Kit+ (LSK) cells of mouse bone marrow compared with other progenitor cells, controls c-myc expression by catalyzing the citrullination of histone H3 on its promoter. Furthermore, PAD4 is associated with lymphoid enhancer-binding factor 1 and histone deacetylase 1 at the upstream region of the c-myc gene. Supporting these findings, LSK cells, especially multipotent progenitors, in PAD4-deficient mice show increased proliferation in a cell-autonomous fashion compared with those in wild-type mice. Together, our results strongly suggest that PAD4 regulates the proliferation of multipotent progenitors in the bone marrow by controlling c-myc expression. Histone citrullination by peptidylarginine deiminase 4 (PAD4) regulates transcription but its physiological role is unclear. Here Nakashima et al. show that PAD4 controls proliferation of multipotent haematopoietic cells by modulating c-myc expression.
Collapse
Affiliation(s)
- Katsuhiko Nakashima
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shah CA, Bei L, Wang H, Platanias LC, Eklund EA. The leukemia-associated Mll-Ell oncoprotein induces fibroblast growth factor 2 (Fgf2)-dependent cytokine hypersensitivity in myeloid progenitor cells. J Biol Chem 2013; 288:32490-32505. [PMID: 24089521 DOI: 10.1074/jbc.m113.496109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The subset of acute myeloid leukemias (AML) with chromosomal translocations involving the MLL gene have a poor prognosis (referred to as 11q23-AML). The MLL fusion proteins that are expressed in 11q23-AML facilitate transcription of a set of HOX genes, including HOXA9 and HOXA10. Because Hox proteins are transcription factors, this suggests the possibility that Hox target genes mediate the adverse effects of MLL fusion proteins in leukemia. Identifying such Hox target genes might provide insights to the pathogenesis and treatment of 11q23-AML. In the current study we found that Mll-Ell (an MLL fusion protein) induced transcriptional activation of the FGF2 gene in a HoxA9- and HoxA10-dependent manner. FGF2 encodes fibroblast growth factor 2 (also referred to as basic fibroblast growth factor). Fgf2 influences proliferation and survival of hematopoietic stem cells and myeloid progenitor cells, and increased Fgf2-expression has been described in AMLs. We determined that expression of Mll-Ell in myeloid progenitor cells resulted in autocrine production of Fgf2 and Fgf2-dependent cytokine hypersensitivity. Therefore, our results implicated increased Fgf2 expression in progenitor proliferation and expansion in 11q23-AML. Because small molecule inhibitors of Fgf-receptors are in human clinical trials, this suggested a potential therapeutic approach to this treatment refractory leukemia.
Collapse
Affiliation(s)
- Chirag A Shah
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Ling Bei
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611; the Jesse Brown Veterans Administration Medical Center, Chicago, Illinois 60612
| | - Hao Wang
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Leonidas C Platanias
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611; the Jesse Brown Veterans Administration Medical Center, Chicago, Illinois 60612
| | - Elizabeth A Eklund
- From The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611; the Jesse Brown Veterans Administration Medical Center, Chicago, Illinois 60612.
| |
Collapse
|
36
|
Zhang J, Seet CS, Sun C, Li J, You D, Volk A, Breslin P, Li X, Wei W, Qian Z, Zeleznik-Le NJ, Zhang Z, Zhang J. p27kip1 maintains a subset of leukemia stem cells in the quiescent state in murine MLL-leukemia. Mol Oncol 2013; 7:1069-82. [PMID: 23988911 DOI: 10.1016/j.molonc.2013.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/22/2013] [Accepted: 07/31/2013] [Indexed: 12/14/2022] Open
Abstract
MLL (mixed-lineage leukemia)-fusion genes induce the development of leukemia through deregulation of normal MLL target genes, such as HOXA9 and MEIS1. Both HOXA9 and MEIS1 are required for MLL-fusion gene-induced leukemogenesis. Co-expression of HOXA9 and MEIS1 induces acute myeloid leukemia (AML) similar to that seen in mice in which MLL-fusion genes are over-expressed. p27(kip1) (p27 hereafter), a negative regulator of the cell cycle, has also been defined as an MLL target, the expression of which is up-regulated in MLL leukemic cells (LCs). To investigate whether p27 plays a role in the pathogenesis of MLL-leukemia, we examined the effects of p27 deletion (p27(-/-)) on MLL-AF9 (MA9)-induced murine AML development. HOXA9/MEIS1 (H/M)-induced, p27 wild-type (p27(+/+)) and p27(-/-) AML were studied in parallel as controls. We found that LCs from both MA9-AML and H/M-AML can be separated into three fractions, a CD117(-)CD11b(hi) differentiated fraction as well as CD117(+)CD11b(hi) and CD117(+)CD11b(lo), two less differentiated fractions. The CD117(+)CD11b(lo) fraction, comprising only 1-3% of total LCs, expresses higher levels of early hematopoietic progenitor markers but lower levels of mature myeloid cell markers compared to other populations of LCs. p27 is expressed and is required for maintaining the quiescent and drug-resistant states of the CD117(+)CD11b(lo) fraction of MA9-LCs but not of H/M-LCs. p27 deletion significantly compromises the leukemogenic capacity of CD117(+)CD11b(lo) MA9-LCs by reducing the frequency of leukemic stem cells (LSCs) but does not do so in H/M-LCs. In addition, we found that p27 is highly expressed and required for cell cycle arrest in the CD117(-)CD11b(hi) fraction in both types of LCs. Furthermore, we found that c-Myc expression is required for maintaining LCs in an undifferentiated state independently of proliferation. We concluded that p27 represses the proliferation of LCs, which is specifically required for maintaining the quiescent and drug-resistant states of a small subset of MA9-LSCs in collaboration with the differentiation blockage function of c-Myc.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China; Oncology Institute, Cardinal Bernardin Cancer Center and Department of Pathology, Loyola University Chicago, Maywood, IL 60153, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci U S A 2013; 110:11511-6. [PMID: 23798388 DOI: 10.1073/pnas.1310144110] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs), small noncoding RNAs that regulate target gene mRNAs, are known to contribute to pathogenesis of cancers. Acute myeloid leukemia (AML) is a group of heterogeneous hematopoietic malignancies with various chromosomal and/or molecular abnormalities. AML with chromosomal translocations involving the mixed lineage leukemia (MLL) gene are usually associated with poor survival. In the present study, through a large-scale, genomewide miRNA expression assay, we show that microRNA-9 (miR-9) is the most specifically up-regulated miRNA in MLL-rearranged AML compared with both normal control and non-MLL-rearranged AML. We demonstrate that miR-9 is a direct target of MLL fusion proteins and can be significantly up-regulated in expression by the latter in human and mouse hematopoietic stem/progenitor cells. Depletion of endogenous miR-9 expression by an appropriate antagomiR can significantly inhibit cell growth/viability and promote apoptosis in human MLL-rearranged AML cells, and the opposite is true when expression of miR-9 is forced. Blocking endogenous miR-9 function by anti-miRNA sponge can significantly inhibit, whereas forced expression of miR-9 can significantly promote, MLL fusion-induced immortalization/transformation of normal mouse bone marrow progenitor cells in vitro. Furthermore, forced expression of miR-9 can significantly promote MLL fusion-mediated leukemogenesis in vivo. In addition, a group of putative target genes of miR-9 exhibited a significant inverse correlation of expression with miR-9 in a series of leukemia sample sets, suggesting that they are potential targets of miR-9 in MLL-rearranged AML. Collectively, our data demonstrate that miR-9 is a critical oncomiR in MLL-rearranged AML and can serve as a potential therapeutic target to treat this dismal disease.
Collapse
|
38
|
Benetatos L, Vartholomatos G. MicroRNAs mark in the MLL-rearranged leukemia. Ann Hematol 2013; 92:1439-50. [DOI: 10.1007/s00277-013-1803-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/20/2013] [Indexed: 01/02/2023]
|
39
|
Vasilatou D, Papageorgiou SG, Kontsioti F, Kontos CK, Tsiotra P, Mpakou V, Pavlou MAS, Economopoulou C, Dimitriadis G, Dervenoulas J, Pappa V. Expression analysis of mir-17-5p, mir-20a and let-7a microRNAs and their target proteins in CD34+ bone marrow cells of patients with myelodysplastic syndromes. Leuk Res 2012; 37:251-8. [PMID: 23246221 DOI: 10.1016/j.leukres.2012.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 12/12/2022]
Abstract
Mir-17-5p and mir-20a, members of the mir-17-92 family, down-regulate E2F1, which is over-expressed in myelodysplastic syndromes (MDS). Moreover, let-7a down-regulates KRAS, which is aberrantly expressed in MDS. We evaluated the expression of the aforementioned microRNAs in CD34+ cells of 43 MDS patients using real-time PCR and their target proteins (E2F1, MYC, BCL2, CCND1, and KRAS) by Western blot. Mir-17-5p and mir-20a were under expressed in high risk MDS patients, compared to low risk MDS patients. Similarly, let-7a was under expressed in patients with intermediate or high-risk karyotype. Interestingly, there was an inverse correlation between microRNA and the expression levels of their targets. Importantly, mir-17-5p and mir-20a constitute favorable prognostic factors in MDS, since their expression was associated with increased overall survival of MDS patients.
Collapse
Affiliation(s)
- Diamantina Vasilatou
- Second Department of Internal Medicine and Research Institute, Athens University Medical School, "Attikon" University General Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jamil K, Jayaraman A, Rao R, Raju S. In silico evidence of signaling pathways of notch mediated networks in leukemia. Comput Struct Biotechnol J 2012; 1:e201207005. [PMID: 24688641 PMCID: PMC3962152 DOI: 10.5936/csbj.201207005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 11/22/2022] Open
Abstract
Notch signaling plays a critical role in cell fate determination and maintenance of progenitors in many developmental systems. Notch receptors have been shown to be expressed on hematopoietic progenitor cells as well as to various degrees in peripheral blood T and B lymphocytes, monocytes, and neutrophils. Our aim was to understand the protein interaction network, using Notch1 protein name as query in STRING database and we generated a model to assess the significance of Notch1 associated proteins in Acute Lymphoblastic Leukemia (ALL). We further analyzed the expression levels of the genes encoding hub proteins, using Oncomine database, to determine their significance in leukemogenesis. Of the forty two hub genes, we observed that sixteen genes were underexpressed and eleven genes were overexpressed in T-cell Acute Lymphoblastic samples in comparison to their expression levels in normal cells. Of these, we found three novel genes which have not been reported earlier- KAT2B, PSEN1 (underexpressed) and CDH2 (overexpressed).These three identified genes may provide new insights into the abnormal hematopoietic process observed in Leukemia as these genes are involved in Notch signaling and cell adhesion processes. It is evident that experimental validation of the protein interactors in leukemic cells could help in the identification of new diagnostic markers for leukemia.
Collapse
Affiliation(s)
- Kaiser Jamil
- Centre for Biotechnology and Bioinformatics, School of Life sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), 6th Floor, Budha Bhawan, M.G. Road, Secunderabad 500003, Andhra Pradesh, India
| | - Archana Jayaraman
- Centre for Biotechnology and Bioinformatics, School of Life sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), 6th Floor, Budha Bhawan, M.G. Road, Secunderabad 500003, Andhra Pradesh, India
| | - Raghunatha Rao
- Oncology Department, Nizams Institute of Medical Sciences ( NIMS), Panjagutta, Hyderabad 500082, Andhra Pradesh, India
| | - Suryanarayana Raju
- Oncology Department, Nizams Institute of Medical Sciences ( NIMS), Panjagutta, Hyderabad 500082, Andhra Pradesh, India
| |
Collapse
|
41
|
MiR-495 is a tumor-suppressor microRNA down-regulated in MLL-rearranged leukemia. Proc Natl Acad Sci U S A 2012; 109:19397-402. [PMID: 23132946 DOI: 10.1073/pnas.1217519109] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic malignancies with variable response to treatment. AMLs bearing MLL (mixed lineage leukemia) rearrangements are associated with intermediate or poor survival. MicroRNAs (miRNAs), a class of small noncoding RNAs, have been postulated to be important gene expression regulators virtually in all biological processes, including leukemogenesis. Through a large-scale, genome-wide miRNA expression profiling assay of 85 human AML and 15 normal control samples, we show that among 48 miRNAs that are significantly differentially expressed between MLL- and non-MLL-rearranged AML samples, only one (miR-495) is expressed at a lower level in MLL-rearranged AML than in non-MLL-rearranged AML; meanwhile, miR-495 is also significantly down-regulated in MLL-rearranged AML samples compared with normal control samples. Through in vitro colony-forming/replating assays and in vivo bone marrow transplantation studies, we show that forced expression of miR-495 significantly inhibits MLL-fusion-mediated cell transformation in vitro and leukemogenesis in vivo. In human leukemic cells carrying MLL rearrangements, ectopic expression of miR-495 greatly inhibits cell viability and increases cell apoptosis. Furthermore, our studies demonstrate that PBX3 and MEIS1 are two direct target genes of miR-495, and forced expression of either of them can reverse the effects of miR-495 overexpression on inhibiting cell viability and promoting apoptosis of human MLL-rearranged leukemic cells. Thus, our data indicate that miR-495 likely functions as a tumor suppressor in AML with MLL rearrangements by targeting essential leukemia-related genes.
Collapse
|
42
|
He M, Chen P, Arnovitz S, Li Y, Huang H, Neilly MB, Wei M, Rowley JD, Chen J, Li Z. Two isoforms of HOXA9 function differently but work synergistically in human MLL-rearranged leukemia. Blood Cells Mol Dis 2012; 49:102-6. [PMID: 22633751 DOI: 10.1016/j.bcmd.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 02/07/2023]
Abstract
HOXA9 plays a critical role in both normal hematopoiesis and leukemogenesis, particularly in the development and maintenance of mixed lineage leukemia (MLL)-rearranged leukemia. Through reverse transcription-polymerase chain reaction (RT-PCR) analysis of HOXA9 transcripts in human leukemia and normal bone marrow samples, we identified a truncated isoform of HOXA9, namely HOXA9T, and found that both HOXA9T and canonical HOXA9 were highly expressed in leukemia cell lines bearing MLL rearrangements, relative to human normal bone marrow cells or other subtypes of leukemia cells. A frameshift in HOXA9T in exon I causes a premature stop codon upstream of the PBX-binding domain and the homeodomain, which leads to the generation of a non-homeodomain-containing protein. Unlike the canonical HOXA9, HOXA9T alone cannot transform normal bone marrow progenitor cells. Moreover, HOXA9T cannot cooperate with MEIS1 to transform cells, despite the presence of a MEIS1-binding domain. Remarkably, although the truncated isoforms of many proteins function as dominant-negative competitors or inhibitors of their full-length counterparts, this is not the case for HOXA9T; instead, HOXA9T synergized with HOXA9 in transforming mouse normal bone marrow progenitor cells through promoting self-renewal and proliferation of the cells. Collectively, our data indicate that both truncated and full-length forms of HOXA9 are highly expressed in human MLL-rearranged leukemia, and the truncated isoform of HOXA9 might also play an oncogenic role by cooperating with canonical HOXA9 in cell transformation and leukemogenesis.
Collapse
Affiliation(s)
- Miao He
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Florean C, Schnekenburger M, Grandjenette C, Dicato M, Diederich M. Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics 2012; 3:581-609. [PMID: 22126248 DOI: 10.2217/epi.11.73] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leukemogenesis is a multistep process in which successive transformational events enhance the ability of a clonal population arising from hematopoietic progenitor cells to proliferate, differentiate and survive. Clinically and pathologically, leukemia is subdivided into four main categories: chronic lymphocytic leukemia, chronic myeloid leukemia, acute lymphocytic leukemia and acute myeloid leukemia. Leukemia has been previously considered only as a genetic disease. However, in recent years, significant advances have been made in the elucidation of the leukemogenesis-associated processes. Thus, we have come to understand that epigenetic alterations including DNA methylation, histone modifications and miRNA are involved in the permanent changes of gene expression controlling the leukemia phenotype. In this article, we will focus on the epigenetic defects associated with leukemia and their implications as biomarkers for diagnostic, prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire de Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
44
|
Padilla-Nash HM, Hathcock K, McNeil NE, Mack D, Hoeppner D, Ravin R, Knutsen T, Yonescu R, Wangsa D, Dorritie K, Barenboim L, Hu Y, Ried T. Spontaneous transformation of murine epithelial cells requires the early acquisition of specific chromosomal aneuploidies and genomic imbalances. Genes Chromosomes Cancer 2012; 51:353-74. [PMID: 22161874 PMCID: PMC3276700 DOI: 10.1002/gcc.21921] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/09/2011] [Indexed: 01/10/2023] Open
Abstract
Human carcinomas are defined by recurrent chromosomal aneuploidies, which result in a tissue-specific distribution of genomic imbalances. In order to develop models for these genome mutations and to determine their role in tumorigenesis, we generated 45 spontaneously transformed murine cell lines from normal epithelial cells derived from bladder, cervix, colon, kidney, lung, and mammary gland. Phenotypic changes, chromosomal aberrations, centrosome number, and telomerase activity were assayed in control uncultured cells and in three subsequent stages of transformation. Supernumerary centrosomes, binucleate cells, and tetraploidy were observed as early as 48 hr after explantation. In addition, telomerase activity increased throughout progression. Live-cell imaging revealed that failure of cytokinesis, not cell fusion, promoted genome duplication. Spectral karyotyping demonstrated that aneuploidy preceded immortalization, consisting predominantly of whole chromosome losses (4, 9, 12, 13, 16, and Y) and gains (1, 10, 15, and 19). After transformation, focal amplifications of the oncogenes Myc and Mdm2 were frequently detected. Fifty percent of the transformed lines resulted in tumors on injection into immunocompromised mice. The phenotypic and genomic alterations observed in spontaneously transformed murine epithelial cells recapitulated the aberration pattern observed during human carcinogenesis. The dominant aberration of these cell lines was the presence of specific chromosomal aneuploidies. We propose that our newly derived cancer models will be useful tools to dissect the sequential steps of genome mutations during malignant transformation, and also to identify cancer-specific genes, signaling pathways, and the role of chromosomal instability in this process.
Collapse
|
45
|
Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 2012; 119:2314-24. [PMID: 22251480 DOI: 10.1182/blood-2011-10-386235] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increased expression levels of miR-181 family members have been shown to be associated with favorable outcome in patients with cytogenetically normal acute myeloid leukemia. Here we show that increased expression of miR-181a and miR-181b is also significantly (P < .05; Cox regression) associated with favorable overall survival in cytogenetically abnormal AML (CA-AML) patients. We further show that up-regulation of a gene signature composed of 4 potential miR-181 targets (including HOXA7, HOXA9, HOXA11, and PBX3), associated with down-regulation of miR-181 family members, is an independent predictor of adverse overall survival on multivariable testing in analysis of 183 CA-AML patients. The independent prognostic impact of this 4-homeobox-gene signature was confirmed in a validation set of 271 CA-AML patients. Furthermore, our in vitro and in vivo studies indicated that ectopic expression of miR-181b significantly promoted apoptosis and inhibited viability/proliferation of leukemic cells and delayed leukemogenesis; such effects could be reversed by forced expression of PBX3. Thus, the up-regulation of the 4 homeobox genes resulting from the down-regulation of miR-181 family members probably contribute to the poor prognosis of patients with nonfavorable CA-AML. Restoring expression of miR-181b and/or targeting the HOXA/PBX3 pathways may provide new strategies to improve survival substantially.
Collapse
|
46
|
Jaracz-Ros A, Lewandowski D, Barroca V, Lavau C, Roméo PH. MLL-ENL leukemia burden initiated in femoral diaphysis and preceded by mature B-cell depletion. Haematologica 2011; 96:1770-8. [PMID: 21933859 DOI: 10.3324/haematol.2011.045153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Molecular and cellular events that resulted in leukemia development are well characterized but initial engraftment and proliferation of leukemic cells in bone marrow and early modifications of the bone marrow microenvironment induced by engrafted leukemic cells remain to be clarified. DESIGN AND METHODS After retro-orbital injection of 1,000 leukemic cells expressing Mixed Lineage Leukemia-Eleven Nineteen Leukemia fusion protein in non-conditioned syngenic mice, kinetics of leukemic burden and alterations of femoral hematopoietic populations were followed using an in vivo confocal imaging system and flow cytometry. RESULTS Three days after injection, 5% of leukemic cells were found in femurs. Little proliferation of engrafted leukemic cells could then be detected for more than two weeks while the number of femoral leukemic cells remained stable. Twenty days after injection, leukemic cells preferentially proliferated in femoral diaphysis where they formed clusters on the surface of blood vessels and bone. B220(+) lymphoid cells were found near these leukemic cell clusters and this association is correlated with a decreased number of femoral B220(+)IgM(+) cells. Increasing the number of injected leukemic cells or conditioning recipient mice with γ-irradiation resulted in leukemic cell development in diaphysis and knee. Competition experiments indicate that proliferation but not engraftment is a rate-limiting factor of leukemic cells spreading in diaphysis. Finally, 30 days after injection leukemia developed. CONCLUSIONS After retro-orbital injection of 1,000 leukemic cells expressing Mixed Lineage Leukemia-Eleven Nineteen Leukemia into syngenic mice, leukemic cell burden preferentially initiates in femoral diaphysis and is preceded by changes of femoral B-lymphoid populations.
Collapse
Affiliation(s)
- Agnieszka Jaracz-Ros
- CEA, iRCM, Laboratoire de recherche sur la, Réparation et la Transcription dans les cellules Souches, Fontenay-aux-Roses cedex, France
| | | | | | | | | |
Collapse
|
47
|
Schotte D, Pieters R, Den Boer ML. MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 2011; 26:1-12. [DOI: 10.1038/leu.2011.151] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Odenike O, Thirman MJ, Artz AS, Godley LA, Larson RA, Stock W. Gene Mutations, Epigenetic Dysregulation, and Personalized Therapy in Myeloid Neoplasia: Are We There Yet? Semin Oncol 2011; 38:196-214. [DOI: 10.1053/j.seminoncol.2011.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Peters AHFM, Schwaller J. Epigenetic mechanisms in acute myeloid leukemia. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:197-219. [PMID: 21141731 DOI: 10.1007/978-3-7643-8989-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute leukemia is characterized by clonal expansion of hematopoietic stem and progenitor cells with blocked differentiation. Clinical and experimental evidences suggest that acute myeloid leukemia (AML) is the product of several functionally cooperating genetic alterations including chromosomal translocations leading to expression of leukemogenic fusion proteins. Several AML-associated lesions target chromatin regulators like histone methyltransferases or histone acetyltransferases, including mixed-lineage leukemia 1 (MLL1) or CREB bindung protein/p300. Molecular and biochemical studies start to provide useful insights into the mechanisms of targeting and mode-of-action of such leukemogenic fusion proteins resulting in aberrant gene expression programs and AML. Chromatin modulating mechanisms are also mediating the transforming activity of key drivers of leukemogenesis by aberrant recruitment of corepressors. Recent large-scale screening efforts demonstrated that both aberrant DNA promoter methylation and aberrantly expressed microRNAs play an important role in the pathogenesis of AML as well. Current efforts to therapeutically exploit the potential reversibility of epigenetic mechanisms are focused on small molecules that inhibit DNA methyltransferases or histone deacetylases. Several phase I/II clinical trials using such compounds have reported promising, but mostly transient, clinical responses. This underscores the need to further dissect the molecular players of epigenetic mechanisms driving induction, maintenance, and potential reversibility of leukemic state to develop efficient and long-lasting targeted therapeutic strategies.
Collapse
Affiliation(s)
- Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
50
|
Abdul-Nabi AM, Yassin ER, Varghese N, Deshmukh H, Yaseen NR. In vitro transformation of primary human CD34+ cells by AML fusion oncogenes: early gene expression profiling reveals possible drug target in AML. PLoS One 2010; 5:e12464. [PMID: 20805992 PMCID: PMC2929205 DOI: 10.1371/journal.pone.0012464] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 08/03/2010] [Indexed: 01/08/2023] Open
Abstract
Different fusion oncogenes in acute myeloid leukemia (AML) have distinct clinical and laboratory features suggesting different modes of malignant transformation. Here we compare the in vitro effects of representatives of 4 major groups of AML fusion oncogenes on primary human CD34+ cells. As expected from their clinical similarities, MLL-AF9 and NUP98-HOXA9 had very similar effects in vitro. They both caused erythroid hyperplasia and a clear block in erythroid and myeloid maturation. On the other hand, AML1-ETO and PML-RARA had only modest effects on myeloid and erythroid differentiation. All oncogenes except PML-RARA caused a dramatic increase in long-term proliferation and self-renewal. Gene expression profiling revealed two distinct temporal patterns of gene deregulation. Gene deregulation by MLL-AF9 and NUP98-HOXA9 peaked 3 days after transduction. In contrast, the vast majority of gene deregulation by AML1-ETO and PML-RARA occurred within 6 hours, followed by a dramatic drop in the numbers of deregulated genes. Interestingly, the p53 inhibitor MDM2 was upregulated by AML1-ETO at 6 hours. Nutlin-3, an inhibitor of the interaction between MDM2 and p53, specifically inhibited the proliferation and self-renewal of primary human CD34+ cells transduced with AML1-ETO, suggesting that MDM2 upregulation plays a role in cell transformation by AML1-ETO. These data show that differences among AML fusion oncogenes can be recapitulated in vitro using primary human CD34+ cells and that early gene expression profiling in these cells can reveal potential drug targets in AML.
Collapse
MESH Headings
- Antigens, CD34/metabolism
- Cell Differentiation/genetics
- Cell Line
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oncogene Fusion
- Oncogenes/genetics
- Proto-Oncogene Proteins c-mdm2/genetics
- Time Factors
Collapse
Affiliation(s)
- Anmaar M. Abdul-Nabi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Enas R. Yassin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nobish Varghese
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hrishikesh Deshmukh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nabeel R. Yaseen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|