1
|
Sun J, Zhu W, Luan M, Xing Y, Feng Z, Zhu J, Ma X, Wang Y, Jia Y. Positive GLI1/INHBA feedback loop drives tumor progression in gastric cancer. Cancer Sci 2024; 115:2301-2317. [PMID: 38676428 PMCID: PMC11247559 DOI: 10.1111/cas.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Jingguo Sun
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
3
|
Khan I. Understanding and Targeting the Colon Cancer Pathogenesis: A Molecular Perspective. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Imran Khan
- Bezmialem Vakif University, Turkey; Integral University, India
| |
Collapse
|
4
|
Cheng AA, Li W, Hernandez LL. Investigating the effect of positional variation on mid-lactation mammary gland transcriptomics in mice fed either a low-fat or high-fat diet. PLoS One 2021; 16:e0255770. [PMID: 34437559 PMCID: PMC8389404 DOI: 10.1371/journal.pone.0255770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 07/24/2021] [Indexed: 11/18/2022] Open
Abstract
Little attention has been given to the effect of positional variation of gene expression in the mammary gland. However, more research is shedding light regarding the physiological differences that mammary gland location can have on the murine mammary gland. Here we examined the differentially expressed genes between mammary gland positions under either a low-fat diet (LFD) or a high-fat diet (HFD) in the mid-lactation mammary gland (lactation day 11; L11). Three-week old WT C57BL/6 mice were randomly assigned to either a low-fat diet (LFD) or high fat diet (HFD) (n = 3/group) and either the right thoracic mammary gland (TMG) or inguinal mammary gland (IMG) was collected from each dam for a total of 12 unique glands. Within each diet, differentially expressed genes (DEGs) were first filtered by adjusted p-value (cutoff ≤ 0.05) and fold-change (FC, cutoff ≥2). Genes were further filtered by mean normalized read count with a cutoff≥10. We observed that mammary gland position had a significant impact on mammary gland gene expression with either LFD or HFD diet, with 1264 DEGs in LFD dams and 777 DEGs in HFD dams. We found that genes related to snRNP binding and translation initiation were most significantly altered between the TMG and IMG. Although we were not able to discern a molecular mechanism, many small nuclear RNAs and small nucleolar RNAs were differentially expressed between the TMG and IMG responsible for cellular functions such as splicing and ribosome biogenesis, which provides and interesting avenue for future research. Our study supports the hypothesis that collection of the mammary gland from a particular location influences mammary gland gene expression, thereby highlighting the importance for researchers to be vigilant in documenting and reporting which mammary gland they are using for their studies.
Collapse
Affiliation(s)
- Adrienne A. Cheng
- Department of Nutritional Sciences, UW-Madison, Madison, Wisconsin, United States of America
- Department of Animal and Dairy Sciences, UW-Madison, Madison, Wisconsin, United States of America
| | - Wenli Li
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, Madison, Wisconsin, United States of America
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, UW-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
5
|
Peer E, Aichberger SK, Vilotic F, Gruber W, Parigger T, Grund-Gröschke S, Elmer DP, Rathje F, Ramspacher A, Zaja M, Michel S, Hamm S, Aberger F. Casein Kinase 1D Encodes a Novel Drug Target in Hedgehog-GLI-Driven Cancers and Tumor-Initiating Cells Resistant to SMO Inhibition. Cancers (Basel) 2021; 13:cancers13164227. [PMID: 34439381 PMCID: PMC8394935 DOI: 10.3390/cancers13164227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Uncontrolled activation of hedgehog (HH)—GLI signaling contributes to the development of several human malignancies. Targeted inhibition of the HH—GLI signaling cascade with small-molecule inhibitors can reduce cancer growth, but patient relapse is very common due to the development of drug resistance. Therefore, a high unmet medical need exists for new drug targets and inhibitors to achieve efficient and durable responses. In the current study, we identified CSNK1D as a novel drug target in the HH—GLI signaling pathway. Genetic and pharmacological inhibition of CSNK1D activity leads to suppression of oncogenic HH—GLI signaling, even in cancer cells in which already approved HH inhibitors are no longer effective due to resistance mechanisms. Inhibition of CSNK1D function reduces the malignant properties of so-called tumor-initiating cells, thereby limiting cancer growth and presumably metastasis. The results of this study form the basis for the development of efficient CSNK1D inhibitors for the therapy of HH—GLI-associated cancers. Abstract (1) Background: Aberrant activation of the hedgehog (HH)—GLI pathway in stem-like tumor-initiating cells (TIC) is a frequent oncogenic driver signal in various human malignancies. Remarkable efficacy of anti-HH therapeutics led to the approval of HH inhibitors targeting the key pathway effector smoothened (SMO) in basal cell carcinoma and acute myeloid leukemia. However, frequent development of drug resistance and severe adverse effects of SMO inhibitors pose major challenges that require alternative treatment strategies targeting HH—GLI in TIC downstream of SMO. We therefore investigated members of the casein kinase 1 (CSNK1) family as novel drug targets in HH—GLI-driven malignancies. (2) Methods: We genetically and pharmacologically inhibited CSNK1D in HH-dependent cancer cells displaying either sensitivity or resistance to SMO inhibitors. To address the role of CSNK1D in oncogenic HH signaling and tumor growth and initiation, we quantitatively analyzed HH target gene expression, performed genetic and chemical perturbations of CSNK1D activity, and monitored the oncogenic transformation of TIC in vitro and in vivo using 3D clonogenic tumor spheroid assays and xenograft models. (3) Results: We show that CSNK1D plays a critical role in controlling oncogenic GLI activity downstream of SMO. We provide evidence that inhibition of CSNK1D interferes with oncogenic HH signaling in both SMO inhibitor-sensitive and -resistant tumor settings. Furthermore, genetic and pharmacologic perturbation of CSNK1D decreases the clonogenic growth of GLI-dependent TIC in vitro and in vivo. (4) Conclusions: Pharmacologic targeting of CSNK1D represents a novel therapeutic approach for the treatment of both SMO inhibitor-sensitive and -resistant tumors.
Collapse
Affiliation(s)
- Elisabeth Peer
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Sophie Karoline Aichberger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Filip Vilotic
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Wolfgang Gruber
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Thomas Parigger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg Cancer Research Institute, Cancer Cluster Salzburg, IIIrd Medical Department, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Sandra Grund-Gröschke
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Dominik Patrick Elmer
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Florian Rathje
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Andrea Ramspacher
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mirko Zaja
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Susanne Michel
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Svetlana Hamm
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Fritz Aberger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Correspondence: ; Tel.: +43-662-8044-5792
| |
Collapse
|
6
|
Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol Carcinog 2021; 60:73-100. [PMID: 33428807 DOI: 10.1002/mc.23277] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The evolving concept that cancer stem cells (CSCs) are the driving element in cancer development, evolution and heterogeneity, has overridden the previous model of a tumor consisting of cells all with similar sequentially acquired mutations and a similar potential for renewal, invasion and metastasis. This paradigm shift has focused attention on therapeutically targeting CSCs directly as a means of eradicating the disease. In breast cancers, CSCs can be identified by cell surface markers and are characterized by their ability to self-renew and differentiate, resist chemotherapy and radiation, and initiate new tumors upon serial transplantation in xenografted mice. These functional properties of CSCs are regulated by both intracellular and extracellular factors including pluripotency-related transcription factors, intracellular signaling pathways and external stimuli. Several classes of natural products and synthesized compounds have been studied to target these regulatory elements and force CSCs to lose stemness and/or terminally differentiate and thereby achieve a therapeutic effect. However, realization of an effective treatment for breast cancers, focused on the biological effects of these agents on breast CSCs, their functions and signaling, has not yet been achieved. In this review, we delineate the intrinsic and extrinsic factors identified to date that control or promote stemness in breast CSCs and provide a comprehensive compilation of potential agents that have been studied to target breast CSCs, transcription factors and stemness-related signaling. Our aim is to stimulate further study of these agents that could become the basis for their use as stand-alone treatments or components of combination therapies effective against breast cancers.
Collapse
Affiliation(s)
- Naing L Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yoosub Shin
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ge Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Doheny D, Sirkisoon S, Carpenter RL, Aguayo NR, Regua AT, Anguelov M, Manore SG, Arrigo A, Jalboush SA, Wong GL, Yu Y, Wagner CJ, Chan M, Ruiz J, Thomas A, Strowd R, Lin J, Lo HW. Combined inhibition of JAK2-STAT3 and SMO-GLI1/tGLI1 pathways suppresses breast cancer stem cells, tumor growth, and metastasis. Oncogene 2020; 39:6589-6605. [PMID: 32929154 PMCID: PMC7572897 DOI: 10.1038/s41388-020-01454-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are particularly aggressive and associated with unfavorable prognosis. TNBC lacks effective treatments. HER2-positive tumors have treatment options but often acquire resistance to HER2-targeted therapy after initial response. To address these challenges, we determined whether novel combinations of JAK2-STAT3 and SMO-GLI1/tGLI1 inhibitors synergistically target TNBC and HER2 breast cancer since these two pathways are concurrently activated in both tumor types and enriched in metastatic tumors. Herein, we show that novel combinations of JAK2 inhibitors (ruxolitinib and pacritinib) with SMO inhibitors (vismodegib and sonidegib) synergistically inhibited in vitro growth of TNBC and HER2-positive trastuzumab-resistant BT474-TtzmR cells. Synergy was also observed against breast cancer stem cells. To determine if the combination is efficacious in inhibiting metastasis, we treated mice with intracardially inoculated TNBC cells and found the combination to inhibit lung and liver metastases, and prolong host survival without toxicity. The combination inhibited orthotopic growth, VEGF-A expression, and tumor vasculature of both TNBC and HER2-positive trastuzumab-refractory breast cancer. Lung metastasis of orthotopic BT474-TtzmR xenografts was suppressed by the combination. Together, our results indicated that dual targeting of JAK2 and SMO resulted in synergistic suppression of breast cancer growth and metastasis, thereby supporting future clinical testing.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sherona Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard L Carpenter
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Bloomington, JH 308 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Noah Reeve Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Marlyn Anguelov
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yang Yu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Calvin J Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael Chan
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jimmy Ruiz
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alexandra Thomas
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Roy Strowd
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
8
|
Safgren SL, Olson RLO, Vrabel AM, Almada LL, Marks DL, Hernandez-Alvarado N, Gaspar-Maia A, Fernandez-Zapico ME. The transcription factor GLI1 cooperates with the chromatin remodeler SMARCA2 to regulate chromatin accessibility at distal DNA regulatory elements. J Biol Chem 2020; 295:8725-8735. [PMID: 32376693 DOI: 10.1074/jbc.ra120.013268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Indexed: 01/23/2023] Open
Abstract
The transcription factor GLI1 (GLI family zinc finger 1) plays a key role in the development and progression of multiple malignancies. To date, regulation of transcriptional activity at target gene promoters is the only molecular event known to underlie the oncogenic function of GLI1. Here, we provide evidence that GLI1 controls chromatin accessibility at distal regulatory regions by modulating the recruitment of SMARCA2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 2) to these elements. We demonstrate that SMARCA2 endogenously interacts with GLI1 and enhances its transcriptional activity. Mapping experiments indicated that the C-terminal transcriptional activation domain of GLI1 and SMARCA2's central domains, including its ATPase motif, are required for this interaction. Interestingly, similar to SMARCA2, GLI1 overexpression increased chromatin accessibility, as indicated by results of the micrococcal nuclease assay. Further, results of assays for transposase-accessible chromatin with sequencing (ATAC-seq) after GLI1 knockdown supported these findings, revealing that GLI1 regulates chromatin accessibility at several regions distal to gene promoters. Integrated RNA-seq and ATAC-seq data analyses identified a subset of differentially expressed genes located in cis to these regulated chromatin sites. Finally, using the GLI1-regulated gene HHIP (Hedgehog-interacting protein) as a model, we demonstrate that GLI1 and SMARCA2 co-occupy a distal chromatin peak and that SMARCA2 recruitment to this HHIP putative enhancer requires intact GLI1. These findings provide insights into how GLI1 controls gene expression in cancer cells and may inform approaches targeting this oncogenic transcription factor to manage malignancies.
Collapse
Affiliation(s)
- Stephanie L Safgren
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Schulze Center for Novel Therapeutics, Rochester, Minnesota, USA
| | - Rachel L O Olson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Schulze Center for Novel Therapeutics, Rochester, Minnesota, USA
| | - Anne M Vrabel
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Schulze Center for Novel Therapeutics, Rochester, Minnesota, USA
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Schulze Center for Novel Therapeutics, Rochester, Minnesota, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Schulze Center for Novel Therapeutics, Rochester, Minnesota, USA
| | - Nelmary Hernandez-Alvarado
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Schulze Center for Novel Therapeutics, Rochester, Minnesota, USA
| | - Alexandre Gaspar-Maia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Schulze Center for Novel Therapeutics, Rochester, Minnesota, USA.
| |
Collapse
|
9
|
Liu H, Zhang W, Wang L, Zhang Z, Xiong W, Zhang L, Fu T, Li X, Chen Y, Liu Y. GLI1 is increased in ovarian endometriosis and regulates migration, invasion and proliferation of human endometrial stromal cells in endometriosis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:663. [PMID: 31930064 PMCID: PMC6944576 DOI: 10.21037/atm.2019.10.76] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endometriosis is a benign gynecological disorder which shares certain characteristics with malignant tumor like migration, invasion and proliferation. Glioma-associated oncogene homolog 1 (GLI1) has been implicated in some cancers including endometrial cancer, however, its role in endometriosis remains unknown. METHODS The aim of this study was to explore the expression pattern of GLI1 in endometriosis, and further investigate the effect of GLI1 regulation on human endometrial stromal cells. The expression of GLI1 in normal endometrium and ectopic tissues was analyzed by immunohistochemistry, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot. The Short hairpin RNA (ShRNA) intervention technique and GLI1 inhibitor GANT-61 were used to silence GLI1. The expression levels of GLI1, MMP2 and MMP9 was detected by qRT-PCR and western blot. The migration and invasion ability of human endometrial stromal cells was determined by wound healing assay and transwell migration/invasion assay. The viability and proliferation potentiality of cells was detected by MTT assays and colony formation assay, respectively. RESULTS We found that the expression of GLI1 mRNA and protein were significantly higher in ectopic endometrium from patients with endometriosis. Our analyses also show that GLI1 downregulation attenuated cells migration, invasion and proliferation abilities. What's more, reduced expression of GLI1 inhibited the expression of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). CONCLUSIONS Our findings suggest that high levels of GLI1 may contribute to the development of endometriosis by promoting cell migration, invasion and proliferation involving regulation of MMP2 and MMP9 expression. Therefore, inhibition of GLI1 might be a novel potential therapeutic approach to the treatment of endometriosis, which sheds new light on our understanding of the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lili Wang
- Department of Obstetrics and Gynecology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tian Fu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11101569. [PMID: 31619007 PMCID: PMC6826533 DOI: 10.3390/cancers11101569] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most frequent cancer among women worldwide. Therapeutic strategies to prevent or treat metastatic disease are still inadequate although great progress has been made in treating early-stage breast cancer. Cancer stem-like cells (CSCs) that are endowed with high plasticity and self-renewal properties have been shown to play a key role in breast cancer development, progression, and metastasis. A subpopulation of CSCs that combines tumor-initiating capacity and a dormant/quiescent/slow cycling status is present throughout the clinical history of breast cancer patients. Dormant/quiescent/slow cycling CSCs are a key component of tumor heterogeneity and they are responsible for chemoresistance, tumor migration, and metastatic dormancy, defined as the ability of CSCs to survive in target organs and generate metastasis up to two decades after diagnosis. Understanding the strategies that are used by CSCs to resist conventional and targeted therapies, to interact with their niche, to escape immune surveillance, and finally to awaken from dormancy is of key importance to prevent and treat metastatic cancer. This review summarizes the current understanding of mechanisms involved in CSCs chemoresistance, dissemination, and metastasis in breast cancer, with a particular focus on dormant cells. Finally, we discuss how advancements in the detection, molecular understanding, and targeting of dormant CSCs will likely open new therapeutic avenues for breast cancer treatment.
Collapse
|
11
|
Bhateja P, Cherian M, Majumder S, Ramaswamy B. The Hedgehog Signaling Pathway: A Viable Target in Breast Cancer? Cancers (Basel) 2019; 11:cancers11081126. [PMID: 31394751 PMCID: PMC6721501 DOI: 10.3390/cancers11081126] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
The hedgehog (Hh) pathway plays a key role in embryonic development and stem cell programs. Deregulation of the Hh pathway is a key driver of basal cell carcinoma, and therapeutic targeting led to approval of Hh inhibitor, vismodegib, in the management of this cancer. The Hh pathway is implicated in other malignancies including hormone receptor (HR+) positive and triple negative breast cancer (TNBC). Hh signaling, which is activated in human mammary stem cells, results in activation of glioma-associated oncogene (GLI) transcription factors. High GLI1 expression correlates with worse outcomes in breast cancer. Non-canonical GLI1 activation is one mechanism by which estrogen exposure promotes breast cancer stem cell proliferation and epithelial–mesenchymal transition. Tamoxifen resistant cell lines show aberrant activation of Hh signaling, and knockdown of Hh pathway inhibited growth of tamoxifen resistant cells. As in other cancers Hh signaling is activated by the PI3K/AKT pathway in these endocrine resistant cell lines. Hh pathway activation has also been reported to mediate chemotherapy resistance in TNBC via various mechanisms including paracrine signaling to tumor micro-environment and selective proliferation of cancer stem cells. Co-activation of Hh and Wnt signaling pathways is a poor prognostic marker in TNBC. Early phase clinical trials are evaluating the combination of smoothened (SMO) inhibitors and chemotherapy in TNBC. In addition to SMO inhibitors like vismodegib and sonidegib, which are in clinical use for basal cell carcinoma, GLI1 inhibitors like GANT58 and GANT61 are in preclinical drug development and might be an effective mechanism to overcome drug resistance in breast cancer. Gene signatures predictive of Hh pathway activation could enrich for patients likely to respond to these agents.
Collapse
Affiliation(s)
- Priyanka Bhateja
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mathew Cherian
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Sarmila Majumder
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, Department of Internal medicine, James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Norum JH, Frings O, Kasper M, Bergholtz H, Zell Thime H, Bergström Å, Andersson A, Kuiper R, Fredlund E, Sørlie T, Toftgård R. GLI1‐induced mammary gland tumours are transplantable and maintain major molecular features. Int J Cancer 2019; 146:1125-1138. [DOI: 10.1002/ijc.32522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/24/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Jens Henrik Norum
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Oliver Frings
- Science for Life Laboratory, Department of Oncology‐PathologyKarolinska Institutet Stockholm Sweden
| | - Maria Kasper
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Helga Bergholtz
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Helene Zell Thime
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Åsa Bergström
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Agneta Andersson
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| | - Raoul Kuiper
- Department of Laboratory Medicine and Center for Innovative Medicine (CIMED)Karolinska Institutet Huddinge Sweden
| | - Erik Fredlund
- Science for Life Laboratory, Department of Oncology‐PathologyKarolinska Institutet Stockholm Sweden
| | - Therese Sørlie
- Department of Cancer GeneticsInstitute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital Oslo Norway
| | - Rune Toftgård
- Department of Biosciences and NutritionKarolinska Institutet Huddinge Sweden
| |
Collapse
|
13
|
Role of Hedgehog Signaling in Breast Cancer: Pathogenesis and Therapeutics. Cells 2019; 8:cells8040375. [PMID: 31027259 PMCID: PMC6523618 DOI: 10.3390/cells8040375] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality in women, only followed by lung cancer. Given the importance of BC in public health, it is essential to identify biomarkers to predict prognosis, predetermine drug resistance and provide treatment guidelines that include personalized targeted therapies. The Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. Several lines of evidence endorse the important role of canonical and non-canonical Hh signaling in BC. In this comprehensive review we discuss the role of Hh signaling in breast development and homeostasis and its contribution to tumorigenesis and progression of different subtypes of BC. We also examine the efficacy of agents targeting different components of the Hh pathway both in preclinical models and in clinical trials. The contribution of the Hh pathway in BC tumorigenesis and progression, its prognostic role, and its value as a therapeutic target vary according to the molecular, clinical, and histopathological characteristics of the BC patients. The evidence presented here highlights the relevance of the Hh signaling in BC, and suggest that this pathway is key for BC progression and metastasis.
Collapse
|
14
|
Ruiu R, Tarone L, Rolih V, Barutello G, Bolli E, Riccardo F, Cavallo F, Conti L. Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer's source. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:119-188. [PMID: 31383404 DOI: 10.1016/bs.pmbts.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent advances in diagnosis and therapy having improved cancer outcome, many patients still do not respond to treatments, resulting in the progression or relapse of the disease, eventually impairing survival expectations. The limited efficacy of therapy is often attributable to its inability to affect cancer stem cells (CSCs), a small population of cells resistant to current radio- and chemo-therapies. CSCs are characterized by self-renewal and tumor-initiating capabilities, and function as a reservoir for the local and distant recurrence of the disease. Therefore, new therapeutic approaches able to effectively target and deplete CSCs are urgently needed. Immunotherapy is facing a renewed interest for its potential in cancer treatment, and the possibility of harnessing the immune system to target CSCs is being addressed by a new exciting research field. In this chapter, we discuss the cancer stem cell model and illustrate CSC biological and molecular properties, critically addressing theoretical and practical issues linked with their definition and study. We then review the existing literature regarding the immunological properties of CSCs and the complex interplay occurring between CSCs and immune cells. Finally, we present up-to-date studies on CSC immunotargeting and its potential future perspective. In conclusion, understanding the interplay between CSC biology and tumor immunology will provide a deeper understanding of the mechanisms that regulate CSC immunological properties. This will contribute to the design of new CSC-directed immunotherapeutic strategies with the potential of strongly improving cancer outcomes.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Self-renewal signaling pathways in breast cancer stem cells. Int J Biochem Cell Biol 2019; 107:140-153. [DOI: 10.1016/j.biocel.2018.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
16
|
Saeg F, Anbalagan M. Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig 2018; 5:39. [PMID: 30498750 DOI: 10.21037/sci.2018.10.05] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Breast cancer is a heterogeneous disease that accounts for 30% of all cancers diagnosed in women and over half a million deaths per year. Cancer stem cells (CSCs) make up a small subpopulation of cells within a tumor, are capable of self-renewal and, are responsible for tumor initiation, formation, and recurrence. Breast CSCs (BCSCs) have been the subject of concentrated research as potential targets for breast cancer therapies. Cell surface markers CD44+/CD24- have been established as minimum biomarkers for BCSCs and the upregulation of CD44 expression has been linked to tumor formation in numerous cancers. Additionally, the deregulation of Notch, Wnt/Frizzled/β-catenin, Hippo, and Hedgehog signaling pathways is believed to be responsible for the formation of CSCs and lead to tumor formation. Tumor heterogeneity is a key feature of therapy resistance and a major challenge. CSCs are predominantly senescent and inherently immune to chemotherapy drugs which rely on an overactive cell cycle. Current therapeutic strategies include targeting CSC signaling pathways that play critical roles in self-renewal and defense. Anti-CD44 antibodies have been shown to induce terminal differentiation in CSCs resulting in a significant decrease in tumor metastasis. Additionally, targeting the tumor microenvironment has been shown to increase the effectiveness of chemotherapy drugs. In this review, we attempt to provide an overview of breast cancer, the stem of its cause, and novel therapies currently being explored.
Collapse
Affiliation(s)
- Fouad Saeg
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,DeBakey Scholars Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
17
|
Zhou P, Cao Y, Liu X, Yu T, Xu Q, You C, Gao X, Wei Y. Delivery siRNA with a novel gene vector for glioma therapy by targeting Gli1. Int J Nanomedicine 2018; 13:4781-4793. [PMID: 30214189 PMCID: PMC6118331 DOI: 10.2147/ijn.s164364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Gene therapy has recently shown considerable clinical benefit in cancer therapy during the past few years, and the application of this choice in cancer treatments is increasing continually. Gli1 is an ideal candidate target for cancer gene therapy and is important for tumorigenesis. Methods In this study, we developed a novel gene delivery system with a self-assembly method by using a 1,2-dioleoyl-3-trimethylammonium-propane and methoxy poly (ethylene glycol)-poly(lactide) copolymer (DMP), with zeta potential of 32.7 mV and measuring 35.6 nm. The effect of this delivery system was tested in vitro and in vivo. Results DMP showed good performance in delivering siRNA to glioma cells in vitro with high transfection performance (98%). Moreover, DMP–Gli1si shows a satisfactory anti-glioma effect via induction of cell apoptosis and cell growth inhibition in vitro. Furthermore, for subcutaneous tumor-bearing mice, treatment with the DMP–Gli1si complex significantly inhibited tumor growth by inhibiting Gli1 protein expression, promoting apoptosis, and reducing proliferation. Conclusion The complex of Gli1 siRNA and DMP may potentially play an important role as a new drug in the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Peizhi Zhou
- Department of Neurosurgery, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China,
| | - Yue Cao
- Department of Pathology, Clinical Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoxiao Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China,
| | - Ting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China,
| | - Qian Xu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China,
| | - Chao You
- Department of Neurosurgery, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China,
| | - Xiang Gao
- Department of Neurosurgery, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, .,State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China,
| | - Yuquan Wei
- Department of Pathology, Clinical Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
18
|
Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev 2018; 69:152-163. [PMID: 30029203 DOI: 10.1016/j.ctrv.2018.07.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
Development of therapeutic resistance and metastasis is a major challenge with current breast cancer (BC) therapy. Mounting evidence suggests that a subpopulation of cancer stem cells (CSCs) contribute to the cancer therapeutic resistance and metastasis, leading to the recurrence and death in patients. Breast cancer stem cells (BCSCs) are not only a consequence of mutations that overactivate the self-renewal ability of normal stem cells or committed progenitors but also a result of the de-differentiation of cancer cells induced by somatic mutations or microenvironmental components under treatment. Eradication of BCSCs may bring hope and relief to patients whose lives are threatened by recurrent BCs. Therefore, a better understanding of the generation, regulatory mechanisms, and identification of CSCs in BC therapeutic resistance and metastasis will be imperative for developing BCSC-targeted strategies. Here we summarize the latest studies about cell surface markers and signalling pathways that sustain the stemness of BCSC and discuss the associations of mechanisms behind these traits with phenotype and behavior changes in BCSCs. More importantly, their implications for future study are also evaluated and potential BCSC-targeted strategies are proposed to break through the limitation of current therapies.
Collapse
Affiliation(s)
- Xupeng Bai
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jie Ni
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Julia Beretov
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia; St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
19
|
A phase Ib study of sonidegib (LDE225), an oral small molecule inhibitor of smoothened or Hedgehog pathway, in combination with docetaxel in triple negative advanced breast cancer patients: GEICAM/2012-12 (EDALINE) study. Invest New Drugs 2018; 37:98-108. [PMID: 29948356 DOI: 10.1007/s10637-018-0614-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
Up-regulation of the Hedgehog (Hh) pathway is implicated in the genesis of a wide range of tumors including triple negative breast cancer (TNBC). Sonidegib is a potent and selective oral inhibitor of Smo, a key component of the Hh signaling pathway. We designed a phase I clinical study to explore the combination of sonidegib plus docetaxel (fixed dose at 75 mg/m2) in advanced TNBC patients. The primary objective was to ascertain the combination's maximum tolerated dose and the recommended phase II dose (RP2D), based on dose limiting toxicities (DLTs) in the first 2 cycles. A standard "3 + 3" design was followed including three dose levels (DL) of sonidegib: 400 mg (DL1), 600 mg (DL2), and 800 mg (DL3). Twelve patients were included. Sonidegib 800 mg orally q.d. plus docetaxel 75 mg/m2 given intravenously on day 1 of 21-day cycles was established as the RP2D. No DLTs were observed at any DL. The median number of administered cycles at DL3 was 8 (range: 6 to 9). Grade 3 adverse events (AEs) at DL3 were neutropenia (66.7%), CPK increase (33.3%), leukopenia (33.3%), and paresthesia (33.3%), grade 4 AEs were not reported at this DL. At the RP2D, the combination showed antitumor activity in three out of 10 patients with measurable disease. Median time to progression for the overall study was 42.5 days (95% Confidence Interval: 29-155), and 188 days at DL3. No drug-to-drug interactions between sonidegib and docetaxel were found in the PK assessment. Trial Registration: EudraCT study number: 2013-001750-96. Study GEICAM/2012-12. TRIAL REGISTRATION: EudraCT study number: 2013-001750-96. Study GEICAM/2012-12. ClinicalTrials.gov: NCT02027376.
Collapse
|
20
|
Sirkisoon SR, Carpenter RL, Rimkus T, Anderson A, Harrison A, Lange AM, Jin G, Watabe K, Lo HW. Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene 2018; 37:2502-2514. [PMID: 29449694 PMCID: PMC5948110 DOI: 10.1038/s41388-018-0132-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3), glioma oncogene homolog 1 (GLI1), and truncated GLI1 (tGLI1) are oncogenic transcription factors playing important roles in breast cancer. tGLI1 is a gain-of-function GLI1 isoform. Whether STAT3 physically and/or functionally interacts with GLI1/tGLI1 has not been explored. To address this knowledge gap, we analyzed 47 node-positive breast cancer specimens using immunohistochemical staining and found that phosphorylated-STAT3 (Y705), GLI1, and tGLI1 are co-overexpressed in the majority of triple-negative breast carcinomas (64%) and HER2-enriched (68%) breast carcinomas, and in lymph node metastases (65%). Using gene set enrichment analysis, we analyzed 710 breast tumors and found that STAT3 activation and GLI1/tGLI1 activation signatures are co-enriched in triple-negative subtypes of breast cancers and HER2-enriched subtypes of breast cancers, but not in luminal subtypes of breast cancers. Patients with high levels of STAT3 and GLI1/tGLI1 co-activation in their breast tumors had worse metastasis-free survival compared to those with low levels. Since these proteins co-overexpress in breast tumors, we examined whether they form complexes and observed that STAT3 interacted with both GLI1 and tGLI1. We further found that the STAT3-GLI1 and STAT3-tGLI1 complexes bind to both consensus GLI1-binding and STAT3-binding sites using chromatin immunoprecipitation (ChIP) assay, and that the co-overexpression markedly activated a promoter controlled by GLI1-binding sites. To identify genes that can be directly co-activated by STAT3 and GLI1/tGLI1, we analyzed three ChIP-seq datasets and identified 34 potential target genes. Following validations using reverse transcription polymerase chain reaction and survival analysis, we identified three genes as novel transcriptional targets of STAT3 and GLI1/tGLI1, R-Ras2, Cep70, and UPF3A. Finally, we observed that co-overexpression of STAT3 with GLI1/tGLI1 promoted the ability of breast cancer cells to form mammospheres and that STAT3 only cooperates with tGLI1 in immortalized mammary epithelial cells. In summary, our study identified novel physical and functional cooperation between two families of oncogenic transcription factors, and the interaction contributes to aggressiveness of breast cancer cells and poor prognosis of triple-negative breast cancers and HER2-enriched breast cancers.
Collapse
Affiliation(s)
| | | | - Tadas Rimkus
- Department of Cancer Biology, Winston-Salem, NC, USA
| | | | | | | | - Guangxu Jin
- Department of Radiology, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Winston-Salem, NC, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Winston-Salem, NC, USA.
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
21
|
Yang X, Wang H, Jiao B. Mammary gland stem cells and their application in breast cancer. Oncotarget 2018; 8:10675-10691. [PMID: 27793013 PMCID: PMC5354691 DOI: 10.18632/oncotarget.12893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
The mammary gland is an organ comprising two primary lineages, specifically the inner luminal and the outer myoepithelial cell layers. Mammary gland stem cells (MaSCs) are highly dynamic and self-renewing, and can give rise to these mammary gland lineages. The lineages are responsible for gland generation during puberty as well as expansion during pregnancy. In recent years, researchers have focused on understanding how MaSCs are regulated during mammary gland development and transformation of breast cancer. Here, we summarize the identification of MaSCs, and how they are regulated by the signaling transduction pathways, mammary gland microenvironment, and non-coding RNAs (ncRNAs). Moreover, we debate the evidence for their serving as the origin of breast cancer, and discuss the therapeutic perspectives of targeting breast cancer stem cells (BCSCs). In conclusion, a better understanding of the key regulators of MaSCs is crucial for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
22
|
Diao Y, Azatyan A, Rahman MFU, Zhao C, Zhu J, Dahlman-Wright K, Zaphiropoulos PG. Blockade of the Hedgehog pathway downregulates estrogen receptor alpha signaling in breast cancer cells. Oncotarget 2018; 7:71580-71593. [PMID: 27689403 PMCID: PMC5342103 DOI: 10.18632/oncotarget.12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023] Open
Abstract
Anti-estrogen treatment, exemplified by tamoxifen, is a well-established adjuvant therapy for estrogen receptor alpha (ERα)-positive breast cancer. However, the effectiveness of this drug is limited due to the development of resistance. The Hedgehog (HH) signaling pathway is critical in embryonic development, and aberrant activation of this transduction cascade is linked to various malignancies. However, it remains unclear whether HH signaling is activated in human breast cancer and related to tamoxifen resistance. Deciphering how this pathway may be involved in breast cancer is a crucial step towards the establishment of targeted combinatorial treatments for this disease. Here, we show that the expression of the HH signaling effector protein GLI1 is higher in tamoxifen resistant compared to sensitive cells. Tamoxifen resistant cells have stronger ERα transcriptional activity relative to sensitive cells, even though the ERα expression is similar in both cell types. Knockdown of GLI1 attenuates cell proliferation and reduces ERα transcriptional activity in both sensitive and resistant cells, irrespective of estrogen stimulation. Combinatorial treatment of tamoxifen and the GLI antagonist GANT61 further suppresses the growth of sensitive and resistant cells relative to administration of only tamoxifen, and this was irrespective of estrogen stimulation. Moreover, a positive correlation between GLI1 and ERα expression was identified in breast cancer samples. Additionally, high GLI1 expression predicted worse distant metastasis-free survival in breast cancer patients. These data suggest that the HH pathway may be a new candidate for therapeutic targeting and prognosis in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Yumei Diao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ani Azatyan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jian Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | |
Collapse
|
23
|
EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci U S A 2017; 114:E10532-E10539. [PMID: 29158396 DOI: 10.1073/pnas.1711534114] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue regeneration relies on adult stem cells (SCs) that possess the ability to self-renew and produce differentiating progeny. In an analogous manner, the development of certain carcinomas depends on a small subset of tumor cells, called "tumor-initiating cells" (TICs), with SC-like properties. Mammary SCs (MaSCs) reside in the basal compartment of the mammary epithelium, and their neoplastic counterparts, mammary TICs (MaTICs), are thought to serve as the TICs for the claudin-low subtype of breast cancer. MaSCs and MaTICs both use epithelial-mesenchymal transition (EMT) programs to acquire SC properties, but the mechanism(s) connecting EMT programs to stemness remain unclear. Here we show that this depends on primary cilia, which are nonmotile, cell-surface structures that serve as platforms for receiving cues and enable activation of various signaling pathways. We show that MaSC and MaTIC EMT programs induce primary cilia formation and Hedgehog (Hh) signaling, which has previously been implicated in both MaSC and MaTIC function. Moreover, ablation of these primary cilia is sufficient to repress Hh signaling, the stemness of MaSCs, and the tumor-forming potential of MaTICs. Together, our findings establish primary ciliogenesis and consequent Hh signaling as a key mechanism by which MaSC and MaTIC EMT programs promote stemness and thereby support mammary tissue outgrowth and tumors of basal origin.
Collapse
|
24
|
Fedele M, Cerchia L, Chiappetta G. The Epithelial-to-Mesenchymal Transition in Breast Cancer: Focus on Basal-Like Carcinomas. Cancers (Basel) 2017; 9:cancers9100134. [PMID: 28974015 PMCID: PMC5664073 DOI: 10.3390/cancers9100134] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease that is characterized by a high grade of cell plasticity arising from the contribution of a diverse range of factors. When combined, these factors allow a cancer cell to transition from an epithelial to a mesenchymal state through a process of dedifferentiation that confers stem-like features, including chemoresistance, as well as the capacity to migrate and invade. Understanding the complex events that lead to the acquisition of a mesenchymal phenotype will therefore help to design new therapies against metastatic breast cancer. Here, we recapitulate the main endogenous molecular signals involved in this process, and their cross-talk with paracrine factors. These signals and cross-talk include the extracellular matrix; the secretome of cancer-associated fibroblasts, macrophages, cancer stem cells, and cancer cells; and exosomes with their cargo of miRNAs. Finally, we highlight some of the more promising therapeutic perspectives based on counteracting the epithelial-to-mesenchymal transition in breast cancer cells.
Collapse
Affiliation(s)
- Monica Fedele
- CNR-Institute of Experimental Endocrinology and Oncology, 80131 Naples, Italy.
| | - Laura Cerchia
- CNR-Institute of Experimental Endocrinology and Oncology, 80131 Naples, Italy.
| | - Gennaro Chiappetta
- Dipartimento di Ricerca Traslazionale a Supporto dei Percorsi Oncologici, S.C. Genomica Funzionale, Istituto Nazionale Tumori-IRCCS-Fondazione G Pascale, 80131 Naples, Italy.
| |
Collapse
|
25
|
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 2017; 411:136-149. [PMID: 28965853 DOI: 10.1016/j.canlet.2017.09.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
Collapse
|
26
|
Armas-López L, Zúñiga J, Arrieta O, Ávila-Moreno F. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget 2017; 8:60684-60703. [PMID: 28948003 PMCID: PMC5601171 DOI: 10.18632/oncotarget.19527] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation and epigenetic mechanisms closely control gene expression through diverse physiological and pathophysiological processes. These include the development of germ layers and post-natal epithelial cell-tissue differentiation, as well as, involved with the induction, promotion and/or progression of human malignancies. Diverse studies have shed light on the molecular similarities and differences involved in the stages of embryological epithelial development and dedifferentiation processes in malignant tumors of epithelial origin, of which many focus on lung carcinomas. In lung cancer, several transcriptional, epigenetic and genetic aberrations have been described to partly arise from environmental risk factors, but ethnic genetic predisposition factors may also play a role. The classification of the molecular hallmarks of cancer has been essential to study and achieve a comprehensive view of the interaction networks between cell signaling pathways and functional roles of the transcriptional and epigenetic regulatory mechanisms. This has in turn increased understanding on how these molecular networks are involved in embryo-layers and malignant diseases development. Ultimately, a major biomedicine goal is to achieve a thorough understanding of their roles as diagnostic, prognostic and treatment response indicators in lung oncological patients. Recently, several notable cell-signaling pathways have been studied based on their contribution to promoting and/or regulating the engagement of different cancer hallmarks, among them genome instability, exacerbated proliferative signaling, replicative immortality, tumor invasion-metastasis, inflammation, and immune-surveillance evasion mechanisms. Of these, the Hedgehog-GLI (Hh) cell-signaling pathway has been identified as a main molecular contribution into several of the abovementioned functional embryo-malignancy processes. Nonetheless, the systematic study of the regulatory epigenetic and transcriptional mechanisms has remained mostly unexplored, which could identify the interaction networks between specific biomarkers and/or new therapeutic targets in malignant tumor progression and resistance to lung oncologic therapy. In the present work, we aimed to revise the most important up-to-date experimental and clinical findings in biology, embryology and cancer research regarding the Hh pathway. We explore the potential control of the transcriptional-epigenetic programming versus reprogramming mechanisms associated with its Hh-GLI cell signaling pathway members. Last, we present a summary of this information to systematically integrate the Hh signaling pathway to identify and propose novel compound strategies or better oncological therapeutic schemes for lung cancer patients.
Collapse
Affiliation(s)
- Leonel Armas-López
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| | - Oscar Arrieta
- Instituto Nacional de Cancerología (INCAN), Thoracic Oncology Clinic, Mexico City, México
| | - Federico Ávila-Moreno
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| |
Collapse
|
27
|
Monkkonen T, Lewis MT. New paradigms for the Hedgehog signaling network in mammary gland development and breast Cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:315-332. [PMID: 28624497 PMCID: PMC5567999 DOI: 10.1016/j.bbcan.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022]
Abstract
The Hedgehog signaling network regulates organogenesis, cell fate, proliferation, survival, and stem cell self-renewal in many mammalian tissues. Aberrant activation of the Hedgehog signaling network is present in ~25% of all cancers, including breast. Altered expression of Hedgehog network genes in the mammary gland can elicit phenotypes at many stages of development. However, synthesizing a cohesive mechanistic model of signaling at different stages of development has been difficult. Emerging data suggest that this difficulty is due, in part, to non-canonical and tissue compartment-specific (i.e., epithelial, versus stromal, versus systemic) functions of Hedgehog network components. With respect to systemic functions, Hedgehog network genes regulate development of endocrine organs that impinge on mammary gland development extrinsically. These new observations offer insight into previously conflicting data, and have bearing on the potential for anti-Hedgehog therapeutics in the treatment of breast cancer.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; University of California, San Francisco, Dept. of Pathology, 513 Parnassus Ave., San Francisco, CA 94118, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Fonseca NA, Cruz AF, Moura V, Simões S, Moreira JN. The cancer stem cell phenotype as a determinant factor of the heterotypic nature of breast tumors. Crit Rev Oncol Hematol 2017; 113:111-121. [PMID: 28427501 DOI: 10.1016/j.critrevonc.2017.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/11/2017] [Indexed: 01/06/2023] Open
Abstract
Gathering evidence supports the existence of a population of cells with stem-like characteristics, named cancer stem cells (CSC), which is involved not only in tumor recurrence but also in tumorigenicity, metastization and drug resistance. Several markers have been used to identify putative CSC sub-populations in different cancers. Notwithstanding, it has been acknowledged that breast CSC may originate from non-stem cancer cells (non-SCC), interconverting through an epithelial-to-mesenchymal transition-mediated process, and presenting several deregulated canonical and developmental signaling pathways. These support the heterogeneity that, directly or indirectly, influences fundamental biological features supporting breast tumor development. Accordingly, CSC have increasingly become highly relevant cellular targets. In this review, we will address the stemness concept in cancer, setting the perspective on CSC and their origin, by exploring their relation and regulation within the tumor microenvironment, in the context of emerging therapeutic targets. Within this framework, we will discuss nucleolin, a protein that has been associated with angiogenesis and, more recently, with the stemness phenotype, becoming a common denominator between CSC and non-SCC for multicellular targeting.
Collapse
Affiliation(s)
- Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal.
| | - Ana Filipa Cruz
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Vera Moura
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal.
| | - Sérgio Simões
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
29
|
Monkkonen T, Landua JD, Visbal AP, Lewis MT. Epithelial and non-epithelial Ptch1 play opposing roles to regulate proliferation and morphogenesis of the mouse mammary gland. Development 2017; 144:1317-1327. [PMID: 28275010 PMCID: PMC5399619 DOI: 10.1242/dev.140434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
Patched 1 (Ptch1) has epithelial, stromal and systemic roles in murine mammary gland organogenesis, yet specific functions remain undefined. Cre-recombinase-mediated Ptch1 ablation in mammary epithelium increased proliferation and branching, but did not phenocopy transgenic expression of activated smoothened (SmoM2). The epithelium showed no evidence of canonical hedgehog signaling, and hyperproliferation was not blocked by smoothened (SMO) inhibition, suggesting a non-canonical function of PTCH1. Consistent with this possibility, nuclear localization of cyclin B1 was increased. In non-epithelial cells, heterozygous Fsp-Cre-mediated Ptch1 ablation increased proliferation and branching, with dysplastic terminal end buds (TEB) and ducts. By contrast, homozygous Ptch1 ablation decreased proliferation and branching, producing stunted ducts filled with luminal cells showing altered ovarian hormone receptor expression. Whole-gland transplantation into wild-type hosts or estrogen/progesterone treatment rescued outgrowth and hormone receptor expression, but not the histological changes. Bone marrow transplantation failed to rescue outgrowth. Ducts of Fsp-Cre;Ptch1fl/fl mice were similar to Fsp-Cre;SmoM2 ducts, but Fsp-Cre;SmoM2 outgrowths were not stunted, suggesting that the histology might be mediated by Smo in the local stroma, with systemic Ptch1 required for ductal outgrowth and proper hormone receptor expression in the mammary epithelium. Summary: Systemic and tissue-specific depletion of patched 1 in epithelial and stromal compartments of the mammary gland defines functions in ductal patterning, proliferation and gene expression.
Collapse
Affiliation(s)
- Teresa Monkkonen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John D Landua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Adriana P Visbal
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA .,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
30
|
Zhang M, Lee AV, Rosen JM. The Cellular Origin and Evolution of Breast Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a027128. [PMID: 28062556 DOI: 10.1101/cshperspect.a027128] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we will discuss how the cell of origin may modulate breast cancer intratumoral heterogeneity (ITH) as well as the role of ITH in the evolution of cancer. The clonal evolution and the cancer stem cell (CSC) models, as well as a model that integrates clonal evolution with a CSC hierarchy, have all been proposed to explain the development of ITH. The extent of ITH correlates with clinical outcome and reflects the cellular complexity and dynamics within a tumor. A unique subtype of breast cancer, the claudin-low subtype that is highly resistant to chemotherapy and most closely resembles mammary epithelial stem cells, will be discussed. Furthermore, we will review how the interactions among various tumor cells, some with distinct mutations, may impact breast cancer treatment. Finally, novel technologies that may help advance our understanding of ITH and lead to improvements in the design of new treatments also will be discussed.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
31
|
Smoothened is a poor prognosis factor and a potential therapeutic target in glioma. Sci Rep 2017; 7:42630. [PMID: 28195165 PMCID: PMC5307388 DOI: 10.1038/srep42630] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Malignant gliomas are associated with a high mortality rate. Thus, there is an urgent need for the development of novel targeted therapeutics. Aberrant Hedgehog signaling has been directly linked to glioma. GDC-0449 is a novel small molecule inhibitor of Hedgehog signaling that blocks the activity of smoothened (Smo). In this study, we evaluated the in vitro and in vivo effects of the smoothened inhibitor GDC-0449 on cell proliferation in human gliomas. We found that high expression of smoothened in glioma is a predictor of short overall survival and poor patient outcome. Our data suggest that GDC-0449 significantly inhibits the proliferation of glioma cells by inducing cell cycle arrest at the G1 phase. Our results demonstrate that GDC-0449 can effectively inhibit the migration and invasion of glioma cells. Furthermore, GDC-0449 treatment significantly suppressed glioma cell xenograft tumorigenesis. Mechanistically, GDC-0449 treatment markedly decreases the expression levels of key Hedgehog pathway component genes (Shh, Patched-1, Patched-2, smoothened, Gli1 and Gli2). These results indicate that GDC-0449 works through targeting the Hedgehog pathway. Taken together, our study suggests that smoothened could be used as a prognostic marker and molecular therapeutic target for glioma.
Collapse
|
32
|
Riku M, Inaguma S, Ito H, Tsunoda T, Ikeda H, Kasai K. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis. Oncotarget 2016; 7:5690-701. [PMID: 26744317 PMCID: PMC4868714 DOI: 10.18632/oncotarget.6788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 12/21/2022] Open
Abstract
Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1.
Collapse
Affiliation(s)
- Miho Riku
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takumi Tsunoda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroshi Ikeda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
33
|
Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin Cancer Biol 2016; 40-41:192-208. [PMID: 27609747 DOI: 10.1016/j.semcancer.2016.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development.
Collapse
Affiliation(s)
- Prasad R Dandawate
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dharmalingam Subramaniam
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
34
|
Habib JG, O'Shaughnessy JA. The hedgehog pathway in triple-negative breast cancer. Cancer Med 2016; 5:2989-3006. [PMID: 27539549 PMCID: PMC5083752 DOI: 10.1002/cam4.833] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/26/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Treatment of triple‐negative breast cancer (TNBC) remains challenging due to the underlying heterogeneity of this disease coupled with the lack of predictive biomarkers and effective targeted therapies. Intratumoral heterogeneity, particularly enrichment for breast cancer stem cell‐like subpopulations, has emerged as a leading hypothesis for systemic therapy resistance and clinically aggressive course of poor prognosis TNBC. A growing body of literature supports the role of the stem cell renewal Hedgehog (Hh) pathway in breast cancer. Emerging preclinical data also implicate Hh signaling in TNBC pathogenesis. Herein, we review the evidence for a pathophysiologic role of Hh signaling in TNBC and explore mechanisms of crosstalk between the Hh pathway and other key signaling networks as well as their potential implications for Hh‐targeted interventions in TNBC.
Collapse
Affiliation(s)
- Joyce G Habib
- Baylor Charles A. Sammons Cancer Center, Dallas, Texas
| | - Joyce A O'Shaughnessy
- Baylor Charles A. Sammons Cancer Center, Dallas, Texas.
- Texas Oncology, Dallas, Texas.
| |
Collapse
|
35
|
Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance. Cancers (Basel) 2015; 7:2330-51. [PMID: 26633513 PMCID: PMC4695894 DOI: 10.3390/cancers7040894] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022] Open
Abstract
The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor β (TGFβ), wingless-type MMTV integration site family (WNT) and β-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for aberrant GLI1 expression and discuss GLI1-mediated HH signaling on DNA damage responses, carcinogenesis and chemoresistance.
Collapse
|
36
|
Salem ML, El-Badawy AS, Li Z. Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology 2015; 67:749-59. [PMID: 25516358 PMCID: PMC4545436 DOI: 10.1007/s10616-014-9830-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) need to survive cancer treatments with a specific end goal to provide new, more differentiated, metastatic-prone cancerous cells. This happens through diverse signals delivered within the tumor microenvironment where ample evidence indicates that altered developmental signaling pathways play an essential role in maintaining CSCs and accordingly the survival and the progression of the tumor itself. This review summarizes findings on the immunobiological properties of CSCs as compared with cancerous non-stem cells involving the expression of immunological molecules, cytokines and tumor antigens as well as the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon CSCs. We concluded that if CSCs are the main driving force behind tumor support and growth then understanding the molecular mechanisms and the immunological properties directing these cells for immune tolerance is of great clinical significance. Such knowledge will contribute to designing better targeted therapies that could prevent tumor recurrence and accordingly significantly improve cancer treatments and patient survival.
Collapse
Affiliation(s)
- Mohamed L Salem
- Immunology and Biotechnology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt,
| | | | | |
Collapse
|
37
|
Villanueva H, Visbal AP, Obeid NF, Ta AQ, Faruki AA, Wu MF, Hilsenbeck SG, Shaw CA, Yu P, Plummer NW, Birnbaumer L, Lewis MT. An essential role for Gα(i2) in Smoothened-stimulated epithelial cell proliferation in the mammary gland. Sci Signal 2015; 8:ra92. [PMID: 26373672 DOI: 10.1126/scisignal.aaa7355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hedgehog (Hh) signaling is critical for organogenesis, tissue homeostasis, and stem cell maintenance. The gene encoding Smoothened (SMO), the primary effector of Hh signaling, is expressed aberrantly in human breast cancer, as well as in other cancers. In mice that express a constitutively active form of SMO that does not require Hh stimulation in mammary glands, the cells near the transgenic cells proliferate and participate in hyperplasia formation. Although SMO is a seven-transmembrane receptor like G protein-coupled receptors (GPCRs), SMO-mediated activation of the Gli family of transcription factors is not known to involve G proteins. However, data from Drosophila and mammalian cell lines indicate that SMO functions as a GPCR that couples to heterotrimeric G proteins of the pertussis toxin (PTX)-sensitive Gαi class. Using genetically modified mice, we demonstrated that SMO signaling through G proteins occurred in the mammary gland in vivo. SMO-induced stimulation of proliferation was PTX-sensitive and required Gαi2, but not Gαi1, Gαi3, or activation of Gli1 or Gli2. Our findings show that activated SMO functions as a GPCR to stimulate proliferation in vivo, a finding that may have clinical importance because most SMO-targeted agents have been selected based largely on their ability to block Gli-mediated transcription.
Collapse
Affiliation(s)
- Hugo Villanueva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adriana P Visbal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nadine F Obeid
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Q Ta
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adeel A Faruki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng-Fen Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA. Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Rovida E, Stecca B. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities? Semin Cancer Biol 2015; 35:154-67. [PMID: 26292171 DOI: 10.1016/j.semcancer.2015.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023]
Abstract
The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to the transmembrane receptor patched and is subsequently mediated by transcriptional effectors belonging to the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the mitogen-activated protein kinases (MAPK) are involved in a number of biological processes and play an important role in many diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be activated as a consequence of aberrant activation of upstream signaling molecules or during development of drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal treatment and prevent tumor relapse.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Patologia, Università degli Studi di Firenze, Firenze, Italy
| | - Barbara Stecca
- Laboratory of Tumor Cell Biology, Core Research Laboratory-Istituto Toscano Tumori (CRL-ITT), Florence, Italy; Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| |
Collapse
|
39
|
Matevossian A, Resh MD. Hedgehog Acyltransferase as a target in estrogen receptor positive, HER2 amplified, and tamoxifen resistant breast cancer cells. Mol Cancer 2015; 14:72. [PMID: 25889650 PMCID: PMC4711017 DOI: 10.1186/s12943-015-0345-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/17/2015] [Indexed: 12/18/2022] Open
Abstract
Background Hedgehog acyltransferase (Hhat) catalyzes the transfer of the fatty acid palmitate onto Sonic Hedgehog (Shh), a modification that is essential for Shh signaling activity. The Shh signaling pathway has been implicated in the progression of breast cancer. Methods To determine the functional significance of Hhat expression in breast cancer, we used a panel of breast cancer cell lines that included estrogen receptor (ER) positive, HER2 amplified, triple negative, and tamoxifen resistant cells. We monitored both anchorage dependent and independent proliferation of these cells following depletion of Hhat with lentiviral shRNA and inhibition of Hhat activity with RU-SKI 43, a small molecule inhibitor of Hhat. Results Depletion of Hhat decreased anchorage-dependent and anchorage-independent proliferation of ER positive, but not triple negative, breast cancer cells. Treatment with RU-SKI 43 also reduced ER positive cell proliferation, whereas a structurally related, inactive compound had no effect. Overexpression of Hhat in ER positive cells not only rescued the growth defect in the presence of RU-SKI 43 but also resulted in increased cell proliferation in the absence of drug. Furthermore, depletion or inhibition of Hhat reduced proliferation of HER2 amplified as well as tamoxifen resistant cells. Inhibition of Smoothened had no effect on proliferation, indicating that canonical Shh signaling was not operative. Moreover, Hhat regulated the proliferation of both Shh responsive and non-responsive ER positive cells, suggesting a Shh independent function for Hhat. Conclusions These data suggest that Hhat plays a critical role in ER positive, HER2 amplified, and hormone resistant breast cancer proliferation and highlights the potential promise of Hhat inhibitors for therapeutic benefit in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0345-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Armine Matevossian
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY, 10065, USA. .,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Marilyn D Resh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY, 10065, USA. .,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
40
|
Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy. Expert Rev Mol Med 2015; 17:e5. [PMID: 25660620 PMCID: PMC4836208 DOI: 10.1017/erm.2015.3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic development, stem cell biology and tissue homeostasis. In recent years, aberrant activation of HH-GLI signalling has been linked to several types of cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract and blood. HH-GLI signalling is initiated by binding of HH ligands to the transmembrane receptor PATCHED and is mediated by transcriptional effectors that belong to the GLI family, whose activity is finely tuned by a number of molecular interactions and post-translation modifications. Several reports suggest that the activity of the GLI proteins is regulated by several proliferative and oncogenic inputs, in addition or independent of upstream HH signalling. The identification of this complex crosstalk and the understanding of how the major oncogenic signalling pathways interact in cancer is a crucial step towards the establishment of efficient targeted combinatorial treatments. Here we review recent findings on the cooperative integration of HH-GLI signalling with the major oncogenic inputs and we discuss how these cues modulate the activity of the GLI proteins in cancer. We then summarise the latest advances on SMO and GLI inhibitors and alternative approaches to attenuate HH signalling through rational combinatorial therapies.
Collapse
|
41
|
Cherepanov S, Baklaushev V, Gabashvili A, Shepeleva I, Chekhonin V. Hedgehog signaling in the pathogenesis of neuro-oncology diseases. ACTA ACUST UNITED AC 2015. [DOI: 10.18097/pbmc20156103332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review summarizes current knowledge on the Hedgehog signaling pathway, its role in normal embryogenesis and/or initiation and progression of neuro-oncological diseases, especially of high-grade gliomas, the most malignant neuroepithelial tumors. The main proteins forming the Hedgehog signaling pathway include Shh, PTCH1, SMO, HHIP, SUFU and GLI1 isoforms. Effects of other signaling pathways on the family of transcription factors GLI and other proteins are described. The review summarizes modern data about the impact of the Hedgehog signaling pathway on proliferation, migration activity and invasiveness, and also on tumor neoangiogenesis and tumor cell chemoresistance. The role of the Hedgehog signaling pathway in origin of cancer stem cells and epithelial-mesenchymal transition is also analyzed. Some prospects for new anticancer drugs acting on components of the Hedgehog signaling pathway inhibitors are demonstrated.
Collapse
Affiliation(s)
- S.A. Cherepanov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V.P. Baklaushev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A.N. Gabashvili
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I.I. Shepeleva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - V.P. Chekhonin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
42
|
Hogenson TL, Lauth M, Pasca diMagliano M, Fernandez-Zapico ME. Back to the drawing board: Re-thinking the role of GLI1 in pancreatic carcinogenesis. F1000Res 2014; 3:238. [PMID: 25352983 PMCID: PMC4207242 DOI: 10.12688/f1000research.5324.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
Aberrant activation of the transcription factor GLI1, a central effector of the Hedgehog (HH) pathway, is associated with several malignancies, including pancreatic ductal adenocarcinoma (PDAC), one of most deadly human cancers. GLI1 has been described as an oncogene in PDAC, making it a promising target for drug therapy. Surprisingly, clinical trials targeting HH/GLI1 axis in advanced PDAC were unsuccessful, leaving investigators questioning the mechanism behind these failures. Recent evidence suggests the loss of GLI1 in the later stages of PDAC may actually accelerate disease. This indicates GLI1 may play a dual role in PDAC, acting as an oncogene in the early stages of disease and a tumor-suppressor in the late stages.
Collapse
Affiliation(s)
- Tara L. Hogenson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, 35043, Germany
| | | | | |
Collapse
|
43
|
Hogenson TL, Lauth M, Pasca diMagliano M, Fernandez-Zapico ME. Back to the drawing board: Re-thinking the role of GLI1 in pancreatic carcinogenesis. F1000Res 2014; 3:238. [PMID: 25352983 PMCID: PMC4207242 DOI: 10.12688/f1000research.5324.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 03/26/2024] Open
Abstract
Aberrant activation of the transcription factor GLI1, a central effector of the Hedgehog (HH) pathway, is associated with several malignancies, including pancreatic ductal adenocarcinoma (PDAC), one of most deadly human cancers. GLI1 has been described as an oncogene in PDAC, making it a promising target for drug therapy. Surprisingly, clinical trials targeting HH/GLI1 axis in advanced PDAC were unsuccessful, leaving investigators questioning the mechanism behind these failures. Recent evidence suggests the loss of GLI1 in the later stages of PDAC may actually accelerate disease. This indicates GLI1 may play a dual role in PDAC, acting as an oncogene in the early stages of disease and a tumor-suppressor in the late stages.
Collapse
Affiliation(s)
- Tara L. Hogenson
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, 35043, Germany
| | | | | |
Collapse
|
44
|
Colavito SA, Zou MR, Yan Q, Nguyen DX, Stern DF. Significance of glioma-associated oncogene homolog 1 (GLI1) expression in claudin-low breast cancer and crosstalk with the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway. Breast Cancer Res 2014; 16:444. [PMID: 25252859 PMCID: PMC4303124 DOI: 10.1186/s13058-014-0444-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023] Open
Abstract
Introduction The recently identified claudin-low subtype of breast cancer is enriched for cells with stem-like and mesenchymal-like characteristics. This subtype is most often triple-negative (lacking the estrogen and progesterone receptors (ER, PR) as well as lacking epidermal growth factor 2 (HER2) amplification) and has a poor prognosis. There are few targeted treatment options available for patients with this highly aggressive type of cancer. Methods Using a high throughput inhibitor screen, we identified high expression of glioma-associated oncogene homolog 1 (GLI1), the effector molecule of the hedgehog (Hh) pathway, as a critical determinant of cell lines that have undergone an epithelial to mesenchymal transition (EMT). Results High GLI1 expression is a property of claudin-low cells and tumors and correlates with markers of EMT and breast cancer stem cells. Knockdown of GLI1 expression in claudin-low cell lines resulted in reduced cell viability, motility, clonogenicity, self-renewal, and reduced tumor growth of orthotopic xenografts. We observed non-canonical activation of GLI1 in claudin-low and EMT cell lines, and identified crosstalk with the NFκB pathway. Conclusions This work highlights the importance of GLI1 in the maintenance of characteristics of metastatic breast cancer stem cells. Remarkably, treatment with an inhibitor of the NFκB pathway reproducibly reduces GLI1 expression and protein levels. We further provide direct evidence for the binding of the NFκB subunit p65 to the GLI1 promoter in both EMT and claudin-low cell lines. Our results uncover crosstalk between NFκB and GLI1 signals and suggest that targeting these pathways may be effective against the claudin-low breast cancer subtype. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0444-4) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Vadnais C, Shooshtarizadeh P, Rajadurai CV, Lesurf R, Hulea L, Davoudi S, Cadieux C, Hallett M, Park M, Nepveu A. Autocrine Activation of the Wnt/β-Catenin Pathway by CUX1 and GLIS1 in Breast Cancers. Biol Open 2014; 3:937-46. [PMID: 25217618 PMCID: PMC4197442 DOI: 10.1242/bio.20148193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autocrine activation of the Wnt/β-catenin pathway occurs in several cancers, notably in breast tumors, and is associated with higher expression of various Wnt ligands. Using various inhibitors of the FZD/LRP receptor complex, we demonstrate that some adenosquamous carcinomas that develop in MMTV-CUX1 transgenic mice represent a model for autocrine activation of the Wnt/β-catenin pathway. By comparing expression profiles of laser-capture microdissected mammary tumors, we identify Glis1 as a transcription factor that is highly expressed in the subset of tumors with elevated Wnt gene expression. Analysis of human cancer datasets confirms that elevated WNT gene expression is associated with high levels of CUX1 and GLIS1 and correlates with genes of the epithelial-to-mesenchymal transition (EMT) signature: VIM, SNAI1 and TWIST1 are elevated whereas CDH1 and OCLN are decreased. Co-expression experiments demonstrate that CUX1 and GLIS1 cooperate to stimulate TCF/β-catenin transcriptional activity and to enhance cell migration and invasion. Altogether, these results provide additional evidence for the role of GLIS1 in reprogramming gene expression and suggest a hierarchical model for transcriptional regulation of the Wnt/β-catenin pathway and the epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Charles Vadnais
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Charles V Rajadurai
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Robert Lesurf
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada McGill Centre for Bioinformatics, McGill University, Montreal, QC H3G 0B1, Canada
| | - Laura Hulea
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sayeh Davoudi
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Chantal Cadieux
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael Hallett
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada McGill Centre for Bioinformatics, McGill University, Montreal, QC H3G 0B1, Canada
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| |
Collapse
|
46
|
Effect of glycogen synthase kinase-3 inactivation on mouse mammary gland development and oncogenesis. Oncogene 2014; 34:3514-26. [PMID: 25195860 PMCID: PMC4490903 DOI: 10.1038/onc.2014.279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 06/30/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022]
Abstract
Many components of the Wnt/β-catenin signaling pathway have critical functions in mammary gland development and tumor formation, yet the contribution of glycogen synthase kinase-3 (GSK-3α and GSK-3β) to mammopoiesis and oncogenesis is unclear. Here, we report that WAP-Cre-mediated deletion of GSK-3 in the mammary epithelium results in activation of Wnt/β-catenin signaling and induces mammary intraepithelial neoplasia that progresses to squamous transdifferentiation and development of adenosquamous carcinomas at 6 months. To uncover possible β-catenin-independent activities of GSK-3, we generated mammary-specific knockouts of GSK-3 and β-catenin. Squamous transdifferentiation of the mammary epithelium was largely attenuated, however, mammary epithelial cells lost the ability to form mammospheres suggesting perturbation of stem cell properties unrelated to loss of β-catenin alone. At 10 months, adenocarcinomas that developed in glands lacking GSK-3 and β-catenin displayed elevated levels of γ-catenin/plakoglobin as well as activation of the Hedgehog and Notch pathways. Collectively, these results establish the two isoforms of GSK-3 as essential integrators of multiple developmental signals that act to maintain normal mammary gland function and suppress tumorigenesis.
Collapse
|
47
|
Implications of stemness-related signaling pathways in breast cancer response to therapy. Semin Cancer Biol 2014; 31:43-51. [PMID: 25153354 DOI: 10.1016/j.semcancer.2014.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/05/2023]
Abstract
There is accumulating evidence that breast cancer may arise from a small subpopulation of transformed mammary stem/progenitor cells, termed breast cancer-initiating cells (BCICs), responsible for initiation and maintenance of cancer. BCICs have been identified in clinical specimens based on CD44(+)/CD24(-/low) membrane expression and/or enzymatic activity of aldehyde dehydrogenase 1 (ALDH1+), or isolated and in vitro propagated as non-adherent spheres. This cell population has been demonstrated to be able to recreate, when injected in mice even at very low concentrations, the same histopathological features of the tumor they were derived from and to escape from current therapeutic strategies. Alterations in genes involved in stemness-related pathways, such as Wnt, Notch, and Sonic Hedgehog, have been proven to play a role in breast cancer progression. Targeting these key elements represents an attractive option, with a solid rationale, although possible concerns may derive from the poor knowledge of tolerance and efficacy of inhibiting these mechanisms without inducing severe side effects. In addition, efforts to develop alternative BCIC-targeted therapies against stemness markers (CD44 and ALDH1) and molecules involved in regulating EMT- and HER2-related pathways, or able to reverse the multi-drug resistance phenotype, or to induce differentiation and to control cell survival pathways are currently ongoing and encouraging results from pre-clinical studies have already been obtained using in vitro and in vivo models.
Collapse
|
48
|
Xu Q, Liu X, Zheng X, Yao Y, Liu Q. PKM2 regulates Gli1 expression in hepatocellular carcinoma. Oncol Lett 2014; 8:1973-1979. [PMID: 25289083 PMCID: PMC4186579 DOI: 10.3892/ol.2014.2441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling and the pyruvate kinase isoenzyme M2 (PKM2 or M2-PK) are often involved in tumorigenesis and growth. Aberrant activation of Hh signaling is found in a variety of malignancies. In tumor cells, PKM2 determines whether glucose is used for the synthesis of cellular building blocks or the production of lactate for energy regeneration; it associated with the Warburg effect. Gli1 is a downstream molecule of the Hh signaling pathway; however, the association between Hh signaling and PKM2 is not well understood. In the present study, it was identified that PKM2 and Gli1 expression levels were significantly elevated in hepatocellular carcinoma (HCC) compared with para-carcinoma. In vitro study revealed that overexpression of PKM2 in HepG2 cells upregulated the transcription of Gli1, while the ablation of PKM2 by shRNA caused the downregulation of Gli1 gene expression. Gli1 transcription could be rescued by PKM2. Overall, these findings suggest that PKM2 is a regulator of Gli1 gene expression in HCC, and may contribute to tumorigenesis through Gli1.
Collapse
Affiliation(s)
- Qiuran Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China ; Emergency Department, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
49
|
Liu S, Zhang Z, Chen TY. Transfection with small interfering RNA targeting smoothened promotes cell apoptosis in human esophageal carcinoma cell line CAES-17. Shijie Huaren Xiaohua Zazhi 2014; 22:2671-2678. [DOI: 10.11569/wcjd.v22.i19.2671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of transfection with small interfering RNA (siRNA) targeting smoothened (Smo) on the expression of Bcl-2 in esophageal cancer CAES-17 cells.
METHODS: Smo siRNA was transfected into CAES-17 cells. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the levels of Smo and Bcl-2 mRNAs and proteins. TUNEL assay and flow cytometry were used to detect cell apoptosis.
RESULTS: Compared with the control groups, after transfection with Smo siRNA for 24, 48 and 72 h, the levels of Smo mRNA were significantly down-regulated (0.524 ± 0.011, 0.422 ± 0.008, 0.332 ± 0.019, P < 0.05 for all). After transfection with Smo siRNA for 72 h, the levels of Smo and Bcl-2 proteins were also significantly lower compared with the control groups (0.330 ± 0.016, 0.391 ± 0.019, P < 0.05 for all). The number of apoptotic cells was greatly increased after Smo siRNA transfection.
CONCLUSION: Smo gene may play an important role in the apoptosis of esophageal cancer cells. Smo may be used as a novel biomarker for the treatment of esophageal carcinoma.
Collapse
|
50
|
Goel HL, Gritsko T, Pursell B, Chang C, Shultz LD, Greiner DL, Norum JH, Toftgard R, Shaw LM, Mercurio AM. Regulated splicing of the α6 integrin cytoplasmic domain determines the fate of breast cancer stem cells. Cell Rep 2014; 7:747-61. [PMID: 24767994 DOI: 10.1016/j.celrep.2014.03.059] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/06/2014] [Accepted: 03/22/2014] [Indexed: 02/07/2023] Open
Abstract
Although the α6β1 integrin has been implicated in the function of breast and other cancer stem cells (CSCs), little is known about its regulation and relationship to mechanisms involved in the genesis of CSCs. We report that a CD44(high)/CD24(low) population, enriched for CSCs, is comprised of distinct epithelial and mesenchymal populations that differ in expression of the two α6 cytoplasmic domain splice variants: α6A and α6B. α6Bβ1 expression defines the mesenchymal population and is necessary for CSC function, a function that cannot be executed by α6A integrins. The generation of α6Bβ1 is tightly controlled and occurs as a consequence of an autocrine vascular endothelial growth factor (VEGF) signaling that culminates in the transcriptional repression of a key RNA-splicing factor. These data alter our understanding of how α6β1 contributes to breast cancer, and they resolve ambiguities regarding the use of total α6 (CD49f) expression as a biomarker for CSCs.
Collapse
Affiliation(s)
- Hira Lal Goel
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tatiana Gritsko
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Bryan Pursell
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cheng Chang
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jens Henrik Norum
- Department of Bioscience and Nutrition, Center for Biosciences, Karolinska Institute, Novum, 14183 Huddinge, Sweden
| | - Rune Toftgard
- Department of Bioscience and Nutrition, Center for Biosciences, Karolinska Institute, Novum, 14183 Huddinge, Sweden
| | - Leslie M Shaw
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|