1
|
Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical Roles of SRC-3 in the Development and Progression of Breast Cancer, Rendering It a Prospective Clinical Target. Cancers (Basel) 2023; 15:5242. [PMID: 37958417 PMCID: PMC10648290 DOI: 10.3390/cancers15215242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BCa) is the most frequently diagnosed malignant tumor in women and is also one of the leading causes of cancer-related death. Most breast tumors are hormone-dependent and estrogen signaling plays a critical role in promoting the survival and malignant behaviors of these cells. Estrogen signaling involves ligand-activated cytoplasmic estrogen receptors that translocate to the nucleus with various co-regulators, such as steroid receptor co-activator (SRC) family members, and bind to the promoters of target genes and regulate their expression. SRC-3 is a member of this family that interacts with, and enhances, the transcriptional activity of the ligand activated estrogen receptor. Although SRC-3 has important roles in normal homeostasis and developmental processes, it has been shown to be amplified and overexpressed in breast cancer and to promote malignancy. The malignancy-promoting potential of SRC-3 is diverse and involves both promoting malignant behavior of tumor cells and creating a tumor microenvironment that has an immunosuppressive phenotype. SRC-3 also inhibits the recruitment of tumor-infiltrating lymphocytes with effector function and promotes stemness. Furthermore, SRC-3 is also involved in the development of resistance to hormone therapy and immunotherapy during breast cancer treatment. The versatility of SRC-3 in promoting breast cancer malignancy in this way makes it a good target, and methodical targeting of SRC-3 probably will be important for the success of breast cancer treatment.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
2
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
3
|
Qiao X, Hu Z, Xiong F, Yang Y, Peng C, Wang D, Li X. Lipid metabolism reprogramming in tumor-associated macrophages and implications for therapy. Lipids Health Dis 2023; 22:45. [PMID: 37004014 PMCID: PMC10064535 DOI: 10.1186/s12944-023-01807-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The tumormicroenvironment (TME) plays a key role in tumor progression. Tumor-associated macrophages (TAMs), which are natural immune cells abundantin the TME, are mainly divided into the anti-tumor M1 subtype and pro-tumor M2 subtype. Due to the high plasticity of TAMs, the conversion of the M1 to M2 phenotype in hypoxic and hypoglycemic TME promotes cancer progression, which is closely related to lipid metabolism. Key factors of lipid metabolism in TAMs, including peroxisome proliferator-activated receptor and lipoxygenase, promote the formation of a tumor immunosuppressive microenvironment and facilitate immune escape. In addition, tumor cells promote lipid accumulation in TAMs, causing TAMs to polarize to the M2 phenotype. Moreover, other factors of lipid metabolism, such as abhydrolase domain containing 5 and fatty acid binding protein, have both promoting and inhibiting effects on tumor cells. Therefore, further research on lipid metabolism in tumors is still required. In addition, statins, as core drugs regulating cholesterol metabolism, can inhibit lipid rafts and adhesion of tumor cells, which can sensitize them to chemotherapeutic drugs. Clinical studies on simvastatin and lovastatin in a variety of tumors are underway. This article provides a comprehensive review of the role of lipid metabolism in TAMs in tumor progression, and provides new ideas for targeting lipid metabolism in tumor therapy.
Collapse
Affiliation(s)
- Xuehan Qiao
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhangmin Hu
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Xiong
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
4
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Heyliger SO, Soliman KFA, Saulsbury MD, Reams RR. Prognostic Relevance of ZNF844 and Chr 19p13.2 KRAB-Zinc Finger Proteins in Clear Cell Renal Carcinoma. Cancer Genomics Proteomics 2022; 19:305-327. [PMID: 35430565 DOI: 10.21873/cgp.20322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Clear-cell renal cell carcinoma (ccRCC) is the most common and aggressive form of all urological cancers, with poor prognosis and high mortality. Despite growing evidence of involvement in carcinogenesis, the role of KRAB-ZFP in ccRCC has not been fully explored. KRAB Zinc finger proteins (KRAB-ZFPs) are the largest family of mammalian transcription regulators. They are differentially expressed in various tissues during cellular development and phenotypic differentiation. MATERIALS AND METHODS In this study, the levels of transcripts of ccRCC from The Cancer Genome Atlas (TCGA) dataset were used to identify prognostic biomarkers in this disease. RESULTS Using bioinformatics techniques, we demonstrate that approximately 60% of KRAB zinc finger proteins located on chromosome 19p13.2 are differentially expressed, with all but two being down-regulated in ccRCC. Moreover, ZNF844, a paralog of ZNF433, was the most down-regulated across all histological grades and pathological stages (p<0.001). In addition, the decrease in ZNF844 expression was associated with poor patient survival (HR=0.41; 95% CI=0.3-0.56; p<0.0001). Gene Set Enrichment Analysis of genes inversely co-expressed with ZNF844 revealed that enriched pathways were consistently related to immune and translation processes (p<0.05, FDR <0.05). Lastly, ZNF844 expression showed moderate, inverse correlation to Helper T-cell (CD4 or Th1) subtype 1 (R=-0.558, p=5.15×10-39) infiltration and with the exhausted T-cell phenotype (R=-0.37; p=4.1×10-21). CONCLUSION Down-regulation of KRAB-ZFPs at 19p13.2 may represent a signature for ccRCC. Moreover, ZNF844 is a prognostic marker for ccRCC and may serve as a putative immune-related tumor suppressor gene.
Collapse
Affiliation(s)
- Simone O Heyliger
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA, U.S.A
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Marilyn D Saulsbury
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA, U.S.A
| | - R Renee Reams
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
6
|
Detection and Enumeration of Cytokine-Secreting Cells by FluoroSpot. Methods Mol Biol 2021; 2386:81-99. [PMID: 34766266 DOI: 10.1007/978-1-0716-1771-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The FluoroSpot assay is a development of the highly sensitive enzyme-linked immunospot (ELISpot) assay which enables functional measurement of immunity at the single-cell level. Both assays are performed in a 96-well format and measures the frequency of analyte-secreting cells, in ELISpot usually limited to one analyte per well due to the use of enzymes and precipitating substrates for detection. FluoroSpot, performed in a similar way as ELISpot, overcomes this limitation by detecting each analyte with an assigned fluorophore instead of an enzyme. By using readers equipped with fluorophore-specific filters, cells producing single or multiple cytokines can be identified simultaneously in the same well. This greatly facilitates the analysis of functionally distinct subpopulations in heterogenous cell samples, for example, the frequency of polyfunctional T cells, suggested to be of importance in various disease states. FluoroSpot maintains the simplicity and sensitivity of the ELISpot while taking the assay a step further towards a multiplex analysis and an in-depth understanding of the quality of an immune response. We describe here a 96-well plate method to analyze cells that have secreted up to four different cytokines simultaneously (Four-color Fluorospot).
Collapse
|
7
|
Ramesh P, Shivde R, Jaishankar D, Saleiro D, Le Poole IC. A Palette of Cytokines to Measure Anti-Tumor Efficacy of T Cell-Based Therapeutics. Cancers (Basel) 2021; 13:821. [PMID: 33669271 PMCID: PMC7920025 DOI: 10.3390/cancers13040821] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key molecules within the tumor microenvironment (TME) that can be used as biomarkers to predict the magnitude of anti-tumor immune responses. During immune monitoring, it has been customary to predict outcomes based on the abundance of a single cytokine, in particular IFN-γ or TGF-β, as a readout of ongoing anti-cancer immunity. However, individual cytokines within the TME can exhibit dual opposing roles. For example, both IFN-γ and TGF-β have been associated with pro- and anti-tumor functions. Moreover, cytokines originating from different cellular sources influence the crosstalk between CD4+ and CD8+ T cells, while the array of cytokines expressed by T cells is also instrumental in defining the mechanisms of action and efficacy of treatments. Thus, it becomes increasingly clear that a reliable readout of ongoing immunity within the TME will have to include more than the measurement of a single cytokine. This review focuses on defining a panel of cytokines that could help to reliably predict and analyze the outcomes of T cell-based anti-tumor therapies.
Collapse
Affiliation(s)
- Prathyaya Ramesh
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Rohan Shivde
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Dinesh Jaishankar
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - I. Caroline Le Poole
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; (P.R.); (R.S.); (D.J.); (D.S.)
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology and Immunology, Northwestern University at Chicago, Chicago, IL 60611, USA
| |
Collapse
|
8
|
van Asten SD, de Groot R, van Loenen MM, Castenmiller SM, de Jong J, Monkhorst K, Haanen JBAG, Amsen D, Bex A, Spaapen RM, Wolkers MC. T cells expanded from renal cell carcinoma display tumor-specific CD137 expression but lack significant IFN-γ, TNF-α or IL-2 production. Oncoimmunology 2021; 10:1860482. [PMID: 33537169 PMCID: PMC7833735 DOI: 10.1080/2162402x.2020.1860482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastatic renal cell carcinoma (RCC) has a poor prognosis. Recent advances have shown beneficial responses to immune checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies. As only a subset of RCC patients respond, alternative strategies should be explored. Patients refractory to anti-PD-1 therapy may benefit from autologous tumor-infiltrating lymphocyte (TIL) therapy. Even though efficient TIL expansion was reported from RCC lesions, it is not well established how many RCC TIL products are tumor-reactive, how well they produce pro-inflammatory cytokines in response to autologous tumors, and whether their response correlates with the presence of specific immune cells in the tumor lesions. We here compared the immune infiltrate composition of RCC lesions with that of autologous kidney tissue of 18 RCC patients. Tcell infiltrates were increased in the tumor lesions, and CD8+ Tcell infiltrates were primarily of effector memory phenotype. Nine out of 16 (56%) tested TIL products we generated were tumor-reactive, as defined by CD137 upregulation after exposure to autologous tumor digest. Tumor reactivity was found in particular in TIL products originating from tumors with ahigh percentage of infiltrated Tcells compared to autologous kidney, and increased CD25 expression on CD8+ Tcells. Importantly, although TIL products had the capacity to produce the key effector cytokines IFN-γ, TNF-α or IL-2, they failed to produce significant amounts in response to autologous tumor digests. In conclusion, TIL products from RCC lesions contain tumor-reactive Tcells. Their restricted tumor-specific cytokine production requires further investigation of immunosuppressive factors in RCC and subsequent optimization of RCC-derived TIL culture conditions.
Collapse
Affiliation(s)
- Saskia D van Asten
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rosa de Groot
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Marleen M van Loenen
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Suzanne M Castenmiller
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Jeroen de Jong
- Department Of Pathology, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department Of Pathology, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| | | | - Derk Amsen
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Axel Bex
- Department Of Urology, NKI-AvL, Amsterdam, The Netherlands.,UCL Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust, London, UK
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Monika C Wolkers
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
9
|
Lin JZ, Lin N. A risk signature of three autophagy-related genes for predicting lower grade glioma survival is associated with tumor immune microenvironment. Genomics 2021; 113:767-777. [PMID: 33069830 DOI: 10.1016/j.ygeno.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023]
Abstract
Treatment for lower-grade gliomas (LGG) has been challenging. Though emerging approaches such as immunotherapy is promising, it is still faced with immune tolerance, an obstacle that may be overcome by targeting autophagy-related (ATG) genes. After identifying three differentially expressed ATG genes (RIPK2, MUL1 and CXCR4), we constructed an ATG gene risk signature by Kaplan-Meier, univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression, followed by internal and external validation using K-M and ROC analysis. Since gene set enrichment analysis (GSEA) suggested that the signature was strongly associated with immune cell functions, CIBERSORT, LM22 matrix and Pearson correlation were further performed, showing that the risk signature was significantly correlated with immune cell infiltration and immune checkpoint genes. In conclusion, we identified and independently validated an ATG gene risk signature for LGG patients, as well as discovering its significant association with LGG immune microenvironment.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Nuan Lin
- Obstetrics & Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
10
|
Miron B, Xu D, Zibelman M. Biomarker Development for Metastatic Renal Cell Carcinoma: Omics, Antigens, T-cells, and Beyond. J Pers Med 2020; 10:E225. [PMID: 33202724 PMCID: PMC7712808 DOI: 10.3390/jpm10040225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
The treatment of metastatic renal cell carcinoma has evolved quickly over the last few years from a disease managed primarily with sequential oral tyrosine kinase inhibitors (TKIs) targeting the vascular endothelial growth factor (VEGF) pathway, to now with a combination of therapies incorporating immune checkpoint blockade (ICB). Patient outcomes have improved with these innovations, however, controversy persists regarding optimal sequence and patient selection amongst the available combinations. Ideally, predictive biomarkers would aid in guiding treatment decisions and personalizing care. However, clinically-actionable biomarkers have remained elusive. We aim to review the available evidence regarding biomarkers for both TKIs and ICB and will present where the field may be headed in the years to come.
Collapse
Affiliation(s)
| | | | - Matthew Zibelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (B.M.); (D.X.)
| |
Collapse
|
11
|
Schulz GB, Rodler S, Szabados B, Graser A, Buchner A, Stief C, Casuscelli J. Safety, efficacy and prognostic impact of immune checkpoint inhibitors in older patients with genitourinary cancers. J Geriatr Oncol 2020; 11:1061-1066. [PMID: 32565147 DOI: 10.1016/j.jgo.2020.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Immunosenescence might impact immunotherapy (IT) in patients with advanced age. However, pivotal studies were not powered for this clinical question. Our aim is to explore toxicity (primary objective) and activity (secondary objective) of immune checkpoint inhibitors (ICIs) in patients with renal cell (RCC) and urothelial carcinoma (UC) older than 75 years compared to the younger population. PATIENTS AND METHODS Patients treated at our tertiary care Uro-oncology Department with atezolizumab, pembrolizumab, nivolumab or ipilimumab were retrospectively analyzed. Immune-related adverse events (irAEs) were determined and graded using the Common Terminology Criteria for Adverse Events (CTCAE v.4.0). Disease Control rate (DCR) was assessed according to Response Evaluation Criteria in Solid Tumors (RECIST v1.1). IrAEs and DCR were compared between patients ≥75 vs. <75 years, chi-squared test. Impact of age and other key clinical parameters on irAEs and DCR were tested in a binary logistic regression employing a backward selection. Impact of irAEs on oncological prognosis was assessed in log-rank and Cox regression analyses. RESULTS We included 99 patients treated between 11/2015 and 01/2019. Frequency of irAEs (36.4% vs. 39.4%) and DCR (59.4% vs. 41.0%) was comparable between patients ≥75 vs. <75 years. Advanced age was not associated with irAEs or worse DCR. IrAEs occurrence correlated with better disease-specific survival in the univariate and multivariate analyses. IrAEs could be successfully treated with corticosteroids in 78.9% of cases. CONCLUSIONS ICIs seem to be both safe and efficacious in an aging population with metastatic RCC or UC. Occurrence of irAEs predicted better prognosis.
Collapse
Affiliation(s)
| | - Severin Rodler
- Department of Urology, Ludwig Maximilians University, Munich, Germany
| | - Bernadett Szabados
- Barts Cancer Centre, Queen Mary University of London, London, United Kingdom
| | - Annabel Graser
- Department of Urology, Ludwig Maximilians University, Munich, Germany
| | - Alexander Buchner
- Department of Urology, Ludwig Maximilians University, Munich, Germany
| | - Christian Stief
- Department of Urology, Ludwig Maximilians University, Munich, Germany
| | | |
Collapse
|
12
|
Yu X, Zhang L, Chaudhry A, Rapaport AS, Ouyang W. Unravelling the heterogeneity and dynamic relationships of tumor-infiltrating T cells by single-cell RNA sequencing analysis. J Leukoc Biol 2020; 107:917-932. [PMID: 32272497 PMCID: PMC7317876 DOI: 10.1002/jlb.6mr0320-234r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are crucial for the success of immune-based cancer therapy. Reinvigorating antitumor T cell activity by blocking checkpoint inhibitory receptors has provided clinical benefits for many cancer patients. However, the efficacy of these treatments varies in cancer patients and the mechanisms underlying these diverse responses remain elusive. The density and status of tumor-infiltrating T cells have been shown to positively correlate with patient response to checkpoint blockades. Therefore, further understanding of the heterogeneity, clonal expansion, migration, and effector functions of tumor-infiltrating T cells will provide fundamental insights into antitumor immune responses. To this end, recent advances in single-cell RNA sequencing technology have enabled profound and extensive characterization of intratumoral immune cells and have improved our understanding of their dynamic relationships. Here, we summarize recent progress in single-cell RNA sequencing technology and current strategies to uncover heterogeneous tumor-infiltrating T cell subsets. In particular, we discuss how the coupling of deep transcriptome information with T cell receptor (TCR)-based lineage tracing has furthered our understanding of intratumoral T cell populations. We also discuss the functional implications of various T cell subsets in tumors and highlight the identification of novel T cell markers with therapeutic or prognostic potential.
Collapse
Affiliation(s)
- Xin Yu
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Lei Zhang
- Beijing Advanced Innovation Center for GenomicsPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Ashutosh Chaudhry
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Aaron S. Rapaport
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| | - Wenjun Ouyang
- Department of Inflammation and OncologyAmgen Research, Amgen Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
13
|
Zelba H, Bedke J, Hennenlotter J, Mostböck S, Zettl M, Zichner T, Chandran A, Stenzl A, Rammensee HG, Gouttefangeas C. PD-1 and LAG-3 Dominate Checkpoint Receptor–Mediated T-cell Inhibition in Renal Cell Carcinoma. Cancer Immunol Res 2019; 7:1891-1899. [DOI: 10.1158/2326-6066.cir-19-0146] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/23/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022]
|
14
|
Beha N, Harder M, Ring S, Kontermann RE, Müller D. IL15-Based Trifunctional Antibody-Fusion Proteins with Costimulatory TNF-Superfamily Ligands in the Single-Chain Format for Cancer Immunotherapy. Mol Cancer Ther 2019; 18:1278-1288. [PMID: 31040163 DOI: 10.1158/1535-7163.mct-18-1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/08/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
IL15 and costimulatory receptors of the tumor necrosis superfamily (TNFRSF) have shown great potential to support and drive an antitumor immune response. However, their efficacy as monotherapy is limited. Here, we present the development of a novel format for a trifunctional antibody-fusion protein that combines and focuses the activity of IL15/TNFSF-ligand in a targeting-mediated manner to the tumor site. The previously reported format consisted of a tumor-directed antibody (scFv), IL15 linked to an IL15Rα-fragment (RD), and the extracellular domain of 4-1BBL, where noncovalent trimerization of 4-1BBL into its functional unit led to a homotrimeric molecule with 3 antibody and 3 IL15-RD units. To reduce the size and complexity of the molecule, we have now designed a second format, where 4-1BBL is introduced as single-chain (sc), that is 3 consecutively linked 4-1BBL ectodomains. Thus, a monomeric trifunctional fusion protein presenting only 1 functional unit of each component was generated. Interestingly, the in vitro activity on T-cell stimulation was conserved or even enhanced for the soluble and target-bound molecule, respectively. Also, in a lung tumor mouse model, comparable antitumor effects were observed. Furthermore, corroborating the concept, OX40L and GITRL were also successfully incorporated into the novel single-chain format and the advantage of target-bound trifunctional versus corresponding combined bifunctional fusion proteins demonstrated by measuring T-cell proliferation and cytotoxic potential in vitro and antitumor effects of RD_IL15_scFv_scGITRL in a lung tumor mouse model in vivo Thus, the trifunctional antibody-fusion protein single-chain format constitutes a promising innovative platform for further therapeutic developments.
Collapse
Affiliation(s)
- Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Markus Harder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Ring
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
15
|
Greenberg SA, Kong SW, Thompson E, Gulla SV. Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models. Oncotarget 2019; 10:1399-1406. [PMID: 30858925 PMCID: PMC6402715 DOI: 10.18632/oncotarget.26659] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
Background KLRG1 is a lymphocyte co-inhibitory, or immune checkpoint, receptor expressed predominantly on late-differentiated effector and effector memory CD8+ T and NK cells. Targeting of KLRG1 neutralization in murine cancer models has not previously been reported. Methods We studied KLRG1 expression in human blood and tumor samples from available genomic datasets. Anti-KLRG1 neutralizing antibody was studied in the murine 4T1 breast cancer as monotherapy, and in the MC38 colon cancer and B16F10 melanoma models as combination therapy with anti-PD-1 antibody. Results In human blood and tumor samples, KLRG1 expression is aligned with cytotoxic T and NK cell differentiation, and upregulated in human tumor samples after a variety of therapies, potentially contributing to adaptive resistance. In in vivo murine models, anti-KLRG1 antibody monotherapy in the 4T1 breast cancer model reduced lung metastases (decreased lung weights p=0.04; decreased nodule count p=0.002), while anti-KLRG1 + anti-PD-1 combination therapy in the MC38 colon cancer and B16F10 melanoma models produced synergistic benefit greater than anti-PD-1 alone for tumor volume (MC38 p=0.01; B16F10 p=0.007) and survival (MC38 p=0.02; B16F10 p=0.002). Conclusions These studies provide the first evidence that inhibition of the KLRG1 pathway enhances immune control of cancer in murine models, and provide target validation for KLRG1 targeting of human cancer. The mechanism of efficacy of KLRG1 blockade in murine models remains to be determined.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
16
|
Westergaard MCW, Andersen R, Chong C, Kjeldsen JW, Pedersen M, Friese C, Hasselager T, Lajer H, Coukos G, Bassani-Sternberg M, Donia M, Svane IM. Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. Br J Cancer 2019. [PMID: 30718808 DOI: 10.1038/s41416-019-0384-y] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Solid malignancies are frequently infiltrated with T cells. The success of adoptive cell transfer (ACT) with expanded tumour-infiltrating lymphocytes (TILs) in melanoma warrants its testing in other cancer types. In this preclinical study, we investigated whether clinical-grade TILs could be manufactured from ovarian cancer (OC) tumour specimens. METHODS Thirty-four tumour specimens were obtained from 33 individual patients with OC. TILs were analysed for phenotype, antigen specificity and functionality. RESULTS Minimally expanded TILs (Young TILs) were successfully established from all patients. Young TILs contained a high frequency of CD3+ cells with a variable CD4/CD8 ratio. TILs could be expanded to clinical numbers. Importantly, recognition of autologous tumour cells was demonstrated in TILs in >50% of the patients. We confirmed with mass spectrometry the presentation of multiple tumour antigens, including peptides derived from the cancer-testis antigen GAGE, which could be recognised by antigen-specific TILs. Antigen-specific TILs could be isolated and further expanded in vitro. CONCLUSION These findings support the hypothesis that patients with OC can benefit from ACT with TILs and led to the initiation of a pilot clinical trial at our institution . TRIAL REGISTRATION clinicaltrials.gov: NCT02482090.
Collapse
Affiliation(s)
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chloé Chong
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julie Westerlin Kjeldsen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Pedersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hasselager
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lajer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark. .,Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Westergaard MCW, Andersen R, Chong C, Kjeldsen JW, Pedersen M, Friese C, Hasselager T, Lajer H, Coukos G, Bassani-Sternberg M, Donia M, Svane IM. Tumour-reactive T cell subsets in the microenvironment of ovarian cancer. Br J Cancer 2019; 120:424-434. [PMID: 30718808 PMCID: PMC6461863 DOI: 10.1038/s41416-019-0384-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Solid malignancies are frequently infiltrated with T cells. The success of adoptive cell transfer (ACT) with expanded tumour-infiltrating lymphocytes (TILs) in melanoma warrants its testing in other cancer types. In this preclinical study, we investigated whether clinical-grade TILs could be manufactured from ovarian cancer (OC) tumour specimens. METHODS Thirty-four tumour specimens were obtained from 33 individual patients with OC. TILs were analysed for phenotype, antigen specificity and functionality. RESULTS Minimally expanded TILs (Young TILs) were successfully established from all patients. Young TILs contained a high frequency of CD3+ cells with a variable CD4/CD8 ratio. TILs could be expanded to clinical numbers. Importantly, recognition of autologous tumour cells was demonstrated in TILs in >50% of the patients. We confirmed with mass spectrometry the presentation of multiple tumour antigens, including peptides derived from the cancer-testis antigen GAGE, which could be recognised by antigen-specific TILs. Antigen-specific TILs could be isolated and further expanded in vitro. CONCLUSION These findings support the hypothesis that patients with OC can benefit from ACT with TILs and led to the initiation of a pilot clinical trial at our institution . TRIAL REGISTRATION clinicaltrials.gov: NCT02482090.
Collapse
Affiliation(s)
| | - Rikke Andersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chloé Chong
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julie Westerlin Kjeldsen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Pedersen
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Friese
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hasselager
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Lajer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Marco Donia
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
- Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Robinson TM, Prince GT, Thoburn C, Warlick E, Ferguson A, Kasamon YL, Borrello IM, Hess A, Smith BD. Pilot trial of K562/GM-CSF whole-cell vaccination in MDS patients. Leuk Lymphoma 2018; 59:2801-2811. [PMID: 29616857 DOI: 10.1080/10428194.2018.1443449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies. Currently, approved drugs are given with non-curative intent as the only known cure is allogeneic bone marrow transplantation, which relies on the donor's immune system driving an allogeneic effect. Previous efforts to harness the endogenous immune system have been less successful. We present the results of a pilot study of K562/GM-CSF (GVAX) whole-cell vaccination in MDS patients. The primary objective of safety was met as there were no serious adverse events. One patient had a decrease in transfusion requirements and another demonstrated hematologic improvement suggesting a signal for clinical activity. In vitro correlative studies indicated biological effects on immune cells following vaccination. Although only a pilot study, results are encouraging that an immunotherapeutic approach with a whole-cell vaccine may be feasible in MDS patients.
Collapse
Affiliation(s)
- Tara M Robinson
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Gabrielle T Prince
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Chris Thoburn
- b Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Erica Warlick
- c Department of Medicine , University of Minnesota Medical Center , St. Paul/Minneapolis , MN , USA
| | - Anna Ferguson
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Yvette L Kasamon
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Ivan M Borrello
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Allan Hess
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - B Douglas Smith
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
19
|
Joshi A, Sahu A, Noronha V, Patil V, Prabhash K. Metastatic Renal Cell Cancer-Systemic Therapy. Indian J Surg Oncol 2018; 9:97-104. [PMID: 29563746 PMCID: PMC5856703 DOI: 10.1007/s13193-018-0721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022] Open
Abstract
Management of metastatic renal cell carcinoma (mRCC) has evolved considerably in the past 10 years due to better understanding of tumor biology. This development has changed mRCC to a chronic progressive disease with several lines of treatment options. The introduction of several new targeted therapies including immunotherapy has improved median overall survival of approximately 1 year to >2 years in mRCC.
Collapse
Affiliation(s)
- Amit Joshi
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Arvind Sahu
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| |
Collapse
|
20
|
Kawashima A, Kanazawa T, Goto K, Matsumoto M, Morimoto-Okazawa A, Iwahori K, Ujike T, Nagahara A, Fujita K, Uemura M, Nonomura N, Wada H. Immunological classification of renal cell carcinoma patients based on phenotypic analysis of immune check-point molecules. Cancer Immunol Immunother 2018; 67:113-125. [PMID: 28975380 PMCID: PMC11028191 DOI: 10.1007/s00262-017-2060-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/03/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To clarify comprehensive immunological signature patterns of tumour tissue-infiltrating lymphocytes in patients with renal cell carcinoma and show its clinical significance. MATERIALS AND METHODS We investigated the surface marker expressions of tumour tissue-infiltrating lymphocytes quantitatively and classified them based on their functional populations. We extracted 109 sets of tumour tissue-infiltrating lymphocytes from 80 patients who underwent surgical resection of renal cell carcinoma, of which 44 tumour tissue-infiltrating lymphocytes were multiply extracted from 15 patients. Each tumour tissue-infiltrating lymphocyte was characterised on the basis of functional T-cell populations using ten surface marker expressions measured by flow cytometry. RESULTS All sets of the tumour tissue-infiltrating lymphocytes were classified into three groups, which correlated significantly with Fuhrman grade (OR 0.253, 95% CI 0.094-0.678, P = 0.006). Importantly, both overall metastasis-free survival (HR 0.449, 95% CI 0.243-0.832, P = 0.011) and recurrence-free survival (HR 0.475, 95% CI 0.238-0.948, P = 0.035) of the patients with the higher marker expressions were significantly inferior to those of the patients with the lower marker expressions by multivariate analysis. Six specific genes for this classification identified by microarray analysis verified our results using the TCGA KIRC data set. In addition, we discovered the presence of intra-tumoural diversity in the classification of 3 (20%) of the 15 patients. CONCLUSIONS This study showed that the presence of classable diversity in the immunological signature of tumour tissue-infiltrating lymphocytes correlated with prognosis and tumour aggressiveness that was observed even within individual tumours in some patients with renal cell carcinoma.
Collapse
Affiliation(s)
- Atsunari Kawashima
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Clinical Research in Tumour Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Takayuki Kanazawa
- Department of Clinical Research in Tumour Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan.
| | - Kumiko Goto
- Department of Clinical Research in Tumour Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Mitsunobu Matsumoto
- Department of Clinical Research in Tumour Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Akiko Morimoto-Okazawa
- Department of Clinical Research in Tumour Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kota Iwahori
- Department of Clinical Research in Tumour Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takeshi Ujike
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akira Nagahara
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motohide Uemura
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumour Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
21
|
Idorn M, Olsen M, Halldórsdóttir HR, Skadborg SK, Pedersen M, Høgdall C, Høgdall E, Met Ö, Thor Straten P. Improved migration of tumor ascites lymphocytes to ovarian cancer microenvironment by CXCR2 transduction. Oncoimmunology 2017; 7:e1412029. [PMID: 29632724 PMCID: PMC5889291 DOI: 10.1080/2162402x.2017.1412029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Chemokines are essential mediators of cellular trafficking, interactions and tumor development. Though adoptive cell therapy (ACT) has been a tremendous success in the treatment of metastatic melanoma (MM), a major obstacle for successful ACT, is limited homing of effector T cells to immune suppressive tumor sites. We hypothesized that equipping T cells with chemokine receptors matching the chemokines of the tumor microenvironment, could improve tumor homing of T cells. T cells from malignant ascites (n = 13); blood from ovarian cancer (OC) patients (n = 14); and healthy donors (n = 13) were analyzed by flow cytometry. We found that FoxP3+ regulatory T cells accumulation in patients with OC associates with CCR4 expression. We characterized a chemokine profile of ascites chemokines, and expression of corresponding receptors on circulating T cells and tumor ascites lymphocytes (TALs). CCL22, CXCL9, CXCL10 and CXCL12 associated with enrichment of CCR4+, CCR5+, CXCR3+ and CXCR4+ T cells in ascites. Circulating T cells and TALs however did not express CXCR2, identifying CXCR2 as candidate for chemokine receptor transduction. TALs readily expressed IFNγ and TNFα upon stimulation despite the frequency decreasing with in vitro expansion. Lentiviral transduction of TALs (n = 4) with chemokine receptor CXCR2 significantly increased transwell migration of TALs towards rhIL8 and autologous ascites. The majority of expanded and transduced TALs were of a T effector memory subtype. This proof of concept study shows that chemokine receptor engineering with CXCR2 is feasible and improves homing of transduced TALs towards the OC microenvironment.
Collapse
Affiliation(s)
- Manja Idorn
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark
| | - Maria Olsen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark
| | - Hólmfrídur Rósa Halldórsdóttir
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark
| | - Signe Koggersbøl Skadborg
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark
| | - Magnus Pedersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark.,Department of Oncology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark
| | - Claus Høgdall
- Department of Gynecology, The Juliane Marie Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Blegdamsvej 9, København Ø, Denmark
| | - Estrid Høgdall
- Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark.,Department of Oncology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 41, København N, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark.,Department of Pathology, Molecular unit, Danish CancerBiobank, Herlev University Hospital, Herlev ringvej 75, Herlev, Denmark
| |
Collapse
|
22
|
Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden GGGM, Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A, Demaria S, Symmans F, Nuciforo P, Comerma L, Thompson EA, Lakhani S, Kim SR, Schnitt S, Colpaert C, Sotiriou C, Scherer SJ, Ignatiadis M, Badve S, Pierce RH, Viale G, Sirtaine N, Penault-Llorca F, Sugie T, Fineberg S, Paik S, Srinivasan A, Richardson A, Wang Y, Chmielik E, Brock J, Johnson DB, Balko J, Wienert S, Bossuyt V, Michiels S, Ternes N, Burchardi N, Luen SJ, Savas P, Klauschen F, Watson PH, Nelson BH, Criscitiello C, O’Toole S, Larsimont D, de Wind R, Curigliano G, André F, Lacroix-Triki M, van de Vijver M, Rojo F, Floris G, Bedri S, Sparano J, Rimm D, Nielsen T, Kos Z, Hewitt S, Singh B, Farshid G, Loibl S, Allison KH, Tung N, Adams S, Willard-Gallo K, Horlings HM, Gandhi L, Moreira A, Hirsch F, Dieci MV, Urbanowicz M, Brcic I, Korski K, Gaire F, Koeppen H, Lo A, Giltnane J, Ziai J, Rebelatto MC, Steele KE, Zha J, Emancipator K, Juco JW, Denkert C, Reis-Filho J, Loi S, Fox SB. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv Anat Pathol 2017; 24:311-335. [PMID: 28777143 PMCID: PMC5638696 DOI: 10.1097/pap.0000000000000161] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma. In part 2 of this review, we discuss the available evidence for the prognostic and predictive value of TILs in common solid tumors, including carcinomas of the lung, gastrointestinal tract, genitourinary system, gynecologic system, and head and neck, as well as primary brain tumors, mesothelioma and melanoma. The particularities and different emphases in TIL assessment in different tumor types are discussed. The standardized methodology we propose can be adapted to different tumor types and may be used as a standard against which other approaches can be compared. Standardization of TIL assessment will help clinicians, researchers and pathologists to conclusively evaluate the utility of this simple biomarker in the current era of immunotherapy.
Collapse
Affiliation(s)
- Shona Hendry
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Roberto Salgado
- Breast Cancer Translational Research Laboratory/Breast International Group, Institut Jules Bordet, Brussels, Belgium
- Department of Pathology and TCRU, GZA, Antwerp, Belgium
| | - Thomas Gevaert
- Department of Development and Regeneration, Laboratory of Experimental Urology, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Prudence A. Russell
- Department of Anatomical Pathology, St Vincent’s Hospital Melbourne, Fitzroy, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Tom John
- Department of Medical Oncology, Austin Health, Heidelberg, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Bibhusal Thapa
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Michael Christie
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Australia
| | - Koen van de Vijver
- Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M. Valeria Estrada
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | | | - Melinda Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert GGM Van den Eynden
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pathology, GZA Ziekenhuizen, Antwerp, Belgium
| | - Yves Allory
- Université Paris-Est, Créteil, France
- INSERM, UMR 955, Créteil, France
- Département de pathologie, APHP, Hôpital Henri-Mondor, Créteil, France
| | - Matthias Preusser
- Department of Medicine, Clinical Division of Oncology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Johannes Hainfellner
- Institute of Neurology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Giancarlo Pruneri
- European Institute of Oncology, Milan, Italy
- University of Milan, School of Medicine, Milan, Italy
| | - Andrea Vingiani
- European Institute of Oncology, Milan, Italy
- University of Milan, School of Medicine, Milan, Italy
| | - Sandra Demaria
- New York University Medical School, New York, USA
- Perlmutter Cancer Center, New York, USA
| | - Fraser Symmans
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Laura Comerma
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Sunil Lakhani
- Centre for Clinical Research and School of Medicine, The University of Queensland, Brisbane, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Seong-Rim Kim
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
| | - Stuart Schnitt
- Cancer Research Institute and Department of Pathology, Beth Israel Deaconess Cancer Center, Boston, USA
- Harvard Medical School, Boston, USA
| | - Cecile Colpaert
- Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus, Wilrijk, Belgium
| | - Christos Sotiriou
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan J. Scherer
- Academic Medical Innovation, Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - Michail Ignatiadis
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, USA
| | - Robert H. Pierce
- Cancer Immunotherapy Trials Network, Central Laboratory and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Giuseppe Viale
- Department of Pathology, Istituto Europeo di Oncologia, University of Milan, Milan, Italy
| | - Nicolas Sirtaine
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Frederique Penault-Llorca
- Department of Surgical Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, France
- University of Auvergne UMR1240, Clermont-Ferrand, France
| | - Tomohagu Sugie
- Department of Surgery, Kansai Medical School, Hirakata, Japan
| | - Susan Fineberg
- Montefiore Medical Center, Bronx, New York, USA
- The Albert Einstein College of Medicine, Bronx, New York, USA
| | - Soonmyung Paik
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
- Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ashok Srinivasan
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
| | - Andrea Richardson
- Harvard Medical School, Boston, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, USA
- Warren Alpert Medical School of Brown University, Providence, USA
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center, Gliwice, Poland
- Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Jane Brock
- Harvard Medical School, Boston, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, USA
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- Vanderbilt Ingram Cancer Center, Nashville, USA
| | - Justin Balko
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- Vanderbilt Ingram Cancer Center, Nashville, USA
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- VMscope GmbH, Berlin, Germany
| | - Veerle Bossuyt
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Stefan Michiels
- Service de Biostatistique et d’Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay, Villejuif, France
| | - Nils Ternes
- Service de Biostatistique et d’Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay, Villejuif, France
| | | | - Stephen J. Luen
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Peter H. Watson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Brad H. Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sandra O’Toole
- The Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
- Australian Clinical Labs, Bella Vista, Australia
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Roland de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fabrice André
- INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris Sud, Kremlin-Bicêtre, France
| | - Magali Lacroix-Triki
- INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Mark van de Vijver
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain
| | - Giuseppe Floris
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Shahinaz Bedri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Joseph Sparano
- Department of Oncology, Montefiore Medical Centre, Albert Einstein College of Medicine, Bronx, USA
| | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Torsten Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baljit Singh
- Department of Pathology, New York University Langone Medical Centre, New York, USA
| | - Gelareh Farshid
- Directorate of Surgical Pathology, SA Pathology, Adelaide, Australia
- Discipline of Medicine, Adelaide University, Adelaide, Australia
| | | | | | - Nadine Tung
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Sylvia Adams
- New York University Medical School, New York, USA
- Perlmutter Cancer Center, New York, USA
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hugo M. Horlings
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Leena Gandhi
- Perlmutter Cancer Center, New York, USA
- Dana-Farber Cancer Institute, Boston, USA
| | - Andre Moreira
- Pulmonary Pathology, New York University Center for Biospecimen Research and Development, New York University, New York, USA
| | - Fred Hirsch
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maria Urbanowicz
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Iva Brcic
- Institute of Pathology, Medical University of Graz, Austria
| | - Konstanty Korski
- Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg, Germany
| | - Fabien Gaire
- Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg, Germany
| | - Hartmut Koeppen
- Research Pathology, Genentech Inc., South San Francisco, USA
| | - Amy Lo
- Research Pathology, Genentech Inc., South San Francisco, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | | | - James Ziai
- Research Pathology, Genentech Inc., South San Francisco, USA
| | | | | | - Jiping Zha
- Translational Sciences, MedImmune, Gaithersberg, USA
| | | | | | - Carsten Denkert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jorge Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Sherene Loi
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Sapski S, Beha N, Kontermann R, Müller D. Tumor-targeted costimulation with antibody-fusion proteins improves bispecific antibody-mediated immune response in presence of immunosuppressive factors. Oncoimmunology 2017; 6:e1361594. [PMID: 29209565 DOI: 10.1080/2162402x.2017.1361594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022] Open
Abstract
Therapeutic strategies aiming for the induction of an effective immune response at the tumor site can be severely hampered by the encounter of an immunosuppressive microenvironment. We investigated here the potential of concerted costimulation by tumor-directed antibody-fusion proteins with B7.1, 4-1BBL and OX40L to enforce bispecific antibody-induced T cell stimulation in presence of recognized immunosuppressive factors including IL-10, TGF-β, indoleamine 2,3-dioxygenase (IDO), PD-L1 and regulatory T cells. The expression and activity of these factors was demonstrated in the HT1080-FAP/PBMC co-culture setting, where individual and combined costimulation were still capable to enhance T cell stimulation, even though the general activation level was reduced. Additional blockade of TGF-ß or PD-1 resulted especially effective in further enhancing the degree of T cell activation. Here, best outcome was achieved by combined costimulation of targeted 4-1BBL and B7.1. Furthermore, their individual impact on the proliferation of naïve, memory and effector CD8+ and CD4+ T cell subsets, suggest the coverage of a comprehensive T cell response. Thus, our costimulatory antibody-fusion proteins show great potential to support T cell activation in adverse conditions dictated by the tumor microenvironment.
Collapse
Affiliation(s)
- Sabrina Sapski
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Roland Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| |
Collapse
|
24
|
Integrative clinical genomics of metastatic cancer. Nature 2017; 548:297-303. [PMID: 28783718 PMCID: PMC5995337 DOI: 10.1038/nature23306] [Citation(s) in RCA: 595] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/25/2017] [Indexed: 02/08/2023]
Abstract
Metastasis is the primary cause of cancer-related deaths. Although The Cancer Genome Atlas has sequenced primary tumour types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here we perform whole-exome and -transcriptome sequencing of 500 adult patients with metastatic solid tumours of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing to identify gene fusions, pathway activation, and immune profiling. Our results show that integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers.
Collapse
|
25
|
Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J Control Release 2017; 256:56-67. [DOI: 10.1016/j.jconrel.2017.04.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/19/2017] [Accepted: 04/17/2017] [Indexed: 01/05/2023]
|
26
|
Tsao CK, Liaw B, He C, Galsky MD, Sfakianos J, Oh WK. Moving beyond vascular endothelial growth factor-targeted therapy in renal cell cancer: latest evidence and therapeutic implications. Ther Adv Med Oncol 2017; 9:287-298. [PMID: 28491148 DOI: 10.1177/1758834016687261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Renal cell cancer (RCC) continues to be among the most lethal malignancies in the USA. Introduction of anti-vascular epidermal growth factor receptor tyrosine kinase inhibitors over a decade ago resulted in improvement in disease outcomes, but further development of new therapies largely stagnated for many years. More recently, a better understanding of disease biology and treatment-resistance patterns has led to a second renaissance in drug development, with the anti-programmed cell death protein 1 immune checkpoint inhibitor, nivolumab, paving the way for additional therapies entering clinical trial testing in the treatment of RCC.
Collapse
Affiliation(s)
- Che-Kai Tsao
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Bobby Liaw
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine He
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Dieu-Nosjean MC, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 2016; 271:260-75. [PMID: 27088920 DOI: 10.1111/imr.12405] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The characterization of the microenvironment of human tumors led to the description of tertiary lymphoid structures (TLS) characterized by mature dendritic cells in a T-cell zone adjacent to B-cell follicle including a germinal center. TLS represent sites of lymphoid neogenesis that develop in most solid cancers. Analysis of the current literature shows that the TLS presence is associated with a favorable clinical outcome for cancer patients, regardless of the approach used to quantify TLS and the stage of the disease. Using several approaches that combine immunohistochemistry, gene expression assays, and flow cytometry on large series of lung tumors, our work demonstrated that TLS are important sites for the initiation and/or maintenance of the local and systemic T- and B-cell responses against tumors. Surrounded by high endothelial venules, they represent a privileged area for the recruitment of lymphocytes into tumors and generation of central-memory T and B cells that circulate and limit cancer progression. TLS can be considered as a novel biomarker to stratify the overall survival risk of untreated cancer patients and as a marker of efficient immunotherapies. The induction and manipulation of cancer-associated TLS using drug agonists and/or biotherapies should open new avenues to treat cancer patients.
Collapse
Affiliation(s)
- Marie-Caroline Dieu-Nosjean
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Nicolas A Giraldo
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Hélène Kaplon
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Claire Germain
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Team 13 Cancer, Immune Control and Escape, Paris, France.,Sorbonne Paris Cité, UMR_S 1138, Cordeliers Research Center, University Paris Descartes, Paris, France.,Sorbonne Universités, UMR_S 1138, Cordeliers Research Center, UPMC University Paris 06, Paris, France
| |
Collapse
|
28
|
Yeh CR, Ou ZY, Xiao GQ, Guancial E, Yeh S. Infiltrating T cells promote renal cell carcinoma (RCC) progression via altering the estrogen receptor β-DAB2IP signals. Oncotarget 2016; 6:44346-59. [PMID: 26587829 PMCID: PMC4792561 DOI: 10.18632/oncotarget.5884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.
Collapse
Affiliation(s)
- Chiuan-Ren Yeh
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zheng-Yu Ou
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Guang-Qian Xiao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Elizabeth Guancial
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
29
|
Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China. .,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
| |
Collapse
|
30
|
Klatt MG, Kowalewski DJ, Schuster H, Di Marco M, Hennenlotter J, Stenzl A, Rammensee HG, Stevanović S. Carcinogenesis of renal cell carcinoma reflected in HLA ligands: A novel approach for synergistic peptide vaccination design. Oncoimmunology 2016; 5:e1204504. [PMID: 27622074 PMCID: PMC5007970 DOI: 10.1080/2162402x.2016.1204504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023] Open
Abstract
Despite recent advances in immunotherapy of renal cell carcinoma (RCC), peptide vaccination strategies still lack an approach for personalized peptide vaccination that takes intra- and inter-tumoral heterogeneity and biological characteristics into account. In this study, we use an immunoprecipitation and mass spectrometry-based approach supplemented by network analysis of HLA ligands to target this goal. By analyzing HLA-presented peptides for HLA class I and II of 11 malignant and 6 non-malignant kidney tissue samples, more than 2,700 peptides and 1,600 corresponding source proteins were identified. A high overlap with HLA ligands derived from peripheral blood mononuclear cells (PBMCs) was detected most likely due to tumor-infiltrating inflammatory cells and therefore excluded from network analysis. Subsequent biological function analysis of HLA ligands by the GeneMANIA online platform showed enrichment for well established, but also novel, pathways and biological processes involved in carcinogenesis of RCC almost exclusively in malignant tissue samples. By exploring source proteins involved in these overrepresented pathways, we verified various known tumor-associated antigens (TAAs) for RCC (e.g., CA9, EGLN3, IGFBP3, MMP7, PAX2, VEGFA, or EGFR) but could also detect novel TAAs for RCC (e.g., PLOD2, LOX, ENPEP, or TGFBI). Some of these new TAAs had already been shown to elicit a T cell response in cancer patients. Thus, network analysis of HLA ligands provided a new platform for implementing personalized, multipeptide vaccines with potentially synergistic antitumor effects.
Collapse
Affiliation(s)
- Martin G Klatt
- Department of Hematology and Oncology, University of Tübingen , Tübingen, Germany
| | - Daniel J Kowalewski
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), DKFZ Partner Site, Tübingen, Germany
| | - Heiko Schuster
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), DKFZ Partner Site, Tübingen, Germany
| | - Moreno Di Marco
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), DKFZ Partner Site, Tübingen, Germany
| | | | - Arnulf Stenzl
- Department of Urology, University of Tübingen , Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen , Tübingen, Germany
| | - Stefan Stevanović
- Institute for Cell Biology, Department of Immunology, University of Tübingen , Tübingen, Germany
| |
Collapse
|
31
|
Anastasopoulou EA, Voutsas IF, Papamichail M, Baxevanis CN, Perez SA. MHC class II tetramer analyses in AE37-vaccinated prostate cancer patients reveal vaccine-specific polyfunctional and long-lasting CD4(+) T-cells. Oncoimmunology 2016; 5:e1178439. [PMID: 27622033 DOI: 10.1080/2162402x.2016.1178439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/31/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022] Open
Abstract
Realizing the basis for generating long-lasting clinical responses in cancer patients after therapeutic vaccinations provides the means to further ameliorate clinical efficacy. Peptide cancer vaccines stimulating CD4(+) T helper cells are often promising for inducing immunological memory and persistent CD8(+) cytotoxic T cell responses. Recent reports from our clinical trial with the AE37 vaccine, which is a HER2 hybrid polypeptide, documented its efficacy to induce CD4(+) T cell immunity, which was associated with clinical improvements preferentially among HLA-DRB1*11(+) prostate cancer patients. Here, we performed in-depth investigation of the CD4(+) T cell response against the AE37 vaccine. We used the DR11/AE37 tetramer in combination with multicolor flow cytometry to identify and characterize AE37-specific CD4(+) T cells regarding memory and Tregs phenotype in HLA-DRB1*11(+) vaccinated patients. To verify vaccine-specific immunological memory in vivo, we also assessed AE37-specific CD4(+) T cells in defined CD4(+) memory subsets by cell sorting. Finally, vaccine-induced AE37-specific CD4(+) T cells were assessed regarding their functional profile. AE37-specific memory CD4(+) T cells could be detected in peptide-stimulated cultures from prostate cancer patients following vaccination even 4 y post-vaccination. The vast majority of vaccine-induced AE37-specific CD4(+) T cells exhibited a multifunctional, mostly Th1 cytokine signature, with the potential of granzyme B production. In contrast, we found relatively low frequencies of Tregs among AE37-specific CD4(+) T cells. This is the first report on the identification of vaccine-induced HER2-specific multifunctional long-lasting CD4(+) T cells in vaccinated prostate cancer patients.
Collapse
Affiliation(s)
| | - Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| |
Collapse
|
32
|
Becht E, Giraldo NA, Germain C, de Reyniès A, Laurent-Puig P, Zucman-Rossi J, Dieu-Nosjean MC, Sautès-Fridman C, Fridman WH. Immune Contexture, Immunoscore, and Malignant Cell Molecular Subgroups for Prognostic and Theranostic Classifications of Cancers. Adv Immunol 2016; 130:95-190. [DOI: 10.1016/bs.ai.2015.12.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Dubinski D, Wölfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol 2015; 18:807-18. [PMID: 26578623 DOI: 10.1093/neuonc/nov280] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of myeloid cells that are significantly expanded in cancer patients and are associated with tumor progression. METHODS Multicolor flow cytometry was used to study the frequency, phenotype, and function of MDSCs in peripheral blood and freshly resected tumors of 52 participants with primary glioblastoma (GBM). RESULTS The frequency of CD14(high)CD15(pos) monocytic and CD14(low)CD15(pos) granulocytic MDSCs was significantly higher in peripheral blood of GBM participants compared with healthy donors. The majority of granulocytic MDSCs consisted of CD14(low)CD15(high) neutrophilic MDSCs with high T-cell suppressive capacities. At the tumor side, we found an increase in CD14(high)CD15(pos) monocytic MDSCs and high frequencies of CD14(low)CD15(pos) granulocytic MDSCs that displayed an activated phenotype with downregulation of CD16 and upregulation of HLA-DR molecules, which did not inhibit T-cell proliferative responses in vitro. However, a strong association between granulocytic MDSCs and CD4(+) effector memory T-cells (TEM) within the tumors was detected. Tumor-derived CD4(+) TEM expressed high levels of PD-1 when compared with their blood-derived counterparts and were functionally exhausted. The respective ligand, PD-L1, was significantly upregulated on tumor-derived MDSCs, and T-cell co-culture experiments confirmed that glioma-infiltrating MDSCs can induce PD-1 expression on CD4(+) TEM. CONCLUSIONS Our findings provide a detailed characterization of different MDSC subsets in GBM patients and indicate that both granulocytic MDSCs in peripheral blood and at the tumor site play a major role in GBM-induced T-cell suppression.
Collapse
Affiliation(s)
- Daniel Dubinski
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Johannes Wölfer
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Martin Hasselblatt
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Tilman Schneider-Hohendorf
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Walter Stummer
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Heinz Wiendl
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| | - Oliver M Grauer
- Department of Neurology, University Hospital of Regensburg, Regensburg, Germany (D.D., U.B.); Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany (J.W., W.S.); Institute of Neuropathology, University Hospital of Muenster, Muenster, Germany (M.H.); Department of Neurology, University Hospital of Muenster, Muenster, Germany (T.S.-H., H.W., O.M.G.)
| |
Collapse
|
34
|
Thomas JS, Kabbinavar F. Metastatic clear cell renal cell carcinoma: A review of current therapies and novel immunotherapies. Crit Rev Oncol Hematol 2015; 96:527-33. [PMID: 26299335 DOI: 10.1016/j.critrevonc.2015.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 06/05/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022] Open
Abstract
Treatment of metastatic renal cell carcinoma (mRCC) has changed dramatically in the past 10 years, largely due to advances in understanding of tumor biology. A number of targeted therapies have been shown to improve progression free survival and overall survival as compared to nonspecific immunotherapy. Despite the success of targeted therapies, they have not produced durable responses that have been seen historically with immunotherapy such as IL-2 (interleukin 2) and IFN-α (interferon). The promise of durable responses has caused some to shift research focus from targeted therapies to novel immunotherapies. This article reviews the literature behind the current targeted therapies and describes several novel approaches to immunotherapy that are in various phases of development.
Collapse
Affiliation(s)
- Jacob S Thomas
- University of California, Los Angeles, 924 Westwood Blvd. Suite 1050, Los Angeles, CA 90023-7207, USA
| | - Fairooz Kabbinavar
- University of California, Los Angeles, 924 Westwood Blvd. Suite 1050, Los Angeles, CA 90023-7207, USA.
| |
Collapse
|
35
|
Schwartzkopff S, Woyciechowski S, Aichele U, Flecken T, Zhang N, Thimme R, Pircher H. TGF-β downregulates KLRG1 expression in mouse and human CD8(+) T cells. Eur J Immunol 2015; 45:2212-7. [PMID: 26014037 DOI: 10.1002/eji.201545634] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
The inhibitory receptor killer cell lectin-like receptor G1 (KLRG1) and the integrin αE (CD103) are expressed by CD8(+) T cells and both are specific for E-cadherin. However, KLRG1 ligation by E-cadherin inhibits effector T-cell function, whereas binding of CD103 to E-cadherin enhances cell-cell interaction and promotes target cell lysis. Here, we demonstrate that KLRG1 and CD103 expression in CD8(+) T cells from untreated and virus-infected mice are mutually exclusive. Inverse correlation of KLRG1 and CD103 expression was also found in human CD8(+) T cells-infiltrating hepatocellular carcinomas. As TGF-β is known to induce CD103 expression in CD8(+) T cells, we examined whether this cytokine also regulates KLRG1 expression. Indeed, our data further reveal that TGF-β signaling in mouse as well as in human CD8(+) T cells downregulates KLRG1 expression. This finding provides a rationale for the reciprocal expression of KLRG1 and CD103 in different CD8(+) T-cell subsets. In addition, it points to the limitation of KLRG1 as a marker for terminally differentiated CD8(+) T cells if lymphocytes from tissues expressing high levels of TGF-β are analyzed.
Collapse
Affiliation(s)
- Sabrina Schwartzkopff
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Sandra Woyciechowski
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Ulrike Aichele
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias Flecken
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany.,Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Germany
| | - Nu Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Lin L, Finak G, Ushey K, Seshadri C, Hawn TR, Frahm N, Scriba TJ, Mahomed H, Hanekom W, Bart PA, Pantaleo G, Tomaras GD, Rerks-Ngarm S, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Michael NL, Kim JH, Robb ML, O'Connell RJ, Karasavvas N, Gilbert P, C De Rosa S, McElrath MJ, Gottardo R. COMPASS identifies T-cell subsets correlated with clinical outcomes. Nat Biotechnol 2015; 33:610-6. [PMID: 26006008 PMCID: PMC4569006 DOI: 10.1038/nbt.3187] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 03/04/2015] [Indexed: 11/09/2022]
Abstract
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.
Collapse
Affiliation(s)
- Lin Lin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kevin Ushey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chetan Seshadri
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Thomas R Hawn
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Willem Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Jaranit Kaewkungwal
- Data Management Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Thai Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Ratchathewi, Bangkok, Thailand
| | - Punnee Pitisuttithum
- Vaccine Trials Center, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Merlin L Robb
- US Army Military HIV Research Program, Walter Reed Army Institute of Research; Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Robert J O'Connell
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Nicos Karasavvas
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Peter Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stephen C De Rosa
- 1] Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [2] Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - M Juliana McElrath
- 1] Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [2] Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA. [3] Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
37
|
Kim CS, Kim Y, Kwon T, Yoon JH, Kim KH, You D, Hong JH, Ahn H, Jeong IG. Regulatory T cells and TGF-β1 in clinically localized renal cell carcinoma: Comparison with age-matched healthy controls. Urol Oncol 2015; 33:113.e19-25. [DOI: 10.1016/j.urolonc.2014.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/17/2014] [Accepted: 11/09/2014] [Indexed: 12/24/2022]
|
38
|
Harshman LC, Drake CG, Choueiri TK. PD-1 blockade in renal cell carcinoma: to equilibrium and beyond. Cancer Immunol Res 2014; 2:1132-41. [PMID: 25480555 PMCID: PMC4695990 DOI: 10.1158/2326-6066.cir-14-0193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The past several years have witnessed a resurgence of interest in cancer immunotherapy. The development of blocking antibodies against the inhibitory programmed death-1 (PD-1) pathway represents a clinical breakthrough in the treatment of solid tumors such as melanoma, and these agents show great promise in renal cell carcinoma (RCC). The early data have been surprising in that they demonstrate that blockade of a single immune checkpoint can elicit objective responses in patients with RCC, despite the recognized complexity of the immunosuppressive tumor microenvironment. Reinvigorating the patient's own immune cells to reactivate and to target the tumor has the potential advantages of more selective killing and thus decreased toxicity. In addition, checkpoint blockade immunotherapy has the advantage of inducing a memory response that is unattainable with our current cytotoxic and targeted therapies. This Crossroads overview will highlight the emerging investigation of PD-1 blockade in RCC and how this T cell-targeted strategy may thwart the tumor's escape mechanisms and shift the immune system/tumor balance back to a state of equilibrium and even to tumor elimination.
Collapse
Affiliation(s)
- Lauren C Harshman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Charles G Drake
- Department of Oncology and the Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
39
|
Triozzi PL, Schoenfield L, Plesec T, Saunthararajah Y, Tubbs RR, Singh AD. Molecular profiling of primary uveal melanomas with tumor-infiltrating lymphocytes. Oncoimmunology 2014; 8:e947169. [PMID: 31646061 DOI: 10.4161/21624011.2014.947169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/18/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
In contrast to other cancers, the presence of tumor-infiltrating lymphocytes (TILs) in uveal melanoma is associated with a poor prognosis. However, how TILs may promote disease progression and what regulates their infiltration has not yet been established. To address these clinically relevant outstanding questions, T cell, immune regulatory, and chemokine gene expression profiles of 57 enucleated uveal melanoma tumors were compared, encompassing 27 with TILs and 30 without,. Tumors with infiltrating lymphocytes expressed more CD8A mRNA, as well as IFNG, TGFB1, and FOXP3 transcripts. Other T helper associated cytokines and T helper transcription factors were not differentially expressed, nor were mediators of lymphocyte cytotoxicity. The immune inhibitors INDO, PDCA1, CTLA4, and LAG3, and the non-classical MHC Class I target of CD8+ T regulatory cells, HLA‑E, were significantly higher in tumors with TILs. FAS was also significantly higher. The C-C chemokine ligands CCL4, CCL5, and CCL20 were higher in tumors with TILs. Levels of CCL5 were most strongly correlated with levels of CD8A. Chemokine receptors were not differentially expressed. Molecular profiling of uveal melanoma tumors with TILs supports the existence of an immunosuppressive tumor microenvironment and suggests roles for CD8+ regulatory T cells, as well as specific chemokines, in fostering uveal melanoma disease progression.
Collapse
Affiliation(s)
- Pierre L Triozzi
- Taussig Cancer Institute; Cleveland Clinic Foundation; Cleveland, OH USA
| | - Lynn Schoenfield
- Department of Anatomic Pathology; Cleveland Clinic Foundation; Cleveland, OH USA
| | - Thomas Plesec
- Department of Anatomic Pathology; Cleveland Clinic Foundation; Cleveland, OH USA
| | | | - Raymond R Tubbs
- Department of Molecular Pathology; Cleveland Clinic Foundation; Cleveland, OH USA
| | - Arun D Singh
- Cole Eye Institute; Cleveland Clinic Foundation; Cleveland, OH USA
| |
Collapse
|
40
|
Dannenmann SR, Thielicke J, Stöckli M, Matter C, von Boehmer L, Cecconi V, Hermanns T, Hefermehl L, Schraml P, Moch H, Knuth A, van den Broek M. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology 2014; 2:e23562. [PMID: 23687622 PMCID: PMC3655740 DOI: 10.4161/onci.23562] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although malignant cells can be recognized and controlled by the immune system, in patients with clinically apparent cancer immunosurveillance has failed. To better understand local immunoregulatory processes that impact on cancer progression, we correlated intratumoral immunological profiles with the survival of patients affected by primary clear cell renal cell carcinoma (ccRCC). A retrospective analysis of 54 primary ccRCC samples for 31 different immune response-related transcripts, revealed a negative correlation of CD68 (a marker of tumor-associated macrophages, TAMs) and FOXP3 (a marker of regulatory T cells, Tregs) with survival. The subsequent analysis of 12 TAM-related transcripts revealed an association between the genes coding for CD163, interferon regulatory factor 4 (IRF4) and fibronectin 1 (FN1), all of which have been linked to the M2 TAM phenotype, with reduced survival and increased tumor stage, whereas the opposite was the case for the M1-associated gene coding for inducible nitric oxide synthetase (iNOS). The M2 signature of (CD68+) TAMs was found to correlate with CD163 expression, as determined in prospectively collected fresh ccRCC tissue samples. Upon co-culture with autologous tumor cells, CD11b+ cells isolated from paired blood samples expressed CD163 and other M2-associated proteins, suggesting that the malignant cells promote the accumulation of M2 TAMs. Furthermore, the tumor-associated milieu as well as isolated TAMs induced the skewing of autologous, blood-derived CD4+ T cells toward a more immunosuppressive phenotype, as shown by decreased production of effector cytokines, increased production of interleukin-10 (IL-10) and enhanced expression of the co-inhibitory molecules programmed death 1 (PD-1) and T-cell immunoglobulin mucin 3 (TIM-3). Taken together, our data suggest that ccRCC progressively attracts macrophages and induces their skewing into M2 TAMs, in turn subverting tumor-infiltrating T cells such that immunoregulatory functions are increased at the expense of effector functions.
Collapse
|
41
|
Sun W, Li WJ, Fu QL, Wu CY, Lin JZ, Zhu XL, Hou WJ, Wei Y, Wen YH, Wang YJ, Wen WP. Functionally distinct subsets of CD4⁺ regulatory T cells in patients with laryngeal squamous cell carcinoma are indicative of immune deregulation and disease progression. Oncol Rep 2014; 33:354-62. [PMID: 25333227 DOI: 10.3892/or.2014.3553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/07/2014] [Indexed: 11/05/2022] Open
Abstract
CD4+ regulatory T cells (Tregs) mediate immune tolerance in laryngeal squamous cell carcinoma (LSCC). However, Tregs are functionally heterogeneous. Recently, we reported that three distinct Treg subsets (resting Tregs, activated Tregs and cytokine-secreting CD45RA-Foxp3lowCD4+ T cells) vary in the peripheral circulation of patients with head and neck squamous cell carcinoma (HNSCC); however, the potential implication of these Treg subsets in LSCC immunity is unclear. Here, we report that activated Tregs and cytokine‑secreting CD45RA-Foxp3lowCD4+ T cells were increased in LSCC patients compared with healthy donors (HD) (p<0.001, p<0.001), whereas resting Tregs were decreased (p<0.001). Activated Tregs inhibited the proliferation of CD4+CD25- T cells (p<0.001) and secreted lower levels of interleukin-2 (p<0.001), interferon-γ (p<0.001) and tumor necrosis factor-α (p<0.001) compared with the cytokine-secreting CD45RA-Foxp3lowCD4+ T cells. Importantly, activated Treg prevalence was correlated with tumor stage (p=0.001) and nodal status (p=0.007). The prevalence of naïve CD4+ (p<0.001), naïve CD8+ (p=0.002), and Th1 T-cell subsets (p<0.001, p<0.001) was decreased in the LSCC patients. In conclusion, our findings showed that activated Tregs with suppressive activity are a distinct subset of Tregs in LSCC, and correlate with disease progression. Several immune system abnormalities in LSCC patients are represented by expansion of functionally activated Tregs, both in the circulation and tumor microenvironment along with decreased frequencies of naïve T-cell populations and Th1-cell populations.
Collapse
Affiliation(s)
- Wei Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wei-Jin Li
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qing-Ling Fu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Chang-You Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ji-Zhen Lin
- Department of Otorhinolaryngology Head and Neck Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Xiao-Lin Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wei-Jian Hou
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yi Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yi-Hui Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yue-Jian Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Foshan, Foshan, Guangdong, P.R. China
| | - Wei-Ping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
42
|
Fridman WH, Remark R, Goc J, Giraldo NA, Becht E, Hammond SA, Damotte D, Dieu-Nosjean MC, Sautès-Fridman C. The immune microenvironment: a major player in human cancers. Int Arch Allergy Immunol 2014; 164:13-26. [PMID: 24852691 DOI: 10.1159/000362332] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a major public health issue and figures among the leading causes of death in the world. Cancer development is a long process, involving the mutation, amplification or deletion of genes and chromosomal rearrangements. The transformed cells change morphologically, enlarge, become invasive and finally detach from the primary tumor to metastasize in other organs through the blood and/or lymph. During this process, the tumor cells interact with their microenvironment, which is complex and composed of stromal and immune cells that penetrate the tumor site via blood vessels and lymphoid capillaries. All subsets of immune cells can be found in tumors, but their respective density, functionality and organization vary from one type of tumor to another. Whereas inflammatory cells play a protumoral role, there is a large body of evidence of effector memory T cells controlling tumor invasion and metastasis. Thus, high densities of memory Th1/CD8 cytotoxic T cells in the primary tumors correlate with good prognosis in most tumor types. Tertiary lymphoid structures, which contain mature dendritic cells (DC) in a T cell zone, proliferating B cells and follicular DC, are found in the tumor stroma and they correlate with intratumoral Th1/CD8 T cell and B cell infiltration. Eventually, tumors undergo genetic and epigenetic modifications that allow them to escape being controlled by the immune system. This comprehensive review describes the immune contexture of human primary and metastatic tumors, how it impacts on patient outcomes and how it could be used as a predictive biomarker and guide immunotherapies.
Collapse
Affiliation(s)
- W H Fridman
- Cancer, Immune Control and Escape, UMRS1138, Cordeliers Research Center, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sun W, Li WJ, Wu CY, Zhong H, Wen WP. CD45RA-Foxp3high but not CD45RA+Foxp3low suppressive T regulatory cells increased in the peripheral circulation of patients with head and neck squamous cell carcinoma and correlated with tumor progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:35. [PMID: 24761979 PMCID: PMC4022051 DOI: 10.1186/1756-9966-33-35] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/20/2014] [Indexed: 02/08/2023]
Abstract
Background T regulatory cells (Tregs) contribute to the progression of head and neck squamous cell carcinoma (HNSCC) by suppressing antitumor immunity. However, little is known regarding the functional heterogeneity of Tregs in HNSCC patients. Methods Using multicolor flow cytometry, the frequency of three Treg subsets, separated on the basis of CD45RA and Foxp3, from the peripheral circulation of newly-presenting HNSCC patients (19 oral cavity squamous cell carcinoma, 20 hypopharyngeal squamous cell carcinoma, 18 nasopharyngeal squamous cell carcinoma, 19 oropharyngeal squamous cell carcinoma, and 36 laryngeal squamous cell carcinoma) were assessed with regard to 31 healthy donors and clinicopathological features. Moreover, the functional capacity of each Treg subsets was evaluated based on CD45RA and CD25 expression. Results The frequency of Tregs in the peripheral circulation of HNSCC patients as a whole cohort was higher than in healthy donors (P < 0.0001). However, the frequency of Tregs was similar between patients with oral cavity squamous cell carcinoma and healthy donors (P = 0.269). Further dividing Tregs into three subsets based on Foxp3 and CD45RA expression revealed that the frequency of CD45RA-Foxp3high Tregs and CD45RA-Foxp3lowCD4+ T cells in patients with HNSCC developing from different subsites was higher than in healthy donors (P < 0.0001, P < 0.0001), whereas the frequency of CD45RA+Foxp3low Tregs was lower than in healthy donors (P < 0.0001). Functionally study revealed that CD45RA-CD25+++ Tregs significantly inhibit the proliferation of CD4+CD25- T cells (P < 0.001) and secrete lower levels of cytokines (P < 0.01) compared with CD45RA-CD25++CD4+ T cells. Importantly, the frequency of CD45RA-Foxp3high Tregs positively correlate with tumor stage (P < 0.0001) and nodal status (P < 0.0001). Conclusions CD45RA-Foxp3high Tregs increase in the peripheral circulation of HNSCC patients, and correlate with tumor stage and nodal status; suggesting a role in tumor progression which may be manipulated by future immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Wei-Ping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Sun Yat-sen University, 2nd Zhongshan Road 58#, Guangzhou 510080, Guangdong, P,R, China.
| |
Collapse
|
44
|
Tomita Y, Yuno A, Tsukamoto H, Senju S, Yoshimura S, Osawa R, Kuroda Y, Hirayama M, Irie A, Hamada A, Jono H, Yoshida K, Tsunoda T, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of CDCA1-derived long peptides bearing both CD4+ and CD8+ T-cell epitopes: CDCA1-specific CD4+ T-cell immunity in cancer patients. Int J Cancer 2014; 134:352-66. [PMID: 24734272 DOI: 10.1002/ijc.28376] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We recently identified a novel cancer-testis antigen, cell division cycle associated 1 (CDCA1) using genome-wide cDNA microarray analysis, and CDCA1-derived cytotoxic T lymphocyte (CTL)-epitopes. In this study, we attempted to identify CDCA1-derived long peptides (LPs) that induce both CD4+ helper T (Th) cells and CTLs. We combined information from a recently developed computer algorithm predicting HLA class II-binding peptides with CDCA1-derived CTL-epitope sequences presented by HLA-A2 (A*02:01) or HLA-A24 (A*24:02) to select candidate CDCA1-LPs encompassing both Th cell epitopes and CTL-epitopes. We studied the immunogenicity of CDCA1-LPs and the cross-priming potential of LPs bearing CTL-epitopes in both human in vitro and HLA-class I transgenic mice in vivo. Then we analyzed the Th cell response to CDCA1 in head-and-neck cancer (HNC) patients before and after vaccination with a CDCA1-derived CTL-epitope peptide using IFN-γ enzyme-linked immunospot assays. We identified two CDCA1-LPs, CDCA1(39–64)-LP and CDCA1(55–78)-LP, which encompass naturally processed epitopes recognized by Th cells and CTLs. CDCA1-specific CTLs were induced through cross-presentation of CDCA1-LPs in vitro and in vivo. In addition, CDCA1-specific Th cells enhanced induction of CDCA1-specific CTLs. Furthermore, significant frequencies of CDCA1-specific Th cell responses were detected after short-term in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with CDCA1-LPs in HNC patients (CDCA1(39–64)-LP, 74%; CDCA1(55–78)-LP, 68%), but not in healthy donors. These are the first results demonstrating the presence of CDCA1-specific Th cell responses in HNC patients and underline the possible utility of CDCA1-LPs for propagation of both CDCA1-specific Th cells and CTLs.
Collapse
|
45
|
Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Imamura Y, Yatsuda J, Sayem MA, Irie A, Hamada A, Jono H, Yoshida K, Tsunoda T, Daigo Y, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of immunogenic LY6K long peptide encompassing both CD4 + and CD8 + T-cell epitopes and eliciting CD4 + T-cell immunity in patients with malignant disease. Oncoimmunology 2014; 3:e28100. [PMID: 25340007 PMCID: PMC4203508 DOI: 10.4161/onci.28100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Identification of peptides that activate both tumor-specific helper T (Th) cells and cytotoxic T lymphocytes (CTLs) are important for the induction of effective antitumor immune responses. We focused on a long peptide (LP) derived from lymphocyte antigen 6 complex locus K (LY6K) encompassing both candidate Th epitopes and a known CTL epitope. Using IFNγ ELISPOT assays as a marker of activated T cells, we studied the immunogenicity and cross-priming potential of LY6K-LP, assaying human immune cell responses in vitro and immunologic activities in HLA-A24 transgenic mice in vivo. We identified LY6K172–191-LP as an effective immunogen spanning naturally processed epitopes recognized by T helper type 1 (Th1) cells and CTLs. LY6K-specific CTLs were induced through cross-presentation of LY6K172–191-LP in vitro and in vivo. In addition, LY6K172–191-LP enhanced induction of LY6K-specific CTLs among the peripheral blood mononuclear cells (PBMCs) of head-and-neck malignant tumor (HNMT) patients. LY6K172–191-LP-specific Th1 immunologic response following 1 week in vitro stimulation of PBMCs with LY6K172–191-LP were detected in 16 of 21 HNMT patients (76%) vaccinated with CTL-epitope peptides and 1 of 11 HNMT patients (9%) prior to vaccination, but not in 9 healthy donors. Our results are the first to demonstrate the presence of LY6K-specific Th1 cell responses in HNMT patients and underscore the possible utility of LY6K172–191-LP for the induction and propagation of both LY6K-specific Th1 cells and CTLs.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yasuhiro Kuroda
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yuya Imamura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Junji Yatsuda
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Mohammad Abu Sayem
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Biotechnology and Genetic Engineering; Mawlana Bhashani Science and Technology University; Tangail, Bangladesh
| | - Atsushi Irie
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Akinobu Hamada
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan
| | - Koji Yoshida
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; OncoTherapy Science Incorporation; Research and Development Division; Kanagawa, Japan
| | - Takuya Tsunoda
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; OncoTherapy Science Incorporation; Research and Development Division; Kanagawa, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; Department of Medical Oncology and Cancer Center; Shiga University of Medical Science; Otsu, Japan
| | - Hirotsugu Kohrogi
- Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yusuke Nakamura
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Medicine; University of Chicago; Chicago, IL USA
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| |
Collapse
|
46
|
Monzon JG, Heng DYC. Management of metastatic kidney cancer in the era of personalized medicine. Crit Rev Clin Lab Sci 2014; 51:85-97. [PMID: 24450515 DOI: 10.3109/10408363.2013.869544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patients with localized renal cell cancer (RCC) are often cured following surgical resection. However, a significant proportion of patients will experience recurrence or present with metastatic disease at distant sites and may be deemed incurable. The worldwide incidence of RCC is rising, affecting more than 271,000 people and resulting in 116,000 deaths each year. Unfortunately, advanced RCC is typically resistant to classical chemotherapy and radiotherapy. Previously, non-specific immunotherapies such as interleukin-2 and interferon were used in hopes of improving cancer immunity, leading to rare but durable responses. However, enthusiasm for these immunotherapies has waned due to limited patient responses, their excessive toxicities, and the emergence of alternative targeted therapies that have resulted in improved clinical endpoints for patients with metastatic RCC (mRCC). Strides in targeted treatment can be attributed to an improved understanding of the molecular underpinnings that cause and drive the progression of renal cell cancers. More recently, interest in immunotherapies has resurfaced, as agents inhibiting specific checkpoints involved in cancer immune evasion have demonstrated promising activity in patients with mRCC. Here we review the novel targeted agents, biomarkers and immunotherapies that promise to change the clinical outcomes for patients with advanced RCC.
Collapse
Affiliation(s)
- Jose G Monzon
- Department of Medical Oncology, Tom Baker Cancer Center, University of Calgary , Calgary, AB , Canada
| | | |
Collapse
|
47
|
Bedke J, Stenzl A. Immunotherapeutic strategies for the treatment of renal cell carcinoma: where are we now? Expert Rev Anticancer Ther 2013; 13:1399-408. [PMID: 24215158 DOI: 10.1586/14737140.2013.856761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunotherapy with cytokines was the first effective treatment in metastatic renal cell carcinoma (mRCC). Long-term responders and complete remissions were observed, but efficacy in the overall population was limited with the consequence that targeted agents replaced cytokines. The discovery of tumor associated antigens as direct targets paved the way from theses rather unspecific to specific immunotherapeutic strategies, which are discussed in this review. Autologous or dendritic cell (DC) based tumor vaccination with vitespen or AGS-003, adoptive T-cell transfer and synthetic peptide vaccination with IMA901 are new and promising approaches. Besides that the more passive strategies of antibody dependent cytotoxicity with the VEGF antibody bevacizumab or the carbonic anhydrase IX antibody girentuximab are discussed. Immunomodulation by cyclophosphamide, tyrosine kinase inhibitors or nivolumab, which targets the PD-1 axis, further promote T-cell activation and combinatory strategies with these agents are outlined.
Collapse
Affiliation(s)
- Jens Bedke
- Department of Urology, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | | |
Collapse
|
48
|
Sittig SP, Køllgaard T, Grønbæk K, Idorn M, Hennenlotter J, Stenzl A, Gouttefangeas C, Thor Straten P. Clonal expansion of renal cell carcinoma-infiltrating T lymphocytes. Oncoimmunology 2013; 2:e26014. [PMID: 24228230 PMCID: PMC3820815 DOI: 10.4161/onci.26014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022] Open
Abstract
T lymphocytes can mediate the destruction of cancer cells by virtue of their ability to recognize tumor-derived antigenic peptides that are presented on the cell surface in complex with HLA molecules and expand. Thus, the presence of clonally expanded T cells within neoplastic lesions is an indication of ongoing HLA-restricted T cell-mediated immune responses. Multiple tumors, including renal cell carcinomas (RCCs), are often infiltrated by significant amounts of T cells, the so-called tumor-infiltrating lymphocytes (TILs). In the present study, we analyzed RCC lesions (n = 13) for the presence of expanded T-cell clonotypes using T-cell receptor clonotype mapping. Surprisingly, we found that RCCs comprise relatively low numbers of distinct expanded T-cell clonotypes as compared with melanoma lesions. The numbers of different T-cell clonotypes detected among RCC-infiltrating lymphocytes were in the range of 1–17 (median = 5), and in several patients, the number of clonotypes expanded within tumor lesions resembled that observed among autologous peripheral blood mononuclear cells. Moreover, several of these clonotypes were identical in TILs and PBMCs. Flow cytometry data demonstrated that the general differentiation status of CD8+ TILs differed from that of circulating CD8+ T cells. Furthermore, PD-1 and LAG-3 were expressed by a significantly higher percentage of CD8+ RCC-infiltrating lymphocytes as compared with PBMCs obtained from RCC patients or healthy individuals. Thus, CD8+ TILs display a differentiated phenotype and express activation markers as well as surface molecules associated with the inhibition of T-cell functions. However, TILs are characterized by a low amount of expanded T-cell clonotypes.
Collapse
Affiliation(s)
- Simone P Sittig
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital Herlev; Herlev, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Qi W, Huang X, Wang J. Correlation between Th17 cells and tumor microenvironment. Cell Immunol 2013; 285:18-22. [PMID: 24044962 DOI: 10.1016/j.cellimm.2013.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/05/2013] [Indexed: 12/12/2022]
Abstract
Since their identification in 2005, T helper (TH)17 cells have been proposed to play important roles in several human diseases, including various autoimmune conditions, inflammations, allergy, and tumors. Focusing on human studies, we review the current understanding of molecular interactions (IL-1β, IL-6, IL-23, IL-21 and TGF-β), the signaling pathway (STAT3→RORγt) and the migration (induced by CCR6/CCL20) that contribute to Th17 differentiation and function in tumor microenvironment. Furthermore, we also make a synthesis of contradictory conclusions as to the roles that these cells are playing in the process of tumourigenesis in order to provide guidance of Th17-targeted therapy in tumors.
Collapse
Affiliation(s)
- Wenhui Qi
- Department of Histology and Embryology, Tianjin Medical University, Tianjin, China
| | | | | |
Collapse
|
50
|
Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Irie A, Kawahara K, Yatsuda J, Hamada A, Jono H, Yoshida K, Tsunoda T, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 2013; 19:4508-20. [PMID: 23714729 DOI: 10.1158/1078-0432.ccr-13-0197] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify long peptides (LP) derived from a novel tumor-associated antigen (TAA), kinesin family member 20A (KIF20A), which induce tumor-specific T-helper type 1 (TH1) cells and CTLs. EXPERIMENTAL DESIGN We combined information from a recently developed computer algorithm predicting HLA class II-binding peptides with KIF20A-derived CTL-epitope sequences presented by HLA-A2 (A*02:01) or HLA-A24 (A*24:02) to select candidate promiscuous TH1-cell epitopes containing CTL epitopes. Peripheral blood mononuclear cells (PBMC) derived from healthy donors or patients with head-and-neck malignant tumor (HNMT) were used to study the immunogenicity of KIF20A-LPs, and the in vitro cross-priming potential of KIF20A-LPs bearing CTL epitopes. We used HLA-A24 transgenic mice to address whether vaccination with KIF20A-LP induces efficient cross-priming of CTLs in vivo. The TH1-cell response to KIF20A-LPs in HNMT patients receiving immunotherapy with TAA-derived CTL-epitope peptides was analyzed using IFN-γ enzyme-linked immunospot assays. RESULTS We identified promiscuous KIF20A-LPs bearing naturally processed epitopes recognized by CD4(+) T cells and CTLs. KIF20A-specific CTLs were induced by vaccination with a KIF20A-LP in vivo. KIF20A expression was detected in 55% of HNMT by immunohistochemistry, and significant frequencies of KIF20A-specific TH1 cell responses were detected after short-term in vitro stimulation of PBMCs with KIF20A-LPs in 50% of HNMT patients, but not in healthy donors. Furthermore, these responses were associated with KIF20A expression in HNMT tissues. CONCLUSIONS These are the first results showing the presence of KIF20A-specific TH1 cell responses in HNMT patients and underline the possible utility of KIF20A-LPs for propagation of TH1 cells and CTLs.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|