1
|
Ruzzi F, Riccardo F, Conti L, Tarone L, Semprini MS, Bolli E, Barutello G, Quaglino E, Lollini PL, Cavallo F. Cancer vaccines: Target antigens, vaccine platforms and preclinical models. Mol Aspects Med 2025; 101:101324. [PMID: 39631227 DOI: 10.1016/j.mam.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
This review provides a comprehensive overview of the evolving landscape of cancer vaccines, highlighting their potential to revolutionize tumor prevention. Building on the success of vaccines against virus-related cancers, such as HPV- and HBV-associated cervical and liver cancers, the current challenge is to extend these achievements to the prevention of non-viral tumors and the treatment of preneoplastic or early neoplastic lesions. This review analyzes the critical aspects of preventive anti-cancer vaccination, focusing on the choice of target antigens, the development of effective vaccine platforms and technologies, and the use of various model systems for preclinical testing, from laboratory rodents to companion animals.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Federica Riccardo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Laura Conti
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Lidia Tarone
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elisabetta Bolli
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Giuseppina Barutello
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Elena Quaglino
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy; IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138, Bologna, Italy.
| | - Federica Cavallo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy.
| |
Collapse
|
2
|
Cui L, Wang J, Orlando F, Giacconi R, Malavolta M, Bartozzi B, Galeazzi R, Giorgini G, Pesce L, Cardarelli F, Quagliarini E, Renzi S, Xiao S, Pozzi D, Provinciali M, Caracciolo G, Marchini C, Amici A. Enhancing Immune Responses against SARS-CoV-2 Variants in Aged Mice with INDUK: A Chimeric DNA Vaccine Encoding the Spike S1-TM Subunits. ACS OMEGA 2024; 9:34624-34635. [PMID: 39157118 PMCID: PMC11325517 DOI: 10.1021/acsomega.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
Currently available vaccines against COVID-19 showed high efficacy against the original strain of SARS-CoV-2 but progressively lower efficacy against new variants. In response to emerging SARS-CoV-2 strains, we propose chimeric DNA vaccines encoding the spike antigen, including a combination of selected key mutations from different variants of concern. We developed two DNA vaccines, pVAX-S1-TM-D614G and pVAX-S1-TM-INDUK (INDUK), encoding the SARS-CoV-2 S1 spike subunit in fusion with the transmembrane region that allows protein trimerization as predicted by in silico analysis. pVAX-S1-TM-D614G included the dominant D614G substitution, while the chimeric vaccine INDUK contained additional selected mutations from the Delta (E484Q and L452R) and Alpha (N501Y and A570D) variants. Considering that aging is a risk factor for severe disease and that suboptimal vaccine responses were observed in older individuals, the immunogenicity of pVAX-S1-TM-D614G and INDUK was tested in both young and aged C57BL/6 mice. Two vaccine doses were able to trigger significant anti-SARS-CoV-2 antibody production, showing neutralizing activity. ELISA tests confirmed that antibodies induced by pVAX-S1-TM-D614G and INDUK were able to recognize both Wuhan Spike and Delta variant Spike as trimers, while neutralizing antibodies were detected by an ACE2:SARS-CoV-2 Spike S1 inhibitor screening assay, designed to assess the capacity of antibodies to block the interaction between the viral spike S1 protein and the ACE2 receptor. Although antibody titer declined within six months, a third booster dose significantly increased the magnitude of humoral response, even in aged individuals, suggesting that immune recall can improve antibody response durability. The analysis of cellular responses demonstrated that vaccination with INDUK elicited an increase in the percentage of SARS-CoV-2-specific IFN-γ producing T lymphocytes in immunized young mice and TNF-α-producing T lymphocytes in both young and aged mice. These findings not only hold immediate promise for addressing evolving challenges in SARS-CoV-2 vaccination but also open avenues to refine strategies and elevate the effectiveness of next-generation vaccines.
Collapse
Affiliation(s)
- Lishan Cui
- School
of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Junbiao Wang
- School
of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Fiorenza Orlando
- Experimental
Animal Models for Aging Unit, Scientific Technological Area, IRRCS INRCA, 60100 Ancona, Italy
| | - Robertina Giacconi
- Advanced
Technology Center for Aging Research, IRCCS
INRCA, 60100Ancona, Italy
| | - Marco Malavolta
- Advanced
Technology Center for Aging Research, IRCCS
INRCA, 60100Ancona, Italy
| | - Beatrice Bartozzi
- Advanced
Technology Center for Aging Research, IRCCS
INRCA, 60100Ancona, Italy
| | - Roberta Galeazzi
- Department
of Life and Environmental Sciences, Marche
Polytechnic University, 60131 Ancona, Italy
| | - Giorgia Giorgini
- Department
of Life and Environmental Sciences, Marche
Polytechnic University, 60131 Ancona, Italy
| | - Luca Pesce
- NEST
Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Cardarelli
- NEST
Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Erica Quagliarini
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Serena Renzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Siyao Xiao
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Daniela Pozzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Mauro Provinciali
- Experimental
Animal Models for Aging Unit, Scientific Technological Area, IRRCS INRCA, 60100 Ancona, Italy
| | - Giulio Caracciolo
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Cristina Marchini
- School
of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Augusto Amici
- School
of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
3
|
Vinayak S, Cecil DL, Disis ML. Vaccines for breast cancer prevention: Are we there yet? Mol Aspects Med 2024; 98:101292. [PMID: 38991631 DOI: 10.1016/j.mam.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Shaveta Vinayak
- University of Washington, Division of Oncology, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Denise L Cecil
- University of Washington, Division of Oncology, Seattle, WA, USA
| | - Mary L Disis
- University of Washington, Division of Oncology, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
4
|
Mina E, Wyart E, Sartori R, Angelino E, Zaggia I, Rausch V, Maldotti M, Pagani A, Hsu MY, Friziero A, Sperti C, Menga A, Graziani A, Hirsch E, Oliviero S, Sandri M, Conti L, Kautz L, Silvestri L, Porporato PE. FK506 bypasses the effect of erythroferrone in cancer cachexia skeletal muscle atrophy. Cell Rep Med 2023; 4:101306. [PMID: 38052214 PMCID: PMC10772350 DOI: 10.1016/j.xcrm.2023.101306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Skeletal muscle atrophy is a hallmark of cachexia, a wasting condition typical of chronic pathologies, that still represents an unmet medical need. Bone morphogenetic protein (BMP)-Smad1/5/8 signaling alterations are emerging drivers of muscle catabolism, hence, characterizing these perturbations is pivotal to develop therapeutic approaches. We identified two promoters of "BMP resistance" in cancer cachexia, specifically the BMP scavenger erythroferrone (ERFE) and the intracellular inhibitor FKBP12. ERFE is upregulated in cachectic cancer patients' muscle biopsies and in murine cachexia models, where its expression is driven by STAT3. Moreover, the knock down of Erfe or Fkbp12 reduces muscle wasting in cachectic mice. To bypass the BMP resistance mediated by ERFE and release the brake on the signaling, we targeted FKBP12 with low-dose FK506. FK506 restores BMP-Smad1/5/8 signaling, rescuing myotube atrophy by inducing protein synthesis. In cachectic tumor-bearing mice, FK506 prevents muscle and body weight loss and protects from neuromuscular junction alteration, suggesting therapeutic potential for targeting the ERFE-FKBP12 axis.
Collapse
Affiliation(s)
- Erica Mina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy; VIMM: Veneto Institute of Molecular Medicine, Padova, Italy
| | - Elia Angelino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Ivan Zaggia
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Valentina Rausch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Mara Maldotti
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Myriam Y Hsu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Division of Cell Fate Dynamics and Therapeutics, Department of Biosystems Science, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Alberto Friziero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; General Surgery 1, Padova University Hospital, Padova, Italy
| | - Cosimo Sperti
- General Surgery 2, Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, Padova University Hospital, Padova, Italy
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Andrea Graziani
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy; Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy; VIMM: Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Léon Kautz
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, University Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Laura Silvestri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy.
| |
Collapse
|
5
|
Ruiu R, Cossu C, Iacoviello A, Conti L, Bolli E, Ponzone L, Magri J, Rumandla A, Calautti E, Cavallo F. Cystine/glutamate antiporter xCT deficiency reduces metastasis without impairing immune system function in breast cancer mouse models. J Exp Clin Cancer Res 2023; 42:254. [PMID: 37770957 PMCID: PMC10540318 DOI: 10.1186/s13046-023-02830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The upregulation of antioxidant mechanisms is a common occurrence in cancer cells, as they strive to maintain balanced redox state and prevent oxidative damage. This includes the upregulation of the cystine/glutamate antiporter xCT, which plays a crucial role in protecting cancer cells from oxidative stress. Consequently, targeting xCT has become an attractive strategy for cancer treatment. However, xCT is also expressed by several types of immune cells where it has a role in proliferation and effector functions. In light of these observations, a comprehensive understanding of the specific role of xCT in the initiation and progression of cancer, as well as its potential impact on the immune system within the tumor microenvironment and the anti-tumor response, require further investigation. METHODS We generated xCTnull BALB/c mice to investigate the role of xCT in the immune system and xCTnull/Erbb2-transgenic BALB-neuT mice to study the role of xCT in a mammary cancer-prone model. We also used mammary cancer cells derived from BALB-neuT/xCTnull mice and xCTKO 4T1 cells to test the contribution of xCT to malignant properties in vitro and in vivo. RESULTS xCT depletion in BALB-neuT/xCTnull mice does not alter autochthonous tumor initiation, but tumor cells isolated from these mice display proliferation and redox balance defects in vitro. Although xCT disruption sensitizes 4T1 cells to oxidative stress, it does not prevent transplantable tumor growth, but reduces cell migration in vitro and lung metastasis in vivo. This is accompanied by an altered immune cell recruitment in the pre-metastatic niche. Finally, systemic depletion of xCT in host mice does not affect transplantable tumor growth and metastasis nor impair the proper mounting of both humoral and cellular immune responses in vivo. CONCLUSIONS xCT is dispensable for proper immune system function, thus supporting the safety of xCT targeting in oncology. Nevertheless, xCT is involved in several processes required for the metastatic seeding of mammary cancer cells, thus broadening the scope of xCT-targeting approaches.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Chiara Cossu
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Antonella Iacoviello
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Luca Ponzone
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Epithelial Stem Cell Biology and Signaling, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Jolanda Magri
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
- Laboratory of Immunotherapy, IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Alekya Rumandla
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
- Biocon Bristol Myers Squibb R&D Center, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bangalore, Karnataka, 560099, India
| | - Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Epithelial Stem Cell Biology and Signaling, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy.
| |
Collapse
|
6
|
Quagliarini E, Wang J, Renzi S, Cui L, Digiacomo L, Ferri G, Pesce L, De Lorenzi V, Matteoli G, Amenitsch H, Masuelli L, Bei R, Pozzi D, Amici A, Cardarelli F, Marchini C, Caracciolo G. Mechanistic Insights into the Superior DNA Delivery Efficiency of Multicomponent Lipid Nanoparticles: An In Vitro and In Vivo Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56666-56677. [PMID: 36524967 DOI: 10.1021/acsami.2c20019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.
Collapse
Affiliation(s)
- Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032Camerino, Italy
| | - Serena Renzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| | - Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032Camerino, Italy
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| | - Gianmarco Ferri
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Luca Pesce
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Valentina De Lorenzi
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Giulia Matteoli
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, 8010Graz, Austria
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00161Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133Rome, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032Camerino, Italy
| | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127Pisa, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032Camerino, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161Rome, Italy
| |
Collapse
|
7
|
HER2-Displaying M13 Bacteriophages induce Therapeutic Immunity against Breast Cancer. Cancers (Basel) 2022; 14:cancers14164054. [PMID: 36011047 PMCID: PMC9406369 DOI: 10.3390/cancers14164054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The high incidence and death rates of breast cancer make the development of new therapies an urgent need. The introduction into the clinic of the anti-HER2 monoclonal antibody trastuzumab considerably improved the overall survival and time-to-disease progression of patients with HER2-positive breast cancer. However, many patients do not benefit from it because of resistance to therapy. Cancer vaccines, by inducing into the patient an anti-cancer specific immunity, might represent an alternative immunotherapeutic approach, but despite promises, so far no anti-HER2 cancer vaccine has been approved for human use. In this study, we propose therapeutic phage-based vaccines, against HER2 and its aggressive isoform Δ16HER2, able to elicit a protective immunity and potentially capable of preventing relapse in HER2-positive breast cancer patients, even in those who develop trastuzumab resistance. Abstract The advent of trastuzumab has significantly improved the prognosis of HER2-positive (HER2+) breast cancer patients; nevertheless, drug resistance limits its clinical benefit. Anti-HER2 active immunotherapy represents an attractive alternative strategy, but effective immunization needs to overcome the patient’s immune tolerance against the self-HER2. Phage display technology, taking advantage of phage intrinsic immunogenicity, permits one to generate effective cancer vaccines able to break immune tolerance to self-antigens. In this study, we demonstrate that both preventive and therapeutic vaccination with M13 bacteriophages, displaying the extracellular (EC) and transmembrane (TM) domains of human HER2 or its Δ16HER2 splice variant on their surface (ECTM and Δ16ECTM phages), delayed mammary tumor onset and reduced tumor growth rate and multiplicity in ∆16HER2 transgenic mice, which are tolerant to human ∆16HER2. This antitumor protection correlated with anti-HER2 antibody production. The molecular mechanisms underlying the anticancer effect of vaccine-elicited anti-HER2 antibodies were analyzed in vitro against BT-474 human breast cancer cells, sensitive or resistant to trastuzumab. Immunoglobulins (IgG) purified from immune sera reduced cell viability mainly by impairing ERK phosphorylation and reactivating retinoblastoma protein function in both trastuzumab-sensitive and -resistant BT-474 cells. In conclusion, we demonstrated that phage-based HER2 vaccines impair mammary cancer onset and progression, opening new perspectives for HER2+ breast cancer treatment.
Collapse
|
8
|
Cui L, Renzi S, Quagliarini E, Digiacomo L, Amenitsch H, Masuelli L, Bei R, Ferri G, Cardarelli F, Wang J, Amici A, Pozzi D, Marchini C, Caracciolo G. Efficient Delivery of DNA Using Lipid Nanoparticles. Pharmaceutics 2022; 14:1698. [PMID: 36015328 PMCID: PMC9416266 DOI: 10.3390/pharmaceutics14081698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
DNA vaccination has been extensively studied as a promising strategy for tumor treatment. Despite the efforts, the therapeutic efficacy of DNA vaccines has been limited by their intrinsic poor cellular internalization. Electroporation, which is based on the application of a controlled electric field to enhance DNA penetration into cells, has been the method of choice to produce acceptable levels of gene transfer in vivo. However, this method may cause cell damage or rupture, non-specific targeting, and even degradation of pDNA. Skin irritation, muscle contractions, pain, alterations in skin structure, and irreversible cell damage have been frequently reported. To overcome these limitations, in this work, we use a microfluidic platform to generate DNA-loaded lipid nanoparticles (LNPs) which are then characterized by a combination of dynamic light scattering (DLS), synchrotron small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). Despite the clinical successes obtained by LNPs for mRNA and siRNA delivery, little is known about LNPs encapsulating bulkier DNA molecules, the clinical application of which remains challenging. For in vitro screening, LNPs were administered to human embryonic kidney 293 (HEK-293) and Chinese hamster ovary (CHO) cell lines and ranked for their transfection efficiency (TE) and cytotoxicity. The LNP formulation exhibiting the highest TE and the lowest cytotoxicity was then tested for the delivery of the DNA vaccine pVAX-hECTM targeting the human neoantigen HER2, an oncoprotein overexpressed in several cancer types. Using fluorescence-activated cell sorting (FACS), immunofluorescence assays and fluorescence confocal microscopy (FCS), we proved that pVAX-hECTM-loaded LNPs produce massive expression of the HER2 antigen on the cell membrane of HEK-293 cells. Our results provide new insights into the structure-activity relationship of DNA-loaded LNPs and pave the way for the access of this gene delivery technology to preclinical studies.
Collapse
Affiliation(s)
- Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Serena Renzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Laura Masuelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gianmarco Ferri
- National Enterprise for NanoScience and NanoTechnology (NEST), Scuola Normale Superiore, 56127 Pisa, Italy
| | - Francesco Cardarelli
- National Enterprise for NanoScience and NanoTechnology (NEST), Scuola Normale Superiore, 56127 Pisa, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Riccardo F, Tarone L, Camerino M, Giacobino D, Iussich S, Barutello G, Arigoni M, Conti L, Bolli E, Quaglino E, Merighi IF, Morello E, Dentini A, Ferrone S, Buracco P, Cavallo F. Antigen mimicry as an effective strategy to induce CSPG4-targeted immunity in dogs with oral melanoma: a veterinary trial. J Immunother Cancer 2022; 10:e004007. [PMID: 35580930 PMCID: PMC9114861 DOI: 10.1136/jitc-2021-004007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Melanoma is the most lethal form of skin cancer in humans. Conventional therapies have limited efficacy, and overall response is still unsatisfactory considering that immune checkpoint inhibitors induce lasting clinical responses only in a low percentage of patients. This has prompted us to develop a vaccination strategy employing the tumor antigen chondroitin sulfate proteoglycan (CSPG)4 as a target. METHODS To overcome the host's unresponsiveness to the self-antigen CSPG4, we have taken advantage of the conservation of CSPG4 sequence through phylogenetic evolution, so we have used a vaccine, based on a chimeric DNA molecule encompassing both human (Hu) and dog (Do) portions of CSPG4 (HuDo-CSPG4). We have tested its safety and immunogenicity (primary objectives), along with its therapeutic efficacy (secondary outcome), in a prospective, non-randomized, veterinary clinical trial enrolling 80 client-owned dogs with surgically resected, CSPG4-positive, stage II-IV oral melanoma. RESULTS Vaccinated dogs developed anti-Do-CSPG4 and Hu-CSPG4 immune response. Interestingly, the antibody titer in vaccinated dogs was significantly associated with the overall survival. Our data suggest that there may be a contribution of the HuDo-CSPG4 vaccination to the improvement of survival of vaccinated dogs as compared with controls treated with conventional therapies alone. CONCLUSIONS HuDo-CSPG4 adjuvant vaccination was safe and immunogenic in dogs with oral melanoma, with potential beneficial effects on the course of the disease. Thanks to the power of naturally occurring canine tumors as predictive models for cancer immunotherapy response, these data may represent a basis for the translation of this approach to the treatment of human patients with CSPG4-positive melanoma subtypes.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Immunogenicity of a xenogeneic multi-epitope HER2+ breast cancer DNA vaccine targeting the dendritic cell restricted antigen-uptake receptor DEC205. Vaccine 2022; 40:2409-2419. [DOI: 10.1016/j.vaccine.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
|
11
|
Macagno M, Bandini S, Bolli E, Bello A, Riccardo F, Barutello G, Merighi IF, Forni G, Lamolinara A, Del Pizzo F, Iezzi M, Cavallo F, Conti L, Quaglino E. Role of ADCC, CDC, and CDCC in Vaccine-Mediated Protection against Her2 Mammary Carcinogenesis. Biomedicines 2022; 10:biomedicines10020230. [PMID: 35203439 PMCID: PMC8869482 DOI: 10.3390/biomedicines10020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.
Collapse
Affiliation(s)
- Marco Macagno
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Elisabetta Bolli
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Amanda Bello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Giuseppina Barutello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Irene Fiore Merighi
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Guido Forni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
| | - Alessia Lamolinara
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Francesco Del Pizzo
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Manuela Iezzi
- CAST-Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (A.L.); (F.D.P.); (M.I.)
| | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| | - Elena Quaglino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.M.); (S.B.); (E.B.); (A.B.); (F.R.); (G.B.); (I.F.M.); (G.F.)
- Correspondence: (F.C.); (L.C.); (E.Q.)
| |
Collapse
|
12
|
Iezzi M, Quaglino E, Amici A, Lollini PL, Forni G, Cavallo F. DNA vaccination against oncoantigens: A promise. Oncoimmunology 2021; 1:316-325. [PMID: 22737607 PMCID: PMC3382874 DOI: 10.4161/onci.19127] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emerging evidence that DNA vaccines elicit a protective immune response in rodents, dogs and cancer patients, coupled with the US Food and Drug Administration (FDA) approval of an initial DNA vaccine to treat canine tumors is beginning to close the gap between the optimistic experimental data and their difficult application in a clinical setting. Here we review a series of conceptual and biotechnological advances that are working together to make DNA vaccines targeting molecules that play important roles during cancer progression (oncoantigens) a promise with near-term clinical impact.
Collapse
Affiliation(s)
- Manuela Iezzi
- Aging Research Centre; G. d'Annunzio University; Chieti, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Conti L, Bolli E, Di Lorenzo A, Franceschi V, Macchi F, Riccardo F, Ruiu R, Russo L, Quaglino E, Donofrio G, Cavallo F. Immunotargeting of the xCT Cystine/Glutamate Antiporter Potentiates the Efficacy of HER2-Targeted Immunotherapies in Breast Cancer. Cancer Immunol Res 2020; 8:1039-1053. [PMID: 32532810 DOI: 10.1158/2326-6066.cir-20-0082] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/16/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
Despite HER2-targeted therapies improving the outcome of HER2+ breast cancer, many patients experience resistance and metastatic progression. Cancer stem cells (CSC) play a role in this resistance and progression, thus combining HER2 targeting with CSC inhibition could improve the management of HER2+ breast cancer. The cystine-glutamate antiporter, xCT, is overexpressed in mammary CSCs and is crucial for their redox balance, self-renewal, and resistance to therapies, representing a potential target for breast cancer immunotherapy. We developed a combined immunotherapy targeting HER2 and xCT using the Bovine Herpes virus-4 vector, a safe vaccine that can confer immunogenicity to tumor antigens. Mammary cancer-prone BALB-neuT mice, transgenic for rat Her2, were immunized with the single or combined vaccines. Anti-HER2 vaccination slowed primary tumor growth, whereas anti-xCT vaccination primarily prevented metastasis formation. The combination of the two vaccines exerted a complementary effect by mediating the induction of cytotoxic T cells and of HER2 and xCT antibodies that induce antibody-dependent cell-mediated cytotoxicity and hinder cancer cell proliferation. Antibodies targeting xCT, but not those targeting HER2, directly affected CSC viability, self-renewal, and migration, inducing the antimetastatic effect of xCT vaccination. Our findings present a new therapy for HER2+ breast cancer, demonstrating that CSC immunotargeting via anti-xCT vaccination synergizes with HER2-directed immunotherapy.
Collapse
Affiliation(s)
- Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Francesca Macchi
- Department of Medical Veterinary Sciences, University of Parma, Parma, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Russo
- Department of Medical Veterinary Sciences, University of Parma, Parma, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Gaetano Donofrio
- Department of Medical Veterinary Sciences, University of Parma, Parma, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
14
|
Riccardo F, Barutello G, Petito A, Tarone L, Conti L, Arigoni M, Musiu C, Izzo S, Volante M, Longo DL, Merighi IF, Papotti M, Cavallo F, Quaglino E. Immunization against ROS1 by DNA Electroporation Impairs K-Ras-Driven Lung Adenocarcinomas . Vaccines (Basel) 2020; 8:vaccines8020166. [PMID: 32268572 PMCID: PMC7349290 DOI: 10.3390/vaccines8020166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of cancer death worldwide. Despite the introduction of tyrosine kinase inhibitors and immunotherapeutic approaches, there is still an urgent need for novel strategies to improve patient survival. ROS1, a tyrosine kinase receptor endowed with oncoantigen features, is activated by chromosomal rearrangement or overexpression in NSCLC and in several tumor histotypes. In this work, we have exploited transgenic mice harboring the activated K-Ras oncogene (K-RasG12D) that spontaneously develop metastatic NSCLC as a preclinical model to test the efficacy of ROS1 immune targeting. Indeed, qPCR and immunohistochemical analyses revealed ROS1 overexpression in the autochthonous primary tumors and extrathoracic metastases developed by K-RasG12D mice and in a derived transplantable cell line. As proof of concept, we have evaluated the effects of the intramuscular electroporation (electrovaccination) of plasmids coding for mouse- and human-ROS1 on the progression of these NSCLC models. A significant increase in survival was observed in ROS1-electrovaccinated mice challenged with the transplantable cell line. It is worth noting that tumors were completely rejected, and immune memory was achieved, albeit only in a few mice. Most importantly, ROS1 electrovaccination was also found to be effective in slowing the development of autochthonous NSCLC in K-RasG12D mice.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Angela Petito
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Chiara Musiu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Stefania Izzo
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Marco Volante
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), 10126 Torino, Italy;
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Mauro Papotti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| |
Collapse
|
15
|
An HER2 DNA vaccine with evolution-selected amino acid substitutions reveals a fundamental principle for cancer vaccine formulation in HER2 transgenic mice. Cancer Immunol Immunother 2019; 68:1143-1155. [PMID: 31177328 DOI: 10.1007/s00262-019-02333-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
Enhancement of endogenous immunity to tumor-associated self-antigens and neoantigens is the goal of preventive vaccination. Toward this goal, we compared the efficacy of the following HER2 DNA vaccine constructs: vaccines encoding wild-type HER2, hybrid HER2 vaccines consisting of human HER2 and rat Neu, HER2 vaccines with single residue substitutions and a novel human HER2 DNA vaccine, ph(es)E2TM. ph(es)E2TM was designed to contain five evolution-selected substitutions: M198V, Q398R, F425L, H473R and A622T that occur frequently in 12 primate HER2 sequences. These ph(es)E2TM substitutions score 0 to 1 in blocks substitutions matrix (BLOSUM), indicating minimal biochemical alterations. h(es)E2TM recombinant protein is recognized by a panel of anti-HER2 mAbs, demonstrating the preservation of HER2 protein structure. Compared to native human HER2, electrovaccination of HER2 transgenic mice with ph(es)E2TM induced a threefold increase in HER2-binding antibody (Ab) and elevated levels of IFNγ-producing T cells. ph(es)E2TM, but not pE2TM immune serum, recognized HER2 peptide p95 355LPESFDGDPASNTAP369, suggesting a broadening of epitope recognition induced by the minimally modified HER2 vaccine. ph(es)E2TM vaccination reduced tumor growth more effectively than wild-type HER2 or HER2 vaccines with more extensive modifications. The elevation of tumor immunity by ph(es)E2TM vaccination would create a favorable tumor microenvironment for neoantigen priming, further enhancing the protective immunity. The fundamental principle of exploiting evolution-selected amino acid substitutions is novel, effective and applicable to vaccine development in general.
Collapse
|
16
|
Cancer Vaccines Co-Targeting HER2/Neu and IGF1R. Cancers (Basel) 2019; 11:cancers11040517. [PMID: 30979001 PMCID: PMC6520928 DOI: 10.3390/cancers11040517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Human epidermal growth factor receptor 2 (HER2)/neu-driven carcinogenesis is delayed by preventive vaccines able to elicit autochthonous antibodies against HER2/neu. Since cooperation between different receptor tyrosine kinases (RTKs) can occur in human as well as in experimental tumors, we investigated the set-up of DNA and cell vaccines to elicit an antibody response co-targeting two RTKs: HER2/neu and the Insulin-like Growth Factor Receptor-1 (IGF1R). (2) Methods: Plasmid vectors carrying the murine optimized IGF1R sequence or the human IGF1R isoform were used as electroporated DNA vaccines. IGF1R plasmids were transfected in allogeneic HER2/neu-positive IL12-producing murine cancer cells to obtain adjuvanted cell vaccines co-expressing HER2/neu and IGF1R. Vaccination was administered in the preneoplastic stage to mice prone to develop HER2/neu-driven, IGF1R-dependent rhabdomyosarcoma. (3) Results: Electroporated DNA vaccines for murine IGF1R did not elicit anti-mIGF1R antibodies, even when combined with Treg-depletion and/or IL12, while DNA vaccines carrying the human IGF1R elicited antibodies recognizing only the human IGF1R isoform. Cell vaccines co-expressing HER2/neu and murine or human IGF1R succeeded in eliciting antibodies recognizing the murine IGF1R isoform. Cell vaccines co-targeting HER2/neu and murine IGF1R induced the highest level of anti-IGF1R antibodies and nearly significantly delayed the onset of spontaneous rhabdomyosarcomas. (4) Conclusions: Multi-engineered adjuvanted cancer cell vaccines can break the tolerance towards a highly tolerized RTK, such as IGF1R. Cell vaccines co-targeting HER2/neu and IGF1R elicited low levels of specific antibodies that slightly delayed onset of HER2/neu-driven, IGF1R-dependent tumors.
Collapse
|
17
|
De Giovanni C, Nanni P, Landuzzi L, Ianzano ML, Nicoletti G, Croci S, Palladini A, Lollini PL. Immune targeting of autocrine IGF2 hampers rhabdomyosarcoma growth and metastasis. BMC Cancer 2019; 19:126. [PMID: 30732578 PMCID: PMC6367747 DOI: 10.1186/s12885-019-5339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/31/2019] [Indexed: 11/18/2022] Open
Abstract
Background Insulin-like Growth Factor Receptor-1 (IGF1R) system sustains the genesis of rhabdomyosarcoma through IGF2 autocrine overexpression. While several IGF1R-targeted strategies have been investigated to interphere with rhabdomyosarcoma growth, no attempt to neutralize IGF2 has been reported. We therefore studied the possibility to hamper rhabdomyosarcoma growth with passive and active immune approaches targeting IGF2. Methods A murine model developing IGF2-overexpressing pelvic rhabdomyosarcoma, along with IGF2-independent salivary carcinoma, was used to investigate the efficacy and specificity of passive anti-IGFs antibody treatment. Active vaccinations with electroporated DNA plasmids encoding murine or human IGF2 were performed to elicit autochthonous anti-IGF2 antibodies. Vaccinated mice received the intravenous injection of rhabdomyosarcoma cells to study the effects of anti-IGF2 antibodies against developing metastases. Results Passive administration of antibodies neutralizing IGFs delayed the onset of IGF2-overexpressing rhabdomyosarcoma but not of IGF2-independent salivary carcinoma. A DNA vaccine against murine IGF2 did not elicit antibodies, even when combined with Treg-depletion, while a DNA vaccine encoding the human IGF2 gene elicited antibodies crossreacting with murine IGF2. Mice with anti-IGF2 antibodies were partially protected against the metastatic growth of IGF2-addicted rhabdomyosarcoma cells. Conclusions Immune targeting of autocrine IGF2 inhibited rhabdomyosarcoma genesis and metastatic growth.
Collapse
Affiliation(s)
- Carla De Giovanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Croci
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy.,Present address: Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy.
| |
Collapse
|
18
|
Bartolacci C, Andreani C, Curcio C, Occhipinti S, Massaccesi L, Giovarelli M, Galeazzi R, Iezzi M, Tilio M, Gambini V, Wang J, Marchini C, Amici A. Phage-Based Anti-HER2 Vaccination Can Circumvent Immune Tolerance against Breast Cancer. Cancer Immunol Res 2018; 6:1486-1498. [DOI: 10.1158/2326-6066.cir-18-0179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/08/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
|
19
|
Li R, Chibbar R, Xiang J. Novel EXO-T vaccine using polyclonal CD4 + T cells armed with HER2-specific exosomes for HER2-positive breast cancer. Onco Targets Ther 2018; 11:7089-7093. [PMID: 30410365 PMCID: PMC6200095 DOI: 10.2147/ott.s184898] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the leading cause of death in women globally. The human epidermal growth factor receptor 2 (HER2)-positive breast cancer is often associated with poor prognosis and high mortality. Even though anti-HER2 monoclonal antibodies have improved the clinical outcome, resistance to the antibody therapy becomes a major obstacle in the treatment of HER2-positive breast cancer patients. Alternative approaches are therefore needed. HER2-specific vaccines have been developed to trigger patient’s immune system against HER2-positive breast cancer. This article describes the development of novel HER2-specific exosome (EXO)-T vaccine using polyclonal CD4+ T cells armed with HER2-specific dendritic cell-released EXO and demonstrates its therapeutic effect against HER2-positive tumor in double-transgenic HER2/HLA-A2 mice with HER2-specific self-immune tolerance. Therefore, our novel HER2-specific EXO-T vaccines are likely to assist in the treatment of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Rong Li
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada, .,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada,
| | - Rajni Chibbar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada, .,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada,
| |
Collapse
|
20
|
Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice. Vaccine 2018; 36:1414-1422. [PMID: 29415817 DOI: 10.1016/j.vaccine.2018.01.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/05/2018] [Accepted: 01/29/2018] [Indexed: 01/20/2023]
Abstract
DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-TEXO capable of stimulating HER2-specific CD8+ T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdVHuRt expressing HuRt fusion protein composed of NH2-HER21-407 (Hu) and COOH-neu408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-TEXO using polyclonal CD4+ T-cells uptaking exosomes released by AdVHuRt-transfected dendritic cells. We found that the HuRt-TEXO vaccine stimulates enhanced CD4+ T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-TEXO vaccine. By using PE-H-2Kd/HER223-71 tetramer, we determined that HuRt-TEXO stimulates stronger HER2-specific CD8+ T-cell responses eradicating 90% of HER2-specific target cells, while HER2-TEXO-induced CD8+ T-cell responses only eliminating 53% targets. Furthermore, HuRt-TEXO, but not HER2-TEXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10A2/HER2 melanoma. HuRt-TEXO-stimulated HER2-specific CD8+ T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-TEXO, circumventing HER2 tolerance, may provide a new therapeutic alternative for patients with trastuzumab-resistant HER2+ breast tumor.
Collapse
|
21
|
Palladini A, Thrane S, Janitzek CM, Pihl J, Clemmensen SB, de Jongh WA, Clausen TM, Nicoletti G, Landuzzi L, Penichet ML, Balboni T, Ianzano ML, Giusti V, Theander TG, Nielsen MA, Salanti A, Lollini PL, Nanni P, Sander AF. Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology 2018; 7:e1408749. [PMID: 29399414 PMCID: PMC5790387 DOI: 10.1080/2162402x.2017.1408749] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Overexpression of human epidermal growth factor receptor-2 (HER2) occurs in 20–30% of invasive breast cancers. Monoclonal antibody therapy is effective in treating HER2-driven mammary carcinomas, but its utility is limited by high costs, side effects and development of resistance. Active vaccination may represent a safer, more effective and cheaper alternative, although the induction of strong and durable autoantibody responses is hampered by immune-tolerogenic mechanisms. Using a novel virus-like particle (VLP) based vaccine platform we show that directional, high-density display of human HER2 on the surface of VLPs, allows induction of therapeutically potent anti-HER2 autoantibody responses. Prophylactic vaccination reduced spontaneous development of mammary carcinomas by 50%-100% in human HER2 transgenic mice and inhibited the growth of HER2-positive tumors implanted in wild-type mice. The HER2-VLP vaccine shows promise as a new cost-effective modality for prevention and treatment of HER2-positive cancer. The VLP platform may represent an effective tool for development of vaccines against other non-communicable diseases.
Collapse
Affiliation(s)
- Arianna Palladini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Susan Thrane
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christoph M Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jessica Pihl
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stine B Clemmensen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.,ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | | | - Thomas M Clausen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Giordano Nicoletti
- Rizzoli Orthopedic Institute, Laboratory of Experimental Oncology, Bologna, Italy
| | - Lorena Landuzzi
- Rizzoli Orthopedic Institute, Laboratory of Experimental Oncology, Bologna, Italy
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery and Department of Microbiology, Immunology and Molecular Genetics, The Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Tania Balboni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Marianna L Ianzano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Veronica Giusti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Patrizia Nanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
22
|
Riccardo F, Réal A, Voena C, Chiarle R, Cavallo F, Barutello G. Maternal Immunization: New Perspectives on Its Application Against Non-Infectious Related Diseases in Newborns. Vaccines (Basel) 2017; 5:E20. [PMID: 28763018 PMCID: PMC5620551 DOI: 10.3390/vaccines5030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The continuous evolution in preventive medicine has anointed vaccination a versatile, human-health improving tool, which has led to a steady decline in deaths in the developing world. Maternal immunization represents an incisive step forward for the field of vaccination as it provides protection against various life-threatening diseases in pregnant women and their children. A number of studies to improve prevention rates and expand protection against the largest possible number of infections are still in progress. The complex unicity of the mother-infant interaction, both during and after pregnancy and which involves immune system cells and molecules, is an able partner in the success of maternal immunization, as intended thus far. Interestingly, new studies have shed light on the versatility of maternal immunization in protecting infants from non-infectious related diseases, such as allergy, asthma and congenital metabolic disorders. However, barely any attempt at applying maternal immunization to the prevention of childhood cancer has been made. The most promising study reported in this new field is a recent proof of concept on the efficacy of maternal immunization in protecting cancer-prone offspring against mammary tumor progression. New investigations into the possibility of exploiting maternal immunization to prevent the onset and/or progression of neuroblastoma, one of the most common childhood malignancies, are therefore justified. Maternal immunization is presented in a new guise in this review. Attention will be focused on its versatility and potential applications in preventing tumor progression in neuroblastoma-prone offspring.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Aline Réal
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| |
Collapse
|
23
|
Rolih V, Barutello G, Iussich S, De Maria R, Quaglino E, Buracco P, Cavallo F, Riccardo F. CSPG4: a prototype oncoantigen for translational immunotherapy studies. J Transl Med 2017; 15:151. [PMID: 28668095 PMCID: PMC5494135 DOI: 10.1186/s12967-017-1250-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/21/2017] [Indexed: 12/21/2022] Open
Abstract
Thanks to striking progress in both the understanding of anti-tumor immune response and the characterization of several tumor associated antigens (TAA), a more rational design and more sophisticated strategies for anti-tumor vaccination have been possible. However, the effectiveness of cancer vaccines in clinical trial is still partial, indicating that additional studies are needed to optimize their design and their pre-clinical testing. Indeed, anti-tumor vaccination success relies on the choice of the best TAA to be targeted and on the translational power of the pre-clinical model used to assess its efficacy. The chondroitin sulfate proteoglycan-4 (CSPG4) is a cell surface proteoglycan overexpressed in a huge range of human and canine neoplastic lesions by tumor cells, tumor microenvironment and cancer initiating cells. CSPG4 plays a central role in the oncogenic pathways required for malignant progression and metastatization. Thanks to these features and to its poor expression in adult healthy tissues, CSPG4 represents an ideal oncoantigen and thus an attractive target for anti-tumor immunotherapy. In this review we explore the potential of CSPG4 immune-targeting. Moreover, since it has been clearly demonstrated that spontaneous canine tumors mimic the progression of human malignancies better than any other pre-clinical model available so far, we reported also our results indicating that CSPG4 DNA vaccination is safe and effective in significantly increasing the survival of canine melanoma patients. Therefore, anti-CSPG4 vaccination strategy could have a substantial impact for the treatment of the wider population of spontaneous CSPG4-positive tumor affected dogs with a priceless translational value and a revolutionary implication for human oncological patients.
Collapse
Affiliation(s)
- Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Turin, Italy
| |
Collapse
|
24
|
Aurisicchio L, Roscilli G, Marra E, Luberto L, Mancini R, La Monica N, Ciliberto G. Superior Immunologic and Therapeutic Efficacy of a Xenogeneic Genetic Cancer Vaccine Targeting Carcinoembryonic Human Antigen. Hum Gene Ther 2016; 26:386-98. [PMID: 25869226 DOI: 10.1089/hum.2014.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting.
Collapse
Affiliation(s)
| | | | | | - Laura Luberto
- 1 Takis srl, 00128 Rome, Italy .,2 Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia ," Catanzaro, Italy
| | - Rita Mancini
- 3 Department of Clinical and Molecular Medicine, University of Rome "La Sapienza ," Rome, Italy .,4 Laboratory of Research and Diagnostics, Department of Surgery "P. Valdoni," University of Rome "La Sapienza ," Rome, Italy
| | | | | |
Collapse
|
25
|
Matić S, Quaglino E, Arata L, Riccardo F, Pegoraro M, Vallino M, Cavallo F, Noris E. The rat ErbB2 tyrosine kinase receptor produced in plants is immunogenic in mice and confers protective immunity against ErbB2(+) mammary cancer. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:153-9. [PMID: 25865255 PMCID: PMC11388968 DOI: 10.1111/pbi.12367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The rat ErbB2 (rErbB2) protein is a 185-kDa glycoprotein belonging to the epidermal growth factor-related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2-pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ-HT expression vector as 6X His tag fusions. All rErbB2 variants (72-74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2(+) mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.
Collapse
Affiliation(s)
- Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lucia Arata
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Mattia Pegoraro
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| |
Collapse
|
26
|
Lanzardo S, Conti L, Rooke R, Ruiu R, Accart N, Bolli E, Arigoni M, Macagno M, Barrera G, Pizzimenti S, Aurisicchio L, Calogero RA, Cavallo F. Immunotargeting of Antigen xCT Attenuates Stem-like Cell Behavior and Metastatic Progression in Breast Cancer. Cancer Res 2015; 76:62-72. [PMID: 26567138 DOI: 10.1158/0008-5472.can-15-1208] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/30/2015] [Indexed: 01/06/2023]
Abstract
Resistance to therapy and lack of curative treatments for metastatic breast cancer suggest that current therapies may be missing the subpopulation of chemoresistant and radioresistant cancer stem cells (CSC). The ultimate success of any treatment may well rest on CSC eradication, but specific anti-CSC therapies are still limited. A comparison of the transcriptional profiles of murine Her2(+) breast tumor TUBO cells and their derived CSC-enriched tumorspheres has identified xCT, the functional subunit of the cystine/glutamate antiporter system xc(-), as a surface protein that is upregulated specifically in tumorspheres. We validated this finding by cytofluorimetric analysis and immunofluorescence in TUBO-derived tumorspheres and in a panel of mouse and human triple negative breast cancer cell-derived tumorspheres. We further show that downregulation of xCT impaired tumorsphere generation and altered CSC intracellular redox balance in vitro, suggesting that xCT plays a functional role in CSC biology. DNA vaccination based immunotargeting of xCT in mice challenged with syngeneic tumorsphere-derived cells delayed established subcutaneous tumor growth and strongly impaired pulmonary metastasis formation by generating anti-xCT antibodies able to alter CSC self-renewal and redox balance. Finally, anti-xCT vaccination increased CSC chemosensitivity to doxorubicin in vivo, indicating that xCT immunotargeting may be an effective adjuvant to chemotherapy.
Collapse
Affiliation(s)
- Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Marco Macagno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Raffaele Adolfo Calogero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy.
| |
Collapse
|
27
|
Jacca S, Rolih V, Quaglino E, Franceschi V, Tebaldi G, Bolli E, Rosamilia A, Ottonello S, Cavallo F, Donofrio G. Bovine herpesvirus 4-based vector delivering a hybrid rat/human HER-2 oncoantigen efficiently protects mice from autochthonous Her-2 + mammary cancer. Oncoimmunology 2015; 5:e1082705. [PMID: 27141335 PMCID: PMC4839386 DOI: 10.1080/2162402x.2015.1082705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 12/22/2022] Open
Abstract
The epidermal growth factor receptor 2 (HER-2) oncogene is a major target for the immunotherapy of breast cancer. Following up to the therapeutic success achieved with Her-2-targeting monoclonal antibodies, immune-prophylactic approaches directed against Her-2 have also been investigated taking into account, and trying to overcome, Her-2 self-tolerance. Perhaps due to safety (and efficacy) concerns, the least explored anti-Her-2 active immunization strategy so far has been the one relying on viral-vectored vaccine formulations. Taking advantage of the favorable properties of bovine herpesvirus 4 (BoHV-4) in terms of safety and ease of manipulation as well as its previously documented ability to transduce and confer immunogenicity to heterologous antigens, we tested the ability of different recombinant HER-2-BoHV-4 immunogens to 8break tolerance and elicit a protective, anti-mammary tumor antibody response in HER-2 transgenic BALB-neuT mice. All the tested constructs expressed the HER-2 transgenes at high levels and elicited significant cellular immune responses in BALB/c mice upon administration via either DNA vaccination or viral infection. In BALB-neuT mice, instead, only the viral construct expressing the membrane-bound chimeric form of Her-2 protein (BoHV-4-RHuT-gD) elicited a humoral immune response that was more intense and earlier-appearing than that induced by DNA vaccination. In keeping with this observation, two administrations of BoHV-4-RHuT-gD effectively protected BALB-neuT mice from tumor formation, with 50% of vaccinated animals tumor-free after 30 weeks from immunization compared to 100% of animals exhibiting at least one palpable tumor in the case of animals vaccinated with the other BoHV-4-HER-2 constructs.
Collapse
Affiliation(s)
- Sarah Jacca
- Department of Medical-Veterinary Science, University of Parma , Parma, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | | | - Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma , Parma, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Alfonso Rosamilia
- Department of Medical-Veterinary Science, University of Parma , Parma, Italy
| | - Simone Ottonello
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma , Parma, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma , Parma, Italy
| |
Collapse
|
28
|
Wei WZ, Jones RF, Juhasz C, Gibson H, Veenstra J. Evolution of animal models in cancer vaccine development. Vaccine 2015; 33:7401-7407. [PMID: 26241945 DOI: 10.1016/j.vaccine.2015.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 12/29/2022]
Abstract
Advances in cancer vaccine development are facilitated by animal models reflecting key features of human cancer and its interface with host immunity. Several series of transplantable preneoplastic and neoplastic mouse mammary lesions have been used to delineate mechanisms of anti-tumor immunity. Mimicking immune tolerance to tumor-associated antigens (TAA) such as HER2/neu, transgenic mice developing spontaneous mammary tumors are strong model systems for pre-clinical vaccine testing. In these models, HER2 DNA vaccines are easily administered, well-tolerated, and induce both humoral and cellular immunity. Although engineered mouse strains have advanced cancer immunotherapy, basic shortcomings remain. For example, multiple mouse strains have to be tested to recapitulate genetic regulation of immune tolerance in humans. Outbred domestic felines more closely parallel humans in the natural development of HER2 positive breast cancer and their varying genetic background. Electrovaccination with heterologous HER2 DNA induces robust adaptive immune responses in cats. Importantly, homologous feline HER2 DNA with a single amino acid substitution elicits unique antibodies to feline mammary tumor cells, unlocking a new vaccine principle. As an alternative approach to targeted vaccination, non-surgical tumor ablation such as cryoablation induces anti-tumor immunity via in situ immunization, particularly when combined with toll-like receptor (TLR) agonist. As strategies for vaccination advance, non-invasive monitoring of host response becomes imperative. As an example, magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning following administration of tryptophan metabolism tracer [11C]-alpha-methyl-tryptophan (AMT) provides non-invasive imaging of both tumor growth and metabolic activities. Because AMT is a substrate of indoleamine-pyrrole 2,3-dioxygenase (IDO), an enzyme that produces the immune regulatory molecule kynurenine, AMT imaging can provide novel insight of host response. In conclusion, new feline models improve the predictive power of cancer immunotherapy and real-time PET imaging enables mechanistic monitoring of host immunity. Strategic utilization of these new tools will expedite cancer vaccine development.
Collapse
Affiliation(s)
- Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States.
| | - Richard F Jones
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Csaba Juhasz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Heather Gibson
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Jesse Veenstra
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
29
|
Intradermal DNA Electroporation Induces Cellular and Humoral Immune Response and Confers Protection against HER2/neu Tumor. J Immunol Res 2015; 2015:159145. [PMID: 26247038 PMCID: PMC4515534 DOI: 10.1155/2015/159145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022] Open
Abstract
Skin represents an attractive target for DNA vaccine delivery because of its natural richness in APCs, whose targeting may potentiate the effect of vaccination. Nevertheless, intramuscular electroporation is the most common delivery method for ECTM vaccination. In this study we assessed whether intradermal administration could deliver the vaccine into different cell types and we analyzed the evolution of tissue infiltrate elicited by the vaccination protocol. Intradermal electroporation (EP) vaccination resulted in transfection of different skin layers, as well as mononuclear cells. Additionally, we observed a marked recruitment of reactive infiltrates mainly 6–24 hours after treatment and inflammatory cells included CD11c+.
Moreover, we tested the efficacy of intradermal vaccination against Her2/neu antigen in cellular and humoral response induction and consequent protection from a Her2/neu tumor challenge in Her2/neu nontolerant and tolerant mice. A significant delay in transplantable tumor onset was observed in both BALB/c (p ≤ 0,0003) and BALB-neuT mice (p = 0,003). Moreover, BALB-neuT mice displayed slow tumor growth as compared to control group (p < 0,0016). In addition, while in vivo cytotoxic response was observed only in BALB/c mice, a significant antibody response was achieved in both mouse models. Our results identify intradermal EP vaccination as a promising method for delivering Her2/neu DNA vaccine.
Collapse
|
30
|
Gibson HM, Veenstra JJ, Jones R, Vaishampayan U, Sauerbrey M, Bepler G, Lum L, Reyes J, Weise A, Wei WZ. Induction of HER2 Immunity in Outbred Domestic Cats by DNA Electrovaccination. Cancer Immunol Res 2015; 3:777-86. [PMID: 25711535 PMCID: PMC4491035 DOI: 10.1158/2326-6066.cir-14-0175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/14/2015] [Indexed: 12/20/2022]
Abstract
Domestic cats share human living environments and genetic traits. They develop spontaneous feline mammary carcinoma (FMC) with similar histopathology to human breast cancer. HER2 and AKT phosphorylation was demonstrated in primary FMC by immunoblot analysis, indicating HER2 as a therapeutic target. FMC lines K12 and K248 expressing HER1, HER2, and HER3 were sensitive to receptor tyrosine kinase (RTK) inhibitors gefitinib and lapatinib. To test HER2 vaccine response in cats, purpose-bred, healthy cats were electrovaccinated with heterologous (xenogeneic) or point-mutated feline HER2 DNA. T-cell reactivity to feline self-HER2 was detected in 4 of 10 cats that received bear HER2, human-rat fusion HER2 (E2Neu) or mutant feline HER2 (feHER2-K), which contains a single amino acid substitution. The variable T-cell responses may resemble that in the genetically heterogeneous human population. All immune sera to heterologous HER2 recognized feline HER2 expressed in 3T3 cells (3T3/HER2), but not that in FMC K12 or K248. Immune sera to mutant pfeHER2-K bound 3T3/HER2 cells weakly, but they showed better recognition of K12 and K248 cells that also express HER1 and HER3, suggesting distinct HER2 epitopes displayed by FMC that may be simulated by feHER2-K. In summary, HER2 DNA electroporation overcomes T-cell immune tolerance in approximately 40% of healthy cats and induces antibodies with distinct specificity. Vaccination studies in domestic cats can expedite vaccine iteration to guide human vaccine design and better predict outcome, with the added benefit of helping feline mammary tumor patients.
Collapse
Affiliation(s)
- Heather M Gibson
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Jesse J Veenstra
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Richard Jones
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Ulka Vaishampayan
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | - Gerold Bepler
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Lawrence Lum
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Joyce Reyes
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Amy Weise
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan.
| |
Collapse
|
31
|
Lollini PL, Cavallo F, Nanni P, Quaglino E. The Promise of Preventive Cancer Vaccines. Vaccines (Basel) 2015; 3:467-89. [PMID: 26343198 PMCID: PMC4494347 DOI: 10.3390/vaccines3020467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
Years of unsuccessful attempts at fighting established tumors with vaccines have taught us all that they are only able to truly impact patient survival when used in a preventive setting, as would normally be the case for traditional vaccines against infectious diseases. While true primary cancer prevention is still but a long-term goal, secondary and tertiary prevention are already in the clinic and providing encouraging results. A combination of immunopreventive cancer strategies and recently approved checkpoint inhibitors is a further promise of forthcoming successful cancer disease control, but prevention will require a considerable reduction of currently reported toxicities. These considerations summed with the increased understanding of tumor antigens allow space for an optimistic view of the future.
Collapse
Affiliation(s)
- Pier-Luigi Lollini
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Viale Filopanti 22, Bologna 40126, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| | - Patrizia Nanni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Viale Filopanti 22, Bologna 40126, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| |
Collapse
|
32
|
Barutello G, Curcio C, Spadaro M, Arigoni M, Trovato R, Bolli E, Zheng Y, Ria F, Quaglino E, Iezzi M, Riccardo F, Holmgren L, Forni G, Cavallo F. Antitumor immunization of mothers delays tumor development in cancer-prone offspring. Oncoimmunology 2015; 4:e1005500. [PMID: 26155401 PMCID: PMC4485839 DOI: 10.1080/2162402x.2015.1005500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/25/2022] Open
Abstract
Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T-cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable.
Collapse
Affiliation(s)
- Giuseppina Barutello
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| | - Claudia Curcio
- Aging Research Centre; "Gabriele d'Annunzio" University ; Chieti, Italy
| | - Michela Spadaro
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| | - Maddalena Arigoni
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| | - Rosalinda Trovato
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| | - Elisabetta Bolli
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| | - Yujuan Zheng
- Department of Oncology and Pathology; Cancer Centre Karolinska; Karolinska Institutet ; Stockholm, Sweden
| | - Francesco Ria
- Institute of General Pathology; Catholic University Sacro Cuore ; Roma, Italy
| | - Elena Quaglino
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| | - Manuela Iezzi
- Aging Research Centre; "Gabriele d'Annunzio" University ; Chieti, Italy
| | - Federica Riccardo
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| | - Lars Holmgren
- Department of Oncology and Pathology; Cancer Centre Karolinska; Karolinska Institutet ; Stockholm, Sweden
| | - Guido Forni
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino, Italy
| |
Collapse
|
33
|
Tagliabue E, Campiglio M. "Omics" and Immunologic Approaches to Optimizing Cure Rates in HER2-Positive Breast Carcinomas. Front Oncol 2014; 4:334. [PMID: 25478327 PMCID: PMC4235291 DOI: 10.3389/fonc.2014.00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/03/2014] [Indexed: 01/02/2023] Open
Affiliation(s)
- Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Manuela Campiglio
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| |
Collapse
|
34
|
Cavallo F, Aurisicchio L, Mancini R, Ciliberto G. Xenogene vaccination in the therapy of cancer. Expert Opin Biol Ther 2014; 14:1427-42. [DOI: 10.1517/14712598.2014.927433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Microenvironment, oncoantigens, and antitumor vaccination: lessons learned from BALB-neuT mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:534969. [PMID: 25136593 PMCID: PMC4065702 DOI: 10.1155/2014/534969] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
The tyrosine kinase human epidermal growth factor receptor 2 (HER2) gene is amplified in approximately 20% of human breast cancers and is associated with an aggressive clinical course and the early development of metastasis. Its crucial role in tumor growth and progression makes HER2 a prototypic oncoantigen, the targeting of which may be critical for the development of effective anticancer therapies. The setup of anti-HER2 targeting strategies has revolutionized the clinical outcome of HER2+ breast cancer. However, their initial success has been overshadowed by the onset of pharmacological resistance that renders them ineffective. Since the tumor microenvironment (TME) plays a crucial role in drug resistance, the design of more effective anticancer therapies should depend on the targeting of both cancer cells and their TME as a whole. In this review, starting from the successful know-how obtained with a HER2+ mouse model of mammary carcinogenesis, the BALB-neuT mice, we discuss the role of TME in mammary tumor development. Indeed, a deeper knowledge of antigens critical for cancer outbreak and progression and of the mechanisms that regulate the interplay between cancer and stromal cell populations could advise promising ways for the development of the best anticancer strategy.
Collapse
|
36
|
Wan Y, Ren X, Ren Y, Wang J, Hu Z, Xie X, Xu J. As a genetic adjuvant, CTA improves the immunogenicity of DNA vaccines in an ADP-ribosyltransferase activity- and IL-6-dependent manner. Vaccine 2014; 32:2173-80. [DOI: 10.1016/j.vaccine.2014.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/30/2023]
|
37
|
Occhipinti S, Sponton L, Rolla S, Caorsi C, Novarino A, Donadio M, Bustreo S, Satolli MA, Pecchioni C, Marchini C, Amici A, Cavallo F, Cappello P, Pierobon D, Novelli F, Giovarelli M. Chimeric rat/human HER2 efficiently circumvents HER2 tolerance in cancer patients. Clin Cancer Res 2014; 20:2910-21. [PMID: 24668647 DOI: 10.1158/1078-0432.ccr-13-2663] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite the great success of HER2 vaccine strategies in animal models, effective clinical results have not yet been obtained. We studied the feasibility of using DNA coding for chimeric rat/human HER2 as a tool to break the unresponsiveness of T cells from patients with HER2-overexpressing tumors (HER2-CP). EXPERIMENTAL DESIGN Dendritic cells (DCs) generated from patients with HER2-overexpressing breast (n = 28) and pancreatic (n = 16) cancer were transfected with DNA plasmids that express human HER2 or heterologous rat sequences in separate plasmids or as chimeric constructs encoding rat/human HER2 fusion proteins and used to activate autologous T cells. Activation was evaluated by IFN-γ ELISPOT assay, perforin expression, and ability to halt HER2+ tumor growth in vivo. RESULTS Specific sustained proliferation and IFN-γ production by CD4 and CD8 T cells from HER2-CP was observed after stimulation with autologous DCs transfected with chimeric rat/human HER2 plasmids. Instead, T cells from healthy donors (n = 22) could be easily stimulated with autologous DCs transfected with any human, rat, or chimeric rat/human HER2 plasmid. Chimeric HER2-transfected DCs from HER2-CP were also able to induce a sustained T-cell response that significantly hindered the in vivo growth of HER2(+) tumors. The efficacy of chimeric plasmids in overcoming tumor-induced T-cell dysfunction relies on their ability to circumvent suppressor effects exerted by regulatory T cells (Treg) and/or interleukin (IL)-10 and TGF-β1. CONCLUSIONS These results provide the proof of concept that chimeric rat/human HER2 plasmids can be used as effective vaccines for any HER2-CP with the advantage of being not limited to specific MHC. Clin Cancer Res; 20(11); 2910-21. ©2014 AACR.
Collapse
Affiliation(s)
- Sergio Occhipinti
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Laura Sponton
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Simona Rolla
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Cristiana Caorsi
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Anna Novarino
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Michela Donadio
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Sara Bustreo
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Maria Antonietta Satolli
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Carla Pecchioni
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Cristina Marchini
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Augusto Amici
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Federica Cavallo
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Paola Cappello
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Daniele Pierobon
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Francesco Novelli
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | - Mirella Giovarelli
- Authors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, ItalyAuthors' Affiliations: Departments of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), AO Città della Salute e della Scienza di Torino, Torino, Italy; Immunogenetic and Transplant Biology Service, AO Città della Salute e della Scienza Torino, Italy; Division of Oncology, Subalpine OncoHematology Cancer Center (COES), AO Città della Salute e della Scienza di Torino, Torino, Italy; Department of Oncology, University of Turin, Orbassano, Italy; Department of Medical Sciences, University of Torino, Torino, Italy, Department of Molecular Cellular and Animal Biology, University of Camerino, Camerino, Italy
| |
Collapse
|
38
|
De Giovanni C, Nicoletti G, Quaglino E, Landuzzi L, Palladini A, Ianzano ML, Dall'Ora M, Grosso V, Ranieri D, Laranga R, Croci S, Amici A, Penichet ML, Iezzi M, Cavallo F, Nanni P, Lollini PL. Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2. Breast Cancer Res 2014; 16:R10. [PMID: 24451168 PMCID: PMC3979148 DOI: 10.1186/bcr3602] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/13/2014] [Indexed: 01/26/2023] Open
Abstract
Introduction The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. Methods FVB-huHER2 mice were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. Results Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses. The DNA vaccine mainly induced a high and sustained level of anti-huHER2 antibodies, the cell vaccine also elicited interferon (IFN)-γ production. Sera of DNA-vaccinated mice transferred to xenograft-carrying mice significantly inhibited the growth of human HER2-positive cancer cells. Conclusions Anti-huHER2 antibodies elicited in the tolerant host exert antitumor activity.
Collapse
|
39
|
Aurisicchio L, Mancini R, Ciliberto G. Cancer vaccination by electro-gene-transfer. Expert Rev Vaccines 2014; 12:1127-37. [DOI: 10.1586/14760584.2013.836903] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Lollini PL, Cavallo F, De Giovanni C, Nanni P. Preclinical vaccines against mammary carcinoma. Expert Rev Vaccines 2014; 12:1449-63. [DOI: 10.1586/14760584.2013.845530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA Vaccines: An Effective Way to Overcome Immune Tolerance. Curr Top Microbiol Immunol 2014; 405:99-122. [PMID: 25294003 DOI: 10.1007/82_2014_426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The fact that cancer immunotherapy is considered to be a safe and successful weapon for use in combination with surgery, radiation, and chemotherapy treatments means that it has recently been chosen as Breakthrough of the Year 2013 by Science editors. Anticancer vaccines have been extensively tested, in this field, both in preclinical cancer models and in the clinic. However, tumor-associated antigens (TAAs) are often self-tolerated molecules and cancer patients suffer from strong immunosuppressive effects, meaning that the triggering of an effective anti-tumor immune response is difficult. One possible means to overcome immunological tolerance to self-TAAs is of course the use of vaccines that code for xenogeneic proteins. However, a low-affinity antibody response against the self-homologous protein expressed by cancer cells is generally induced by xenovaccination. This issue becomes extremely limiting when working with tumors in which the contribution of the humoral rather than the cellular immune response is required if tumor growth is to be hampered. A possible way to avoid this problem is to use hybrid vaccines which code for chimeric proteins that include both homologous and xenogeneic moieties. In fact, a superior protective anti-tumor immune response against ErbB2+ transplantable and autochthonous mammary tumors was observed over plasmids that coded for the fully rat or fully human proteins when hybrid plasmids that coded for chimeric rat/human ErbB2 protein were tested in ErbB2 transgenic mice. In principle, these findings may become the basis for a new rational means of designing effective vaccines against TAAs.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Marco Macagno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
42
|
Conti L, Lanzardo S, Iezzi M, Montone M, Bolli E, Brioschi C, Maiocchi A, Forni G, Cavallo F. Optical imaging detection of microscopic mammary cancer in ErbB-2 transgenic mice through the DA364 probe binding αv β3 integrins. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:350-60. [PMID: 23613438 DOI: 10.1002/cmmi.1529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/23/2012] [Accepted: 01/01/2013] [Indexed: 12/15/2022]
Abstract
Despite spontaneous tumor growth in genetically engineered mice being one of the most recognized tools for the in vivo evaluation of novel diagnostic and therapeutic anticancer compounds, monitoring early stage lesions in live animals is a goal that has yet to be achieved. A large number of targets for the molecular imaging of various diseases have been identified and many imaging technologies, including optical techniques are emerging. One of the most commonly exploited targets in tumor imaging is αv β3 integrin, which plays an important role in the expansion, invasiveness and metastatic capability of a number of cancers, including breast cancer. The aim of this study was to set up an optical imaging method for the early detection of autochthonous mammary cancer in female BALB/c mice transgenic for the rat-ErbB-2 oncogene (BALB-neuT). We show that DA364, a near-infrared fluorescence arginine-glycine-aspartic acid cyclic probe, was taken up by neoplastic mammary glands and that its uptake increased with cancer progression. By contrast, the nonaccumulation of DA364 in the healthy mammary glands of virgin and lactating wild-type mice suggests that the probe specifically targets breast cancers. Comparisons of optical imaging with whole-mount and histological findings showed that DA364 allows the noninvasive visualization of atypical hyperplasia and microscopic foci of in situ carcinoma 2 months before mammary lesions become detectable by palpation. Moreover, DA364 was successfully used to monitor the outcome of anticancer vaccination. Therefore, it can be considered a promising early detection tool in near-infrared noninvasive optical imaging for the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Laura Conti
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lollini PL, De Giovanni C, Nanni P. Preclinical HER-2 Vaccines: From Rodent to Human HER-2. Front Oncol 2013; 3:151. [PMID: 23772419 PMCID: PMC3677144 DOI: 10.3389/fonc.2013.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/24/2013] [Indexed: 12/13/2022] Open
Abstract
Effective prevention of human cancer with vaccines against viruses, such as HBV and HPV, raises the question whether also non-virus related tumors could be prevented with immunological means. Studies in HER-2-transgenic mice showed that powerful anti-HER-2 vaccines, could almost completely prevent the onset of mammary carcinoma. Protective immune responses were orchestrated by T cells and their cytokines, and effected by antibodies against HER-2 gene product p185. Analogous findings were reported in a variety of other cancer immunoprevention systems, thus leading to the definition of oncoantigens, optimal target antigens that are causally involved in carcinogenesis and cancer progression. Prophylactic HER-2 vaccines were also effective in preventing metastasis outgrowth, indicating that concepts and approaches developed for cancer immunoprevention could prove fruitful in cancer immunotherapy as well. The availability of cancer-prone mice carrying a human HER-2 transgene is now fostering the design of novel vaccines against human p185. A further bridge toward human cancer was recently provided by novel immunodeficient models, like Rag2−/−;Il2rg−/− mice, which are permissive for metastatic spread of human HER-2+ cancer cells and can be engrafted with a functional human immune system, allowing for the first time the study of vaccines against oncoantigens to elicit human immune responses against human cancer cells in vivo.
Collapse
Affiliation(s)
- Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna , Bologna , Italy
| | | | | |
Collapse
|
44
|
Marchini C, Kalogris C, Garulli C, Pietrella L, Gabrielli F, Curcio C, Quaglino E, Cavallo F, Amici A. Tailoring DNA Vaccines: Designing Strategies Against HER2-Positive Cancers. Front Oncol 2013; 3:122. [PMID: 23675574 PMCID: PMC3653119 DOI: 10.3389/fonc.2013.00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/30/2013] [Indexed: 12/14/2022] Open
Abstract
The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs, and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long-lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing Phase I clinical trial (EudraCT 2011-001104-34).
Collapse
Affiliation(s)
- Cristina Marchini
- Department of Bioscience and Biotechnology, University of Camerino Camerino, Macerata, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gabrielli F, Salvi R, Garulli C, Kalogris C, Arima S, Tardella L, Monaci P, Pupa SM, Tagliabue E, Montani M, Quaglino E, Stramucci L, Curcio C, Marchini C, Amici A. Identification of relevant conformational epitopes on the HER2 oncoprotein by using Large Fragment Phage Display (LFPD). PLoS One 2013; 8:e58358. [PMID: 23555577 PMCID: PMC3610777 DOI: 10.1371/journal.pone.0058358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 02/06/2013] [Indexed: 01/15/2023] Open
Abstract
We developed a new phage-display based approach, the Large Fragment Phage Display (LFPD), that can be used for mapping conformational epitopes on target molecules of immunological interest. LFPD uses a simplified and more effective phage-display approach in which only a limited set of larger fragments (about 100 aa in length) are expressed on the phage surface. Using the human HER2 oncoprotein as a target, we identified novel B-cell conformational epitopes. The same homologous epitopes were also detected in rat HER2 and all corresponded to the epitopes predicted by computational analysis (PEPITO software), showing that LFPD gives reproducible and accurate results. Interestingly, these newly identified HER2 epitopes seem to be crucial for an effective immune response against HER2-overexpressing breast cancers and might help discriminating between metastatic breast cancer and early breast cancer patients. Overall, the results obtained in this study demonstrated the utility of LFPD and its potential application to the detection of conformational epitopes on many other molecules of interest, as well as, the development of new and potentially more effective B-cell conformational epitopes based vaccines.
Collapse
Affiliation(s)
- Federico Gabrielli
- Department of Bioscience and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Roberto Salvi
- Faculté de Médecine, Biothérapie du Diabète, Université de Lille 2, Lille, France
| | - Chiara Garulli
- Department of Bioscience and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Cristina Kalogris
- Department of Bioscience and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Serena Arima
- Department of Methods and Models for Economics, Territory and Finance, Sapienza University of Rome, Roma, Italy
| | - Luca Tardella
- Department of Statistical Science, Sapienza University of Rome, Roma, Italy
| | - Paolo Monaci
- Department of Bioscience and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Serenella M. Pupa
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, AmadeoLab, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, AmadeoLab, Milan, Italy
| | - Maura Montani
- Department of Bioscience and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Elena Quaglino
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Claudia Curcio
- Aging Research Centre, G. d'Annunzio University, Chieti, Italy
| | - Cristina Marchini
- Department of Bioscience and Biotechnology, University of Camerino, Camerino (MC), Italy
- * E-mail: (CM); (AA)
| | - Augusto Amici
- Department of Bioscience and Biotechnology, University of Camerino, Camerino (MC), Italy
- * E-mail: (CM); (AA)
| |
Collapse
|
46
|
Aurisicchio L, Ciliberto G. Genetic cancer vaccines: current status and perspectives. Expert Opin Biol Ther 2012; 12:1043-58. [PMID: 22577875 DOI: 10.1517/14712598.2012.689279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The recent approval of the first therapeutic cancer vaccine by the US Regulatory Agency represents a breakthrough event in the history of cancer treatment. The past scepticism towards this type of therapeutic intervention is now replaced by great expectations. The field is now moving towards the development of alternative vaccination technologies, which are capable of generating stronger, more durable and efficient immune responses against specific tumour-associated antigens (TAAs) in combination with cheaper and more standardised manufacturing. AREAS COVERED In this context, genetic vaccines are emerging among the most promising methodologies. Several evidences point to combinations of different genetic immunisation modalities (heterologous prime/boost) as a powerful approach to induce superior immune responses and achieve greater clinical efficacy. In this review, we provide an overview of the current status of development of genetic cancer vaccines with particular emphasis on adenoviral vector prime/DNA boost vaccination schedules. EXPERT OPINION We believe that therapeutic genetic cancer vaccines have the strong potential to become an established therapeutic modality for cancer in next coming years, in a manner similar to what have now become monoclonal antibodies.
Collapse
|
47
|
Arigoni M, Barutello G, Lanzardo S, Longo D, Aime S, Curcio C, Iezzi M, Zheng Y, Barkefors I, Holmgren L, Cavallo F. A vaccine targeting angiomotin induces an antibody response which alters tumor vessel permeability and hampers the growth of established tumors. Angiogenesis 2012; 15:305-16. [PMID: 22426512 PMCID: PMC3338916 DOI: 10.1007/s10456-012-9263-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/21/2012] [Indexed: 12/21/2022]
Abstract
Angiomotin (Amot) is one of several identified angiostatin receptors expressed by the endothelia of angiogenic tissues. We have shown that a DNA vaccine targeting Amot overcome immune tolerance and induce an antibody response that hampers the progression of incipient tumors. Following our observation of increased Amot expression on tumor endothelia concomitant with the progression from pre-neoplastic lesions to full-fledged carcinoma, we evaluated the effect of anti-Amot vaccination on clinically evident tumors. Electroporation of plasmid coding for the human Amot (pAmot) significantly delayed the progression both of autochthonous tumors in cancer prone BALB-neuT and PyMT genetically engineered mice and transplantable TUBO tumor in wild-type BALB/c mice. The intensity of the inhibition directly correlated with the titer of anti-Amot antibodies induced by the vaccine. Tumor inhibition was associated with an increase of vessels diameter with the formation of lacunar spaces, increase in vessel permeability, massive tumor perivascular necrosis and an effective epitope spreading that induces an immune response against other tumor associated antigens. Greater tumor vessel permeability also markedly enhances the antitumor effect of doxorubicin. These data provide a rationale for the development of novel anticancer treatments based on anti-Amot vaccination in conjunction with chemotherapy regimens.
Collapse
|
48
|
The immunogenicity of the tumor-associated antigen α-fetoprotein is enhanced by a fusion with a transmembrane domain. J Biomed Biotechnol 2012; 2012:878657. [PMID: 22500109 PMCID: PMC3304459 DOI: 10.1155/2012/878657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 01/16/2023] Open
Abstract
Aim. To investigate the ability of recombinant modified vaccinia virus Ankara (rMVA) vector to induce an immune response against a well-tolerated self-antigen. Methods. rMVA vectors expressing different form of α-fetoprotein (AFP) were produced and characterized. Naïve mice were vaccinated with MVA vectors expressing the AFP antigen in either a secreted, or a membrane-bound, or an intracellular form. The immune response was monitored by an IFNΓ ELISpot assay and antibody detection. Results. Vaccination with the membrane-associated form of AFP induced a stronger CD8+ T-cell response compared to the ones obtained with the MVA encoding the secreted or the intracellular forms of AFP. Moreover, the vaccination with the membrane-bound AFP elicited the production of AFP-specific antibodies. Conclusions. The AFP transmembrane form is more immunogenic. Expressing a membrane-bound form in the context of an MVA vaccination could enhance the immunogenicity of a self-antigen.
Collapse
|
49
|
Berta GN, Sprio AE, Iezzi M, Spadaro M, Cappia S, Salamone P, Di Scipio F, Mognetti B, Papotti M, Musiani P, Forni G, Cavallo F. A DNA vaccine against ERBB2 impairs chemical carcinogenesis in random-bred hamsters. Cancer Prev Res (Phila) 2011; 4:994-1001. [PMID: 21733823 DOI: 10.1158/1940-6207.capr-10-0301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vaccines against oncoantigens halt early neoplastic lesions in several cancer-prone, genetically engineered mouse models, whereas their ability to prevent chemical carcinogenesis has not been explored. This is a significant issue, as exposure to chemical mutagens is responsible for a substantial percentage of cancers worldwide. Here, we show that the archetypal oncoantigen ERBB2 is transiently overexpressed in Syrian hamsters during the early stages of 7,12-dimethylbenz[α]anthracene (DMBA)-induced oral carcinogenesis. Repeated DNA vaccinations against ERBB2 significantly reduce the number, size, and severity of oral lesions in a manner directly proportional to the anti-ERBB2 antibody response. These results support the prospects of vaccines as a fresh strategy in the management of individuals at risk for exposure to defined carcinogenic agents.
Collapse
Affiliation(s)
- Giovanni N Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zizzari IG, Veglia F, Taurino F, Rahimi H, Quaglino E, Belleudi F, Riccardo F, Antonilli M, Napoletano C, Bellati F, Benedetti-Panici P, Torrisi MR, Frati L, Nuti M, Rughetti A. HER2-based recombinant immunogen to target DCs through FcγRs for cancer immunotherapy. J Mol Med (Berl) 2011; 89:1231-40. [PMID: 21845448 PMCID: PMC3218291 DOI: 10.1007/s00109-011-0794-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/29/2011] [Accepted: 07/22/2011] [Indexed: 01/18/2023]
Abstract
Dendritic cell (DC)-based immunotherapy is an attractive approach to induce long lasting antitumor effector cells aiming to control cancer progression. DC targeting is a critical step in the design of DC vaccines in order to optimize delivery and processing of the antigen, and several receptors have been characterized for this purpose. In this study, we employed the FcγRs to target DCs both in vitro and in vivo. We designed a recombinant molecule (HER2-Fc) composed of the immunogenic sequence of the human tumor-associated antigen HER2 (aa 364–391) and the Fc domain of a human IgG1. In a mouse model, HER2-Fc cDNA vaccination activated significant T cell-mediated immune responses towards HER2 peptide epitopes as detected by IFN-γ ELIspot and induced longer tumor latency as compared to Ctrl-Fc-vaccinated control mice. Human in vitro studies indicated that the recombinant HER2-Fc immunogen efficiently targeted human DCs through the FcγRs resulting in protein cross-processing and in the activation of autologous HER2-specific CD8+ T cells from breast cancer patients.
Collapse
Affiliation(s)
- Ilaria Grazia Zizzari
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Filippo Veglia
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Federica Taurino
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Hassan Rahimi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Elena Quaglino
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Francesca Belleudi
- Department of Clinical and Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | | | - Morena Antonilli
- Department of Obstetrics and Gynecology, “Sapienza” University of Rome, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Filippo Bellati
- Department of Obstetrics and Gynecology, “Sapienza” University of Rome, Rome, Italy
| | | | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Luigi Frati
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
- Neuromed Institute, Pozzilli, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
- Neuromed Institute, Pozzilli, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| |
Collapse
|