1
|
Wang B, Huang C, Liu X, Liu Z, Zhang Y, Zhao W, Xu Q, Ho PC, Xiao Z. iMetAct: An integrated systematic inference of metabolic activity for dissecting tumor metabolic preference and tumor-immune microenvironment. Cell Rep 2025; 44:115375. [PMID: 40053454 DOI: 10.1016/j.celrep.2025.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/03/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Metabolic enzymes play a central role in cancer metabolic reprogramming, and their dysregulation creates vulnerabilities that can be exploited for therapy. However, accurately measuring metabolic enzyme activity in a high-throughput manner remains challenging due to the complex, multi-layered regulatory mechanisms involved. Here, we present iMetAct, a framework that integrates metabolic-transcription networks with an information propagation strategy to infer enzyme activity from gene expression data. iMetAct outperforms expression-based methods in predicting metabolite conversion rates by accounting for the effects of post-translational modifications. With iMetAct, we identify clinically significant subtypes of hepatocellular carcinoma with distinct metabolic preferences driven by dysregulated enzymes and metabolic regulators acting at both the transcriptional and non-transcriptional levels. Moreover, applying iMetAct to single-cell RNA sequencing data allows for the exploration of cancer cell metabolism and its interplay with immune regulation in the tumor microenvironment. An accompanying online platform further facilitates tumor metabolic analysis, patient stratification, and immune microenvironment characterization.
Collapse
Affiliation(s)
- Binxian Wang
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chao Huang
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xuan Liu
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhenni Liu
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yilei Zhang
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Epalinges, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Zhengtao Xiao
- Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Disease-Related Genes, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Lindblad KE, Donne R, Liebling I, Bresnahan E, Barcena-Varela M, Lozano A, Park E, Giotti B, Burn O, Fiel MI, Alsinet C, Monga SP, Xue R, Bravo-Cordero JJ, Tsankov AM, Lujambio A. NOTCH1 drives tumor plasticity and metastasis in hepatocellular carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.23.619856. [PMID: 39484457 PMCID: PMC11527037 DOI: 10.1101/2024.10.23.619856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background & Aims Liver cancer, the third leading cause of cancer-related mortality worldwide, has two main subtypes: hepatocellular carcinoma (HCC), accounting the majority of the cases, and cholangiocarcinoma (CAA). Notch pathway primarily regulates the intrahepatic development of bile ducts, which are lined with cholangiocytes, but it can also be upregulated in 1/3 of HCCs. To better understand the role of NOTCH1 in HCC, we developed a novel mouse model driven by activated Notch1 intracellular domain (NICD1) and MYC overexpression in hepatocytes. Methods Using the hydrodynamic tail-vein injection method for establishing primary liver tumors, we generated a novel murine model of liver cancer harboring MYC overexpression and NOTCH1 activation. We characterized this model histopathologically as well as transcriptomically, utilizing both bulk and single cell RNA-sequencing. We also performed functional experiments using monoclonal antibodies. Results MYC;NICD1 tumors displayed a combined HCC-CCA phenotype with temporal plasticity. At early time-points, histology was predominantly "cholangiocellular", which then progressed to mainly "hepatocellular". The "hepatocellular" component was enriched in mesenchymal genes and gave rise to lung metastasis. Metastatic cells were enriched in the TGFB and VEGF pathways and their inhibition significantly reduced the metastatic burden. Conclusions Our novel mouse model uncovered NOTCH1 as a driver of temporal plasticity and metastasis in HCC, the latter of which is, in part, mediated by angiogenesis and TGFß pathways. Impact and Implications This study develops a novel murine model of NOTCH1-driven liver cancer, an understudied oncogene in HCC. Using this model, we show that NOTCH1 drives plasticity in HCC and metastasis to the lungs that can be therapeutically targeted through inhibition of VEGF and TGFß pathways. Highlights NOTCH1 activation in combination with MYC overexpression drives combined HCC-CCA.NOTCH1 activation in hepatocytes drives temporal plasticity.NOTCH1 activation drives metastasis of HCC cells to the lungs, but not of CCA cells.Angiogenesis and TGFß pathways mediate NOTCH1-induced lung metastasis. Graphical abstract
Collapse
|
3
|
Rao J, Song C, Hao Y, Chen Z, Feng S, Xu S, Wu X, Xuan Z, Fan Y, Li W, Li J, Ren Y, Li J, Cheng F, Gu Z. Leveraging Patient-Derived Organoids for Personalized Liver Cancer Treatment. Int J Biol Sci 2024; 20:5363-5374. [PMID: 39430248 PMCID: PMC11488587 DOI: 10.7150/ijbs.96317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Primary liver cancer (PLC) is a primary cause of cancer-related death worldwide, and novel treatments are needed due to the limited options available for treatment and tumor heterogeneity. 66 surgically removed PLC samples were cultured using the self-developed 2:2 method, and the final success rate for organoid culture was 40.9%. Organoid performance has been evaluated using comprehensive molecular measurements, such as whole-exome and RNA sequencing, as well as anticancer drug testing. Multiple organoids and their corresponding tumor tissues contained several of the same mutations, with all pairs sharing conventional TP53 mutations. Regarding copy number variations and gene expression, significant correlations were observed between the organoids and their corresponding parental tumor tissues. Comparisons at the molecular level provided us with an assessment of organoid-to-tumor concordance, which, in combination with drug sensitivity testing provided direct guidance for treatment selection. Finally, we were able to determine an appropriate pharmacological regimen for a patient with ICC, demonstrating the clinical practicality in tailoring patient-specific drug regimens. Our study provides an organoid culture technology that can cultivate models that retain most of the molecular characteristics of tumors and can be used for drug sensitivity testing, demonstrating the broad potential application of organoid technology in precision medicine for liver cancer treatment.
Collapse
Affiliation(s)
- Jianhua Rao
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chao Song
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zaozao Chen
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- Jiangsu Avatarget Co, Suzhou, China
- Institute of Medical Devices (Suzhou), Southeast University, Nanjing, China
| | - Sidu Feng
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | | | - Xiaoyue Wu
- Jiangsu Institute for Health and Sport (JIHS), Nanjing, China
| | - Zhengfeng Xuan
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ye Fan
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wenzhu Li
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Junda Li
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong Ren
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
- Jiangsu Avatarget Co, Suzhou, China
- Jiangsu Institute for Health and Sport (JIHS), Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Nanjing, China
| |
Collapse
|
4
|
Park Y, Hu S, Kim M, Oertel M, Singhi A, Monga SP, Liu S, Ko S. Context-Dependent Distinct Roles of SOX9 in Combined Hepatocellular Carcinoma-Cholangiocarcinoma. Cells 2024; 13:1451. [PMID: 39273023 PMCID: PMC11394107 DOI: 10.3390/cells13171451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a challenging primary liver cancer subtype with limited treatment options and a devastating prognosis. Recent studies have underscored the context-dependent roles of SOX9 in liver cancer formation in a preventive manner. Here, we revealed that liver-specific developmental Sox9 elimination using Alb-Cre;Sox9(flox/flox) (LKO) and CRISPR/Cas9-based tumor-specific acute Sox9 elimination (CKO) in SB-HDTVI-based Akt-YAP1 (AY) and Akt-NRAS (AN) cHCC-CCA models showed contrasting responses. LKO abrogates the AY CCA region while stimulating poorly differentiated HCC proliferation, whereas CKO prevents AY and AN cHCC-CCA development irrespective of tumor cell fate. Additionally, AN, but not AY, tumor formation partially depends on the Sox9-Dnmt1 cascade. SOX9 is dispensable for AY-mediated, HC-derived, LPC-like immature CCA formation but is required for their maintenance and transformation into mature CCA. Therapeutic Sox9 elimination using the OPN-CreERT2 strain combined with inducible Sox9 iKO specifically reduces AY but not AN cHCC-CCA tumors. This necessitates the careful consideration of genetic liver cancer studies using developmental Cre and somatic mutants, particularly for genes involved in liver development. Our findings suggest that SOX9 elimination may hold promise as a therapeutic approach for a subset of cHCC-CCA and highlight the need for further investigation to translate these preclinical insights into personalized clinical applications.
Collapse
Affiliation(s)
- Yoojeong Park
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
| | - Shikai Hu
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Minwook Kim
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Aatur Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
- Division of Anatomic Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| |
Collapse
|
5
|
Jang B, Kwon SM, Kim JH, Kim JM, Chung T, Yoo JE, Kim H, Calderaro J, Woo HG, Park YN. Transcriptomic profiling of intermediate cell carcinoma of the liver. Hepatol Commun 2024; 8:e0505. [PMID: 39101773 PMCID: PMC11299988 DOI: 10.1097/hc9.0000000000000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Intermediate cell carcinoma (Int-CA) is a rare and enigmatic primary liver cancer characterized by uniform tumor cells exhibiting mixed features of both HCC and intrahepatic cholangiocarcinoma. Despite the unique pathological features of int-CA, its molecular characteristics remain unclear yet. METHODS RNA sequencing and whole genome sequencing profiling were performed on int-CA tumors and compared with those of HCC and intrahepatic cholangiocarcinoma. RESULTS Int-CAs unveiled a distinct and intermediate transcriptomic feature that is strikingly different from both HCC and intrahepatic cholangiocarcinoma. The marked abundance of splicing events leading to intron retention emerged as a signature feature of int-CA, along with a prominent expression of Notch signaling. Further exploration revealed that METTL16 was suppressed within int-CA, showing a DNA copy number-dependent transcriptional deregulation. Notably, experimental investigations confirmed that METTL16 suppression facilitated invasive tumor characteristics through the activation of the Notch signaling cascade. CONCLUSIONS Our results provide a molecular landscape of int-CA featured by METTL16 suppression and frequent intron retention events, which may play pivotal roles in the acquisition of the aggressive phenotype of Int-CA.
Collapse
Affiliation(s)
- Byungchan Jang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - So Mee Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jang Hyun Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Jung Mo Kim
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Taek Chung
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Julien Calderaro
- Department of Pathology, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Créteil, France
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Park Y, Hu S, Kim M, Oertel M, Singhi A, Monga SP, Liu S, Ko S. Therapeutic potential of SOX9 dysruption in Combined Hepatocellular Carcinoma-Cholangiocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595319. [PMID: 38826352 PMCID: PMC11142171 DOI: 10.1101/2024.05.22.595319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) represents a challenging subtype of primary liver cancer with limited treatment options and a poor prognosis. Recently, we and others have highlighted the context-dependent roles of the biliary-specific transcription factor SOX9 in the pathogenesis of liver cancers using various Cre applications in Sox9 (flox/flox) strains, to achieve elimination for exon 2 and 3 of the Sox9 gene locus as a preventive manner. Here, we reveal the contrasting responses of developmental Sox9 elimination using Alb-Cre;Sox9 (flox/flox) ( Sox9 LKO) versus CRISPR/Cas9 -based tumor specific acute Sox9 CKO in SB-HDTVI-based Akt-YAP1 and Akt-NRAS cHCC-CCA formation. Sox9 LKO specifically abrogates the Akt-YAP1 CCA region while robustly stimulating the proliferation of remaining poorly differentiated HCC pertaining liver progenitor cell characteristics, whereas Sox9 CKO potently prevents Akt-YAP1 and Akt-NRAS cHCC-CCA development irrespective of fate of tumor cells compared to respective controls. Additionally, we find that Akt-NRAS , but not Akt-YAP1 , tumor formation is partially dependent on the Sox9-Dnmt1 cascade. Pathologically, SOX9 is indispensable for Akt-YAP1 -mediated HC-to-BEC/CCA reprogramming but required for the maintenance of CCA nodules. Lastly, therapeutic elimination of Sox9 using the OPN-CreERT2 strain combined with an inducible CRISPR/Cas9 -based Sox9 iKO significantly reduces Akt-YAP1 cHCC-CCA tumor burden, similar to Sox9 CKO. Thus, we contrast the outcomes of acute Sox9 deletion with developmental Sox9 knockout models, emphasizing the importance of considering adaptation mechanisms in therapeutic strategies. This necessitates the careful consideration of genetic liver cancer studies using developmental Cre and somatic mutant lines, particularly for genes involved in hepatic commitment during development. Our findings suggest that SOX9 elimination may hold promise as a therapeutic approach for cHCC-CCA and underscore the need for further investigation to translate these preclinical insights into clinical applications.
Collapse
|
7
|
Bakiri L, Hasenfuss SC, Guío-Carrión A, Thomsen MK, Hasselblatt P, Wagner EF. Liver cancer development driven by the AP-1/c-Jun~Fra-2 dimer through c-Myc. Proc Natl Acad Sci U S A 2024; 121:e2404188121. [PMID: 38657045 PMCID: PMC11067056 DOI: 10.1073/pnas.2404188121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Sebastian C. Hasenfuss
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Ana Guío-Carrión
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, University of Aarhus, 8000, Aarhus, Denmark
| | - Peter Hasselblatt
- Department of Medicine II, University Hospital and Faculty of Medicine, 79106, Freiburg, Germany
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
8
|
Choi JH, Thung SN. Recent Advances in Pathology of Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2024; 16:1537. [PMID: 38672619 PMCID: PMC11048541 DOI: 10.3390/cancers16081537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICCA) is a malignant epithelial neoplasm characterized by biliary differentiation within the liver. ICCA is molecularly heterogeneous and exhibits a broad spectrum of histopathological features. It is a highly aggressive carcinoma with high mortality and poor survival rates. ICCAs are classified into two main subtypes: the small-duct type and large-duct types. These two tumor types have different cell origins and clinicopathological features. ICCAs are characterized by numerous molecular alterations, including mutations in KRAS, TP53, IDH1/2, ARID1A, BAP1, BRAF, SAMD4, and EGFR, and FGFR2 fusion. Two main molecular subtypes-inflammation and proliferation-have been proposed. Recent advances in high-throughput assays using next-generation sequencing have improved our understanding of ICCA pathogenesis and molecular genetics. The diagnosis of ICCA poses a significant challenge for pathologists because of its varied morphologies and phenotypes. Accurate diagnosis of ICCA is essential for effective patient management and prognostic determination. This article provides an updated overview of ICCA pathology, focusing particularly on molecular features, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
9
|
Soliman N, Saharia A, Abdelrahim M, Connor AA. Molecular profiling in the management of hepatocellular carcinoma. Curr Opin Organ Transplant 2024; 29:10-22. [PMID: 38038621 DOI: 10.1097/mot.0000000000001124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to both summarize the current knowledge of hepatocellular carcinoma molecular biology and to suggest a framework in which to prospectively translate this knowledge into patient care. This is timely as recent guidelines recommend increased use of these technologies to advance personalized liver cancer care. RECENT FINDINGS The main themes covered here address germline and somatic genetic alterations recently discovered in hepatocellular carcinoma, largely owing to next generation sequencing technologies, and nascent efforts to translate these into contemporary practice. SUMMARY Early efforts of translating molecular profiling to hepatocellular carcinoma care demonstrate a growing number of potentially actionable alterations. Still lacking are a consensus on what biomarkers and technologies to adopt, at what scale and cost, and how to integrate them most effectively into care.
Collapse
|
10
|
Qu Y, Gong X, Zhao Z, Zhang Z, Zhang Q, Huang Y, Xie Q, Liu Y, Wei J, Du H. Establishment and Validation of Novel Prognostic Subtypes in Hepatocellular Carcinoma Based on Bile Acid Metabolism Gene Signatures Using Bulk and Single-Cell RNA-Seq Data. Int J Mol Sci 2024; 25:919. [PMID: 38255993 PMCID: PMC10815120 DOI: 10.3390/ijms25020919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly detrimental cancer type and has limited therapeutic options, posing significant threats to human health. The development of HCC has been associated with a disorder in bile acid (BA) metabolism. In this study, we employed an integrative approach, combining various datasets and omics analyses, to comprehensively characterize the tumor microenvironment in HCC based on genes related to BA metabolism. Our analysis resulted in the classification of HCC samples into four subtypes (C1, C2a, C2b, and C3). Notably, subtype C2a, characterized by the highest bile acid metabolism score (BAMS), exhibited the highest survival probability. This subtype also demonstrated increased immune cell infiltration, lower cell cycle scores, reduced AFP levels, and a lower risk of metastasis compared to subtypes C1 and C3. Subtype C1 displayed poorer survival probability and elevated cell cycle scores. Importantly, the identified subtypes based on BAMS showed potential relevance to the gene expression of drug targets in currently approved drugs and those under clinical research. Genes encoding VEGFR (FLT4 and KDR) and MET were elevated in C2, while genes such as TGFBR1, TGFB1, ADORA3, SRC, BRAF, RET, FLT3, KIT, PDGFRA, and PDGFRB were elevated in C1. Additionally, FGFR2 and FGFR3, along with immune target genes including PDCD1 and CTLA4, were higher in C3. This suggests that subtypes C1, C2, and C3 might represent distinct potential candidates for TGFB1 inhibitors, VEGFR inhibitors, and immune checkpoint blockade treatments, respectively. Significantly, both bulk and single-cell transcriptome analyses unveiled a negative correlation between BA metabolism and cell cycle-related pathways. In vitro experiments further confirmed that the treatment of HCC cell lines with BA receptor agonist ursodeoxycholic acid led to the downregulation of the expression of cell cycle-related genes. Our findings suggest a plausible involvement of BA metabolism in liver carcinogenesis, potentially mediated through the regulation of tumor cell cycles and the immune microenvironment. This preliminary understanding lays the groundwork for future investigations to validate and elucidate the specific mechanisms underlying this potential association. Furthermore, this study provides a novel foundation for future precise molecular typing and the design of systemic clinical trials for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (Y.Q.); (X.G.); (Z.Z.); (Z.Z.); (Q.Z.); (Y.H.); (Q.X.); (Y.L.)
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (Y.Q.); (X.G.); (Z.Z.); (Z.Z.); (Q.Z.); (Y.H.); (Q.X.); (Y.L.)
| |
Collapse
|
11
|
Zhu J, Xu X, Jiang M, Yang F, Mei Y, Zhang X. Comprehensive characterization of ferroptosis in hepatocellular carcinoma revealing the association with prognosis and tumor immune microenvironment. Front Oncol 2023; 13:1145380. [PMID: 37051544 PMCID: PMC10083400 DOI: 10.3389/fonc.2023.1145380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundFerroptosis is a type of regulatory cell death (RCD) mode that depends on iron-mediated oxidative damage. It has the potential to improve the efficacy of tumor immunotherapy by modulating the tumor microenvironment (TME). Currently, immunotherapy has significantly improved the overall treatment strategy for advanced hepatocellular carcinoma (HCC), but the distinct immune microenvironment and high tolerance to the immune make massive differences in the immunotherapy effect of HCC patients. As a result, it is imperative to classify HCC patients who may benefit from immune checkpoint therapy. Simultaneously, the predictive value of ferroptosis in HCC and its potential role in TME immune cell infiltration also need to be further clarified.MethodsThree ferroptosis molecular models were built on the basis of mRNA expression profiles of ferroptosis-related genes (FRGs), with notable variations in immunocyte infiltration, biological function, and survival prediction. In order to further investigate the predictive impact of immunotherapy response in HCC patients, the ferroptosis score was constructed using the principal component analysis (PCA) algorithm to quantify the ferroptosis molecular models of individual tumors.ResultsIn HCC, there were three totally different ferroptosis molecular models. The ferroptosis score can be used to assess genetic variation, immunotherapy response, TME characteristics, and prognosis. Notably, tumors with low ferroptosis scores have extensive tumor mutations and immune exhaustion, which are associated with a poor prognosis and enhanced immunotherapy response.ConclusionsOur study indicates that ferroptosis plays an indispensable role in the regulation of the tumor immune microenvironment. For HCC, the ferroptosis score is an independent prognostic indicator. Assessing the molecular model of ferroptosis in individual tumors will assist us in better understanding the characteristics of TME, predicting the effect of immunotherapy in HCC patients, and thus guiding a more reasonable immunotherapy program.
Collapse
Affiliation(s)
- Jingjuan Zhu
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiao Xu
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Man Jiang
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fangfang Yang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yingying Mei
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Cancer Precision Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Xiaochun Zhang,
| |
Collapse
|
12
|
Shen YT, Yue WW, Xu HX. Non-invasive imaging in the diagnosis of combined hepatocellular carcinoma and cholangiocarcinoma. Abdom Radiol (NY) 2023; 48:2019-2037. [PMID: 36961531 DOI: 10.1007/s00261-023-03879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CC) is a rare type of primary liver cancer. It is a complex "biphenotypic" tumor type consisting of bipotential hepatic progenitor cells that can differentiate into cholangiocytes subtype and hepatocytes subtype. The prognosis of patients with cHCC-CC is quite poor with its specific and more aggressive nature. Furthermore, there are no definite demographic or clinical features of cHCC-CC, thus a clear preoperative identification and accurate non-invasive imaging diagnostic analysis of cHCC-CC are of great value. In this review, we first summarized the epidemiological features, pathological findings, molecular biological information and serological indicators of cHCC-CC disease. Then we reviewed the important applications of non-invasive imaging modalities-particularly ultrasound (US)-in cHCC-CC, covering both diagnostic and prognostic assessment of patients with cHCC-CC. Finally, we presented the shortcomings and potential outlooks for imaging studies in cHCC-CC.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Wen-Wen Yue
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai, 200072, China.
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Jeon Y, Kwon SM, Rhee H, Yoo JE, Chung T, Woo HG, Park YN. Molecular and radiopathologic spectrum between HCC and intrahepatic cholangiocarcinoma. Hepatology 2023; 77:92-108. [PMID: 35124821 DOI: 10.1002/hep.32397] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Primary liver cancers (LCs), including HCC and intrahepatic cholangiocarcinoma (iCCA), are derived from a common developmental lineage, conferring a molecular spectrum between them. To elucidate the molecular spectrum, we performed an integrative analysis of transcriptome profiles associated with patients' radiopathologic features. APPROACH AND RESULTS We identified four LC subtypes (LC1-LC4) from RNA-sequencing profiles, revealing intermediate subtypes between HCC and iCCA. LC1 is a typical HCC characterized by active bile acid metabolism, telomerase reverse transcriptase promoter mutations, and high uptake of gadoxetic acid in MRI. LC2 is an iCCA-like HCC characterized by expression of the progenitor cell-like trait, tumor protein p53 mutations, and rim arterial-phase hyperenhancement in MRI. LC3 is an HCC-like iCCA, mainly small duct (SD) type, associated with HCC-related etiologic factors. LC4 is further subclassified into LC4-SD and LC4-large duct iCCAs according to the pathological features, which exhibited distinct genetic variations (e.g., KRAS , isocitrate dehydrogenase 1/2 mutation, and FGF receptor 2 fusion), stromal type, and prognostic outcomes. CONCLUSIONS Our integrated view of the molecular spectrum of LCs can identify subtypes associated with transcriptomic, genomic, and radiopathologic features, providing mechanistic insights into heterogeneous LC progression.
Collapse
Affiliation(s)
- Youngsic Jeon
- Department of Pathology , Graduate School of Medical Science , Brain Korea 21 Project , Yonsei University College of Medicine , Seoul , Republic of Korea
- Natural Products Research Center , Korea Institute of Science and Technology , Gangneung , Republic of Korea
| | - So Mee Kwon
- Department of Physiology , Ajou University School of Medicine , Suwon , Republic of Korea
| | - Hyungjin Rhee
- Department of Radiology , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Jeong Eun Yoo
- Department of Pathology , Graduate School of Medical Science , Brain Korea 21 Project , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Taek Chung
- Department of Biomedical Systems Informatics , Yonsei University College of Medicine , Seoul , Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology , Ajou University School of Medicine , Suwon , Republic of Korea
- Department of Biomedical Science , Graduate School , Ajou University , Suwon , Republic of Korea
| | - Young Nyun Park
- Department of Pathology , Graduate School of Medical Science , Brain Korea 21 Project , Yonsei University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
14
|
Shen H, Bai X, Liu J, Liu P, Zhang T. Screening potential biomarkers of cholangiocarcinoma based on gene chip meta-analysis and small-sample experimental research. Front Oncol 2022; 12:1001400. [PMID: 36300097 PMCID: PMC9590411 DOI: 10.3389/fonc.2022.1001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare malignant tumor associated with poor prognosis. This study aimed to identify CCA biomarkers by investigating differentially expressed genes (DEGs) between CCA patients and healthy subjects obtained from the Gene Expression Omnibus database. Bioinformatics tools, including the Illumina BaseSpace Correlation Engine (BSCE) and Gene Expression Profiling Interactive Analysis (GEPIA), were used. The initial DEGs from GSE26566, GSE31370, and GSE77984 were analyzed using GEO2R and Venn, and protein–protein interaction networks were constructed using STRING. The BSCE was applied to assess curated CCA studies to select additional DEGs and them DEGs across the 10 biosets, which was supported by findings in the literature. The final 18 DEGs with clinical significance for CCA were further verified using GEPIA. These included CEACAM6, EPCAM, LAMC2, MMP11, KRT7, KRT17, KRT19, SFN, and SOX9, which were upregulated, and ADH1A, ALDOB, AOX1, CTH, FGA, FGB, FGG, GSTA1, and OTC, which were downregulated in CCA patients. Among these 18 genes, 56 groups of genes (two in each group) were significantly related, and none were independently and differentially expressed. The hub genes FGA, OTC, CTH, and MMP11, which were most correlated with the 18 DEGs, were screened using STRING. The significantly low expression of FGA, OTC, and CTH and significantly high expression of MMP11 were verified by immunohistochemical analysis. Overall, four CCA biomarkers were identified that might regulate the occurrence and development of this disease and affect the patient survival rate, and they have the potential to become diagnostic and therapeutic targets for patients with CCA.
Collapse
Affiliation(s)
- Hengyan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Tao Zhang, ; Ping Liu,
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Tao Zhang, ; Ping Liu,
| |
Collapse
|
15
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Dai YW, Chen HB, Pan YT, Lv LX, Wang WM, Chen XH, Zhou X. Characterization of chromatin regulators identified prognosis and heterogeneity in hepatocellular carcinoma. Front Oncol 2022; 12:1002781. [PMID: 36158697 PMCID: PMC9505021 DOI: 10.3389/fonc.2022.1002781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Liver carcinogenesis is a multiprocess that involves complicated interactions between genetics, epigenetics, and transcriptomic alterations. Aberrant chromatin regulator (CR) expressions, which are vital regulatory epigenetics, have been found to be associated with multiple biological processes. Nevertheless, the impression of CRs on tumor microenvironment remodeling and hepatocellular carcinoma (HCC) prognosis remains obscure. Thus, this study aimed to systematically analyze CR-related patterns and their correlation with genomic features, metabolism, cuproptosis activity, and clinicopathological features of patients with HCC in The Cancer Genome Atlas, International Cancer Genome Consortium-LIRI-JP cohort, and GSE14520 that utilized unsupervised consensus clustering. Three CR-related patterns were recognized, and the CRs phenotype-related gene signature (CRsscore) was developed using the least absolute shrinkage and selection operator-Cox regression and multivariate Cox algorithms to represent the individual CR-related pattern. Additionally, the CRsscore was an independent prognostic index that served as a fine predictor for energy metabolism and cuproptosis activity in HCC. Accordingly, describing a wide landscape of CR characteristics may assist us to illustrate the sealed association between epigenetics, energy metabolism, and cuproptosis activity. This study may discern new tumor therapeutic targets and exploit personalized therapy for patients.
Collapse
Affiliation(s)
- Yin-wei Dai
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han-bin Chen
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-ting Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin-xi Lv
- Wenzhou Medical University, Wenzhou, China
| | - Wei-ming Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Hu Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Hu Chen, ; Xiang Zhou,
| | - Xiang Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Hu Chen, ; Xiang Zhou,
| |
Collapse
|
17
|
Qian Y, Itzel T, Ebert M, Teufel A. Deep View of HCC Gene Expression Signatures and Their Comparison with Other Cancers. Cancers (Basel) 2022; 14:cancers14174322. [PMID: 36077860 PMCID: PMC9454845 DOI: 10.3390/cancers14174322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gene expression signatures correlate genetic alterations with specific clinical features, providing the potential for clinical usage. A plethora of HCC-dependent gene signatures have been developed in the last two decades. However, none of them has made its way into clinical practice. Thus, we investigated the specificity of public gene signatures to HCC by establishing a comparative transcriptomic analysis, as this may be essential for clinical applications. METHODS We collected 10 public HCC gene signatures and evaluated them by utilizing four different (commercial and non-commercial) gene expression profile comparison tools: Oncomine Premium, SigCom LINCS, ProfileChaser (modified version), and GENEVA, which can assign similar pre-analyzed profiles of patients with tumors or cancer cell lines to our gene signatures of interests. Among the query results of each tool, different cancer entities were screened. In addition, seven breast and colorectal cancer gene signatures were included in order to further challenge tumor specificity of gene expression signatures. RESULTS Although the specificity of the evaluated HCC gene signatures varied considerably, none of the gene signatures showed strict specificity to HCC. All gene signatures exhibited potential significant specificity to other cancers, particularly for colorectal and breast cancer. Since signature specificity proved challenging, we furthermore investigated common core genes and overlapping enriched pathways among all gene signatures, which, however, showed no or only very little overlap, respectively. CONCLUSION Our study demonstrates that specificity, independent validation, and clinical use of HCC genetic signatures solely relying on gene expression remains challenging. Furthermore, our work made clear that standards in signature generation and statistical methods but potentially also in tissue preparation are urgently needed.
Collapse
Affiliation(s)
- Yuquan Qian
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Timo Itzel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andreas Teufel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-(0)621-383-4983; Fax: +49-(0)621-383-1467
| |
Collapse
|
18
|
Aghayev T, Mazitova AM, Fang JR, Peshkova IO, Rausch M, Hung M, White KF, Masia R, Titerina EK, Fatkhullina AR, Cousineau I, Turcotte S, Zhigarev D, Marchenko A, Khoziainova S, Makhov P, Tan YF, Kossenkov AV, Wiest DL, Stagg J, Wang XW, Campbell KS, Dzutsev AK, Trinchieri G, Hill JA, Grivennikov SI, Koltsova EK. IL27 Signaling Serves as an Immunologic Checkpoint for Innate Cytotoxic Cells to Promote Hepatocellular Carcinoma. Cancer Discov 2022; 12:1960-1983. [PMID: 35723626 PMCID: PMC9357073 DOI: 10.1158/2159-8290.cd-20-1628] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 02/07/2023]
Abstract
Although inflammatory mechanisms driving hepatocellular carcinoma (HCC) have been proposed, the regulators of anticancer immunity in HCC remain poorly understood. We found that IL27 receptor (IL27R) signaling promotes HCC development in vivo. High IL27EBI3 cytokine or IL27RA expression correlated with poor prognosis for patients with HCC. Loss of IL27R suppressed HCC in vivo in two different models of hepatocarcinogenesis. Mechanistically, IL27R sig-naling within the tumor microenvironment restrains the cytotoxicity of innate cytotoxic lymphocytes. IL27R ablation enhanced their accumulation and activation, whereas depletion or functional impairment of innate cytotoxic cells abrogated the effect of IL27R disruption. Pharmacologic neutralization of IL27 signaling increased infiltration of innate cytotoxic lymphocytes with upregulated cytotoxic molecules and reduced HCC development. Our data reveal an unexpected role of IL27R signaling as an immunologic checkpoint regulating innate cytotoxic lymphocytes and promoting HCC of different etiologies, thus indicating a therapeutic potential for IL27 pathway blockade in HCC. SIGNIFICANCE HCC, the most common form of liver cancer, is characterized by a poor survival rate and limited treatment options. The discovery of a novel IL27-dependent mechanism controlling anticancer cytotoxic immune response will pave the road for new treatment options for this devastating disease. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Turan Aghayev
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Aleksandra M. Mazitova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
| | - Jennifer R. Fang
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Iuliia O. Peshkova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Matthew Rausch
- Surface Oncology Inc., 50 Hampshire St. Cambridge, MA, 02139
| | - Manhsin Hung
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Kerry F. White
- Surface Oncology Inc., 50 Hampshire St. Cambridge, MA, 02139
| | - Ricard Masia
- Surface Oncology Inc., 50 Hampshire St. Cambridge, MA, 02139
| | - Elizaveta K. Titerina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Aliia R. Fatkhullina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Isabelle Cousineau
- Centre Hospitalier de l’Université de Montréal Research Center, Montreal, Quebec, Canada
| | - Simon Turcotte
- Centre Hospitalier de l’Université de Montréal Research Center, Montreal, Quebec, Canada
| | - Dmitry Zhigarev
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anastasiia Marchenko
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
| | - Svetlana Khoziainova
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
| | - Petr Makhov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yin Fei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - John Stagg
- Centre Hospitalier de l’Université de Montréal Research Center, Montreal, Quebec, Canada
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | | | - Sergei I. Grivennikov
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ekaterina K. Koltsova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
| |
Collapse
|
19
|
Goya T, Horisawa K, Udono M, Ohkawa Y, Ogawa Y, Sekiya S, Suzuki A. Direct Conversion of Human Endothelial Cells Into Liver Cancer-Forming Cells Using Nonintegrative Episomal Vectors. Hepatol Commun 2022; 6:1725-1740. [PMID: 35220676 PMCID: PMC9234650 DOI: 10.1002/hep4.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular-cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer.
Collapse
Affiliation(s)
- Takeshi Goya
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan.,Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenichi Horisawa
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Miyako Udono
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Sayaka Sekiya
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Atsushi Suzuki
- Division of Organogenesis and RegenerationMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
20
|
Tang M, Zhao Y, Zhao J, Wei S, Liu M, Zheng N, Geng D, Han S, Zhang Y, Zhong G, Li S, Zhang X, Wang C, Yan H, Cao X, Li L, Bai X, Ji J, Feng XH, Qin J, Liang T, Zhao B. Liver cancer heterogeneity modeled by in situ genome editing of hepatocytes. SCIENCE ADVANCES 2022; 8:eabn5683. [PMID: 35731873 PMCID: PMC9216519 DOI: 10.1126/sciadv.abn5683] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mechanistic study and precision treatment of primary liver cancer (PLC) are hindered by marked heterogeneity, which is challenging to recapitulate in any given liver cancer mouse model. Here, we report the generation of 25 mouse models of PLC by in situ genome editing of hepatocytes recapitulating 25 single or combinations of human cancer driver genes. These mouse tumors represent major histopathological types of human PLCs and could be divided into three human-matched molecular subtypes based on transcriptomic and proteomic profiles. Phenotypical characterization identified subtype- or genotype-specific alterations in immune microenvironment, metabolic reprogramming, cell proliferation, and expression of drug targets. Furthermore, single-cell analysis and expression tracing revealed spatial and temporal dynamics in expression of pyruvate kinase M2 (Pkm2). Tumor-specific knockdown of Pkm2 by multiplexed genome editing reversed the Warburg effect and suppressed tumorigenesis in a genotype-specific manner. Our study provides mouse PLC models with defined genetic drivers and characterized phenotypical heterogeneity suitable for mechanistic investigation and preclinical testing.
Collapse
Affiliation(s)
- Mei Tang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jianhui Zhao
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Didi Geng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shixun Han
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Guoxuan Zhong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuaifeng Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiuming Zhang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chenliang Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Huan Yan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaolei Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueli Bai
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Tingbo Liang
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (T.L.); (B.Z.)
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Shaoxing Institute, Zhejiang University, Shaoxing 321000, China
- Corresponding author. (T.L.); (B.Z.)
| |
Collapse
|
21
|
Mohamed FEZ, Jalan R, Minogue S, Andreola F, Habtesion A, Hall A, Winstanley A, Damink SO, Malagó M, Davies N, Luong TV, Dhillon A, Mookerjee R, Dhar D, Al-Jehani RM. Inhibition of TLR7 and TLR9 Reduces Human Cholangiocarcinoma Cell Proliferation and Tumor Development. Dig Dis Sci 2022; 67:1806-1821. [PMID: 33939146 DOI: 10.1007/s10620-021-06973-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Toll-like receptors (TLRs) are key players in innate immunity and modulation of TLR signaling has been demonstrated to profoundly affect proliferation and growth in different types of cancer. However, the role of TLRs in human intrahepatic cholangiocarcinoma (ICC) pathogenesis remains largely unexplored. AIMS We set out to determine if TLRs play any role in ICCs which could potentially make them useful treatment targets. METHODS Tissue microarrays containing samples from 9 human ICCs and normal livers were examined immunohistochemically for TLR4, TLR7, and TLR9 expression. Proliferation of human ICC cell line HuCCT1 was measured by MTS assay following treatment with CpG-ODN (TLR9 agonist), imiquimod (TLR7 agonist), chloroquine (TLR7 and TLR9 inhibitor) and IRS-954 (TLR7 and TLR9 antagonist). The in vivo effects of CQ and IRS-954 on tumor development were also examined in a NOD-SCID mouse xenograft model of human ICC. RESULTS TLR4 was expressed in all normal human bile duct epithelium but absent in the majority (60%) of ICCs. TLR7 and TLR9 were expressed in 80% of human ICCs. However, TLR7 was absent in all cases of normal human bile duct epithelium and only one was TLR9 positive. HuCCT1 cell proliferation in vitro significantly increased following IMQ or CpG-ODN treatment (P < 0.03 and P < 0.002, respectively) but decreased with CQ (P < 0.02). In the mouse xenograft model there was significant reduction in size of tumors from CQ and IRS-954 treated mice compared to untreated controls. CONCLUSION TLR7 and TLR9 should be further explored for their potential as actionable targets in the treatment of ICC.
Collapse
Affiliation(s)
- Fatma El Zahraa Mohamed
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Pathology Department, Minia University, El-Minia, Egypt
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Shane Minogue
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Fausto Andreola
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Abeba Habtesion
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Andrew Hall
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK
| | - Alison Winstanley
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Steven Olde Damink
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Massimo Malagó
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Amar Dhillon
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Rajeshwar Mookerjee
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Dipok Dhar
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Rajai Munir Al-Jehani
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
22
|
A pathway-guided strategy identifies a metabolic signature for prognosis prediction and precision therapy for hepatocellular carcinoma. Comput Biol Med 2022; 144:105376. [DOI: 10.1016/j.compbiomed.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022]
|
23
|
Abstract
INTRODUCTION Cholangiocarcinoma is a rare malignancy accounting for 3% of gastrointestinal cancers in the USA. While multiple risk factors for cholangiocarcinoma are established, other potential risk factors are still controversial. Herein, we used a large national database to investigate possible risk factors and associations. METHOD We used the National Inpatient Sample database to review all admissions between 2011 and 2015. We grouped patients based on the presence and absence of cholangiocarcinoma. Using multivariate logistic regression analysis, we assessed the association between obesity, alcohol abuse, smoking, diabetes mellitus and cholangiocarcinoma. RESULTS Out of 30 9552 95 admissions, 20 030 had cholangiocarcinoma. Cholangiocarcinoma patients were older (67 ± 12.8 vs. 57 ± 20.6; P < 0.001) and had fewer female patients (48 vs. 59%; P < 0.001). Multivariate logistic regression analysis showed that diabetes mellitus was associated with cholangiocarcinoma (OR, 1.04; 95% CI, 1.01-1.08; P < 0.001). On the other hand, alcohol, smoking and obesity were all inversely associated with cholangiocarcinoma (OR, 0.75; 95% CI, 0.69-0.81; P < 0.001), (OR, 0.75; 95% CI, 0.71-0.79; P < 0.001) and (OR, 0.71; 95% CI, 0.67-0.75; P < 0.001), respectively. In addition, compared to Whites, Hispanic and Asian/Pacific Islander races were more associated with cholangiocarcinoma (OR, 1.27; 95% CI, 1.21-1.34) and (OR, 1.79; 95% CI, 1.67-1.92) (P < 0.001 for all), respectively, whereas African American race was inversely associated with cholangiocarcinoma (OR, 0.85; 95% CI, 0.81-0.89; P < 0.001). CONCLUSION Patients with a diagnosis of diabetes mellitus or from certain ethnic groups (Hispanic and Asian/Pacific Islander) are associated with increased risk for cholangiocarcinoma.
Collapse
|
24
|
Lee YT, Sun N, Kim M, Wang JJ, Tran BV, Zhang RY, Qi D, Zhang C, Chen PJ, Sadeghi S, Finn RS, Saab S, Han SHB, Busuttil RW, Pei R, Zhu Y, Tseng HR, You S, Yang JD, Agopian VG. Circulating Tumor Cell-Based Messenger RNA Scoring System for Prognostication of Hepatocellular Carcinoma: Translating Tissue-Based Messenger RNA Profiling Into a Noninvasive Setting. Liver Transpl 2022; 28:200-214. [PMID: 34664394 PMCID: PMC8820407 DOI: 10.1002/lt.26337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Numerous studies in hepatocellular carcinoma (HCC) have proposed tissue-based gene signatures for individualized prognostic assessments. Here, we develop a novel circulating tumor cell (CTC)-based transcriptomic profiling assay to translate tissue-based messenger RNA (mRNA) signatures into a liquid biopsy setting for noninvasive HCC prognostication. The HCC-CTC mRNA scoring system combines the NanoVelcro CTC Assay for enriching HCC CTCs and the NanoString nCounter platform for quantifying the HCC-CTC Risk Score (RS) panel in enriched HCC CTCs. The prognostic role of the HCC-CTC RS was assessed in The Cancer Genome Atlas (TCGA) HCC cohort (n = 362) and validated in an independent clinical CTC cohort (n = 40). The HCC-CTC RS panel was developed through our integrated data analysis framework of 8 HCC tissue-based gene signatures and identified the top 10 prognostic genes (discoidin domain receptor tyrosine kinase 1 [DDR1], enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [EHHADH], androgen receptor [AR], lumican [LUM], hydroxysteroid 17-beta dehydrogenase 6[HSD17B6], prostate transmembrane protein, androgen induced 1 [PMEPA1], tsukushi, small leucine rich proteoglycan [TSKU], N-terminal EF-hand calcium binding protein 2 [NECAB2], ladinin 1 [LAD1], solute carrier family 27 member 5 [SLC27A5]) highly expressed in HCC with low expressions in white blood cells. The panel accurately discriminated overall survival in TCGA HCC cohort (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.4-2.9). The combined use of the scoring system and HCC-CTC RS panel successfully distinguished artificial blood samples spiked with an aggressive HCC cell type, SNU-387, from those spiked with PLC/PRF/5 cells (P = 0.02). In the CTC validation cohort (n = 40), HCC-CTC RS remained an independent predictor of survival (HR, 5.7; 95% CI, 1.5-21.3; P = 0.009) after controlling for Model for End-Stage Liver Disease score, Barcelona Clinic Liver Cancer stage, and CTC enumeration count. Our study demonstrates a novel interdisciplinary approach to translate tissue-based gene signatures into a liquid biopsy setting. This noninvasive approach will allow real-time disease profiling and dynamic prognostication of HCC.
Collapse
Affiliation(s)
- Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Na Sun
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA,Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, P.R. China
| | - Minhyung Kim
- Division of Cancer Biology and Therapeutics, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jasmine J. Wang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Benjamin V. Tran
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Ryan Y. Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Dongping Qi
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Ceng Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Pin-Jung Chen
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Saeed Sadeghi
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Richard S. Finn
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Sammy Saab
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Steven-Huy B. Han
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ronald W. Busuttil
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou, P.R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ju Dong Yang
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA,Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA,Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Vatche G. Agopian
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
25
|
Wang XY, Zhu WW, Wang Z, Huang JB, Wang SH, Bai FM, Li TE, Zhu Y, Zhao J, Yang X, Lu L, Zhang JB, Jia HL, Dong QZ, Chen JH, Andersen JB, Ye D, Qin LX. Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities. Am J Cancer Res 2022; 12:260-276. [PMID: 34987644 PMCID: PMC8690927 DOI: 10.7150/thno.63417] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose: To establish a clinically applicable genomic clustering system, we investigated the interactive landscape of driver mutations in intrahepatic cholangiocarcinoma (ICC). Methods: The genomic data of 1481 ICCs from diverse populations was analyzed to investigate the pair-wise co-occurrences or mutual exclusivities among recurrent driver mutations. Clinicopathological features and outcomes were compared among different clusters. Gene expression and DNA methylation profiling datasets were analyzed to investigate the molecular distinctions among mutational clusters. ICC cell lines with different gene mutation backgrounds were used to evaluate the cluster specific biological behaviors and drug sensitivities. Results: Statistically significant mutation-pairs were identified across 21 combinations of genes. Seven most recurrent driver mutations (TP53, KRAS, SMAD4, IDH1/2, FGFR2-fus and BAP1) showed pair-wise co-occurrences or mutual exclusivities and could aggregate into three genetic clusters: Cluster1: represented by tripartite interaction of KRAS, TP53 and SMAD4 mutations, exhibited large bile duct histological phenotype with high CA19-9 level and dismal prognosis; Cluster2: co-association of IDH/BAP1 or FGFR2-fus/BAP1 mutation, was characterized by small bile duct phenotype, low CA19-9 level and optimal prognosis; Cluster3: mutation-free ICC cases with intermediate clinicopathological features. These clusters showed distinct molecular traits, biological behaviors and responses to therapeutic drugs. Finally, we identified S100P and KRT17 as “cluster-specific”, “lineage-dictating” and “prognosis-related” biomarkers, which in combination with CA19-9 could well stratify Cluster3 ICCs into two biologically and clinically distinct subtypes. Conclusions: This clinically applicable clustering system can be instructive to ICC prognostic stratification, molecular classification, and therapeutic optimization.
Collapse
|
26
|
Natu A, Singh A, Gupta S. Hepatocellular carcinoma: Understanding molecular mechanisms for defining potential clinical modalities. World J Hepatol 2021; 13:1568-1583. [PMID: 34904030 PMCID: PMC8637668 DOI: 10.4254/wjh.v13.i11.1568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the sixth most commonly occurring cancer and costs millions of lives per year. The diagnosis of hepatocellular carcinoma (HCC) has relied on scanning techniques and serum-based markers such as α-fetoprotein. These measures have limitations due to their detection limits and asymptomatic conditions during the early stages, resulting in late-stage cancer diagnosis where targeted chemotherapy or systemic treatment with sorafenib is offered. However, the aid of conventional therapy for patients in the advanced stage of HCC has limited outcomes. Thus, it is essential to seek a new treatment strategy and improve the diagnostic techniques to manage the disease. Researchers have used the omics profile of HCC patients for sub-classification of tissues into different groups, which has helped us with prognosis. Despite these efforts, a promising target for treatment has not been identified. The hurdle in this situation is genetic and epigenetic variations in the tumor, leading to disparities in response to treatment. Understanding reversible epigenetic changes along with clinical traits help to define new markers for patient categorization and design personalized therapy. Many clinical trials of inhibitors of epigenetic modifiers (also known as epi-drugs) are in progress. Epi-drugs like azacytidine or belinostat are already approved for other cancer treatments. Furthermore, epigenetic changes have also been observed in drug-resistant HCC tumors. In such cases, combinatorial treatment of epi-drugs with systemic therapy or trans-arterial chemoembolization might re-sensitize resistant cells.
Collapse
Affiliation(s)
- Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| | - Anjali Singh
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Laboratory, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, Maharashtra, India
| |
Collapse
|
27
|
MRPS31 loss is a key driver of mitochondrial deregulation and hepatocellular carcinoma aggressiveness. Cell Death Dis 2021; 12:1076. [PMID: 34772924 PMCID: PMC8589861 DOI: 10.1038/s41419-021-04370-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Deregulated mitochondrial energetics is a metabolic hallmark of cancer cells. However, the causative mechanism of the bioenergetic deregulation is not clear. In this study, we show that somatic copy number alteration (SCNA) of mitoribosomal protein (MRP) genes is a key mechanism of bioenergetic deregulation in hepatocellular carcinoma (HCC). Association analysis between the genomic and transcriptomic profiles of 82 MRPs using The Cancer Genome Atlas-Liver HCC database identified eight key SCNA-dependent MRPs: MRPS31, MRPL10, MRPL21, MRPL15, MRPL13, MRPL55, and DAP3. MRPS31 was the only downregulated MRP harboring a DNA copy number (DCN) loss. MRPS31 loss was associated specifically with the DCN losses of many genes on chromosome 13q. Survival analysis revealed a unique dependency of HCC on the MRPS31 deficiency, showing poor clinical outcome. Subclass prediction analysis using several public classifiers indicated that MRPS31 loss is linked to aggressive HCC phenotypes. By employing hepatoma cell lines with SCNA-dependent MRPS31 expression (JHH5, HepG2, Hep3B, and SNU449), we demonstrated that MRPS31 deficiency is the key mechanism, disturbing the whole mitoribosome assembly. MRPS31 suppression enhanced hepatoma cell invasiveness by augmenting MMP7 and COL1A1 expression. Unlike the action of MMP7 on extracellular matrix destruction, COL1A1 modulated invasiveness via the ZEB1-mediated epithelial-to-mesenchymal transition. Finally, MRPS31 expression further stratified the high COL1A1/DDR1-expressing HCC groups into high and low overall survival, indicating that MRPS31 loss is a promising prognostic marker. SIGNIFICANCE: Our results provide new mechanistic insight for mitochondrial deregulation in HCC and present MRPS31 as a novel biomarker of HCC malignancy.
Collapse
|
28
|
Molecular classification of hepatocellular carcinoma: prognostic importance and clinical applications. J Cancer Res Clin Oncol 2021; 148:15-29. [PMID: 34623518 DOI: 10.1007/s00432-021-03826-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal human malignancy with a very low overall and long-term survival rate. Poor prognostic outcomes are predominantly associated with HCC due to a huge landscape of heterogeneity found in the deadliest disease. However, molecular subtyping of HCC has significantly improved the knowledge of the underlying mechanisms that contribute towards the heterogeneity and progression of the disease. In this review, we have extensively summarized the current information available about molecular classification of HCC. This review can be of great significance for providing the insight information needed for development of novel, efficient and personalized therapeutic options for the treatment of HCC patients globally.
Collapse
|
29
|
Damrauer JS, Smith MA, Walter V, Thennavan A, Mose LE, Selitsky SR, Hoadley KA. Genomic characterization of rare molecular subclasses of hepatocellular carcinoma. Commun Biol 2021; 4:1150. [PMID: 34608257 PMCID: PMC8490450 DOI: 10.1038/s42003-021-02674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer, consisting of both cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC), is the second leading cause of cancer deaths worldwide. Our goal is to genomically characterize rare HCC subclasses to provide insight into disease biology. Leveraging The Cancer Genome Atlas (TCGA) to perform a combined analysis of CCA (n = 36) and HCC (n = 275), we integrated multiple genomic platforms, to assess transcriptional profiles, mutational signatures, and copy number patterns to uncover underlying etiology and linage specific patterns. We identified two molecular classes distinct from prototypical HCC tumors. The first, CCA-Like, although histologically indistinguishable from HCC, had enrichment of CCA mutations (IDH1, BAP1), mutational signatures, and transcriptional patterns (SOX9, KRT19). CCA-Like, however, retained a copy number landscape similar to HCC, suggesting a hepatocellular linage. The second, Blast-Like, is enriched in TP53 mutations, HBV infection, exposure related mutational signatures and transcriptionally similar to hepatoblasts. Although these subclasses are molecularly distinct, they both have a worse progression-free survival compared to classical HCC tumors, yet are clinically treated the same. The identification of and characterization of CCA-Like and Blast-Like subclasses advance our knowledge of HCC as well as represents an urgent need for the identification of class specific biomarkers and targeted therapy.
Collapse
Affiliation(s)
- Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Markia A Smith
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Aatish Thennavan
- Oral and Craniofacial Biomedicine Program, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Yim SY, Lee JS. An Overview of the Genomic Characterization of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1077-1088. [PMID: 34522690 PMCID: PMC8434863 DOI: 10.2147/jhc.s270533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor classifications based on alterations in the genome, epigenome, or proteome have revealed distinct tumor subgroups that are associated with clinical outcomes. Several landmark studies have demonstrated that such classifications can significantly improve patient outcomes by enabling tailoring of therapy to specific alterations in cancer cells. Since cancer cells accumulate numerous alterations in many cancer-related genes, it is a daunting task to find and confirm important cancer-promoting alterations as therapeutic targets or biomarkers that can predict clinical outcomes such as survival and response to treatments. To aid further advances, we provide here an overview of the current understanding of molecular and genomic subtypes of hepatocellular carcinoma (HCC). System-level integration of data from multiple studies and development of new technical platforms for analyzing patient samples hold great promise for the discovery of new targets for treatment and correlated biomarkers, leading to personalized medicine for treatment of HCC patients.
Collapse
Affiliation(s)
- Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
31
|
Zhan K, Bai Y, Liao S, Chen H, Kuang L, Luo Q, Lv L, Qiu L, Mei Z. Identification and validation of EPHX2 as a prognostic biomarker in hepatocellular carcinoma. Mol Med Rep 2021; 24:650. [PMID: 34278494 PMCID: PMC8299194 DOI: 10.3892/mmr.2021.12289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer, which is associated with a poor prognosis. It is necessary to identify novel prognostic biomarkers and therapeutic targets to improve the survival of patients with HCC. In the present study, a seven-gene signature associated with HCC progression was identified using weighted gene co-expression network analysis and least absolute shrinkage and selection operator, and its prognostic prediction value was confirmed in The Cancer Genome Atlas-liver HCC and International Cancer Genome Consortium liver cancer-RIKEN, Japan cohorts. Subsequently, a rarely reported gene, epoxide hydrolase 2 (EPHX2), was selected for further validation. Downregulation of EPHX2 in HCC was revealed using multiple expression datasets. Furthermore, reduced expression of EPHX2 was confirmed in HCC tissue samples and cell lines using reverse transcription-quantitative polymerase chain reaction and western blotting. Additionally, Kaplan-Meier survival curves indicated that patients with higher EPHX2 expression exhibited better prognosis, and clinicopathological analysis also revealed elevated EPHX2 levels in patients with early-stage HCC. Notably, EPHX2 was identified as an independent prognostic biomarker for overall survival of patients with HCC. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and gene set enrichment analysis were performed to elucidate the functions of EPHX2. The results suggested that EPHX2 expression was closely associated with metabolic reprogramming. Finally, the prognostic value of EPHX2 was evaluated using HCC tissue microarrays. In conclusion, downregulation of EPHX2 was significantly associated with the development of HCC; therefore, EPHX2 may be considered a putative therapeutic candidate for the targeted treatment of HCC.
Collapse
Affiliation(s)
- Ke Zhan
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hongyu Chen
- Department of Gastroenterology, University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Lili Kuang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Qingqing Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Liewang Qiu
- Department of Gastroenterology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
32
|
Pomyen Y, Budhu A, Chaisaingmongkol J, Forgues M, Dang H, Ruchirawat M, Mahidol C, Wang XW. Tumor metabolism and associated serum metabolites define prognostic subtypes of Asian hepatocellular carcinoma. Sci Rep 2021; 11:12097. [PMID: 34103600 PMCID: PMC8187378 DOI: 10.1038/s41598-021-91560-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment effectiveness in hepatocellular carcinoma (HCC) depends on early detection and precision-medicine-based patient stratification for targeted therapies. However, the lack of robust biomarkers, particularly a non-invasive diagnostic tool, precludes significant improvement of clinical outcomes for HCC patients. Serum metabolites are one of the best non-invasive means for determining patient prognosis, as they are stable end-products of biochemical processes in human body. In this study, we aimed to identify prognostic serum metabolites in HCC. To determine serum metabolites that were relevant and representative of the tissue status, we performed a two-step correlation analysis to first determine associations between metabolic genes and tissue metabolites, and second, between tissue metabolites and serum metabolites among 49 HCC patients, which were then validated in 408 additional Asian HCC patients with mixed etiologies. We found that certain metabolic genes, tissue metabolites and serum metabolites can independently stratify HCC patients into prognostic subgroups, which are consistent across these different data types and our previous findings. The metabolic subtypes are associated with β-oxidation process in fatty acid metabolism, where patients with worse survival outcome have dysregulated fatty acid metabolism. These serum metabolites may be used as non-invasive biomarkers to define prognostic tumor molecular subtypes for HCC.
Collapse
Affiliation(s)
- Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jittiporn Chaisaingmongkol
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.,Division of Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA. .,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | | |
Collapse
|
33
|
Krishnan MS, KD AR, Park J, Arjunan V, Marques FJG, Bermudez A, Girvan OA, Hoang NS, Yin J, Nguyen MH, Kothary N, Pitteri S, Felsher DW, Dhanasekaran R. Genomic Analysis of Vascular Invasion in HCC Reveals Molecular Drivers and Predictive Biomarkers. Hepatology 2021; 73:2342-2360. [PMID: 33140851 PMCID: PMC8115767 DOI: 10.1002/hep.31614] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Vascular invasion (VI) is a critical risk factor for HCC recurrence and poor survival. The molecular drivers of vascular invasion in HCC are open for investigation. Deciphering the molecular landscape of invasive HCC will help identify therapeutic targets and noninvasive biomarkers. APPROACH AND RESULTS To this end, we undertook this study to evaluate the genomic, transcriptomic, and proteomic profile of tumors with VI using the multiplatform cancer genome atlas (The Cancer Genome Atlas; TCGA) data (n = 373). In the TCGA Liver Hepatocellular Carcinoma cohort, macrovascular invasion was present in 5% (n = 17) of tumors and microvascular invasion in 25% (n = 94) of tumors. Functional pathway analysis revealed that the MYC oncogene was a common upstream regulator of the mRNA, miRNA, and proteomic changes in VI. We performed comparative proteomic analyses of invasive human HCC and MYC-driven murine HCC and identified fibronectin to be a proteomic biomarker of invasive HCC (mouse fibronectin 1 [Fn1], P = 1.7 × 10-11 ; human FN1, P = 1.5 × 10-4 ) conserved across the two species. Mechanistically, we show that FN1 promotes the migratory and invasive phenotype of HCC cancer cells. We demonstrate tissue overexpression of fibronectin in human HCC using a large independent cohort of human HCC tissue microarray (n = 153; P < 0.001). Lastly, we showed that plasma fibronectin levels were significantly elevated in patients with HCC (n = 35; mean = 307.7 μg/mL; SEM = 35.9) when compared to cirrhosis (n = 10; mean = 41.8 μg/mL; SEM = 13.3; P < 0.0001). CONCLUSIONS Our study evaluates the molecular landscape of tumors with VI, identifying distinct transcriptional, epigenetic, and proteomic changes driven by the MYC oncogene. We show that MYC up-regulates fibronectin expression, which promotes HCC invasiveness. In addition, we identify fibronectin to be a promising noninvasive proteomic biomarker of VI in HCC.
Collapse
Affiliation(s)
- Maya S. Krishnan
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Anand Rajan KD
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Jangho Park
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Vinodhini Arjunan
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA
| | | | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, CA
| | - Olivia A. Girvan
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, CA
| | - Nam S. Hoang
- Division of Interventional Radiology, Department of Radiology, Stanford University, Stanford, CA
| | - Jun Yin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA
| | - Nishita Kothary
- Division of Interventional Radiology, Department of Radiology, Stanford University, Stanford, CA
| | - Sharon Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, CA
| | - Dean W. Felsher
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
34
|
Kim EJ, Yoo C, Kang HJ, Kim KP, Ryu MH, Park SR, Lee D, Choi J, Shim JH, Kim KM, Lim YS, Lee HC, Ryoo BY. Clinical outcomes of systemic therapy in patients with unresectable or metastatic combined hepatocellular-cholangiocarcinoma. Liver Int 2021; 41:1398-1408. [PMID: 33548073 DOI: 10.1111/liv.14813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The optimal systemic chemotherapy for combined hepatocellular-cholangiocarcinoma (cHCC-CCA) has not yet been defined. The definition and classification of cHCC-CCA has changed recently in the 5th edition of WHO classification. We reviewed the pathological findings with the new classification and analysed the efficacy of systemic chemotherapy in patients with unresectable/metastatic cHCC-CCA. METHODS Among 254 patients with histologically confirmed cHCC-CCA from 1999 to 2015 in Asan Medical Center, Seoul, Korea, 99 patients who received systemic chemotherapy for unresectable/metastatic disease were included. Overall response rate (ORR), progression-free survival (PFS) and overall survival (OS) were retrospectively evaluated. RESULTS Sorafenib (n = 62) and cytotoxic chemotherapy (n = 37) were administered as first-line chemotherapies; the ORR was 14.1%, and the median PFS and OS were 3.8 and 10.6 months, respectively, with a median follow-up duration of 39.6 months. The efficacy outcomes were not significantly different between patients who received sorafenib and those who received cytotoxic chemotherapy (ORR, 9.7% vs 21.6%, P = .14; median PFS, 4.2 vs 2.9 months, P = .52; median OS, 10.7 vs 10.6 months, P = .34). In multivariate analysis, large intrahepatic tumour burden (≥30% of liver volume), elevated serum bilirubin and non-platinum containing first-line chemotherapy remained as significant prognostic factors for poorer OS. CONCLUSIONS The efficacy outcomes according to first-line treatment were not significantly different between sorafenib and cytotoxic chemotherapy, and pathological findings were not found to help for determining appropriate therapeutic agent or assessing the prognosis. To overcome the poor treatment outcomes, further studies are needed to find proper treatment targets, biomarkers and the best treatment strategies.
Collapse
Affiliation(s)
- Eo Jin Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyu-Pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Danbi Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jonggi Choi
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Suk Lim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Chu Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Sun N, Lee YT, Kim M, Wang JJ, Zhang C, Teng PC, Qi D, Zhang RY, Tran BV, Lee YT, Ye J, Palomique J, Nissen NN, Han SHB, Sadeghi S, Finn RS, Saab S, Busuttil RW, Posadas EM, Liang L, Pei R, Yang JD, You S, Agopian VG, Tseng HR, Zhu Y. Covalent Chemistry-Mediated Multimarker Purification of Circulating Tumor Cells Enables Noninvasive Detection of Molecular Signatures of Hepatocellular Carcinoma. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001056. [PMID: 34212072 PMCID: PMC8240468 DOI: 10.1002/admt.202001056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 05/02/2023]
Abstract
Transcriptomic profiling of tumor tissues introduces a large database, which has led to improvements in the ability of cancer diagnosis, treatment, and prevention. However, performing tumor transcriptomic profiling in the clinical setting is very challenging since the procurement of tumor tissues is inherently limited by invasive sampling procedures. Here, we demonstrated the feasibility of purifying hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) from clinical patient samples with improved molecular integrity using Click Chips in conjunction with a multimarker antibody cocktail. The purified CTCs were then subjected to mRNA profiling by NanoString nCounter platform, targeting 64 HCC-specific genes, which were generated from an integrated data analysis framework with 8 tissue-based prognostic gene signatures from 7 publicly available HCC transcriptomic studies. After bioinformatics analysis and comparison, the HCC CTC-derived gene signatures showed high concordance with HCC tissue-derived gene signatures from TCGA database, suggesting that HCC CTCs purified by Click Chips could enable the translation of HCC tissue molecular profiling into a noninvasive setting.
Collapse
Affiliation(s)
- Na Sun
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Minhyung Kim
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jasmine J Wang
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ceng Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Pai-Chi Teng
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dongping Qi
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ryan Y Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Benjamin V Tran
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Yue Tung Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Jinglei Ye
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Juvelyn Palomique
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nicholas N Nissen
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven-Huy B Han
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Saeed Sadeghi
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Richard S Finn
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Sammy Saab
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Ronald W Busuttil
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Edwin M Posadas
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, P.R. China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Ju Dong Yang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungyong You
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vatche G Agopian
- Department of Surgery, UCLA, 200 Medical Plaza, Los Angeles, CA, 90024, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), 570 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Cen W, Li J, Tong C, Zhang W, Zhao Y, Lu B, Yu J. Intrahepatic Cholangiocarcinoma Cells Promote Epithelial-mesenchymal Transition of Hepatocellular Carcinoma Cells by Secreting LAMC2. J Cancer 2021; 12:3448-3457. [PMID: 33995623 PMCID: PMC8120174 DOI: 10.7150/jca.55627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma cells are common primary hepatic tumor cells in the liver. Combined hepatocellular cholangiocarcinoma (CHC) contains both hepatocellular carcinoma cells and intrahepatic cholangiocarcinoma cells in one tumor lesion and these tumors show poor prognosis. Here we examined the potential interaction between hepatocellular carcinoma cells and intrahepatic cholangiocarcinoma cells using cell culture studies. The results showed that culture supernatant from intrahepatic cholangiocarcinoma cells induced endothelial-mesenchymal transition and facilitated the migration and invasion of hepatocellular carcinoma cells, although it did not accelerate the proliferation of hepatocellular carcinoma cells. Furthermore, culture supernatant from intrahepatic cholangiocarcinoma cells increased the chemoresistance of hepatocellular carcinoma cells. Laminin subunit gamma 2 (LAMC2) was detected in the culture supernatant of intrahepatic cholangiocarcinoma cells but not in that of hepatocellular carcinoma cells. Using established LAMC2 knockout intrahepatic cholangiocarcinoma cells, our results demonstrated that intrahepatic cholangiocarcinoma cells promoted the epithelial-mesenchymal transition of hepatocellular carcinoma cells through secreting LAMC2. Our results have revealed a novel mechanism of interaction between intrahepatic cholangiocarcinoma cells and hepatocellular carcinoma cells, which may provide new insight into developing effective treatments for CHC.
Collapse
Affiliation(s)
- Wenda Cen
- Shaoxing University School of Medicine, Shaoxing, China
| | - Jiandong Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.,Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Chenhao Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.,Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Weiguang Zhang
- Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, China
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neurosciences, LSU Health Sciences Center, Shreveport, LA, USA
| | - Baochun Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.,Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jianhua Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shaoxing University, Shaoxing, China.,Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
37
|
Prognostic Cancer Gene Expression Signatures: Current Status and Challenges. Cells 2021; 10:cells10030648. [PMID: 33804045 PMCID: PMC8000474 DOI: 10.3390/cells10030648] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Current staging systems of cancer are mainly based on the anatomical extent of disease. They need refinement by biological parameters to improve stratification of patients for tumor therapy or surveillance strategies. Thanks to developments in genomic, transcriptomic, and big-data technologies, we are now able to explore molecular characteristics of tumors in detail and determine their clinical relevance. This has led to numerous prognostic and predictive gene expression signatures that have the potential to establish a classification of tumor subgroups by biological determinants. However, only a few gene signatures have reached the stage of clinical implementation so far. In this review article, we summarize the current status, and present and future challenges of prognostic gene signatures in three relevant cancer entities: breast cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
|
38
|
Zhu C, Ho YJ, Salomao MA, Dapito DH, Bartolome A, Schwabe RF, Lee JS, Lowe SW, Pajvani UB. Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features. J Hepatol 2021; 74:613-626. [PMID: 33038431 PMCID: PMC7897246 DOI: 10.1016/j.jhep.2020.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The hepatocyte Notch pathway is a pathogenic factor in non-alcoholic steatohepatitis (NASH)-associated fibrosis, but its role in hepatocellular carcinoma (HCC) is less well defined. Herein, we aimed to characterize the molecular and clinical features of Notch-active human HCC, and to investigate the mechanisms by which Notch affects NASH-driven HCC. METHODS Using a 14-gene Notch score, we stratified human HCCs from multiple comprehensively profiled datasets. We performed gene set enrichment analyses to compare Notch-active HCCs with published HCC subtype signatures. Next, we sorted Notch-active hepatocytes from Notch reporter mice for RNA sequencing and characterized Notch-active tumors in an HCC model combining a carcinogen and a NASH-inducing diet. We used genetic mouse models to manipulate hepatocyte Notch to investigate the sufficiency and necessity of Notch in NASH-driven tumorigenesis. RESULTS Notch-active signatures were found in ~30% of human HCCs that transcriptionally resemble cholangiocarcinoma-like HCC, exhibiting a lack of activating CTNNB1 (β-catenin) mutations and a generally poor prognosis. Endogenous Notch activation in hepatocytes is associated with repressed β-catenin signaling and hepatic metabolic functions, in lieu of increased interactions with the extracellular matrix in NASH. Constitutive hepatocyte Notch activation is sufficient to induce β-catenin-inactive HCC in mice with NASH. Notch and β-catenin show a pattern of mutual exclusivity in carcinogen-induced HCC; in this mouse model, chronic blockade of Notch led to β-catenin-dependent tumor development. CONCLUSIONS Notch activity characterizes a distinct HCC molecular subtype with unique histology and prognosis. Sustained Notch signaling in chronic liver diseases can drive tumor formation without acquiring specific genomic driver mutations. LAY SUMMARY The Notch signaling pathway is known to be involved in the pathogenesis of liver fibrosis. However, its role in liver cancer has not been well defined. Herein, we show that Notch activity is increased in a subset of liver cancers and is associated with poor outcomes. We also used a mouse model to show that aberrant Notch activity can drive cancer progression in obese mice.
Collapse
Affiliation(s)
- Changyu Zhu
- Department of Medicine, Columbia University, New York, NY, USA;,Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcela A. Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY, USA;,Corresponding author: Utpal B. Pajvani, Department of Medicine, Columbia University, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, New York, NY, 10032. ; fax: (212) 851-5493
| |
Collapse
|
39
|
Zhou Q, Cai H, Xu MH, Ye Y, Li XL, Shi GM, Huang C, Zhu XD, Cai JB, Zhou J, Fan J, Ji Y, Sun HC, Shen YH. Do the existing staging systems for primary liver cancer apply to combined hepatocellular carcinoma-intrahepatic cholangiocarcinoma? Hepatobiliary Pancreat Dis Int 2021; 20:13-20. [PMID: 33160852 DOI: 10.1016/j.hbpd.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The incidence of combined hepatocellular carcinoma-intrahepatic cholangiocarcinoma (cHCC-ICC) is relatively low, and the knowledge about the prognosis of cHCC-ICC remains obscure. In the study, we aimed to screen existing primary liver cancer staging systems and shed light on the prognosis and risk factors for cHCC-ICC. METHODS We retrospectively reviewed 206 cHCC-ICC patients who received curative surgical resection from April 1999 to March 2017. The correlation of survival measures with the histological types or with tumor staging systems was determined and predictive values of tumor staging systems with cHCC-ICC prognosis were compared. RESULTS The histological type was not associated with overall survival (OS) (P = 0.338) or disease-free survival (DFS) (P = 0.843) of patients after curative surgical resection. BCLC, TNM for HCC, and TNM for ICC stages correlated with both OS and DFS in cHCC-ICC (all P < 0.05). The predictive values of TNM for HCC and TNM for ICC stages were similar in terms of predicting postoperative OS (P = 0.798) and DFS (P = 0.191) in cHCC-ICC. TNM for HCC was superior to BCLC for predicting postoperative OS (P = 0.022) in cHCC-ICC. CONCLUSION The TNM for HCC staging system should be prioritized for clinical applications in predicting cHCC-ICC prognosis.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Hao Cai
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Ming-Hao Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Yao Ye
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Long Li
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Guo-Ming Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Cheng Huang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui-Chuan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Ying-Hao Shen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China.
| |
Collapse
|
40
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
41
|
Rhee H, Kim H, Park YN. Clinico-Radio-Pathological and Molecular Features of Hepatocellular Carcinomas with Keratin 19 Expression. Liver Cancer 2020; 9:663-681. [PMID: 33442539 PMCID: PMC7768132 DOI: 10.1159/000510522] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/28/2020] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous neoplasm, both from the molecular and histomorphological aspects. One example of heterogeneity is the expression of keratin 19 (K19) in a subset (4-28%) of HCCs. The presence of K19 expression in HCCs has important clinical implications, as K19-positive HCCs have been associated with aggressive tumor biology and poor prognosis. Histomorphologically, K19-positive HCCs demonstrate a more infiltrative appearance, poor histological differentiation, more frequent vascular invasion, and more intratumoral fibrous stroma than K19-negative conventional HCCs. From the molecular aspect, K19-positive HCCs have been matched with various gene signatures that have been associated with stemness and poor prognosis, including the G1-3 groups, S2 class, cluster A, proliferation signature, and vascular invasion signature. K19-positive HCCs also show upregulated signatures related to transforming growth factor-β pathway and epithelial-to-mesenchymal transition. The main regulators of K19 expression include hepatocyte growth factor-MET paracrine signaling by cancer-associated fibroblast, epidermal growth factor-epidermal growth factor receptor signaling, laminin, and DNA methylation. Clinically, higher serum alpha-fetoprotein levels, frequent association with chronic hepatitis B, more invasive growth, and lymph node metastasis have been shown to be characteristics of K19-positive HCCs. Radiologic features including atypical enhancement patterns, absence of tumor capsules, and irregular tumor margins can be a clue for K19-positive HCCs. From a therapeutic standpoint, K19-positive HCCs have been associated with poor outcomes after curative resection or liver transplantation, and resistance to systemic chemotherapy and locoregional treatment, including transarterial chemoembolization and radiofrequency ablation. In this review, we summarize the currently available knowledge on the clinico-radio-pathological and molecular features of K19-expressing HCCs, including a detailed discussion on the regulation mechanism of these tumors.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea,*Young Nyun Park, Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722 (Republic of Korea),
| |
Collapse
|
42
|
Wu R, Pan S, Chen Y, Nakano Y, Li M, Balog S, Tsukamoto H. Fate and functional roles of Prominin 1 + cells in liver injury and cancer. Sci Rep 2020; 10:19412. [PMID: 33173221 PMCID: PMC7656457 DOI: 10.1038/s41598-020-76458-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Prominin 1 (PROM1) is one of a few clinically relevant progenitor markers in human alcoholic hepatitis (AH) and hepatocellular carcinoma (HCC), and mouse liver tumor initiating stem cell-like cells (TICs). However, the origin, fate and functions of PROM1+ cells in AH and HCC are unknown. Here we show by genetic lineage tracing that PROM1+ cells are derived in part from hepatocytes in AH and become tumor cells in mice with diethyl nitrosamine (DEN)-initiated, Western alcohol diet-promoted liver tumorigenesis. Our RNA sequencing analysis of mouse PROM1+ cells, reveals transcriptomic landscapes indicative of their identities as ductular reaction progenitors (DRPs) and TICs. Indeed, single-cell RNA sequencing reveals two subpopulations of Prom1+ Afp– DRPs and Prom1+ Afp+ TICs in the DEN-WAD model. Integrated bioinformatic analysis identifies Discodin Domain Receptor 1 (DDR1) as a uniquely upregulated and patient-relevant gene in PROM1+ cells in AH and HCC. Translational relevance of DDR1 is supported by its marked elevation in HCC which is inversely associated with patient survival. Further, knockdown of Ddr1 suppresses the growth of TICs and TIC-derived tumor growth in mice. These results suggest the importance of PROM1+ cells in the evolution of liver cancer and DDR1 as a potential driver of this process.
Collapse
Affiliation(s)
- Raymond Wu
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephanie Pan
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yibu Chen
- USC Libraries Bioinformatics Services, University of Southern California, Los Angeles, CA, USA
| | - Yasuhiro Nakano
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Meng Li
- USC Libraries Bioinformatics Services, University of Southern California, Los Angeles, CA, USA
| | - Steven Balog
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1400] [Impact Index Per Article: 280.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
44
|
Zhu Y, Kwong LN. Insights Into the Origin of Intrahepatic Cholangiocarcinoma From Mouse Models. Hepatology 2020; 72:305-314. [PMID: 32096245 DOI: 10.1002/hep.31200] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
45
|
Lau HCH, Kranenburg O, Xiao H, Yu J. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol 2020; 17:203-222. [PMID: 32099092 DOI: 10.1038/s41575-019-0255-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a major public health problem worldwide. Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality. Historically, the mechanisms of tumour initiation and progression in the gastrointestinal tract have been studied using cancer cell lines in vitro and animal models. Traditional cell culture methods are associated with a strong selection of aberrant genomic variants that no longer reflect the original tumours in terms of their (metastatic) behaviour or response to therapy. Organoid technology has emerged as a powerful alternative method for culturing gastrointestinal tumours and the corresponding normal tissues in a manner that preserves their genetic, phenotypic and behavioural traits. Importantly, accumulating evidence suggests that organoid cultures have great value in predicting the outcome of therapy in individual patients. Herein, we review the current literature on organoid models of the most common gastrointestinal cancers, including colorectal cancer, gastric cancer, oesophageal cancer, liver cancer and pancreatic cancer, and their value in modelling tumour initiation, metastatic progression and therapy response. We also explore the limitations of current organoid models and discuss how they could be improved to maximally benefit basic and translational research in the future, especially in the fields of drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Harry Cheuk Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Onno Kranenburg
- UMC Utrecht Cancer Center, Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, Netherlands
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
46
|
Leoni S, Sansone V, De Lorenzo S, Ielasi L, Tovoli F, Renzulli M, Golfieri R, Spinelli D, Piscaglia F. Treatment of Combined Hepatocellular and Cholangiocarcinoma. Cancers (Basel) 2020; 12:E794. [PMID: 32224916 PMCID: PMC7226028 DOI: 10.3390/cancers12040794] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Combined hepatocellular and cholangiocarcinoma (HCC-CC) is a rare primary liver cancer. It is constituted by neoplastic cells of both hepatocellular and cholangiocellular derivation. Different histology types of HCC-CC have been reported, hinting at heterogeneous carcinogenic pathways leading to the development of this cancer. Due to its rarity and complexity, mixed HCC-CC is a scantly investigated condition with unmet needs and unsatisfactory outcomes. Surgery remains the preferred treatment in resectable patients. The risk of recurrence, however, is high, especially in comparison with other primary liver cancers such as hepatocellular carcinoma. In unresectable or recurring patients, the therapeutic options are challenging due to the dual nature of the neoplastic cells. Consequently, the odds of survival of patients with HCC-CC remains poor. We analysed the literature systematically about the treatment of mixed HCC-CC, reviewing the main therapeutic options and their outcomes and analysing the most interesting developments in this topic with a focus on new potential therapeutic avenues.
Collapse
Affiliation(s)
- Simona Leoni
- Internal Medicine Unit, Department of Digestive Diseases, Bologna Authority Hospital S.Orsola-Malpighi, 40136 Bologna, Italy
| | - Vito Sansone
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40136 Bologna, Italy; (V.S.); (L.I.); (F.T.); (F.P.)
| | - Stefania De Lorenzo
- Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40136 Bologna, Italy;
| | - Luca Ielasi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40136 Bologna, Italy; (V.S.); (L.I.); (F.T.); (F.P.)
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40136 Bologna, Italy; (V.S.); (L.I.); (F.T.); (F.P.)
| | - Matteo Renzulli
- Radiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola Hospital, University of Bologna, 40136 Bologna, Italy; (M.R.); (R.G.); (D.S.)
| | - Rita Golfieri
- Radiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola Hospital, University of Bologna, 40136 Bologna, Italy; (M.R.); (R.G.); (D.S.)
| | - Daniele Spinelli
- Radiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola Hospital, University of Bologna, 40136 Bologna, Italy; (M.R.); (R.G.); (D.S.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40136 Bologna, Italy; (V.S.); (L.I.); (F.T.); (F.P.)
| |
Collapse
|
47
|
Genomic Perspective on Mouse Liver Cancer Models. Cancers (Basel) 2019; 11:cancers11111648. [PMID: 31731480 PMCID: PMC6895968 DOI: 10.3390/cancers11111648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Selecting the most appropriate mouse model that best recapitulates human hepatocellular carcinoma (HCC) allows translation of preclinical mouse studies into clinical studies. In the era of cancer genomics, comprehensive and integrative analysis of the human HCC genome has allowed categorization of HCC according to molecular subtypes. Despite the variety of mouse models that are available for preclinical research, there is a lack of evidence for mouse models that closely resemble human HCC. Therefore, it is necessary to identify the accurate mouse models that represent human HCC based on molecular subtype as well as histologic aggressiveness. In this review, we summarize the mouse models integrated with human HCC genomic data to provide information regarding the models that recapitulates the distinct aspect of HCC biology and prognosis based on molecular subtypes.
Collapse
|
48
|
Fako V, Martin SP, Pomyen Y, Budhu A, Chaisaingmongkol J, Franck S, Lee JMF, Ng IOL, Cheung TT, Wei X, Liu N, Ji J, Zhao L, Liu Z, Jia HL, Tang ZY, Qin LX, Kloeckner R, Marquardt J, Greten T, Wang XW. Gene signature predictive of hepatocellular carcinoma patient response to transarterial chemoembolization. Int J Biol Sci 2019; 15:2654-2663. [PMID: 31754337 PMCID: PMC6854367 DOI: 10.7150/ijbs.39534] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Transarterial chemoembolization (TACE) is a commonly used treatment modality in hepatocellular carcinoma (HCC). The ability to identify patients who will respond to TACE represents an important clinical need, and tumor gene expression patterns may be associated with TACE response. We investigated whether tumor transcriptome is associated with TACE response in patients with HCC. We analyzed transcriptome data of treatment-naïve tumor tissues from a Chinese cohort of 191 HCC patients, including 105 patients who underwent TACE following resection with curative intent. We then developed a gene signature, TACE Navigator, which was associated with improved survival in patients that received either adjuvant or post-relapse TACE. To validate our findings, we applied our signature in a blinded manner to three independent cohorts comprising an additional 130 patients with diverse ethnic backgrounds enrolled in three different hospitals who received either adjuvant TACE or palliative TACE. TACE Navigator stratified patients into Responders and Non-Responders which was associated with improved survival following TACE in our test cohort (Responders: 67 months vs Non-Responders: 39.5 months, p<0.0001). In addition, multivariable Cox model demonstrates that TACE Navigator was independently associated with survival (HR: 9.31, 95% CI: 3.46-25.0, p<0.001). In our validation cohorts, the association between TACE Navigator and survival remained robust in both Asian patients who received adjuvant TACE (Hong Kong: 60 months vs 25.6 months p=0.007; Shandong: 61.3 months vs 32.1 months, p=0.027) and European patients who received TACE as primary therapy (Mainz: 60 months vs 41.5 months, p=0.041). These results indicate that a TACE-specific molecular classifier is robust in predicting TACE response. This gene signature can be used to identify patients who will have the greatest survival benefit after TACE treatment and enable personalized treatment modalities for patients with HCC.
Collapse
Affiliation(s)
| | | | | | - Anuradha Budhu
- Laboratory of Human Carcinogenesis.,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | - Tan-To Cheung
- Surgery, and State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Xiyang Wei
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Niya Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Junfang Ji
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Lei Zhao
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Zhaogang Liu
- Shandong Cancer Hospital and Institute, Jinan, China
| | | | | | | | | | | | - Tim Greten
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.,Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis.,Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Xu M, Wang J, Xu Z, Li R, Wang P, Shang R, Cigliano A, Ribback S, Solinas A, Pes GM, Evert K, Wang H, Song X, Zhang S, Che L, Pascale RM, Calvisi DF, Liu Q, Chen X. SNAI1 Promotes the Cholangiocellular Phenotype, but not Epithelial-Mesenchymal Transition, in a Murine Hepatocellular Carcinoma Model. Cancer Res 2019; 79:5563-5574. [PMID: 31383647 DOI: 10.1158/0008-5472.can-18-3750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/29/2019] [Accepted: 07/30/2019] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has limited treatment options. Snail family transcriptional repressor 1 (SNAI1) is a master regulator of epithelial-mesenchymal transition (EMT) and has been implicated in HCC initiation and progression. However, the precise role of SNAI1 and the way it contributes to hepatocarcinogenesis have not been investigated in depth, especially in vivo. Here, we analyzed the functional relevance of SNAI1 in promoting hepatocarcinogenesis in the context of the AKT/c-Met-driven mouse liver tumor model (AKT/c-Met/SNAI1). Overexpression of SNAI1 did not accelerate AKT/c-Met-induced HCC development or induce metastasis in mice. Elevated SNAI1 expression rather led to the formation of cholangiocellular (CCA) lesions in the mouse liver, a phenotype that was paralleled by increased activation of Yap and Notch. Ablation of Yap strongly inhibited AKT/c-Met/SNAI-induced HCC and CCA development, whereas inhibition of the Notch pathway specifically blocked the CCA-like phenotype in mice. Intriguingly, overexpression of SNAI1 failed to induce EMT, indicated by strong E-cadherin expression and lack of vimentin expression by AKT/c-Met/SNAI tumor cells. SNAI1 mRNA levels strongly correlated with the expression of CCA markers, including SOX9, CK19, and EPCAM, but not with EMT markers such as E-CADHERIN and ZO-1, in human HCC samples. Overall, our findings suggest SNAI1 regulates the CCA-like phenotype in hepatocarcinogenesis via regulation of Yap and Notch. SIGNIFICANCE: These findings report a new function of SNAI1 to promote cholangiocellular transdifferentiation instead of epithelial-mesenchymal transition in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, P. R. China.,Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, P. R. China.,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, PR China
| | - Zhong Xu
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, P. R. China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering
| | - Runze Shang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.,Department of Hepatobiliary Surgery, Xi'jing Hospital, Air Force Military Medical University, Xi'an, P. R. China
| | - Antonio Cigliano
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Mario Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Katja Evert
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.,Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Shu Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California.,Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Rosa Maria Pascale
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Diego Francesco Calvisi
- Institute of Pathology, University Clinic of Regensburg, Regensburg, Germany. .,Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, P. R. China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| |
Collapse
|
50
|
Haznadar M, Diehl CM, Parker AL, Krausz KW, Bowman ED, Rabibhadana S, Forgues M, Bhudhisawasdi V, Gonzalez FJ, Mahidol C, Budhu A, Wang XW, Ruchirawat M, Harris CC. Urinary Metabolites Diagnostic and Prognostic of Intrahepatic Cholangiocarcinoma. Cancer Epidemiol Biomarkers Prev 2019; 28:1704-1711. [PMID: 31358519 DOI: 10.1158/1055-9965.epi-19-0453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/06/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Liver cancer is the second leading cause of cancer-related deaths worldwide. With a predicted 2.4-fold rise in liver cancer incidence by 2020, there is an urgent need for early, inexpensive diagnostic biomarkers to deploy in the clinic. METHODS We employed ultraperformance liquid chromatography tandem mass-spectrometry (UPLC/MS-MS) for the quantitation of four metabolites, creatine riboside (CR), N-acetylneuraminic acid (NANA), cortisol sulfate, and a lipid molecule designated as 561+, in urine samples from the NCI-MD cohort comprising 98 hepatocellular carcinoma (HCC) cases, 101 high-risk subjects, and 95 controls. Validation was carried out in the TIGER-LC cohort [n = 370 HCC and intrahepatic cholangiocarcinoma (ICC) cases, 471 high-risk subjects, 251 controls], where ICC, the second most common primary hepatic malignancy, is highly prevalent. Metabolite quantitation was also conducted in TIGER-LC tissue samples (n = 48 ICC; n = 51 HCC). RESULTS All profiled metabolites were significantly increased in liver cancer when compared with high-risk subjects and controls in the NCI-MD study. In the TIGER-LC cohort, the four-metabolite profile was superior at classifying ICC than a clinically utilized marker, CA19-9, and their combination led to a significantly improved model (AUC = 0.88, P = 4E-8). Metabolites CR and NANA were significantly elevated in ICC when compared with HCC cases in both urine and tissue samples. High levels of CR were associated with poorer prognosis in ICC. CONCLUSIONS Four metabolites are significantly increased in HCC and ICC and are robust at classifying ICC in combination with the clinically utilized marker CA19-9. IMPACT Noninvasive urinary metabolite biomarkers hold promise for diagnostic and prognostic evaluation of ICC.
Collapse
Affiliation(s)
- Majda Haznadar
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Christopher M Diehl
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Amelia L Parker
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Siritida Rabibhadana
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand.,Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Xin W Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, Thailand
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|