1
|
Liu J, Guo Y, Sun J, Lei Y, Guo M, Wang L. Extraction methods, multiple biological activities, and related mechanisms of Momordica charantia polysaccharide: A review. Int J Biol Macromol 2024; 263:130473. [PMID: 38423437 DOI: 10.1016/j.ijbiomac.2024.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.
Collapse
Affiliation(s)
- Jinshen Liu
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| | - Yuying Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Jie Sun
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Yuxin Lei
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Mingyi Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Linhong Wang
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| |
Collapse
|
2
|
Panchal K, Nihalani B, Oza U, Panchal A, Shah B. Exploring the mechanism of action bitter melon in the treatment of breast cancer by network pharmacology. World J Exp Med 2023; 13:142-155. [PMID: 38173546 PMCID: PMC10758660 DOI: 10.5493/wjem.v13.i5.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Bitter melon has been used to stop the growth of breast cancer (BRCA) cells. However, the underlying mechanism is still unclear. AIM To predict the therapeutic effect of bitter melon against BRCA using network pharmacology and to explore the underlying pharmacological mechanisms. METHODS The active ingredients of bitter melon and the related protein targets were taken from the Indian Medicinal Plants, Phytochemistry and Therapeutics and SuperPred databases, respectively. The GeneCards database has been searched for BRCA-related targets. Through an intersection of the drug's targets and the disease's objectives, prospective bitter melon anti-BRCA targets were discovered. Gene ontology and kyoto encyclopedia of genes and genomes enrichment analyses were carried out to comprehend the biological roles of the target proteins. The binding relationship between bitter melon's active ingredients and the suggested target proteins was verified using molecular docking techniques. RESULTS Three key substances, momordicoside K, kaempferol, and quercetin, were identified as being important in mediating the putative anti-BRCA effects of bitter melon through the active ingredient-anti-BRCA target network study. Heat shock protein 90 AA, proto-oncogene tyrosine-protein kinase, and signal transducer and activator of transcription 3 were found to be the top three proteins in the protein-protein interaction network study. The several pathways implicated in the anti-BRCA strategy for an active component include phosphatidylinositol 3-kinase/protein kinase B signaling, transcriptional dysregulation, axon guidance, calcium signaling, focal adhesion, janus kinase-signal transducer and activator of transcription signaling, cyclic adenosine monophosphate signaling, mammalian target of rapamycin signaling, and phospholipase D signaling. CONCLUSION Overall, the integration of network pharmacology, molecular docking, and functional enrichment analyses shed light on potential mechanisms underlying bitter melon's ability to fight BRCA, implicating active ingredients and protein targets, as well as highlighting the major signaling pathways that may be altered by this natural product for therapeutic benefit.
Collapse
Affiliation(s)
- Kavan Panchal
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| | - Bhavya Nihalani
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| | - Utsavi Oza
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| | - Aarti Panchal
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| | - Bhumi Shah
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| |
Collapse
|
3
|
Kakuturu A, Choi H, Noe LG, Scherer BN, Sharma B, Khambu B, Bhetwal BP. Bitter melon extract suppresses metastatic breast cancer cells (MCF-7 cells) growth possibly by hindering glucose uptake. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000961. [PMID: 37736248 PMCID: PMC10509689 DOI: 10.17912/micropub.biology.000961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Breast cancer is one of the most commonly diagnosed cancers among women, however the complete cure for metastatic breast cancer is lacking due to poor prognosis. There has been an increasing trend of dietary modifications including consumption of natural food for the prevention of cancer. One of the popular natural foods is bitter melon. Bitter melon grows in tropical and subtropical areas. Some of the beneficial effects of bitter melon towards disease including cancer have been reported at the whole body/organismal level. However, specific cellular mechanisms by which bitter melon exerts beneficial effects in breast cancer are lacking. In this study, we used a human metastatic breast cancer cell line, MCF-7 cell, to study if bitter melon alters glucose clearance from the culture medium. We co-cultured MCF-7 cells with bitter melon extract in the presence and absence of supplemented insulin and subsequently measured MCF-7 cells viability. In this study, we report a noble finding that bitter melon extract exerts cytotoxic effects on MCF-7 cells possibly via inhibition of glucose uptake. Our findings show that insulin rescues MCF-7 cells from the effects of bitter melon extract.
Collapse
Affiliation(s)
- Abhinav Kakuturu
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Marian University - Indiana, Indianapolis, Indiana, United States
| | - Heeyun Choi
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Marian University - Indiana, Indianapolis, Indiana, United States
| | - Leah G Noe
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Marian University - Indiana, Indianapolis, Indiana, United States
| | - Brianna N Scherer
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Marian University - Indiana, Indianapolis, Indiana, United States
| | - Bikram Sharma
- Department of Biology, Ball State University, Muncie, Indiana, United States
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, School of Medicine , Tulane University, New Orleans, Louisiana, United States
| | - Bhupal P Bhetwal
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Marian University - Indiana, Indianapolis, Indiana, United States
| |
Collapse
|
4
|
Yuan MK, Kao JW, Wu WT, Chen CR, Chang CI, Wu YJ. Investigation of cell cytotoxic activity and molecular mechanism of 5β,19-epoxycucurbita-6,23( E)-diene-3β,19( R),25-triol isolated from Momordica charantia on hepatoma cells. PHARMACEUTICAL BIOLOGY 2022; 60:1214-1223. [PMID: 35760558 PMCID: PMC9246111 DOI: 10.1080/13880209.2022.2077766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Momordica charantia L. (Cucurbitaceae), known as bitter melon, is an edible fruit cultivated in the tropics. In this study, an active compound, 5β,19-epoxycucurbita-6,23(E)-diene-3β,19(R),25-triol (ECDT), isolated from M. charantia was investigated in regard to its cytotoxic effect on human hepatocellular carcinoma (HCC) cells. OBJECTIVE To examine the mechanisms of ECDT-induced apoptosis in HCC cells. MATERIALS AND METHODS The inhibitive activity of ECDT on HA22T HCC cells was examined by MTT assay, colony formation assay, wound healing assay, TUNEL/DAPI staining, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and JC-1 dye. HA22T cells were treated with ECDT (5, 10, 15, 20 and 25 μM) for 24 h, and the molecular mechanism of cells apoptosis was examined by Western blot. Cells treated with vehicle DMSO were used as the negative control. RESULTS ECDT inhibited the cell proliferation of HA22T cells in a dose-dependent manner. Flow cytometry showed that ECDT treatment at 10-20 μM increased early apoptosis by 10-14% and late apoptosis by 2-5%. Western blot revealed that ECDT treatment activated the mitochondrial-dependent apoptotic pathway, and ECDT-induced apoptosis was mediated by the caspase signalling pathway and activation of JNK and p38MAPK. Pre-treatment of cells with MAPK inhibitors (SB203580 or SP600125) reversed the ECDT-induced cell death, which further supported the involvement of the p38MAPK and JNK pathways. DISCUSSION AND CONCLUSIONS Our results indicated that ECDT can induce apoptosis through the p38MAPK and JNK pathways in HA22T cells. The findings suggested that ECDT has a valuable anticancer property with the potential to be developed as a new chemotherapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Mei-Kang Yuan
- Department of Radiology, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Ju-Wen Kao
- Department of Biological Science and Technology, Meiho University, Neipu, Taiwan
| | - Wen-Tung Wu
- Department of Biological Science and Technology, Meiho University, Neipu, Taiwan
- Department of Food Science and Nutrition, Meiho University, Neipu, Taiwan
| | - Chiy-Rong Chen
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Chi-I Chang
- Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Yu-Jen Wu
- Department of Food Science and Nutrition, Meiho University, Neipu, Taiwan
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
| |
Collapse
|
5
|
Erdogan K, Eroglu O. The Extract of Momordica charantia Inhibits Cell Proliferation and Migration in U87G Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Yang M, Luo Q, Chen X, Chen F. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma. J Nanobiotechnology 2021; 19:259. [PMID: 34454534 PMCID: PMC8400897 DOI: 10.1186/s12951-021-00995-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Plant-derived extracellular vesicles (PDEVs) have been exploited for cancer treatment with several benefits. Bitter melon is cultivated as a vegetable and folk medicine with anticancer and anti-inflammatory activities. 5-Fluorouracil (5-FU) is widely used for cancer treatment. However, 5-FU-mediated NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammation activation induced the resistance of oral squamous cell carcinoma (OSCC) cells to 5-FU. In this study, we explored the potential of bitter melon-derived extracellular vesicles (BMEVs) for enhancing the therapeutic efficacy and reduce the resistance of OSCC to 5-FU. Results Herein, we demonstrate that bitter melon derived extracellular vesicles (BMEVs), in addition to their antitumor activity against OSCC have intrinsic anti-inflammatory functions. BMEVs induced S phase cell cycle arrest and apoptosis. Apoptosis induction was dependent on reactive oxygen species (ROS) production and JUN protein upregulation, since pretreatment with N-acetyl cysteine or catechin hydrate could prevent apoptosis and JUN accumulation, respectively. Surprisingly, BMEVs significantly downregulated NLRP3 expression, although ROS plays a central role in NLRP3 activation. We further assessed the underlying molecular mechanism and proposed that the RNAs of BMEVs, at least in part, mediate anti-inflammatory bioactivity. In our previous studies, NLRP3 activation contributed to the resistance of OSCC cells to 5-FU. Our data clearly indicate that BMEVs could exert a remarkable synergistic therapeutic effect of 5-FU against OSCC both in vitro and in vivo. Most notably, NLRP3 downregulation reduced the resistance of OSCC to 5-FU. Conclusions Together, our findings demonstrate a novel approach to enhance the therapeutic efficacy and reduce the drug resistance of cancer cells to chemotherapeutic agents, which provides proof-of-concept evidence for the future development of PDEVs-enhanced therapy. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00995-1.
Collapse
Affiliation(s)
- Meng Yang
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Qingqiong Luo
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xu Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Fuxiang Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China. .,Faculty of Medical Laboratory Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
7
|
Wild Bitter Melon Extract Regulates LPS-Induced Hepatic Stellate Cell Activation, Inflammation, Endoplasmic Reticulum Stress, and Ferroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6671129. [PMID: 34239589 PMCID: PMC8241502 DOI: 10.1155/2021/6671129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key component of liver fibrosis. Two antifibrosis pathways have been identified, the reversion to quiescent-type HSCs and the clearance of HSCs through apoptosis. Lipopolysaccharide- (LPS-) induced HSCs activation and proliferation have been associated with the development of liver fibrosis. We determined the pharmacological effects of wild bitter melon (WM) on HSC activation following LPS treatment and investigated whether WM treatment affected cell death pathways under LPS-treated conditions, including ferroptosis. WM treatment caused cell death, both with and without LPS treatment. WM treatment caused reactive oxygen species (ROS) accumulation without LPS treatment and reversed the decrease in lipid ROS production in HSCs after LPS treatment. We examined the effects of WM treatment on fibrosis, endoplasmic reticulum (ER) stress, inflammation, and ferroptosis in LPS-activated HSCs. The western blotting analysis revealed that the WM treatment of LPS-activated HSCs induced the downregulation of the connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), integrin-β1, phospho-JNK (p-JNK), glutathione peroxidase 4 (GPX4), and cystine/glutamate transporter (SLC7A11) and the upregulation of CCAAT enhancer-binding protein homologous protein (CHOP). These results support WM as an antifibrotic agent that may represent a potential therapeutic solution for the management of liver fibrosis.
Collapse
|
8
|
Binienda A, Ziolkowska S, Pluciennik E. The Anticancer Properties of Silibinin: Its Molecular Mechanism and Therapeutic Effect in Breast Cancer. Anticancer Agents Med Chem 2021; 20:1787-1796. [PMID: 31858905 DOI: 10.2174/1871520620666191220142741] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Silibinin (SB), the main component of Silymarin (SM), is a natural substance obtained from the seeds of the milk thistle. SM contains up to 70% of SB as two isoforms: A and B. It has an antioxidant and anti-inflammatory effect on hepatocytes and is known to inhibit cell proliferation, induce apoptosis, and curb angiogenesis. SB has demonstrated activity against many cancers, such as skin, liver, lung, bladder, and breast carcinomas. METHODS This review presents current knowledge of the use of SM in breast cancer, this being one of the most common types of cancer in women. It describes selected molecular mechanisms of the action of SM; for example, although SB influences both Estrogen Receptors (ER), α and β, it has opposite effects on the two. Its action on ERα influences the PI3K/AKT/mTOR and RAS/ERK signaling pathways, while by up-regulating ERβ, it increases the numbers of apoptotic cells. In addition, ERα is involved in SB-induced autophagy, while ERβ is not. Interestingly, SB also inhibits metastasis by suppressing TGF-β2 expression, thus suppressing Epithelial to Mesenchymal Transition (EMT). It also influences migration and invasive potential via the Jak2/STAT3 pathway. RESULTS SB may be a promising enhancement of BC treatment: when combined with chemotherapeutic drugs such as carboplatin, cisplatin, and doxorubicin, the combination exerts a synergistic effect against cancer cells. This may be of value when treating aggressive types of mammary carcinoma. CONCLUSION Summarizing, SB inhibits proliferation, induces apoptosis, and restrains metastasis via several mechanisms. It is possible to combine SB with different anticancer drugs, an approach that represents a promising therapeutic strategy for patients suffering from BC.
Collapse
Affiliation(s)
- Agata Binienda
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Sylwia Ziolkowska
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Elzbieta Pluciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Sur S, Ray RB. Diverse roles of bitter melon ( Momordica charantia) in prevention of oral cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:12. [PMID: 34765739 PMCID: PMC8580380 DOI: 10.20517/2394-4722.2020.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the common lethal malignancies which is increasing rapidly in the world. Increasing risks from alcohol and tobacco habits, lack of early detection markers, lack of effective chemotherapeutic agents, recurrence and distant metastasis make the disease more complicated to manage. Laboratory-based studies and epidemiological studies indicate important roles of nutraceuticals to manage different cancers. The plant bitter melon (Momordica charantia) is a good source of nutrients and bio-active phytochemicals such as triterpenoids, triterpene glycosides, phenolic acids, flavonoids, lectins, sterols and proteins. The plant is widely grown in Asia, Africa, and South America. Bitter melon has traditionally been used as a folk medicine and Ayurvedic medicine in Asian culture to treat diseases such as diabetes, since ancient times. The crude extract and some of the isolated pure compounds of bitter melon show potential anticancer effects against different cancers. In this review, we shed light on its effect on OSCC. Bitter melon extract has been found to inhibit cell proliferation and metabolism, induce cell death and enhance the immune defense system in the prevention of OSCC in vitro and in vivo. Thus, bitter melon may be used as an attractive chemopreventive agent in progression towards OSCC clinical study.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
- Cancer Center, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
10
|
The triterpenoids of the bitter gourd (Momordica Charantia) and their pharmacological activities: A review. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
AKYÜZ E, TÜRKOĞLU S, SÖZGEN BAŞKAN K, TÜTEM E, APAK MR. Comparison of antioxidant capacities and antioxidant components of commercial bitter melon (Momordica charantia L.) products. Turk J Chem 2020; 44:1663-1673. [PMID: 33488261 PMCID: PMC7763123 DOI: 10.3906/kim-2007-67] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/16/2020] [Indexed: 11/10/2022] Open
Abstract
In this study, the total phenolic contents and total antioxidant capacities of some commercial bitter melon products (powder, packaged powder, capsule, paste in olive oil), and of unripe and ripe fruits were determined by spectrophotometric and chromatographic methods. The total antioxidant capacities of unripe and ripe bitter melon samples, determined by using the CUPRAC (cupric reducing antioxidant capacity assay) and ABTS (2,2'-azino-bis(3-ethylbenzthiazolin-6-sulfonic acid))/HRP (horseradish peroxidase) methods, were 42.5 and 36.3 µmol TRE (Trolox equivalent) g-1, and 8.7 and 7.0 µmol TRE g-1, respectively. The TAC (total antioxidant capacity) order of the studied samples using the same 2 methods were determined as follows: capsule (CUPRAC value, 140.8; ABTS/HRP value, 143.6 µmol TRE g-1) > packaged powder (129.6; 126.1) > powder (52.3; 64.3) > unripe fruit (42.5; 36.3) > paste in olive oil (17.6; 14.4) > ripe fruit (8.7; 7.0). The order of phenolic content was found as follows: unripe fruit (193.2 µmol GAE (gallic acid equivalent) g-1) > capsule (162.0) > packaged powder (160.6) > powder (83.6) > paste in olive oil (38.3) > ripe fruit (14.6).
Collapse
Affiliation(s)
- Esin AKYÜZ
- Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Sercan TÜRKOĞLU
- Sem Laboratory Equipments Marketing Industry and Trade Inc., İstanbulTurkey
| | - Kevser SÖZGEN BAŞKAN
- Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Esma TÜTEM
- Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Mustafa Reşat APAK
- Department of Chemistry, Faculty of Engineering, İstanbul University-Cerrahpaşa, İstanbulTurkey
| |
Collapse
|
12
|
Mahmoud IF, Kanthimathi M, Abdul Aziz A. ROS/RNS-mediated apoptosis in HT-29 colorectal cancer cells by methanolic extract of Tamarindus indica seeds. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Stawarska A, Lepionka T, Białek A, Gawryjołek M, Bobrowska-Korczak B. Pomegranate Seed Oil and Bitter Melon Extract Affect Fatty Acids Composition and Metabolism in Hepatic Tissue in Rats. Molecules 2020; 25:molecules25225232. [PMID: 33182664 PMCID: PMC7697534 DOI: 10.3390/molecules25225232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Pomegranate seed oil (PSO) and bitter melon dried fruits (BME) are used as natural remedies in folk medicine and as dietary supplements. However, the exact mechanism of their beneficial action is not known. The aim of study was to assess how the diet supplementation with PSO and/or with an aqueous solution of Momordica charantia affects the metabolism of fatty acids, fatty acids composition and the level of prostaglandin E2 (PGE2) in rat liver. Animals (Sprague-Dawley female rats, n = 48) were divide into four equinumerous groups and fed as a control diet or experimental diets supplemented with PSO, BME or both PSO and BME for 21 weeks. Fatty acids were determined using gas chromatography with flame ionization detection. PSO added to the diet increased the rumenic acid content (p < 0.0001) and increased accumulation of n-6 fatty acids (p = 0.0001) in hepatic tissue. Enrichment of the diet either with PSO or with BME reduced the activity of Δ6-desaturase (D6D) (p = 0.0019), whereas the combination of those dietary factors only slightly increased the effect. Applied dietary supplements significantly reduced the PGE2 level (p = 0.0021). No significant intensification of the influence on the investigated parameters resulted from combined application of PSO and BME. PSO and BME have potential health-promoting properties because they influence fatty acids composition and exhibit an inhibiting effect on the activity of desaturases and thus they contribute to the reduction in the metabolites of arachidonic acid (especially PGE2).
Collapse
|
14
|
Majumder M, Sharma M, Maiti S, Mukhopadhyay R. Edible Tuber Amorphophallus paeoniifolius (Dennst.) Extract Induces Apoptosis and Suppresses Migration of Breast Cancer Cells. Nutr Cancer 2020; 73:2477-2490. [PMID: 33034216 DOI: 10.1080/01635581.2020.1830127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Medicinal plants offer enormous possibilities in the quest of novel bioactive formulation for cancer therapy. Here, we studied the anticancer efficacy of the extract of edible tuber Amorphophallus paeoniifolius (Dennst.) (APTE) against estrogen positive MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. APTE showed significant cytotoxic activity in both MCF-7 and MDA-MB-231 cells in a dose and time-dependent manner. The effect of APTE on metastatic parameters e.g., migration, adhesion, and invasion in MCF-7 and MDA-MB-231 cells were studied using wound healing, collagen adhesion, and transwell matrigel invasion assays, respectively. APTE significantly reduced migration in both the cell lines, however, its effect on the inhibition of adhesion and invasion was higher in MDA-MB-231 cells. Annexin V-Cy3 staining suggested that APTE induced apoptosis in these cells which was further validated by attenuation of antiapoptotic Bcl-2 and induction of pro-apoptotic Bax, Caspase-7 expression and cleavage of PARP. High resolution-liquid chromatography mass spectroscopy analysis with bioactive ethyl acetate and butanol fractions of APTE detected several compounds with anticancer activities. Overall, the study described the mechanism of anticancer activity of a common edible tuber A. paeoniifolius and contributes to growing list of naturally occurring chemo-preventive strategies.
Collapse
Affiliation(s)
- Munmi Majumder
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manoj Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Siddhartha Maiti
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
15
|
Sur S, Ray RB. Bitter Melon ( Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy. Cancers (Basel) 2020; 12:E2064. [PMID: 32726914 PMCID: PMC7464160 DOI: 10.3390/cancers12082064] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Many dietary plant products show promising anticancer effects. Bitter melon or bitter gourd (Momordica charantia) is a nutrient-rich medicinal plant cultivated in tropical and subtropical regions of many countries. Traditionally, bitter melon is used as a folk medicine and contains many bioactive components including triterpenoids, triterpene glycoside, phenolic acids, flavonoids, lectins, sterols and proteins that show potential anticancer activity without significant side effects. The preventive and therapeutic effects of crude extract or isolated components are studied in cell line-based models and animal models of multiple types of cancer. In the present review, we summarize recent progress in testing the cancer preventive and therapeutic activity of bitter melon with a focus on underlying molecular mechanisms. The crude extract and its components prevent many types of cancers by enhancing reactive oxygen species generation; inhibiting cancer cell cycle, cell signaling, cancer stem cells, glucose and lipid metabolism, invasion, metastasis, hypoxia, and angiogenesis; inducing apoptosis and autophagy cell death, and enhancing the immune defense. Thus, bitter melon may serve as a promising cancer preventive and therapeutic agent.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
- Cancer Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
16
|
Salvestrini V, Ciciarello M, Pensato V, Simonetti G, Laginestra MA, Bruno S, Pazzaglia M, De Marchi E, Forte D, Orecchioni S, Martinelli G, Bertolini F, Méndez-Ferrer S, Adinolfi E, Di Virgilio F, Cavo M, Curti A. Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells. Front Oncol 2020; 10:1225. [PMID: 32793492 PMCID: PMC7393209 DOI: 10.3389/fonc.2020.01225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
The contribution of cell-extrinsic factors in Acute Myeloid Leukemia (AML) generation and persistence has gained interest. Bitter taste receptors (TAS2Rs) are G protein-coupled receptors known for their primary role as a central warning signal to induce aversion toward noxious or harmful substances. Nevertheless, the increasing amount of evidence about their extra-oral localization has suggested a wider function in sensing microenvironment, also in cancer settings. In this study, we found that AML cells express functional TAS2Rs. We also highlighted a significant association between the modulation of some TAS2Rs and the poor-prognosis AML groups, i.e., TP53- and TET2-mutated, supporting a potential role of TAS2Rs in AML cell biology. Gene expression profile analysis showed that TAS2R activation with the prototypical agonist, denatonium benzoate, significantly modulated a number of genes involved in relevant AML cellular processes. Functional assay substantiated molecular data and indicated that denatonium reduced AML cell proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation. Moreover, denatonium exposure impaired AML cell motility and migratory capacity, and inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation. In conclusion, our results in AML cells expand the observation of cancer TAS2R expression to the setting of hematological neoplasms and shed light on a role of TAS2Rs in the extrinsic regulation of leukemia cell functions.
Collapse
Affiliation(s)
- Valentina Salvestrini
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Marilena Ciciarello
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Valentina Pensato
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Giorgia Simonetti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Martina Pazzaglia
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Elena De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Dorian Forte
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Simon Méndez-Ferrer
- Laboratory of Hematology-Oncology, IRCCS European Institute of Oncology, Milan, Italy
- Department of Haematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Elena Adinolfi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Antonio Curti
- Department of Oncology and Hematology, Institute of Hematology “L. and A. Seràgnoli”, University-Hospital S.Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
17
|
Basaran GS, Bekci H, Baldemir A, Ilgun S, Cumaoglu A. Momordica charantia Seed and Aryl Extracts Potentiate Growth Inhibition and Apoptosis by Dual Blocking of PI3K/AKT and MAPK Pathways as a Downstream Target of EGFR Signaling in Breast Cancer Cells. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190712214922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and Objective:
Herbal extracts and plant compounds are increasingly becoming
of interest for their therapeutic potential in various cancer types. Momordica charantia is well
known for its anti-diabetic, anti-inflammatory, and anti-cancer properties.
Methods:
In the present study, we investigated the antiproliferative and pro-apoptotic effects of
Momordica charantia seed and aryl extracts on breast cancer cells and explored the underlying
molecular mechanisms.
Results:
Our results showed that both extract significantly inhibited the growth of MCF-7 and MDA
MB-231 cells in a concentration-dependent manner, and induced apoptosis by upregulation of caspase
9 and caspase 3 mRNA levels. In addition, in different incubation time, both extract evidently inhibited
EGF and induced EGFR phosphorylation/activation in both cell lines. Moreover, Momordica
charantia aryl and seed extracts inhibited phosphorylation/activation of PI3K/AKT and MAPK
(ERK and P38) pathways in both cell lines.
Conclusion:
The current study clearly demonstrates that the Momordica charantia aryl and seed extracts
have the potential to exert its cytotoxic effect on breast cancer cells by a mechanism involving
inhibition of EGFR and EGRF related pathways with the induction of apoptosis. The overall finding
demonstrates that this plant, especially seed extract, could be a potential source of new anticancer
compounds for possible drug development against cancer.
Collapse
Affiliation(s)
- Guzide Satir Basaran
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hatice Bekci
- Department of Food Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Ayse Baldemir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Selen Ilgun
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ahmet Cumaoglu
- Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
18
|
The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00219-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Huang HT, Zhang LJ, Huang HC, Hwang SY, Wu CL, Lin YC, Liaw CC, Cheng YY, Morris-Natschke SL, Huang CY, Lee KH, Kuo YH. Cucurbitane-Type Triterpenoids from the Vines of Momordica charantia and Their Anti-inflammatory Activities. JOURNAL OF NATURAL PRODUCTS 2020; 83:1400-1408. [PMID: 32357011 PMCID: PMC8173961 DOI: 10.1021/acs.jnatprod.9b00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven new cucurbitane-type triterpenoids, kuguaovins A-G (1-7), and five known ones were isolated from the rattans of wild Momordica charantia. Their structures were established by spectroscopic data analyses, including 1D and 2D NMR, IR, and MS techniques. The absolute configurations of the cucurbitanes were determined from NOESY data and partially by X-ray crystallographic analysis. In pharmacological studies, compounds 1-7 and 9-12 exhibited weak anti-inflammatory effects (IC50 = 15-35 μM), based on an anti-NO production assay.
Collapse
Affiliation(s)
- Hung-Tse Huang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Li-Jie Zhang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
- Institute of Pharmaceutics, Development Center Biotechnology, New Taipei City 221, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Syh-Yuan Hwang
- Endemic Species Research Institute, Council of Agriculture, Nantou 552, Taiwan
| | - Chia-Lun Wu
- Department of Food Science, National Ilan University, Ilan 260, Taiwan
| | - Yu-Chi Lin
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
- Department of Research and Development, Starsci Biotech Co. Ltd., Taipei 112, Taiwan
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 404, Taiwan
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 404, Taiwan
| | - Chung-Yi Huang
- Department of Food Science, National Ilan University, Ilan 260, Taiwan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 404, Taiwan
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 112, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
20
|
Forouzanfar F, Mousavi SH. Targeting Autophagic Pathways by Plant Natural Compounds in Cancer Treatment. Curr Drug Targets 2020; 21:1237-1249. [PMID: 32364070 DOI: 10.2174/1389450121666200504072635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
Abstract
Nowadays, natural compounds of plant origin with anticancer effects have gained more attention because of their clinical safety and broad efficacy profiles. Autophagy is a multistep lysosomal degradation pathway that may have a unique potential for clinical benefit in the setting of cancer treatment. To retrieve articles related to the study, the databases of Google Scholar, Web of sciences, Medline and Scopus, using the following keywords: Autophagic pathways; herbal medicine, oncogenic autophagic pathways, tumor-suppressive autophagic pathways, and cancer were searched. Although natural plant compounds such as resveratrol, curcumin, oridonin, gossypol, and paclitaxel have proven anticancer potential via autophagic signaling pathways, there is still a great need to find new natural compounds and investigate the underlying mechanisms, to facilitate their clinical use as potential anticancer agents through autophagic induction.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Liu J, Zhu X, Yang D, Li R, Jiang J. Effect of Heat Treatment on the Anticancer Activity of Houttuynia cordata Thunb Aerial Stem Extract in Human Gastric Cancer SGC-7901 Cells. Nutr Cancer 2020; 73:160-168. [PMID: 32180441 DOI: 10.1080/01635581.2020.1737153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most common malignant tumors in the world, and prevention through diet is one of the ways to control. Houttuynia cordata thunb.(HCT) is a plant having medicine and food function, has many biological properties. However, the effect of food style on the anticancer activity of HCT is not clear. So, we investigate the effect of heat treatment on anticancer activity of HCT. HCT extracts (heated aerial stem, heated subterraneous stem, heated leaves defined as HAS, HSS, HL, respectively, and not heated defined as NAS, NSS, NL, respectively) were obtained, and their inhibited activity were detected by alamar blue assay. The cell apoptosis was detected by DAPI staining and flow cytometry analysis. Western blot was performed to test the expression of apoptotic related protein. HCT showed the anticancer activity in four human tumor cell lines. Interestingly, heat treatment could increase the anticancer activity. In SCG-7901 cells, heat treatment increased anticancer activity of AS by 2-14 folds and induced apoptosis through regulating the intrinsic signaling pathways. Intriguingly, the caspase nine specific inhibitor blocked AS-reduced cell viability. Heat treatment increased the anticancer activity of HCT, and can be used as a dietary style for prevention of gastric cancer.
Collapse
Affiliation(s)
- Jinjuan Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Daning Yang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, P. R. China
| |
Collapse
|
22
|
Sur S, Nakanishi H, Flaveny C, Ippolito JE, McHowat J, Ford DA, Ray RB. Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract. Cell Commun Signal 2019; 17:131. [PMID: 31638999 PMCID: PMC6802351 DOI: 10.1186/s12964-019-0447-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is one of the hallmarks of cancer which favours rapid energy production, biosynthetic capabilities and therapy resistance. In our previous study, we showed bitter melon extract (BME) prevents carcinogen induced mouse oral cancer. RNA sequence analysis from mouse tongue revealed a significant modulation in "Metabolic Process" by altering glycolysis and lipid metabolic pathways in BME fed group as compared to cancer group. In present study, we evaluated the effect of BME on glycolysis and lipid metabolism pathways in human oral cancer cells. METHODS Cal27 and JHU022 cells were treated with BME. RNA and protein expression were analysed for modulation of glycolytic and lipogenesis genes by quantitative real-time PCR, western blot analyses and immunofluorescence. Lactate and pyruvate level was determined by GC/MS. Extracellular acidification and glycolytic rate were measured using the Seahorse XF analyser. Shotgun lipidomics in Cal27 and JHU022 cell lines following BME treatment was performed by ESI/ MS. ROS was measured by FACS. RESULTS Treatment with BME on oral cancer cell lines significantly reduced mRNA and protein expression levels of key glycolytic genes SLC2A1 (GLUT-1), PFKP, LDHA, PKM and PDK3. Pyruvate and lactate levels and glycolysis rate were reduced in oral cancer cells following BME treatment. In lipogenesis pathway, we observed a significant reduction of genes involves in fatty acid biogenesis, ACLY, ACC1 and FASN, at the mRNA and protein levels following BME treatment. Further, BME treatment significantly reduced phosphatidylcholine, phosphatidylethanolamine, and plasmenylethanolamine, and reduced iPLA2 activity. Additionally, BME treatment inhibited lipid raft marker flotillin expression and altered its subcellular localization. ER-stress associated CHOP expression and generation of mitochondrial reactive oxygen species were induced by BME, which facilitated apoptosis. CONCLUSION Our study revealed that bitter melon extract inhibits glycolysis and lipid metabolism and induces ER and oxidative stress-mediated cell death in oral cancer. Thus, BME-mediated metabolic reprogramming of oral cancer cells will have important preventive and therapeutic implications along with conventional therapies.
Collapse
Affiliation(s)
- Subhayan Sur
- 0000 0004 1936 9342grid.262962.bDepartment of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104 USA
| | - Hiroshi Nakanishi
- 0000 0004 1936 9342grid.262962.bDepartment of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104 USA
| | - Colin Flaveny
- 0000 0004 1936 9342grid.262962.bDepartment of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO USA
| | - Joseph E. Ippolito
- 0000 0001 2355 7002grid.4367.6Mallinckrodt Institute of Radiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Jane McHowat
- 0000 0004 1936 9342grid.262962.bDepartment of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104 USA
| | - David A. Ford
- 0000 0004 1936 9342grid.262962.bBiochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO USA
| | - Ratna B. Ray
- 0000 0004 1936 9342grid.262962.bDepartment of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104 USA
| |
Collapse
|
23
|
Saini A, Panesar PS, Bera MB. Comparative Study on the Extraction and Quantification of Polyphenols from Citrus Peels Using Maceration and Ultrasonic Technique. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2019. [DOI: 10.12944/crnfsj.7.3.08] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Citrus processing industry generates the large amount of byproducts, which are rich in polyphenols that have high antioxidant properties. These polyphenols can be extracted and utilized in different applications. In present investigation, comparative study was undertaken using maceration (M) and ultrasound assisted extraction (UAE) for the efficient extraction of polyphenols from citrus peels of different cultivars such as ‘kinnow mandarin’ (Citrus reticulata) and ‘mousambi’ (Citrus limetta). The total phenols (28.30 mg/GAE g dw), flavonoids (4.40 mg/CE g dw) and DPPH radical scavenging activity (48.23%) were attained from kinnow mandarin peels whereas total phenols (21.99 mg/GAE g dw), flavonoids (2.07 mg/CE g dw) and DPPH radical scavenging activity (39.73%) were obtained from mousambi peels using UAE method. Therefore, the results indicated the efficiency of UAE method as compared to maceration technique for the extraction of polyphenols in terms of high yield and their antioxidant properties.
Collapse
Affiliation(s)
- Anuradha Saini
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India
| | - Parmjit Singh Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India
| | - Manab Bandhu Bera
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal-148106, Punjab, India
| |
Collapse
|
24
|
Fang EF, Froetscher L, Scheibye-Knudsen M, Bohr VA, Wong JH, Ng TB. Emerging Antitumor Activities of the Bitter Melon (Momordica charantia). Curr Protein Pept Sci 2019; 20:296-301. [PMID: 29932035 DOI: 10.2174/1389203719666180622095800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022]
Abstract
Bitter melon or bitter gourd (Momordica charantia) is a common vegetable in Asia and it is distinctive for its bitter taste. As an ingredient in folk medicine, research from different laboratories in recent years supports its potential medicinal applications with anti-tumor, anti-diabetic, anti-HIV activities in both in vitro and animal studies. In this short review, we summarize herein the recent progress in the antitumor aspect of bitter melon with a focus on the underlying molecular mechanisms. Further mechanistic studies as well as clinical trials are necessary to further verify its medicinal applications.
Collapse
Affiliation(s)
- Evandro Fei Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, United States
| | - Lynn Froetscher
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, United States
| | | | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, United States
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
25
|
Ae Yoon N, Park J, Yeon Jeong J, Rashidova N, Ryu J, Seob Roh G, Joon Kim H, Jae Cho G, Sung Choi W, Hoon Lee D, Soo Kang S. Anti-obesity Activity of Ethanol Extract from Bitter Melon in Mice Fed High-Fat Diet. Dev Reprod 2019; 23:129-138. [PMID: 31321353 PMCID: PMC6635615 DOI: 10.12717/dr.2019.23.2.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/10/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022]
Abstract
In many cases, obesity is associated with metabolic disorders. Recently, natural compounds that may be beneficial for improving obesity have received increasing attention. Bitter melon has received attention as a diabetes treatment. NAD+-dependent deacetylase (Sirtuin 1, SIRT1) has emerged as a novel therapeutic target for metabolic diseases. In this study, ethanol extract of bitter melon (BME) suppressed adipocyte differentiation and significantly increased the expression of SIRT1 in fully differentiated 3T3-L1 cells. Moreover, it enhanced the activation of AMP-activated protein kinase (AMPK). In high-fat diet (HFD)-fed induced-obesity mice, BME suppressed HFD-induced increases in body weight and white adipose tissue (WAT) weight. BME also increased the expression of SIRT1 and suppressed peroxisome proliferator-activated receptor and sterol regulatory element binding protein 1 expressions of WAT from HFD-fed mice. These findings suggest that BME prevents obesity by activating the SIRT1 and AMPK pathway and that it may be a useful dietary supplement for preventing obesity.
Collapse
Affiliation(s)
- Nal Ae Yoon
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Juyeong Park
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Joo Yeon Jeong
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Nilufar Rashidova
- Tashkent Medical Academy, Farabi Street 2, Tashkent 700109, Uzbekistan
| | - Jinhyun Ryu
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Gu Seob Roh
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Hyun Joon Kim
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Gyeong Jae Cho
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Wan Sung Choi
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Dong Hoon Lee
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| | - Sang Soo Kang
- Dept. of Anatomy & Convergence Medical Science, In-stitute of Health Sciences, College of Medicine, Gyeong-sang National University, Jinju 52727, Korea
| |
Collapse
|
26
|
Rolim PM, Seabra LMJ, de Macedo GR. Melon By-Products: Biopotential in Human Health and Food Processing. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1613662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Bortolotti M, Mercatelli D, Polito L. Momordica charantia, a Nutraceutical Approach for Inflammatory Related Diseases. Front Pharmacol 2019; 10:486. [PMID: 31139079 PMCID: PMC6517695 DOI: 10.3389/fphar.2019.00486] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023] Open
Abstract
Momordica charantia, commonly called bitter melon, is a plant belonging to Cucurbitaceae family known for centuries for its pharmacological activities, and nutritional properties. Due to the presence of many bioactive compounds, some of which possess potent biological actions, this plant is used in folk medicine all over the world for the treatment of different pathologies, mainly diabetes, but also cancer, and other inflammation-associated diseases. It is widely demonstrated that M. charantia extracts contribute in lowering glycaemia in patients affected by type 2 diabetes. However, the majority of existing studies on M. charantia bioactive compounds were performed only on cell lines and in animal models. Therefore, because the real impact of bitter melon on human health has not been thoroughly demonstrated, systematic clinical studies are needed to establish its efficacy and safety in patients. Besides, both in vitro and in vivo studies have demonstrated that bitter melon may also elicit toxic or adverse effects under different conditions. The aim of this review is to provide an overview of anti-inflammatory and anti-neoplastic properties of bitter melon, discussing its pharmacological activity as well as the potential adverse effects. Even if a lot of literature is available about bitter melon as antidiabetic drug, few papers discuss the anti-inflammatory and anti-cancer properties of this plant.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Daniele Mercatelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
28
|
Du Z, Zhang S, Lin Y, Zhou L, Wang Y, Yan G, Zhang M, Wang M, Li J, Tong Q, Duan Y, Du G. Momordicoside G Regulates Macrophage Phenotypes to Stimulate Efficient Repair of Lung Injury and Prevent Urethane-Induced Lung Carcinoma Lesions. Front Pharmacol 2019; 10:321. [PMID: 30984004 PMCID: PMC6450463 DOI: 10.3389/fphar.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Momordicoside G is a bioactive component from Momordica charantia, this study explores the contributions of macrophages to the effects of momordicoside G on lung injury and carcinoma lesion. In vitro, when administered at the dose that has no effect on cell viability in M2-like macrophages, momordicoside G decreased ROS and promoted autophagy and thus induced apoptosis in M1-like macrophages with the morphological changes. In the urethane-induced lung carcinogenic model, prior to lung carcinoma lesions, urethane induced obvious lung injury accompanied by the increased macrophage infiltration. The lung carcinoma lesions were positively correlated with lung tissue injury and macrophage infiltration in alveolar cavities in the control group, these macrophages showed mainly a M1-like (iNOS+/CD68+) phenotype. ELISA showed that the levels of IL-6 and IL-12 were increased and the levels of IL-10 and TGF-β1 were reduced in the control group. After momordicoside G treatment, lung tissue injury and carcinoma lesions were ameliorated with the decreased M1-like macrophages and the increased M2-like (arginase+/CD68+) macrophages, whereas macrophage depletion by liposome-encapsulated clodronate (LEC) decreased significantly lung tissue injury and carcinoma lesions and also attenuated the protective efficacy of momordicoside G. The M2 macrophage dependent efficacy of momordicoside G was confirmed in a LPS-induced lung injury model in which epithelial closure was promoted by the transfer of M2-like macrophages and delayed by the transfer of M1-like macrophages. To acquire further insight into the underlying molecular mechanisms by which momordicoside G regulates M1 macrophages, we conduct a comprehensive bioinformatics analysis of momordicoside G relevant targets and pathways involved in M1 macrophage phenotype. This study suggests a function of momordicoside G, whereby it selectively suppresses M1 macrophages to stimulate M2-associated lung injury repair and prevent inflammation-associated lung carcinoma lesions.
Collapse
Affiliation(s)
- Zhenhua Du
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Shuhui Zhang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Yukun Lin
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Lin Zhou
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Yuehua Wang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Guixi Yan
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Mengqi Wang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Jiahuan Li
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China
| | - Qiaozhen Tong
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yongjian Duan
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Gangjun Du
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industrial Technology, Xinzheng, China
| |
Collapse
|
29
|
Lepionka T, Białek A, Białek M, Czauderna M, Stawarska A, Wrzesień R, Bielecki W, Paśko P, Galanty A, Bobrowska-Korczak B. Mammary cancer risk and serum lipid profile of rats supplemented with pomegranate seed oil and bitter melon extract. Prostaglandins Other Lipid Mediat 2019; 142:33-45. [PMID: 30928411 DOI: 10.1016/j.prostaglandins.2019.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
The objective of the present study was to determine the influence of dietary supplementation with pomegranate seed oil (PSO) and/or an aqueous extract of dried bitter melon fruits (BME) on breast cancer risk and fatty acid profile in serum of female rats with chemical carcinogen-inflicted mammary tumours. Sprague-Dawley rats (n = 96) were fed control diet or experimental diets supplemented with 0.15 ml PSO/day, BME or jointly PSO and BME. After 21 weeks mammary tumours were subjected to histopathological examination and in serum fatty acids, 8-isoprostaglandin F2α content and indices of desaturases activity were analysed. Supplementation of the diet with PSO and BME did not inhibit the breast cancer formation. Conjugated linolenic acids (CLnA), present in PSO, were converted into cis-9, trans-11 conjugated linoleic acid (CLA), however, its content was lower in groups treated with a carcinogen. A similar tendency was observed for the content of SFA, MUFA, PUFA, 8-iso PGF2α and the activity of Δ6-desaturase. Enhanced pro-carcinogenic effect of 7,12-dimethylbenz[a]anthracene (DMBA), caused by applied supplements, may be a result of their influence on DMBA metabolism.
Collapse
Affiliation(s)
- Tomasz Lepionka
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland; Laboratory of Hygiene, Food and Nutrition, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland.
| | - Agnieszka Białek
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland.
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Agnieszka Stawarska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland.
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Warsaw University Of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland.
| | - Agnieszka Galanty
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland.
| | | |
Collapse
|
30
|
Nerurkar PV, Orias D, Soares N, Kumar M, Nerurkar VR. Momordica charantia (bitter melon) modulates adipose tissue inflammasome gene expression and adipose-gut inflammatory cross talk in high-fat diet (HFD)-fed mice. J Nutr Biochem 2019; 68:16-32. [PMID: 31005847 DOI: 10.1016/j.jnutbio.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic and tissue-specific inflammation has a profound influence on regulation of metabolism, and therefore, strategies to reduce inflammation are of special interest in prevention and treatment of obesity and type 2 diabetes (T2D). Antiobesity and antidiabetic properties of Momordica charantia (bitter melon, BM) have been linked to its protective effects on inflammation and gut microbial dysbiosis. We investigated the mechanisms by which freeze-dried BM juice reduces adipose inflammation in mice fed a 60% high-fat diet (HFD) for 16 weeks. Although earlier studies indicated that BM inhibited recruitment of macrophages (Mφ) infiltration in adipose tissue of rodents and reduced NF-kB and IL-1β secretions, the mechanisms remain unknown. We demonstrate that freeze-dried BM juice inhibits recruitment of Mφ into adipose tissue and its polarization to inflammatory phenotype possibly due to reduction of sphingokinase 1 (SPK1) mRNA in HFD-fed mice. Furthermore, reduction of IL-1β secretion by freeze-dried BM juice in the adipose tissue of HFD-fed mice is correlated to alleviation of NLRP3 inflammasome components and their downstream signaling targets. We confirm previous observations that BM inhibited inflammation of colon and gut microbial dysbiosis in HFD-fed mice, which in part may be associated with the observed anti-inflammatory effects in adipose tissue if HFD-fed mice. Overall, functional foods such as BM may offer potential dietary interventions that may impact sterile inflammatory diseases such as obesity and T2D.
Collapse
Affiliation(s)
- Pratibha V Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Daniella Orias
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Natasha Soares
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Mukesh Kumar
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology; Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
31
|
Momordica charantia (Indian and Chinese Bitter Melon) Extracts Inducing Apoptosis in Human Lung Cancer Cell Line A549 via ROS-Mediated Mitochodria Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2821597. [PMID: 30956678 PMCID: PMC6431397 DOI: 10.1155/2019/2821597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer related deaths worldwide with about 40% occurring in developing countries. The two varieties of Momordica charantia, which are Chinese and Indian bitter melon, have been subjected to antiproliferative activity in human non-small cell lung cells A549. The A549 cells were treated with hot and cold aqueous extraction for both the bitter melon varieties, and the antiproliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic mechanism of action on A549 human lung cancer cells was evaluated first morphologically using Hoechst 33358, and cytoskeleton staining using Filamentous-actin (F-actin) cytoskeleton FICT and DAPI followed by caspase-3/7, reactive oxygen species (ROS), and p53 activity. Chinese hot aqueous extraction (CHA) exhibited potent antiproliferative activity against A549 human lung cancer cells. The morphological analysis of mitochondria destruction and the derangement of cytoskeleton showed apoptosis-inducing activity. CHA increased the caspase-3/7 activity by 1.6-fold and the ROS activity by 5-fold. Flow cytometric analysis revealed 34.5% of apoptotic cells significantly (p<0.05) compared to cisplatin-treated A549 human cancer cells. CHA is suggested to induce apoptosis due to their rich bioactive chemical constituents. These findings suggest that the antiproliferative effect of CHA was due to apoptosis via ROS-mediated mitochondria injury.
Collapse
|
32
|
Dai B, Shi X, Ma N, Ma W, Zhang Y, Yang T, Zhang J, He L. HMQ-T-B10 induces human liver cell apoptosis by competitively targeting EphrinB2 and regulating its pathway. J Cell Mol Med 2018; 22:5231-5243. [PMID: 30589500 PMCID: PMC6201340 DOI: 10.1111/jcmm.13729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent cancer worldwide and it is necessary to discover and develop novel preventive strategies and therapeutic approaches for HCC. Herein, we report that EphrinB2 expression is correlated with liver cancer progression. Moreover, by using phosphorylated proteomics array, we reveal a pro-apoptosis protein whose phosphorylation and activation levels are up-regulated upon EphrinB2 knockdown. These results suggest that EphrinB2 may act as an anti-apoptotic protein in liver cancer cells. We also explored the therapeutic potential of HMQ-T-B10 (B10), which was designed and synthesized in our laboratory, for HCC and its underlying mechanisms in vitro and in vivo. Our data demonstrate that B10 could bind EphrinB2 and show inhibitory activity on human liver cancer cells. Moreover, induction of human liver cancer cell apoptosis by B10 could be augmented upon EphrinB2 knockdown. B10 inhibited HCC cell growth and induced HCC cell apoptosis by repressing the EphrinB2 and VEGFR2 signalling pathway. Growth of xenograft tumours derived from Hep3B in nude mice was also significantly inhibited by B10. Collectively, these findings highlight the potential molecular mechanisms of B10 and its potential as an effective antitumour agent for HCC.
Collapse
Affiliation(s)
- Bingling Dai
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Xianpeng Shi
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Nan Ma
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Weina Ma
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Yanmin Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Tianfeng Yang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Jie Zhang
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Langchong He
- School of PharmacyHealth Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
33
|
Shim SH, Sur S, Steele R, Albert CJ, Huang C, Ford DA, Ray RB. Disrupting cholesterol esterification by bitter melon suppresses triple-negative breast cancer cell growth. Mol Carcinog 2018; 57:1599-1607. [PMID: 30074275 DOI: 10.1002/mc.22882] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/26/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
Triple negative breast cancer (TNBC) is aggressive with a worse prognosis. We have recently shown that bitter melon extract (BME) treatment was more effective in inhibition of TNBC tumor growth in mouse models as compared to ER positive breast tumor growth. Aberrant dysregulation of lipid metabolism is associated with breast cancer progression, however, anti-cancer mechanism of BME linking lipid metabolism in breast cancer growth remains unexplored. Here, we observed that accumulation of esterified cholesterol was reduced in BME treated TNBC cell lines as compared to control cells. We next evaluated expression levels of acyl-CoA: cholesterol acyltransferase 1 (ACAT-1) in TNBC cells treated with BME. Our results demonstrated that BME treatment inhibited ACAT-1 expression in TNBC cells. Subsequently, we found that sterol regulatory element-binding proteins-1 and -2, and FASN was significantly reduced in BME treated TNBC cell lines. Low-density lipoprotein receptor was also downregulated in BME treated TNBC cells as compared to control cells. We further demonstrated that BME feeding reduced tumor growth in TNBC mammospheres implanted into NSG mice, and inhibits ACAT-1 expression. To our knowledge, this is the first report demonstrating BME suppresses TNBC cell growth through ACAT-1 inhibition, and have potential for additional therapeutic regimen against human breast cancer.
Collapse
Affiliation(s)
- So Hee Shim
- Departments of Pathology, Saint Louis University, St. Louis, Missouri
| | - Subhayan Sur
- Departments of Pathology, Saint Louis University, St. Louis, Missouri
| | - Robert Steele
- Departments of Pathology, Saint Louis University, St. Louis, Missouri
| | - Carolyn J Albert
- Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| | - Chunfa Huang
- Internal Medicine, Saint Louis University, St. Louis, Missouri
| | - David A Ford
- Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, St. Louis, Missouri.,Internal Medicine, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
34
|
Bitter taste receptors are expressed in human epithelial ovarian and prostate cancers cells and noscapine stimulation impacts cell survival. Mol Cell Biochem 2018; 454:203-214. [PMID: 30350307 DOI: 10.1007/s11010-018-3464-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023]
Abstract
Bitter taste receptors (Tas2Rs) are a subfamily of G-protein coupled receptors expressed not only in the oral cavity but also in several extra-oral tissues and disease states. Several natural bitter compounds from plants, such as bitter melon extract and noscapine, have displayed anti-cancer effects against various cancer types. In this study, we examined the prevalence of Tas2R subtype expression in several epithelial ovarian or prostate cancer cell lines, and the functionality of Tas2R14 was determined. qPCR analysis of five TAS2Rs demonstrated that mRNA expression often varies greatly in cancer cells in comparison to normal tissue. Using receptor-specific siRNAs, we also demonstrated that noscapine stimulation of ovarian cancer cells increased apoptosis in ovarian cancer cells in a receptor-dependent, but ROS-independent manner. This study furthers our understanding of the function of Tas2Rs in ovarian cancer by demonstrating that their activation has an impact on cell survival.
Collapse
|
35
|
Saeed F, Afzaal M, Niaz B, Arshad MU, Tufail T, Hussain MB, Javed A. Bitter melon (Momordica charantia): a natural healthy vegetable. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1446023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farhan Saeed
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Niaz
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tabussam Tufail
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal Hussain
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahsan Javed
- Institute of Home and Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
36
|
Bitter gourd (Momordica charantia) as a rich source of bioactive components to combat cancer naturally: Are we on the right track to fully unlock its potential as inhibitor of deregulated signaling pathways. Food Chem Toxicol 2018; 119:98-105. [PMID: 29753870 DOI: 10.1016/j.fct.2018.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Research over decades has progressively explored pharmacological actions of bitter gourd (Momordica charantia). Biologically and pharmacologically active molecules isolated from M. charantia have shown significant anti-cancer activity in cancer cell lines and xenografted mice. In this review spotlight was set on the bioactive compounds isolated from M. charantia that effectively inhibited cancer development and progression via regulation of protein network in cancer cells. We summarize most recent high-quality research work in cancer cell lines and xenografted mice related to tumor suppressive role-play of M. charantia and its bioactive compounds. Although M. charantia mediated health promoting, anti-diabetic, hepatoprotective, anti-inflammatory effects have been extensively investigated, there is insufficient information related to regulation of signaling networks by bioactive molecules obtained from M. charantia in different cancers. M. charantia has been shown to modulate AKT/mTOR/p70S6K signaling, p38MAPK-MAPKAPK-2/HSP-27 pathway, cell cycle regulatory proteins and apoptosis-associated proteins in different cancers. However, still there are visible knowledge gaps related to the drug targets in different cancers because we have not yet developed comprehensive understanding of the M. charantia mediated regulation of signal transduction pathways. To explore these questions, experimental platforms are needed that can prove to be helpful in getting a step closer to personalized medicine.
Collapse
|
37
|
Wu F, Shi X, Zhang R, Tian Y, Wang X, Wei C, Li D, Li X, Kong X, Liu Y, Guo W, Guo Y, Zhou H. Regulation of proliferation and cell cycle by protein regulator of cytokinesis 1 in oral squamous cell carcinoma. Cell Death Dis 2018; 9:564. [PMID: 29752448 PMCID: PMC5948203 DOI: 10.1038/s41419-018-0618-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/24/2018] [Indexed: 02/05/2023]
Abstract
Protein regulator of cytokinesis 1 (PRC1), a microtubule-associated protein, has emerged as a critical regulator of proliferation and apoptosis, acting predominantly in numerous tumors. However, its function in oral squamous cell carcinoma (OSCC) is still unknown. To establish the roles of PRC1 in OSCC, 95 oral clinical samples (54 OSCC, 24 oral leukoplakia [OLK], and 17 normal oral mucosa) and seven oral cell lines (6 OSCC and 1 normal oral cell lines) were analyzed using a series of molecular and genomic assays both in vivo and in vitro were conducted in this study. Herein, we provide evidence demonstrating that expression of PRC1 closely correlates with the degree of epithelial dysplasia in OLK (n = 24) (p < 0.001), and the poor differentiation, large tumor volume, lymph node metastasis, and high-clinical stage in OSCC (n = 54) (p < 0.05), illustrating that PRC1 has a promotive influence on tumor progression in OSCC. Simultaneously, we observed that PRC1 knockdown in OSCC cell lines caused G2/M phase arrest (p < 0.05), inhibited cell proliferation in vitro (p < 0.05) and tumor growth in vivo (p < 0.001). Furthermore, the effects of PRC1 on the regulation of proliferation and cell cycle transition in OSCC samples were mediated by p53. The p53/PRC1/EGFR signaling pathway was found to be implicated in the tumor progression of OSCC. Based on our data, we demonstrate that PRC1 is a key factor in regulating proliferation and the cell cycle, pointing to the potential benefits of PRC1-targeted therapies for OSCC.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xueke Shi
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Rui Zhang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yuan Tian
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiangjian Wang
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Changlei Wei
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Duo Li
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Xiangli Kong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Yurong Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Weihua Guo
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China.
| | - Yiqing Guo
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China. .,Department of Stomatology, The Affiliated Hospital of Qingdao University, 266003, Qingdao, Shandong, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Rao CV. Immunomodulatory Effects of Momordica charantia Extract in the Prevention of Oral Cancer. Cancer Prev Res (Phila) 2018; 11:185-186. [PMID: 29559516 DOI: 10.1158/1940-6207.capr-17-0379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
In recent times, bitter melon extract (BME) has gained significant attention for its anticancer efficacy against various malignancies. In this issue, Sur and colleagues show that BME prevents the development of 4-nitronitroquinoline 1-oxide-induced oral dysplasia and squamous cell carcinoma (SCC) in an immunocompetent mouse model. Importantly, gene ontology and pathway analyses revealed an elevated expression of s100a9, IL23a, IL1β, and PDCD1/PD1 of immune system during oral cancer development, which was significantly suppressed by BME. Overall, this study demonstrates the potential clinical benefits of BME in preventing and delaying the progression of oral dysplasia to SCC. Cancer Prev Res; 11(4); 185-6. ©2018 AACRSee related article by Sur et al., p. 191.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
39
|
Jiang Y, Miao J, Wang D, Zhou J, Liu B, Jiao F, Liang J, Wang Y, Fan C, Zhang Q. MAP30 promotes apoptosis of U251 and U87 cells by suppressing the LGR5 and Wnt/β-catenin signaling pathway, and enhancing Smac expression. Oncol Lett 2018; 15:5833-5840. [PMID: 29556310 DOI: 10.3892/ol.2018.8073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Significant antitumor activity of Momordica anti-human immunodeficiency virus protein of 30 kDa (MAP30) purified from Momordica charantia has been the subject of previous research. However, the effective mechanism of MAP30 on malignant glioma cells has not yet been clarified. The aim of the present study was to investigate the effects and mechanism of MAP30 on U87 and U251 cell lines. A Cell Counting Kit-8 assay, wound healing assay and Transwell assay were used to detect the effects on U87 and U251 cells treated with different concentrations of MAP30 (0.5, 1, 2, 4, 8 and 16 µM) over different periods of time. Proliferation, migration and invasion of each cell line were markedly inhibited by MAP30 in a dose- and time-dependent manner. Flow cytometry and fluorescence staining demonstrated that apoptosis increased and the cell cycle was arrested in S-phase in the two investigated cell lines following MAP30 treatment. Western blot analysis demonstrated that leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) expression and key proteins in the Wnt/β-catenin signaling pathway were apparently decreased, whereas second mitochondria-derived activator of caspase (Smac) protein expression significantly increased with MAP30 treatment in the same manner. These results suggest that MAP30 markedly induces apoptosis in U87 and U251 cell lines by suppressing LGR5 and the Wnt/β-catenin signaling pathway, and enhancing Smac expression in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Yilin Jiang
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Junjie Miao
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Jingru Zhou
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Bo Liu
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Feng Jiao
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Jiangfeng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing 102206, P.R. China
| | - Yangshuo Wang
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Cungang Fan
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| | - Qingjun Zhang
- Department of Neurosurgery, Peking University People's Hospital, Peking University, Beijing 100044, P.R. China
| |
Collapse
|
40
|
Bhattacharya S, Muhammad N, Steele R, Peng G, Ray RB. Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget 2017; 7:33202-9. [PMID: 27120805 PMCID: PMC5078086 DOI: 10.18632/oncotarget.8898] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/10/2016] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer and leading cause of cancer related mortality worldwide. Despite the advancement in treatment procedures the overall survival rate of patients has not considerably enhanced in the past few decades. Therefore, new strategies to achieve a favorable response for the improvement in the prognosis of HNSCC are urgently needed. In this study, we examined the role of bitter melon extract (BME) in HNSCC tumor microenvironment. Mouse head and neck cancer (SCCVII) cells were subcutaneously injected into the flanks of syngeneic mice. We observed that oral gavage of BME significantly inhibits the tumor growth in mice as compared to control group. Further study suggested that BME inhibits cell proliferation as evident from low expression of proliferating cell nuclear antigen (PCNA) and c-Myc in the tumors of BME fed mice as compared to that of control group. We next investigated the role of BME as an immunomodulator in HNSCC model. Forkhead box protein P3+ (FoxP3+) T cells suppress tumor immunity. Our data suggested that BME treatment decreases the infiltrating regulatory T (Treg) cells by inhibiting FoxP3+ populations in the tumors and in spleens. Additionally, BME treatment reduces Th17 cell population in the tumor. However, BME treatment did not alter Th1 and Th2 cell populations. Together, our findings offer a new insight into how bitter melon extract inhibits head and neck tumor growth by modulating cell proliferation and Treg populations, with implications for how to control tumor-infiltrating lymphocytes and tumor progression.
Collapse
Affiliation(s)
| | - Naoshad Muhammad
- Department of Pathology, Saint Louis University, Saint Louis, Missouri, USA
| | - Robert Steele
- Department of Pathology, Saint Louis University, Saint Louis, Missouri, USA
| | - Guangyong Peng
- Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, Saint Louis, Missouri, USA.,Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
41
|
Richmond RA, Vuong QV, Scarlett CJ. Cytotoxic Effect of Bitter Melon (Momordica charantia L.) Ethanol Extract and Its Fractions on Pancreatic Cancer Cells in vitro. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2017; 2:1-11. [DOI: 10.14218/erhm.2017.00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Jia S, Shen M, Zhang F, Xie J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int J Mol Sci 2017; 18:E2555. [PMID: 29182587 PMCID: PMC5751158 DOI: 10.3390/ijms18122555] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.
Collapse
Affiliation(s)
- Shuo Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Fan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
43
|
Prophetic medicine as potential functional food elements in the intervention of cancer: A review. Biomed Pharmacother 2017; 95:614-648. [DOI: 10.1016/j.biopha.2017.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
44
|
Sur S, Steele R, Aurora R, Varvares M, Schwetye KE, Ray RB. Bitter Melon Prevents the Development of 4-NQO-Induced Oral Squamous Cell Carcinoma in an Immunocompetent Mouse Model by Modulating Immune Signaling. Cancer Prev Res (Phila) 2017; 11:191-202. [PMID: 29061560 DOI: 10.1158/1940-6207.capr-17-0237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 01/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and tobacco is one of the most common factors for HNSCC of the oral cavity. We have previously observed that bitter melon (Momordica charantia) extract (BME) exerts antiproliferative activity against several cancers including HNSCC. In this study, we investigated the preventive role of BME in 4-nitroquinoline 1-oxide (4-NQO) carcinogen-induced HNSCC. We observed that BME feeding significantly reduced the incidence of 4-NQO-induced oral cancer in a mouse model. Histologic analysis suggested control 4-NQO-treated mouse tongues showed neoplastic changes ranging from moderate dysplasia to invasive squamous cell carcinoma, whereas no significant dysplasia was observed in the BME-fed mouse tongues. We also examined the global transcriptome changes in normal versus carcinogen-induced tongue cancer tissues, and following BME feeding. Gene ontology and pathway analyses revealed a signature of biological processes including "immune system process" that is significantly dysregulated in 4-NQO-induced oral cancer. We identified elevated expression of proinflammatory genes, s100a9, IL23a, IL1β and immune checkpoint gene PDCD1/PD1, during oral cancer development. Interestingly, BME treatment significantly reduced their expression. Enhancement of MMP9 ("ossification" pathway) was noted during carcinogenesis, which was reduced in BME-fed mouse tongue tissues. Our study demonstrates the preventive effect of BME in 4-NQO-induced carcinogenesis. Identification of pathways involved in carcinogen-induced oral cancer provides useful information for prevention strategies. Together, our data strongly suggest the potential clinical benefits of BME as a chemopreventive agent in the control or delay of carcinogen-induced HNSCC development and progression. Cancer Prev Res; 11(4); 191-202. ©2017 AACRSee related editorial by Rao, p. 185.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri
| | - Mark Varvares
- Cancer Center, Saint Louis University, St. Louis, Missouri
| | | | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri. .,Cancer Center, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
45
|
Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017; 50:33. [PMID: 28969709 PMCID: PMC5625777 DOI: 10.1186/s40659-017-0140-9] [Citation(s) in RCA: 621] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/22/2017] [Indexed: 02/01/2023] Open
Abstract
Breast cancer remains a worldwide public health dilemma and is currently the most common tumour in the globe. Awareness of breast cancer, public attentiveness, and advancement in breast imaging has made a positive impact on recognition and screening of breast cancer. Breast cancer is life-threatening disease in females and the leading cause of mortality among women population. For the previous two decades, studies related to the breast cancer has guided to astonishing advancement in our understanding of the breast cancer, resulting in further proficient treatments. Amongst all the malignant diseases, breast cancer is considered as one of the leading cause of death in post menopausal women accounting for 23% of all cancer deaths. It is a global issue now, but still it is diagnosed in their advanced stages due to the negligence of women regarding the self inspection and clinical examination of the breast. This review addresses anatomy of the breast, risk factors, epidemiology of breast cancer, pathogenesis of breast cancer, stages of breast cancer, diagnostic investigations and treatment including chemotherapy, surgery, targeted therapies, hormone replacement therapy, radiation therapy, complementary therapies, gene therapy and stem-cell therapy etc for breast cancer.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Old Campus, Allam Iqbal Road, Faisalabad, 38000 Pakistan
| | - Mehwish Iqbal
- Faculty of Eastern Medicine, Hamdard University Karachi, Main Campus, Sharea Madinat al-Hikmah, Mohammad Bin Qasim Avenue, Karachi, 74600 Sindh Pakistan
| | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University Karachi, Main Campus, Sharea Madinat al-Hikmah, Mohammad Bin Qasim Avenue, Karachi, 74600 Sindh Pakistan
| | - Asmat Ullah Khan
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, RibeirãoPreto Medical School of the University of São Paulo, AV. Bandeirantes, 3900, RibeirãoPreto, 14049-900 São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, University of Poonch Rawalakot, Hajira Road, Shamsabad, Rawalakot, 12350 Azad Jammu and Kashmir Pakistan
| |
Collapse
|
46
|
Wang S, Li Z, Yang G, Ho CT, Li S. Momordica charantia: a popular health-promoting vegetable with multifunctionality. Food Funct 2017; 8:1749-1762. [PMID: 28474032 DOI: 10.1039/c6fo01812b] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Products derived from edible medicinal plants have been used for centuries to prevent, treat, and even cure multiple diseases. Momordica charantia L., widely cultivated around the world, is a typical one bred for vegetables and medicinal usage. All parts of M. charantia possess important medicinal properties, including antidiabetic, anticancer, hypotensive, anti-obesity, antimicrobial, antihyperlipidemic, antioxidant, anti-inflammatory, immuno-modulatory, anthelmintic, neuro-protective, as well as hepato-protective properties both in vitro and in vivo. This review summarizes the active components and medicinal properties of M. charantia, especially the activities and mechanisms of its anti-diabetic and anti-cancer properties. The anti-diabetic properties involve inhibiting intestinal α-glucosidase and glucose transport, protecting islet β-cells, enhancing insulin secretion, increasing hepatic glucose disposal, decreasing gluconeogenesis, and even ameliorating insulin resistance. Moreover, the expressions of PPARs could also be activated and up-regulated. Meanwhile, its anticancer properties are mostly due to apoptosis, cell cycle arrest, and expression of serum factors associated with immunity. In this review, we aim to provide an overview of M. charantia and its benefits for development as a functional food.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Life Science, Huanggang Normal University, Hubei Province, China.
| | | | | | | | | |
Collapse
|
47
|
Muhammad N, Steele R, Isbell TS, Philips N, Ray RB. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget 2017; 8:66226-66236. [PMID: 29029506 PMCID: PMC5630406 DOI: 10.18632/oncotarget.19887] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is a major public health problem worldwide in women and current therapeutic strategies are not adequately effective for this deadly disease. We have previously shown the anti-proliferative activity of bitter melon extract (BME) in breast cancer cells. In this study, we observed that BME treatment induces autophagosome-bound Long chain 3 (LC3)-B and accumulates protein p62/SQSTM1 (p62) in breast cancer cells. Additionally, we observed that BME treatment in breast cancer cells increases phospho-AMPK expression and inhibits the mTOR/Akt signaling pathway. Subsequently, we demonstrated that BME feeding effectively inhibited breast cancer growth in syngeneic and xenograft mouse models. Further, we observed the increased p62 accumulation, induction of autophagy and apoptotic cell death in tumors from BME-fed animals. Taken together, our results demonstrate that BME treatment inhibits breast tumor growth, and this anti-tumor activity in breast cancer is, in part, mediated by induction of autophagy and modulation of the AMPK/mTOR pathway. The antitumor activity of BME by oral feeding in breast cancer models suggested the high potential for a clinical application.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - T Scott Isbell
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Nancy Philips
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA.,Cancer Center, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
48
|
Bhattacharya S, Muhammad N, Steele R, Kornbluth J, Ray RB. Bitter Melon Enhances Natural Killer-Mediated Toxicity against Head and Neck Cancer Cells. Cancer Prev Res (Phila) 2017; 10:337-344. [PMID: 28465362 PMCID: PMC5499682 DOI: 10.1158/1940-6207.capr-17-0046] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/25/2017] [Indexed: 01/06/2023]
Abstract
Natural killer (NK) cells are one of the major components of innate immunity, with the ability to mediate antitumor activity. Understanding the role of NK-cell-mediated tumor killing in controlling of solid tumor growth is still in the developmental stage. We have shown recently that bitter melon extract (BME) modulates the regulatory T cell (Treg) population in head and neck squamous cell carcinoma (HNSCC). However, the role of BME in NK-cell modulation against HNSCC remains unknown. In this study, we investigated whether BME can enhance the NK-cell killing activity against HNSCC cells. Our results indicated that treatment of human NK-cell line (NK3.3) with BME enhances ability to kill HNSCC cells. BME increases granzyme B accumulation and translocation/accumulation of CD107a/LAMP1 in NK3.3 cells exposed to BME. Furthermore, an increase in cell surface expression of CD16 and NKp30 in BME-treated NK3.3 cells was observed when cocultured with HNSCC cells. Collectively, our results demonstrated for the first time that BME augments NK-cell-mediated HNSCC killing activity, implicating an immunomodulatory role of BME. Cancer Prev Res; 10(6); 337-44. ©2017 AACR.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- GPI-Linked Proteins/metabolism
- Granzymes/metabolism
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/immunology
- Humans
- Immunomodulation/drug effects
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lysosomal Membrane Proteins/metabolism
- Medicine, Traditional/methods
- Momordica charantia/chemistry
- Natural Cytotoxicity Triggering Receptor 3/metabolism
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Receptors, IgG/metabolism
- Squamous Cell Carcinoma of Head and Neck
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
| | - Naoshad Muhammad
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University, St. Louis, Missouri
- Saint Louis VA Health Care System, St. Louis, Missouri
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri.
| |
Collapse
|
49
|
Gu HZ, Lin RR, Wang HC, Zhu XJ, Hu Y, Zheng FY. Effect of Momordica charantia protein on proliferation, apoptosis and the AKT signal transduction pathway in the human endometrial carcinoma Ishikawa H cell line in vitro. Oncol Lett 2017; 13:3032-3038. [PMID: 28521410 PMCID: PMC5431312 DOI: 10.3892/ol.2017.5830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/17/2016] [Indexed: 01/22/2023] Open
Abstract
Endometrial carcinoma (EC) is one of the most common female malignancies, and there is an urgent requirement to explore new therapeutic strategies. In the present study, Ishikawa H cells were treated with Momordica charantia protein (MCP30). The cell morphology, growth inhibition rate, cell cycle distribution, and expression of phosphate and tensin homolog, P-AKT and AKT were measured. DNA fragmentation analysis and Annexin V-fluorescein isothiocyanate/propidium iodide double staining assay were used to analyze cell apoptosis. MCP30 decreased the viability of Ishikawa H cells in a dose- and time-dependent manner. The early apoptotic rates of Ishikawa H cells treated with MCP30 at 666.67 pM reached to 16.07±0.15%, following 72 h of treatment. DNA ladder was observed in cells treated with 333.33 and 666.67 pM MCP30 following 72 h of treatment. MCP30 blocks Ishikawa H cells from progressing between the S-phase and the G2/M-phase in a time- and concentration-dependent manner. Western blotting revealed that MCP30 treatment decreased the levels of P-AKT in a dose-dependent manner. It was revealed that MCP30 decreases cell proliferation, and induces apoptosis and S-phase cell cycle arrest through the AKT signaling pathway in Ishikawa H cells.
Collapse
Affiliation(s)
- Hang-Zhi Gu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong-Rong Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Han-Chu Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xue-Jie Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yan Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fei-Yun Zheng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
50
|
Yung MMH, Ross FA, Hardie DG, Leung THY, Zhan J, Ngan HYS, Chan DW. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade. Integr Cancer Ther 2016; 15:376-89. [PMID: 26487740 PMCID: PMC5689379 DOI: 10.1177/1534735415611747] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. METHODS Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. RESULTS Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. CONCLUSION BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David W Chan
- The University of Hong Kong, Hong Kong SAR, P R China
| |
Collapse
|