1
|
Chen B, Zhang J, Shao C, Bian J, Kang R, Shang X. QIGTD: identifying critical genes in the evolution of lung adenocarcinoma with tensor decomposition. BioData Min 2024; 17:30. [PMID: 39232802 PMCID: PMC11376055 DOI: 10.1186/s13040-024-00386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Identifying critical genes is important for understanding the pathogenesis of complex diseases. Traditional studies typically comparing the change of biomecules between normal and disease samples or detecting important vertices from a single static biomolecular network, which often overlook the dynamic changes that occur between different disease stages. However, investigating temporal changes in biomolecular networks and identifying critical genes is critical for understanding the occurrence and development of diseases. METHODS A novel method called Quantifying Importance of Genes with Tensor Decomposition (QIGTD) was proposed in this study. It first constructs a time series network by integrating both the intra and inter temporal network information, which preserving connections between networks at adjacent stages according to the local similarities. A tensor is employed to describe the connections of this time series network, and a 3-order tensor decomposition method was proposed to capture both the topological information of each network snapshot and the time series characteristics of the whole network. QIGTD is also a learning-free and efficient method that can be applied to datasets with a small number of samples. RESULTS The effectiveness of QIGTD was evaluated using lung adenocarcinoma (LUAD) datasets and three state-of-the-art methods: T-degree, T-closeness, and T-betweenness were employed as benchmark methods. Numerical experimental results demonstrate that QIGTD outperforms these methods in terms of the indices of both precision and mAP. Notably, out of the top 50 genes, 29 have been verified to be highly related to LUAD according to the DisGeNET Database, and 36 are significantly enriched in LUAD related Gene Ontology (GO) terms, including nuclear division, mitotic nuclear division, chromosome segregation, organelle fission, and mitotic sister chromatid segregation. CONCLUSION In conclusion, QIGTD effectively captures the temporal changes in gene networks and identifies critical genes. It provides a valuable tool for studying temporal dynamics in biological networks and can aid in understanding the underlying mechanisms of diseases such as LUAD.
Collapse
Affiliation(s)
- Bolin Chen
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710012, China.
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710012, China.
| | - Jinlei Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Ci Shao
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Jun Bian
- Department of General Surgery, Xi'an Children's Hosptial, Xi'an Jiaotong University Affiliated Children's Hosptial, Xi'an, 710003, China
| | - Ruiming Kang
- Rewise (Hangzhou) Information Technology Co., LTD, Hangzhou, 310000, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, 710012, China
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, 710012, China
| |
Collapse
|
2
|
Wang Z, Ren M, Liu W, Wu J, Tang P. Role of cell division cycle-associated proteins in regulating cell cycle and promoting tumor progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189147. [PMID: 38955314 DOI: 10.1016/j.bbcan.2024.189147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Minshijing Ren
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Koh YW, Hwang Y, Lee SK, Han JH, Haam S, Lee HW. The impact of CDCA5 expression on the immune microenvironment and its potential utility as a biomarker for PD-L1/PD-1 inhibitors in lung adenocarcinoma. Transl Oncol 2024; 46:102024. [PMID: 38838437 PMCID: PMC11214526 DOI: 10.1016/j.tranon.2024.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Studies have highlighted the important role of cell division cycle associated 5 (CDCA5) in tumor-associated immune dysfunction. We studied immune dysfunction based on CDCA5 expression in lung adenocarcinoma and investigated its potential as a biomarker for patients undergoing anti-programmed death protein-1/ programmed death ligand-1 (PD-1/PD-L1) inhibitor therapy. METHODS We used the CIBERSORTx algorithm to investigate the immune cell distribution based on CDCA5 and explored its potential as a biomarker for PD-1/PD-L1 therapy using Tumor Immune Dysfunction and Exclusion in three lung adenocarcinoma datasets. Thus, we validated the role of CDCA5 as a biomarker in patients treated with PD-1/PD-L1 inhibitors. We also investigated the pathways through which CDCA5 regulates PD-L1 expression in a cell line. RESULTS The high CDCA5 expression group showed elevated interferon gamma signature, CD274 expression, CD8+ T cell levels, tumor mutation burden, and microsatellite instability. Higher CDCA5 expression was associated with poorer prognosis in patients not treated with PD-1/PD-L1 inhibitors. However, in patients treated with PD-1/PD-L1 inhibitors, higher CDCA5 expression correlated with better response rates and prognosis. CDCA5 expression positively correlated with inhibitory immune checkpoint molecules. CDCA5 regulated the expression of PD-L1 through the ANXA/AKT pathway, and combined suppression of CDCA5 and PD-L1 synergistically inhibited cell proliferation. CONCLUSIONS CDCA5 served as a promising biomarker for patients undergoing PD-L1/PD-1 inhibitor treatment, and co-inhibition of CDCA5 and PD-L1 could serve as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea.
| | - Yoonjung Hwang
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Seul-Ki Lee
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, 16499 Suwon-si, South Korea
| |
Collapse
|
4
|
de Castro JNP, da Silva Costa SM, Camargo ACL, Ito MT, de Souza BB, de Haidar E Bertozzo V, Rodrigues TAR, Lanaro C, de Albuquerque DM, Saez RC, Saad STO, Ozelo MC, Cendes F, Costa FF, de Melo MB. Comparative transcriptomic analysis of circulating endothelial cells in sickle cell stroke. Ann Hematol 2024; 103:1167-1179. [PMID: 38386032 DOI: 10.1007/s00277-024-05655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Ischemic stroke (IS) is one of the most impairing complications of sickle cell anemia (SCA), responsible for 20% of mortality in patients. Rheological alterations, adhesive properties of sickle reticulocytes, leukocyte adhesion, inflammation and endothelial dysfunction are related to the vasculopathy observed prior to ischemic events. The role of the vascular endothelium in this complex cascade of mechanisms is emphasized, as well as in the process of ischemia-induced repair and neovascularization. The aim of the present study was to perform a comparative transcriptomic analysis of endothelial colony-forming cells (ECFCs) from SCA patients with and without IS. Next, to gain further insights of the biological relevance of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction network (PPI) construction and in silico prediction of regulatory factors were performed. Among the 2469 DEGs, genes related to cell proliferation (AKT1, E2F1, CDCA5, EGFL7), migration (AKT1, HRAS), angiogenesis (AKT1, EGFL7) and defense response pathways (HRAS, IRF3, TGFB1), important endothelial cell molecular mechanisms in post ischemia repair were identified. Despite the severity of IS in SCA, widely accepted molecular targets are still lacking, especially related to stroke outcome. The comparative analysis of the gene expression profile of ECFCs from IS patients versus controls seems to indicate that there is a persistent angiogenic process even after a long time this complication has occurred. Thus, this is an original study which may lead to new insights into the molecular basis of SCA stroke and contribute to a better understanding of the role of endothelial cells in stroke recovery.
Collapse
Affiliation(s)
- Júlia Nicoliello Pereira de Castro
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Sueli Matilde da Silva Costa
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Ana Carolina Lima Camargo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Mirta Tomie Ito
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Bruno Batista de Souza
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Victor de Haidar E Bertozzo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Thiago Adalton Rosa Rodrigues
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Carolina Lanaro
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | - Roberta Casagrande Saez
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Margareth Castro Ozelo
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Mônica Barbosa de Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil.
| |
Collapse
|
5
|
Ahmed SBM, Radwan N, Amer S, Saheb Sharif-Askari N, Mahdami A, Samara KA, Halwani R, Jelinek HF. Assessing the Link between Diabetic Metabolic Dysregulation and Breast Cancer Progression. Int J Mol Sci 2023; 24:11816. [PMID: 37511575 PMCID: PMC10380477 DOI: 10.3390/ijms241411816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a burdensome disease that affects various cellular functions through altered glucose metabolism. Several reports have linked diabetes to cancer development; however, the exact molecular mechanism of how diabetes-related traits contribute to cancer progression is not fully understood. The current study aimed to explore the molecular mechanism underlying the potential effect of hyperglycemia combined with hyperinsulinemia on the progression of breast cancer cells. To this end, gene dysregulation induced by the exposure of MCF7 breast cancer cells to hyperglycemia (HG), or a combination of hyperglycemia and hyperinsulinemia (HGI), was analyzed using a microarray gene expression assay. Hyperglycemia combined with hyperinsulinemia induced differential expression of 45 genes (greater than or equal to two-fold), which were not shared by other treatments. On the other hand, in silico analysis performed using a publicly available dataset (GEO: GSE150586) revealed differential upregulation of 15 genes in the breast tumor tissues of diabetic patients with breast cancer when compared with breast cancer patients with no diabetes. SLC26A11, ALDH1A3, MED20, PABPC4 and SCP2 were among the top upregulated genes in both microarray data and the in silico analysis. In conclusion, hyperglycemia combined with hyperinsulinemia caused a likely unique signature that contributes to acquiring more carcinogenic traits. Indeed, these findings might potentially add emphasis on how monitoring diabetes-related metabolic alteration as an adjunct to diabetes therapy is important in improving breast cancer outcomes. However, further detailed studies are required to decipher the role of the highlighted genes, in this study, in the pathogenesis of breast cancer in patients with a different glycemic index.
Collapse
Affiliation(s)
- Samrein B M Ahmed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Health, Wellbeing and Life Sciences, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Nada Radwan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara Amer
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amena Mahdami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kamel A Samara
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rabih Halwani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Herbert F Jelinek
- Department of Biomedical Engineering and Health Engineering Innovation Center, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
6
|
Chen X, Zhou M, Ma S, Wu H, Cai H. KLF5-mediated CDCA5 expression promotes tumor development and progression of epithelial ovarian carcinoma. Exp Cell Res 2023:113645. [PMID: 37247719 DOI: 10.1016/j.yexcr.2023.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Cell division cycle associated 5 (CDCA5) is correlated with the development and progression of many malignant tumors. However, little is known about its role in epithelial ovarian cancer (EOC) progression. In this study, the clinical value, biological function and underlying mechanisms of CDCA5 in EOC were evaluated. CDCA5 mRNA and protein levels were substantially upregulated in EOC and had a significant positive correlation with adverse clinicopathological characteristics and a poor prognosis. CDCA5 facilitated proliferation, invasion, and metastasis and disrupted mitochondrial-mediated endogenous apoptosis by activating the cell cycle pathway and inhibiting the P53 pathway in EOC cells. Conversely, knockdown of CDCA5 expression blocked the malignant activities of EOC cells and suppressed the growth of xenograft tumors in vivo. Mechanistically, the transcription factor KLF5 bound to a specific site in the CDCA5 promoter and promoted CDCA5 expression. Moreover, KLF5 overexpression rescued the negative regulation of inhibited CDCA5 expression on EOC cell proliferation. In conclusion, our findings revealed that CDCA5 promoted tumor progression of EOC via the KLF5/CDCA5/cell cycle and P53 axes, which might provide new insights into the roles of CDCA5 in EOC.
Collapse
Affiliation(s)
- Xiaohong Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Meiying Zhou
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Shouye Ma
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Huifang Wu
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hui Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; Department of Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
7
|
He J, Zhou X, Wang X, Zhang Q, Zhang L, Wang T, Zhu W, Liu P, Zhu M. Prognostic and Immunological Roles of Cell Cycle Regulator CDCA5 in Human Solid Tumors. Int J Gen Med 2022; 15:8257-8274. [DOI: 10.2147/ijgm.s389275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
|
8
|
Hu H, Xiang Y, Zhang XY, Deng Y, Wan FJ, Huang Y, Liao XH, Zhang TC. CDCA5 promotes the progression of breast cancer and serves as a potential prognostic biomarker. Oncol Rep 2022; 48:172. [PMID: 36004470 PMCID: PMC9478967 DOI: 10.3892/or.2022.8387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hao Hu
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Xiao-Yu Zhang
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yang Deng
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Fu-Jian Wan
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - You Huang
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xing-Hua Liao
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Tong-Cun Zhang
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
9
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
10
|
Huang X, Huang Y, Lv Z, Wang T, Feng H, Wang H, Du S, Wu S, Shen D, Wang C, Li H, Wang B, Ma X, Zhang X. Loss of cell division cycle‑associated 5 promotes cell apoptosis by activating DNA damage response in clear cell renal cell carcinoma. Int J Oncol 2022; 61:87. [PMID: 35642672 PMCID: PMC9183765 DOI: 10.3892/ijo.2022.5377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
Cell division cycle-associated 5 (CDCA5) protein, which is involved in cohesion, contributes to cell cycle regulation and chromosome segregation by maintaining genomic stability. Accumulating evidence indicates that CDCA5 expression is upregulated in a number of types of cancer associated with a poor prognosis. However, the biological function of CDCA5 in clear cell renal cell carcinoma (ccRCC) remains largely unknown. In the present study, The Cancer Genome Atlas data mining revealed that CDCA5 was more highly expressed in ccRCC than in adjacent normal tissues. Importantly, such a high expression was associated with a higher risk of distant metastasis and poorer clinical outcomes. Moreover, the clinical and prognostic value of CDCA5 expression was further investigated using immunohistochemistry on tissue microarrays containing paired tumor tissues and adjacent normal tissues from 137 patients with ccRCC. Functional analyses revealed that CDCA5 knockdown significantly inhibited the proliferation and migration of ccRCC cells, and suppressed the growth of xenografts in nude mice. Mechanistically, CDCA5 knockdown induced severe DNA damage with the persistent accumulation of γ-H2A histone family member X foci, resulting in G2/M cell cycle arrest and finally, in chromosomal instability and apoptosis. CDCA5 knockdown significantly decreased the phosphorylation levels of Stat3 and NF-κB, suggesting that CDCA5 plays a role in regulating the inflammatory response. Collectively, the findings of the present study indicate that ccRCC cells require CDCA5 for malignant progression, and that CDCA5 inhibition may enhance the outcomes of patients with high-risk ccRCC.
Collapse
Affiliation(s)
- Xing Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zheng Lv
- Department of Urology, The Third Affiliated Central Hospital of Nankai University, Tianjin 300071, P.R. China
| | - Tao Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Huayi Feng
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Songliang Du
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shengpan Wu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Donglai Shen
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chenfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongzhao Li
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
11
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Jin X, Wang D, Lei M, Guo Y, Cui Y, Chen F, Sun W, Chen X. TPI1 activates the PI3K/AKT/mTOR signaling pathway to induce breast cancer progression by stabilizing CDCA5. J Transl Med 2022; 20:191. [PMID: 35509067 PMCID: PMC9066866 DOI: 10.1186/s12967-022-03370-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Triosephosphate isomerase 1 (TPI1), as a key glycolytic enzyme, is upregulated in multiple cancers. However, expression profile and regulatory mechanism of TPI1 in breast cancer (BRCA) remain mysterious. Methods Western blotting and immunohistochemistry (IHC) assays were used to investigate the expression of TPI1 in BRCA specimens and cell lines. TPI1 correlation with the clinicopathological characteristics and prognosis of 362 BRCA patients was analyzed using a tissue microarray. Overexpression and knockdown function experiments in cells and mice models were performed to elucidate the function and mechanisms of TPI1-induced BRCA progression. Related molecular mechanisms were clarified using co-IP, IF, mass spectrometric analysis, and ubiquitination assay. Results We have found TPI1 is highly expressed in BRCA tissue and cell lines, acting as an independent indicator for prognosis in BRCA patients. TPI1 promotes BRCA cell glycolysis, proliferation and metastasis in vitro and in vivo. Mechanistically, TPI1 activates phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway to regulate epithelial–mesenchymal transformation (EMT) and aerobic glycolysis, which is positively mediated by cell division cycle associated 5 (CDCA5). Moreover, TPI1 interacts with sequestosome-1 (SQSTM1)/P62, and P62 decreases the protein expression of TPI1 by promoting its ubiquitination in MDA-MB-231 cells. Conclusions TPI1 promotes BRCA progression by stabilizing CDCA5, which then activates the PI3K/AKT/mTOR pathway. P62 promotes ubiquitin-dependent proteasome degradation of TPI1. Collectively, TPI1 promotes tumor development and progression, which may serve as a therapeutic target for BRCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03370-2.
Collapse
Affiliation(s)
- Xiaoying Jin
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Dandan Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Mengxia Lei
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yan Guo
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yuqing Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Fengzhi Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Weiling Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
| |
Collapse
|
13
|
Shen W, Tong D, Chen J, Li H, Hu Z, Xu S, He S, Ge Z, Zhang J, Mao Q, Chen H, Xu G. Silencing oncogene cell division cycle associated 5 induces apoptosis and G1 phase arrest of non‐small cell lung cancer cells via p53‐p21 signaling pathway. J Clin Lab Anal 2022; 36:e24396. [PMID: 35373420 PMCID: PMC9102649 DOI: 10.1002/jcla.24396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wei Shen
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Dimin Tong
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Jie Chen
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Hongxiang Li
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Zeyang Hu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Shuguang Xu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Sufang He
- Department of Pulmonary and Critical Care Medicine Guangdong Provincial People's Hospital Ganzhou Hospital Ganzhou Jiangxi China
| | - Zhen Ge
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Jianan Zhang
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Qiqi Mao
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Hang Chen
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Guodong Xu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| |
Collapse
|
14
|
Xu Z, Wang S, Ren Z, Gao X, Xu L, Zhang S, Ren B. An integrated analysis of prognostic and immune infiltrates for hub genes as potential survival indicators in patients with lung adenocarcinoma. World J Surg Oncol 2022; 20:99. [PMID: 35354488 PMCID: PMC8966338 DOI: 10.1186/s12957-022-02543-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/27/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Objective
Lung adenocarcinoma (LUAD) is one of the major subtypes of lung cancer that is associated with poor prognosis. The aim of this study was to identify useful biomarkers to enhance the treatment and diagnosis of LUAD.
Methods
GEO2R was used to identify common up-regulated differentially expressed genes (DEGs) in the GSE32863, GSE40791, and GSE75037 datasets. The DEGs were submitted to Metascape for gene ontology and pathway enrichment analysis as well as construction of the protein-protein interaction (PPI) network, while the molecular complex detection (MCODE) plug-in was employed to filter important subnetworks. The expression levels of the hub genes and their prognostic values were evaluated using the UALCAN, GEPIA2, and Kaplan-Meier plotter databases. The timer algorithm was utilized to determine the correlation between immune cell infiltration and the expression levels of hub genes in LUAD tissues. In addition, the hub gene mutation landscape and the correlation analysis with tumor mutational burden (TMB) score were evaluated using maftools package and ggstatsplot package in R software, respectively.
Results
We identified 156 common up-regulated DEGs, with gene ontology and pathway enrichment analysis indicating that they were mostly enriched in mitotic cell cycle process and cell cycle pathway. DEGs in the subnetwork with the largest number of genes were AURKB, CCNB2, CDC20, CDCA5, CDCA8, CENPF, and KNTC1. The seven hub genes were highly expressed in LUAD tissues and were associated with poor prognosis. These hub genes were negatively correlated with most immune cells. The somatic mutation landscape showed that AURKB, CDC20, CENPF, and KNTC1 had mutations and were positively correlated with TMB scores.
Conclusions
Our findings demonstrate that increased expression of seven hub genes is associated with poor prognosis for LUAD patients. Additionally, the TMB score indicates that the high expression of hub gene increases immune cell infiltration in patients with lung adenocarcinoma which may significantly improve response to immunotherapy.
Collapse
|
15
|
Yu Z, Wu J, Zhang L, Liu SY. Potential molecular target screening and bioinformatics analysis of cholangiocarcinoma based on GEO database. Shijie Huaren Xiaohua Zazhi 2022; 30:128-135. [DOI: 10.11569/wcjd.v30.i3.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma is a highly malignant tumor with a poor prognosis. Targeted therapy is important for the treatment of cholangiocarcinoma, and it is therefore of great clinical importance to identify novel molecular targets for targeted therapy of this malignancy.
AIM To identify potential molecular targets for the treatment of cholangiocarcinoma and identify the key genes involved in cholangiocarcinoma by bioinformatics analysis.
METHODS We downloaded two sets of cholangiocarcinoma expression profile data from GEO database. GEO2R online analysis tool was used to screen differentially expressed genes in cholangiocarcinoma tumor tissues and normal tissues, and we performed GO enrichment analysis, KEGG pathway analysis, and protein interaction network for differentially expressed genes. We used Cytoscape software to calculate key genes. The GEPIA database was used to verify the expression of hub genes in cholangiocarcinoma tissues.
RESULTS A total of 158 differentially expressed genes were identified. GO enrichment analysis showed that these differential genes were mainly involved in the cellular response to zinc ion, negative regulation of growth, cell adhesion, metabolic process, and protein homotetramerization. They were enriched in exosomes, extracellular spaces, elastic fibers, and organelle membranes. The main molecular functions are related to heparin binding, cysteine-type endopeptidase inhibitor activity, protein homodimerization activity, receptor binding, and pyridoxal phosphate binding. KEGG pathway analysis showed that differential genes are mainly involved in processes such as mineral absorption, carbon and propanoate metabolism, PPAR signaling pathway, and fatty acid degradation. A protein interaction network diagram was constructed based on the String database, and the CytoHubba plug-in of the Cytoscape software was used to calculate the key genes. The key genes were all up-regulated ones. GEPIA analysis verified that the expression of key genes in cholangiocarcinoma tissues was significantly higher than that in normal tissues.
CONCLUSION In this study, eight key genes related to cholangiocarcinoma were identified, including NUSAP1, TOP2A, RAD51AP1, MCM4, KIAA0101, CDCA5, TYMS, and ZWINT. These genes provide new ideas for in-depth study of the targeted therapy of cholangiocarcinoma, and are expected to become new molecular therapeutic targets.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Laboratory Medicine, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Jing Wu
- Department of Laboratory Medicine, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Lei Zhang
- Department of Laboratory Medicine, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Shu-Ye Liu
- Department of Laboratory Medicine, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| |
Collapse
|
16
|
Luo Z, Wang J, Zhu Y, Sun X, He C, Cai M, Ma J, Wang Y, Han S. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway. Neoplasia 2021; 23:1037-1047. [PMID: 34509929 PMCID: PMC8435818 DOI: 10.1016/j.neo.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/02/2022]
Abstract
The E3 ubiquitin ligase adaptor Speckle-type POZ protein (SPOP) plays an important tumour suppressor role in prostate cancers (PCa), with mutation rate up to 15%. However, how SPOP mutations regulate prostate tumorigenesis remains elusive. Here, we report the identification of cell division cycle associated 5 (CDCA5) as a SPOP substrate. We found that SPOP interacts with CDCA5 and promotes its polyubiquitin degradation in a degron-dependent manner. This effect was greatly impaired by introducing PCa associated SPOP mutations. Importantly, we found that CDCA5 was essential for PCa cells to survive and proliferate. CDCA5 depletion in PCa cells led to cessation of proliferation, G2M arrest, severe sister chromatid aggregation disturbance, and apoptosis. we also found that CDCA5 knockdown decreased the protein expression of p-GSK3β, increased the activity of caspase-3, caspase-9, and the Bax/Bcl-2 ratio. Besides, we confirmed that CDCA5 interrupted cancer cell behavior via the AKT pathway. In contrast, silencing SPOP or overexpressing CDCA5 increased cell proliferation. Consistently, depleting SPOP along with CDCA5, or overexpressing CDCA5 along with SPOP also caused the growth of cells repressed. Consistent with the functional role of CDCA5, the mRNA and protein levels of CDCA5 were significantly increased in PCa, compared to normal tissues, and its high expression was associated with more severe lymph node metastasis, higher Gleason score, and poorer prognosis. Together, our data showed that SPOP plays a crucial role in inhibiting tumorigenesis and partly achieved this by promoting the degradation of oncoprotein CDCA5.
Collapse
Affiliation(s)
- Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Zhu
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Sun
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenchen He
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Cai
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
17
|
Laliotis GI, Chavdoula E, Paraskevopoulou MD, Kaba A, La Ferlita A, Singh S, Anastas V, Nair KA, Orlacchio A, Taraslia V, Vlachos I, Capece M, Hatzigeorgiou A, Palmieri D, Tsatsanis C, Alaimo S, Sehgal L, Carbone DP, Coppola V, Tsichlis PN. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun 2021; 12:4624. [PMID: 34330897 PMCID: PMC8324843 DOI: 10.1038/s41467-021-24795-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
AKT-phosphorylated IWS1 regulates alternative RNA splicing via a pathway that is active in lung cancer. RNA-seq studies in lung adenocarcinoma cells lacking phosphorylated IWS1, identified a exon 2-deficient U2AF2 splice variant. Here, we show that exon 2 inclusion in the U2AF2 mRNA is a cell cycle-dependent process that is regulated by LEDGF/SRSF1 splicing complexes, whose assembly is controlled by the IWS1 phosphorylation-dependent deposition of histone H3K36me3 marks in the body of target genes. The exon 2-deficient U2AF2 mRNA encodes a Serine-Arginine-Rich (RS) domain-deficient U2AF65, which is defective in CDCA5 pre-mRNA processing. This results in downregulation of the CDCA5-encoded protein Sororin, a phosphorylation target and regulator of ERK, G2/M arrest and impaired cell proliferation and tumor growth. Analysis of human lung adenocarcinomas, confirmed activation of the pathway in EGFR-mutant tumors and showed that pathway activity correlates with tumor stage, histologic grade, metastasis, relapse after treatment, and poor prognosis.
Collapse
Affiliation(s)
- Georgios I Laliotis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
- School of Medicine, University of Crete, Heraklion, Crete, Greece.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Evangelia Chavdoula
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | - Abdul Kaba
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Satishkumar Singh
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Vollter Anastas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, USA
| | - Keith A Nair
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Vasiliki Taraslia
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioannis Vlachos
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
- Department Of Pathology, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marina Capece
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | | | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Christos Tsatsanis
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Lalit Sehgal
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - David P Carbone
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip N Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, USA.
| |
Collapse
|
18
|
Hajrah NH, Abdul WM, Abdul-Hameed ZH, Alarif WM, Al-Abbas NSA, Ayyad SEN, Omer AMS, Mutawakil MZ, Hall N, Obaid AY, Bora RS, Sabir JSM, Saini KS. Gene Expression Profiling to Delineate the Anticancer Potential of a New Alkaloid Isopicrinine From Rhazya stricta. Integr Cancer Ther 2021; 19:1534735420920711. [PMID: 32463309 PMCID: PMC7262827 DOI: 10.1177/1534735420920711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background:Rhazya stricta has been used as a folkloric medicinal herb for
treating various diseases such as diabetes, inflammatory disorders, and sore
throat. Several studies have revealed the potential of this plant as an
important source of phytochemicals with anticancer properties.
Objective: The present study was designed to isolate a novel
anticancer compound from Rhazya stricta and elucidate its
mechanism of action using genomics approach. Methods:Rhazya stricta leaves extract was prepared, and several
alkaloids were purified and characterized. These alkaloids were screened for
their anticancer potential. One of the alkaloids, termed as isopicrinine, showed
efficient cytotoxicity against MCF7 breast cancer cell line and was selected for
further analysis. RNA-Seq transcription profiling was conducted to identify the
affected genes and cellular pathways in MCF7 cells after treatment with
isopicrinine alkaloid. Results: In vitro studies revealed that
newly identified isopicrinine alkaloid possess efficient anticancer activity.
Exposure of MCF7 cells with isopicrinine affected the expression of various
genes involved in p53 signaling pathway. One of the crucial proapoptotic genes,
significantly upregulated in MCF7 after exposure to alkaloid, was
PUMA (p53 upregulated modulator of apoptosis), which is
involved in p53-dependent and -independent apoptosis. Moreover, exposure of
sublethal dose of isopicrinine alkaloid in breast cancer cell line led to the
downregulation of survivin, which is involved in negative regulation of
apoptosis. Besides, several genes involved in mitosis and cell proliferation
were significantly downregulated. Conclusion: In this article, we
report the determination of a new alkaloid isopicrinine from the aerial parts of
Rhazya stricta with anticancer property. This compound has
the potential to be developed as a drug for curing cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Roop Singh Bora
- King Abdulaziz University, Jeddah, Saudi Arabia.,Eternal University, Baru Sahib, Himachal Pradesh, India
| | | | - Kulvinder Singh Saini
- King Abdulaziz University, Jeddah, Saudi Arabia.,Eternal University, Baru Sahib, Himachal Pradesh, India
| |
Collapse
|
19
|
Li Z, Liu Z, Li C, Liu Q, Tan B, Liu Y, Zhang Y, Li Y. CDCA1/2/3/5/7/8 as novel prognostic biomarkers and CDCA4/6 as potential targets for gastric cancer. Transl Cancer Res 2021; 10:3404-3417. [PMID: 35116645 PMCID: PMC8798863 DOI: 10.21037/tcr-20-1050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
Background Increasing evidence had suggested that cell division cycle-associated (CDCA) family proteins play prominent roles in multiple types of cancer. However, the expression pattern and prognostic value of CDCAs in gastric cancer were still poorly understood. Methods In this study, bioinformatics was used for the first time to comprehensively discuss the expression changes of the CDCA protein family in gastric cancer. We studied the transcription and survival data of CDCAs in patients with gastric cancer in Oncomine, GEPIA, DAVID, cBioportal, and other databases. Results We identified that the CDCA 1/2/3/4/5/6/7/8 were overexpressed gastric cancer than in normal tissues. There was no significant difference in CDCAs expression among different gastric cancer stages. High expression of CDCA4/6 in patients with gastric cancer was closely related to low overall survival (OS), first progression survival (FPS), and post-progression survival (PPS). In contrast, high CDCA1/2/3/5/7/8 expression predicted a better prognosis. The genetic mutation rate of CDCA2 and CDCA4 was 4%, ranking first. The main biological process of CDCAs protein family enrichment was cell division, the main cell component involved was centromeres of chromosomes, and the main molecular function involved was protein binding. Conclusions The study suggested that CDCA1/2/3/5/7/8 were expected to be new prognostic markers for gastric cancer, and CDCA4/6 might be potential targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhaoxing Li
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuang Li
- The Second Hospital of Shijiazhuang, Shijiazhuang, China
| | - Qingwei Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bibo Tan
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Yong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
20
|
Gui T, Yao C, Jia B, Shen K. Identification and analysis of genes associated with epithelial ovarian cancer by integrated bioinformatics methods. PLoS One 2021; 16:e0253136. [PMID: 34143800 PMCID: PMC8213194 DOI: 10.1371/journal.pone.0253136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Background Though considerable efforts have been made to improve the treatment of epithelial ovarian cancer (EOC), the prognosis of patients has remained poor. Identifying differentially expressed genes (DEGs) involved in EOC progression and exploiting them as novel biomarkers or therapeutic targets is of great value. Methods Overlapping DEGs were screened out from three independent gene expression omnibus (GEO) datasets and were subjected to Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The protein-protein interactions (PPI) network of DEGs was constructed based on the STRING database. The expression of hub genes was validated in GEPIA and GEO. The relationship of hub genes expression with tumor stage and overall survival and progression-free survival of EOC patients was investigated using the cancer genome atlas data. Results A total of 306 DEGs were identified, including 265 up-regulated and 41 down-regulated. Through PPI network analysis, the top 20 genes were screened out, among which 4 hub genes, which were not researched in depth so far, were selected after literature retrieval, including CDC45, CDCA5, KIF4A, ESPL1. The four genes were up-regulated in EOC tissues compared with normal tissues, but their expression decreased gradually with the continuous progression of EOC. Survival curves illustrated that patients with a lower level of CDCA5 and ESPL1 had better overall survival and progression-free survival statistically. Conclusion Two hub genes, CDCA5 and ESPL1, identified as probably playing tumor-promotive roles, have great potential to be utilized as novel therapeutic targets for EOC treatment.
Collapse
Affiliation(s)
- Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenhe Yao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Chen Y, Jin L, Jiang Z, Liu S, Feng W. Identifying and Validating Potential Biomarkers of Early Stage Lung Adenocarcinoma Diagnosis and Prognosis. Front Oncol 2021; 11:644426. [PMID: 33937050 PMCID: PMC8085413 DOI: 10.3389/fonc.2021.644426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. At present, most patients with LUAD are diagnosed at an advanced stage, and the prognosis of advanced LUAD is poor. Hence, we aimed to identify novel biomarkers for the diagnosis and treatment of early stage LUAD and to explore their predictive value. Methods The microarray datasets GSE63459, GSE27262, and GSE33532 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. The DEGs were subjected to gene ontology (GO) and pathway enrichment analyses using METASCAPE. A protein–protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was performed using MCODE. Overall survival (OS) analysis and analysis of the mRNA expression levels of genes identified by MCODE were performed with UALCAN. Western blot analysis of hub genes in LUAD patients, MTS assays, and clonogenic assays were performed to test the effects of the hub genes on cell proliferation in vitro. Results A total of 341 DEGs were obtained, which were mainly enriched in terms related to blood vessel development, growth factor binding, and extracellular matrix organization. A PPI network consisting of 300 nodes and 1140 edges was constructed, and a significant module including 15 genes was identified. Elevated expression of ASPM, CCNB2, CDCA5, PRC1, KIAA0101, and UBE2T was associated with poor OS in LUAD patients. In the protein level, the hub gene was overexpressed in LUAD patients. In vitro experiments showed that knockdown of the hub genes in the LUAD cell lines could promote cell proliferation. Conclusions DEGs are potential biomarkers for early stage lung adenocarcinoma and could have utility for the diagnosis and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhibin Jiang
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Suo Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
Zhang YF, Wang YX, Zhang N, Lin ZH, Wang LR, Feng Y, Pan Q, Wang L. Prognostic alternative splicing regulatory network of RBM25 in hepatocellular carcinoma. Bioengineered 2021; 12:1202-1211. [PMID: 33830865 PMCID: PMC8806338 DOI: 10.1080/21655979.2021.1908812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RNA-binding motif protein 25 (RBM25) is a poorly characterized RNA-binding protein that is involved in several biological processes and regulates the proliferation and metastasis of tumor cells. The regulatory role of RBM25 in hepatocellular carcinoma (HCC) is unknown. Here, RBM25 expression and outcomes in HCC patients were evaluated using The Cancer Genome Atlas database. RBM25 was overexpressed in HCC patients compared with the healthy group. The high expression of RBM25 in tumor tissues was significantly related to poor overall survival (P<0.001). Overexpression of RBM25 significantly contributed to poorer survival in male patients and N0 stage patients (P<0.001). Spearman analysis and weighted gene co-expression network analysis identified 694 RBM25-related genes. Protein-protein interaction network analysis revealed the Cluster with the highest score, which positively correlated with RBM25. CDCA5 and INCENP were identified as the core functional genes related to RBM25. The overexpression of CDCA5 and INCENP in HCC patients was examined using the Human Protein Atlas database. The findings collectively indicated that RBM25 may interact with CDCA5 and INCENP to regulate HCC. Our detailed characterization of RBM25 protein interactions and related core functional genes provides a basis for further studies aimed at identifying molecular regulatory pathways or splicing events.
Collapse
Affiliation(s)
- Yong-Fa Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Xiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning- Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen-Hai Lin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long-Rong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Feng
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Pan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Ji J, Shen T, Li Y, Liu Y, Shang Z, Niu Y. CDCA5 promotes the progression of prostate cancer by affecting the ERK signalling pathway. Oncol Rep 2021; 45:921-932. [PMID: 33650660 PMCID: PMC7859918 DOI: 10.3892/or.2021.7920] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Cell division cycle-associated 5 (CDCA5) can regulate cell cycle-related proteins to promote the proliferation of cancer cells. The purpose of the present study was to investigate the expression level of CDCA5 in prostate cancer (PCa) and its effect on PCa progression. The signalling pathway by which CDCA5 functions through was also attempted to elucidate. Clinical specimens of PCa patients were collected from the Second Hospital of Tianjin Medical University. The expression level of CDCA5 in cancer tissues and paracancerous tissues from PCa patients was detected by RT-qPCR analysis and IHC. The relationship between the expression level of CDCA5 and the survival rate of PCa patients was analysed using TCGA database. Two stable cell lines (C4-2 and PC-3) with CDCA5 knockdown were established, and the effects of CDCA5 on PCa cell proliferation were detected by MTT and colony formation assays. Flow cytometry was performed to detect the effect of CDCA5 on the PCa cell division cycle, and western blot analysis was used to determine changes in ERK phosphorylation levels after CDCA5 knockdown. The effect of CDCA5 expression on prostate tumour growth was assessed using a mouse xenograft model. The results revealed that the mRNA and protein expression levels of CDCA5 were significantly higher in PCa tissues than in paracancerous tissues. High CDCA5 expression was associated with the prognosis of patients with PCa. CDCA5 expression knockdown significantly reduced the number of PCa cells in mitoses and inhibited their proliferation in vitro and in vivo. When CDCA5 was knocked down, the phosphorylation level of ERK was also reduced. Collectively, CDCA5 was upregulated and affected the prognosis of patients with PCa. Decreased CDCA5 expression inhibited PCa cell proliferation by inhibiting the ERK signalling pathway. Thus, CDCA5 may be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Junpeng Ji
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Tianyu Shen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Yang Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Yixi Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Hexi, Tianjin 300211, P.R. China
| |
Collapse
|
24
|
Lin K, Zhu X, Luo C, Bu F, Zhu J, Zhu Z. Data mining combined with experiments to validate CEP55 as a prognostic biomarker in colorectal cancer. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:167-182. [PMID: 33190424 PMCID: PMC7860595 DOI: 10.1002/iid3.375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a common tumor with high morbidity and mortality. Current specific diagnosis regarding CRC remains complicated and costly, and specific diagnostic biomarkers are lacking. METHODS To find potential diagnostic and prognostic biomarkers for CRC, we screened and analyzed many CRC sequencing data by The Cancer Genome Atlas Program and Gene Expression Omnibus, and validated that CEP55 may be a potential diagnostic biomarker for CRC by molecular cytological experiments and immunohistochemistry, among others. RESULTS We found that CEP55 is upregulated in CRC tissues and tumor cells and can promote CRC proliferation and metastasis by activating the p53/p21 axis and that CEP55 mutations in tumor patients result in worse overall survival and disease-free survival time. Besides, we also found that genes, such as CDK1, CCNB1, NEK2, KIF14, CDCA5, and RFC3 were upregulated in tumors, and their mutations would affect the prognosis of CRC patients, but these results await for more experimental evidence. CONCLUSION Our study validates CEP55 as a potential diagnostic and prognostic biomarker for CRC, and we also provide multiple genes and potential molecular mechanisms that may serve as diagnostic and prognostic markers for CRC.
Collapse
Affiliation(s)
- Kang Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojian Zhu
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chen Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fanqin Bu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Huang Z, Zhang S, Du J, Zhang X, Zhang W, Huang Z, Ouyang P. Cyclin-Dependent Kinase 1 (CDK1) is Co-Expressed with CDCA5: Their Functions in Gastric Cancer Cell Line MGC-803. Med Sci Monit 2020; 26:e923664. [PMID: 32759885 PMCID: PMC7431384 DOI: 10.12659/msm.923664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is a worldwide malignancy and the molecular mechanism of the GC carcinogenesis has not been fully elucidated. Our previous study suggested CDCA5 played a role in GC development via regulating cell proliferation, migration, and apoptosis in GC cells. Material/Methods Here, we first carried out bioinformatics analysis and found cyclin-dependent kinase 1 (CDK1) was possibly associated with CDCA5 using STRING. Then, the expression levels of CDK1 and CDCA5 in cancer tissues were estimated through Oncomine and The Cancer Genome Atlas (TCGA) database. After that, functional experiments were exerted to detect the association of CDK1 and CDCA5. Finally, cell proliferation assay, colon formation assay, cell scratch assay, transwell migration and invasion assays were applied to explore the roles of CDK1 and CDCA5 in GC cells MGC-803. Results CDK1 and CDCA5 were both upregulated and co-expressed in GC tissues. The expression of CDK1 and CDCA5 in MGC-803 was positively related. CDK1 or CDCA5 inhibition can suppress the proliferation, colon formation, migration, and invasion abilities of GC cells. Conclusions Co-expression of CDK1 and CDCA5 might confer cell proliferation, migration, and invasion abilities in GC cells, and this can provide some clues for further therapies of gastric tumors.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Shizhuo Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Jinlin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Xing Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Weijian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Zhaowei Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| |
Collapse
|
26
|
Hou S, Chen X, Li M, Huang X, Liao H, Tian B. Higher expression of cell division cycle-associated protein 5 predicts poorer survival outcomes in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:14542-14555. [PMID: 32694239 PMCID: PMC7425481 DOI: 10.18632/aging.103501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023]
Abstract
The upregulation of cell division cycle associated protein 5 (CDCA5) has been observed in various cancer types. However, the prognostic value of CDCA5 and its underlying mechanism contributing to tumorigenesis in hepatocellular carcinoma (HCC) remain poorly understood. We used tissue microarray (TMA) to evaluate the prognosis of 304 HCC samples based on their CDCA5 expression, and analyzed the genomic features correlated with CDCA5 by using dataset from The Cancer Genome Atlas (TCGA). Compared with adjacent normal tissues, increased expression of CDCA5 was found in HCC tissues. Moreover, higher expression of CDCA5 was associated with inferior OS and DFS outcomes in HCC patients. The enrichment plots showed that the gene signatures in cell cycle, DNA replication and p53 pathways were enriched in patients with higher CDCA5 expression. Meanwhile, statistically higher mutations burdens in TP53 could also be observed in CDCA5-high patients. Integrative analysis based on miRNAseq and methylation data demonstrated a potential association between CDCA5 expression and epigenetic changes. In conclusion, our study provided the evidence of CDCA5 as an oncogenic promoter in HCC and the potential function of CDCA5 in affecting tumor microenvironment.
Collapse
Affiliation(s)
- Shengzhong Hou
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Chen
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mao Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haotian Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Nakamura M, Takano A, Thang PM, Tsevegjav B, Zhu M, Yokose T, Yamashita T, Miyagi Y, Daigo Y. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer. Int J Oncol 2020; 57:277-288. [PMID: 32467984 DOI: 10.3892/ijo.2020.5060] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify novel prognostic biomarkers and therapeutic targets for breast cancer; thus, genes that are frequently overexpressed in several types of breast cancer were screened. Kinesin family member 20A (KIF20A) was identified as a candidate molecule during this process. Immunohistochemical staining performed using tissue microarrays from 257 samples of different breast cancer subtypes revealed that KIF20A was expressed in 195 (75.9%) of these samples, whereas it was seldom expressed in normal breast tissue. KIF20A protein was expressed in all types of breast cancer observed. However, it was more frequently expressed in human epidermal growth factor receptor 2 (HER2)‑positive and triple‑negative breast cancer than in the luminal type. Moreover, KIF20A expression was significantly associated with the poor prognosis of patients with breast cancer. A multivariate analysis indicated that KIF20A expression was an independent prognostic factor for patients with breast cancer. The suppression of endogenous KIF20A expression using small interfering ribonucleic acids or via treatment with paprotrain, a selective inhibitor of KIF20A, significantly inhibited breast cancer cell growth through cell cycle arrest at the G2/M phase and subsequent mitotic cell death. These results suggest that KIF20A is a candidate prognostic biomarker and therapeutic target for different types of breast cancer.
Collapse
Affiliation(s)
- Masako Nakamura
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Phung Manh Thang
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Bayarbat Tsevegjav
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Ming Zhu
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Toshinari Yamashita
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241‑8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑8515, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga 520‑2192, Japan
| |
Collapse
|
28
|
Chen C, Chen S, Luo M, Yan H, Pang L, Zhu C, Tan W, Zhao Q, Lai J, Li H. The role of the CDCA gene family in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:190. [PMID: 32309337 PMCID: PMC7154490 DOI: 10.21037/atm.2020.01.99] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Ovarian cancer is a frequently-occurring reproductive system malignancy in females, which leads to an annual of over 100 thousand deaths worldwide. Methods The electronic databases, including GEPIA, ONCOMINE, Metascape, and Kaplan-Meier Plotter, were used to examine both survival and transcriptional data regarding the cell division cycle associated (CDCA) gene family among ovarian cancer patients. Results All CDCA genes expression levels were up-regulated in ovarian cancer tissues relative to those in non-carcinoma ovarian counterparts. Besides, CDCA5/7 expression levels were related to the late tumor stage. In addition, the Kaplan-Meier Plotter database was employed to carry out survival analysis, which suggested that ovarian cancer patients with increased CDCA2/3/5/7 expression levels had poor overall survival (OS) (P<0.05). Moreover, ovarian cancer patients that had up-regulated mRNA expression levels of CDCA2/5/8 had markedly reduced progression-free survival (PFS) (P<0.05); and up-regulated CDCA4 expression showed remarkable association with reduced post-progression survival (PPS) (P<0.05). Additionally, the following processes were affected by CDCA genes alterations, including R-HAS-2500257: resolution of sister chromatid cohesion; GO:0051301: cell division; CORUM: 1118: Chromosomal passenger complex (CPC, including CDCA8, INCENP, AURKB and BIRC5); CORUM: 127: NDC80 kinetochore complex; M129: PID PLK1 pathway; and GO: 0007080: mitotic metaphase plate congression, all of which were subjected to marked regulation since the alterations affected CDCA genes. Conclusions Up-regulated CDCA gene expression in ovarian cancer tissues probably played a crucial part in the occurrence of ovarian cancer. The up-regulated CDCA2/3/5/7 expression levels were used as the potential prognostic markers to improve the poor ovarian cancer survival and prognostic accuracy. Moreover, CDCA genes probably exerted their functions in tumorigenesis through the PLK1 pathway.
Collapse
Affiliation(s)
- Chongxiang Chen
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Siliang Chen
- Department of Hematology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ma Luo
- Department of Interventional Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Honghong Yan
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Lanlan Pang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaoyang Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiyan Tan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingyu Zhao
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jielan Lai
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Huan Li
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
29
|
Analysis of the Expression of Cell Division Cycle-Associated Genes and Its Prognostic Significance in Human Lung Carcinoma: A Review of the Literature Databases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6412593. [PMID: 32104702 PMCID: PMC7037569 DOI: 10.1155/2020/6412593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Background Lung cancer (LC) has become the top cause responsible for cancer-related deaths. Cell division cycle-associated (CDCA) genes exert an important role in the life process. Dysregulation in the process of cell division may lead to malignancy. Methods Transcriptional data on CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. Results CDCA1/2/3/4/5/7/8 expression levels were higher in lung adenocarcinoma tissues, and the CDCA1/2/3/4/5/6/7/8 expression levels were increased in squamous cell LC tissues compared with those in noncarcinoma lung tissues. The expression levels of CDCA1/2/3/4/5/8 showed correlation with tumor classification. The Kaplan-Meier Plotter database was employed to carry out survival analysis, indicating that increased CDCA1/2/3/4/5/6/7/8 expression levels were increased in squamous cell LC tissues compared with those in noncarcinoma lung tissues. The expression levels of P < 0.05). Only LC patients with increased CDCA3/4/5/8 expression were significantly related to lower post-progression survival (PPS) (P < 0.05). Only LC patients with increased CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. CDCA8, INCENP, AURKB, and BIRC5); CORUM: 127: NDC80 kinetochore complex; M129: the PID PLK1 pathway; and GO: 0007080: mitotic metaphase plate congression, all of which were remarkably modulated since the alterations affected CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. Conclusions Upregulated CDCA genes' expression levels in LC tissues probably play a crucial part in LC oncogenesis. The upregulated CDCA genes' expression levels are used as the potential prognostic markers to improve patient survival and the LC prognostic accuracy. CDCA genes probably exert their functions in tumorigenesis through the PLK1 pathway.CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases. CDCA gene family and patient survival data were examined for lung cancer (LC) patients from the GEPIA, Oncomine, cBioPortal, and Kaplan-Meier Plotter databases.
Collapse
|
30
|
Fu G, Xu Z, Chen X, Pan H, Wang Y, Jin B. CDCA5 functions as a tumor promoter in bladder cancer by dysregulating mitochondria-mediated apoptosis, cell cycle regulation and PI3k/AKT/mTOR pathway activation. J Cancer 2020; 11:2408-2420. [PMID: 32201512 PMCID: PMC7066009 DOI: 10.7150/jca.35372] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) is one of the most prevalent cancers worldwide and has high rates of relapse and progression. Cell division cycle associated 5 (CDCA5), a substrate of the anaphase-promoting complex, was reported to be upregulated in several types of cancer; however, the function of CDCA5 in BC remains unclear. In this study, we observed that BC tissues had higher levels of CDCA5 expression than adjacent normal tissues. We also found that high CDCA5 expression in patients was associated with poor survival rates. An in vitro study showed that knockdown of CDCA5 in T24 and 5637 cells reduced cell proliferation and induced apoptosis in T24 and 5637 cells, while overexpression of CDCA5 in UMUC3 cells caused the opposite effects. In an additional experiment, we found that CDCA5 promoted cell proliferation by upregulating two key cell cycle factors, cell division cycle protein 2 (CDC2) and cyclin B1, and by activating the PI3K/AKT/mTOR pathway. Furthermore, CDCA5 regulate cancer cell apoptosis through the mitochondrial apoptosis pathway. In conclusion, CDCA5 plays a pivotal role in the proliferation of BC cells. A better understanding of CDCA5 may provide new insights into its role as a therapeutic target for BC.
Collapse
Affiliation(s)
- Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Hao Pan
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yiming Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
31
|
Wan Z, Zhang X, Luo Y, Zhao B. Identification of Hepatocellular Carcinoma-Related Potential Genes and Pathways Through Bioinformatic-Based Analyses. Genet Test Mol Biomarkers 2019; 23:766-777. [PMID: 31633428 DOI: 10.1089/gtmb.2019.0063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zheng Wan
- School of Medicine, Xiamen University, Xiamen, China
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | | | - Yuyang Luo
- ShenZhen College of International Education, Shenzhen, China
| | - Bin Zhao
- School of Medicine, Xiamen University, Xiamen, China
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| |
Collapse
|
32
|
Liu J, Meng H, Li S, Shen Y, Wang H, Shan W, Qiu J, Zhang J, Cheng W. Identification of Potential Biomarkers in Association With Progression and Prognosis in Epithelial Ovarian Cancer by Integrated Bioinformatics Analysis. Front Genet 2019; 10:1031. [PMID: 31708970 PMCID: PMC6822059 DOI: 10.3389/fgene.2019.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/25/2019] [Indexed: 02/03/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the malignancies in women, which has the highest mortality. However, the microlevel mechanism has not been discussed in detail. The expression profiles GSE27651, GSE38666, GSE40595, and GSE66957 including 188 tumor and 52 nontumor samples were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were filtered using R software, and we performed functional analysis using the clusterProfiler. Cytoscape software, the molecular complex detection plugin and database STRING analyzed DEGs to construct protein-protein interaction network. We identified 116 DEGs including 81 upregulated and 35 downregulated DEGs. Functional analysis revealed that they were significantly enriched in the extracellular region and biosynthesis of amino acids. We next identified four bioactive compounds (vorinostat, LY-294002,trichostatin A, and tanespimycin) based on ConnectivityMap. Then 114 nodes were obtained in protein-protein interaction. The three most relevant modules were detected. In addition, according to degree ≥ 10, 14 core genes including FOXM1, CXCR4, KPNA2, NANOG, UBE2C, KIF11, ZWINT, CDCA5, DLGAP5, KIF15, MCM2, MELK, SPP1, and TRIP13 were identified. Kaplan-Meier analysis, Oncomine, and Gene Expression Profiling Interactive Analysis showed that overexpression of FOXM1, SPP1, UBE2C, KIF11, ZWINT, CDCA5, UBE2C, and KIF15 was related to bad prognosis of EOC patients. CDCA5, FOXM1, KIF15, MCM2, and ZWINT were associated with stage. Receiver operating characteristic (ROC) curve showed that messenger RNA levels of these five genes exhibited better diagnostic efficiency for normal and tumor tissues. The Human Protein Atlas database was performed. The protein levels of these five genes were significantly higher in tumor tissues compared with normal tissues. Functional enrichment analysis suggested that all the hub genes played crucial roles in citrate cycle tricarboxylic acid cycle. Furthermore, the univariate and multivariate Cox proportional hazards regression showed that ZWINT was independent prognostic indictor among EOC patients. The genes and pathways discovered in the above studies may open a new direction for EOC treatment.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujie Shen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Shan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangnan Qiu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Bai L, Ren Y, Cui T. Overexpression of CDCA5, KIF4A, TPX2, and FOXM1 Coregulated Cell Cycle and Promoted Hepatocellular Carcinoma Development. J Comput Biol 2019; 27:965-974. [PMID: 31593490 DOI: 10.1089/cmb.2019.0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aimed to identify key functional modules and genes in functional module involved in hepatocellular carcinoma (HCC) development. The microarray data set GSE54236 was obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between HCC, and normal samples were identified by Limma. DAVID was used to identify the gene ontology terms these genes enriched. The co-expression network was constructed based on Pearson correlation coefficient between gene expression values, and the functional modules these DEGs obviously enriched in were recognized through GraphWeb. Then, based on the genes related to the development of HCC, the DEGs interacting with HCC-associated genes were spotted. Finally, survival analysis and real-time quantitative polymerase chain reaction were performed. Totally, 427 upregulated (e.g., cell division cycle associated 5 [CDCA5], kinesin family member 4A [KIF4A], TPX2 microtubule nucleation factor [TPX2]) and 313 downregulated (e.g., metallothionein 1E [MT1E]) DEGs were identified in HCC. Besides, CDCA5, KIF4A, and TPX2 had interacting relationship and played important roles in HCC development by interrelating with HCC-related gene, forkhead box M1 (FOXM1). Furthermore, CDCA5, KIF4A, TPX2, and FOXM1 obviously enriched in cell cycle-related functional module, whereas MT1E enriched in mineral absorption module in Kyoto Encyclopedia of Genes and Genomes. CDCA5, KIF4A, and TPX2 expression were increased in HCC cells, and their high expressions were related to poor prognosis. Overexpression of CDCA5, KIF4A, TPX2, and FOXM1 coregulated cell cycle and thereby promoted the development of HCC. The finding provided potential targets for the study and treatment of HCC.
Collapse
Affiliation(s)
- Lianmei Bai
- Gastroenterology Department, Inner Mongolia People's Hospital, Hohhot, China
| | - Yu Ren
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, China
| | - Tianqing Cui
- Gastroenterology Department, Inner Mongolia People's Hospital, Hohhot, China
| |
Collapse
|
34
|
Qadir F, Lalli A, Dar HH, Hwang S, Aldehlawi H, Ma H, Dai H, Waseem A, Teh MT. Clinical correlation of opposing molecular signatures in head and neck squamous cell carcinoma. BMC Cancer 2019; 19:830. [PMID: 31443700 PMCID: PMC6708230 DOI: 10.1186/s12885-019-6059-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background The concept of head and neck cancers (HNSCC) having unique molecular signatures is well accepted but relating this to clinical presentation and disease behaviour is essential for patient benefit. Currently the clinical significance of HNSCC molecular subtypes is uncertain therefore personalisation of HNSCC treatment is not yet possible. Methods We performed meta-analysis on 8 microarray studies and identified six significantly up- (PLAU, FN1, CDCA5) and down-regulated (CRNN, CLEC3B and DUOX1) genes which were subsequently quantified by RT-qPCR in 100 HNSCC patient margin and core tumour samples. Results Retrospective correlation with sociodemographic and clinicopathological patient details identified two subgroups of opposing molecular signature (+q6 and -q6) that correlated to two recognised high-risk HNSCC populations in the UK. The +q6 group were older, male, and excessive alcohol users whilst the –q6 group were younger, female, paan-chewers and predominantly Bangladeshi. Additionally, all patients with tumour recurrence were in the latter subgroup. Conclusions We provide the first evidence linking distinct molecular signatures in HNSCC with clinical presentations. Prospective trials are required to determine the correlation between these distinct genotypes and disease progression or treatment response. This is an important step towards the ultimate goal of improving outcomes by utilising personalised molecular-signature-guided treatments for HNSCC patients.
Collapse
Affiliation(s)
- Fatima Qadir
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Anand Lalli
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Huma Habib Dar
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Sungjae Hwang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Hebah Aldehlawi
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Hong Ma
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China
| | - Haiyan Dai
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, England, E1 2AT, UK. .,China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China. .,Cancer Research Institute, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Xu J, Zhu C, Yu Y, Wu W, Cao J, Li Z, Dai J, Wang C, Tang Y, Zhu Q, Wang J, Wen W, Xue L, Zhen F, Liu J, Huang C, Zhao F, Zhou Y, He Z, Pan X, Wei H, Zhu Y, He Y, Que J, Luo J, Chen L, Wang W. Systematic cancer-testis gene expression analysis identified CDCA5 as a potential therapeutic target in esophageal squamous cell carcinoma. EBioMedicine 2019; 46:54-65. [PMID: 31324603 PMCID: PMC6710982 DOI: 10.1016/j.ebiom.2019.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies with poor prognosis. Cancer-testis genes (CTGs) have been vigorously pursued as targets for cancer immunotherapy, but the expressive patterns and functional roles of CTGs remain unclear in ESCC. METHODS A systematic screening strategy was adopted to screen CTGs in ESCC by integrating multiple public databases and RNA expression microarray data from 119 ESCC subjects. For the newly identified ESCC prognosis-associated CTGs, an independent cohort of 118 patients with ESCC was recruited to validate the relationship via immunohistochemistry. Furthermore, functional assays were performed to determine the underlying mechanisms. FINDINGS 21 genes were recognized as CTGs, in particular, CDCA5 was aberrantly upregulated in ESCC tissues and significantly associated with poor prognosis (HR = 1.85, 95%CI: 1.14-3.01, P = .013). Immunohistochemical staining confirmed that positive CDCA5 expression was associated with advanced TNM staging and a shorter overall survival rate (45.59% vs 28.00% for CDCA5-/+ subjects, P = 1.86 × 10-3). H3K27 acetylation in CDCA5 promoter might lead to the activation of CDCA5 during ESCC tumorigenesis. Functionally, in vitro assay of gain- and loss-of-function of CDCA5 suggested that CDCA5 could promote ESCC cells proliferation, invasion, migration, apoptosis resistance and reduce chemosensitivity to cisplatin. Moreover, in vivo assay showed that silenced CDCA5 could inhibit tumor growth. Mechanistically, CDCA5 knockdown led to an arrest in G2/M phase and changes in the expression of factors that played fundamental roles in the cell cycle pathway. INTERPRETATION CDCA5 contributed to ESCC progression and might serve as an attractive target for ESCC immunotherapy. FUND: This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20181083 and BK20181496), Jiangsu Top Expert Program in Six Professions (No. WSW-003 and WSW-007), Major Program of Science and Technology Foundation of Jiangsu Province (No. BE2016790 and BE2018746), Jiangsu Medical Young Talent Project (No. QNRC2016566), the Program of Jiangsu Medical Innovation Team (No. CXTDA2017006), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1487) and Jiangsu Province 333 Talents Project (No. BRA2017545).
Collapse
Affiliation(s)
- Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengxiang Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Cao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fuxi Zhen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyuan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhicheng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haixing Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yining Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaozhou He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinghua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Huang J, Li Y, Lu Z, Che Y, Sun S, Mao S, Lei Y, Zang R, Li N, Zheng S, Liu C, Wang X, Sun N, He J. Analysis of functional hub genes identifies CDC45 as an oncogene in non-small cell lung cancer - a short report. Cell Oncol (Dordr) 2019; 42:571-578. [PMID: 30887286 DOI: 10.1007/s13402-019-00438-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Hub genes are good molecular candidates for targeted cancer therapy. As yet, however, there is little information on the clinical implications and functional characteristics of hub genes in the development of non-small cell lung cancer (NSCLC). In this study, we set out to analyze the role of hub genes in NSCLC. METHODS We performed weighted gene co-expression network analysis (WGCNA) to analyze gene networks during NSCLC development using transcriptomic data from normal, pre-cancer and cancer tissues. Both in vitro and in vivo expression knockdown assays were used to evaluate the biological function of candidate hub gene CDC45 (cell division cycle 45) in NSCLC. RESULTS We identified 14 gene networks associated with NSCLC development, in which two modules (turquoise and green) correlated with tumorigenesis most positively and negatively, respectively. Gene enrichment analysis showed that the turquoise module was associated with cell cycle/mitosis, and that the green module was associated with development/morphogenesis. We found that the expression levels of the hub genes CDC45, CDCA5, GINS2, RAD51 and TROAP in the turquoise module increased gradually during tumorigenesis, whereas those of MAGI2-AS3 and RBMS3 in the green module decreased during tumorigenesis. Functionally, we found that expression knockdown of CDC45 inhibited NSCLC cell proliferation both in vitro and in vivo, and arrested the cells in the G2/M phase of the cell cycle, supporting an oncogenic role of CDC45. CONCLUSION Through gene co-expression network analysis and subsequent functional analyses we identified hub gene CDC45 as a putative novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shouguo Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuangshuang Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
37
|
Cell division cycle associated 5 promotes colorectal cancer progression by activating the ERK signaling pathway. Oncogenesis 2019; 8:19. [PMID: 30808873 PMCID: PMC6391450 DOI: 10.1038/s41389-019-0123-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
Cell division cycle associated 5 (CDCA5) is implicated in the development and progression of a variety of human cancers. Functional significance of CDCA5 in colorectal cancer (CRC), however, has not been investigated. Using a combination of on-line data mining, biochemistry, and molecular biology, we examined the potential oncogenic activity of CDCA5 and the underlying mechanisms. Experiments with human tissue sample showed increased CDCA5 expression in CRC vs. in noncancerous adjacent tissue, and association of CDCA5 upregulation in CRC tissues with shorter patient survival. Also, representative CRC cell-lines had higher CDCA5 expression vs. fetal colonic mucosal cells. CDCA5 knockdown using lentivirus-mediated shRNA inhibited the proliferation and induced apoptosis in cultured HCT116 and HT-29 cells, and suppressed the growth of xenograft in nude mice. CDCA5 knockdown decreased the expression of CDK1 and CyclinB1, increased caspase-3 activity, cleaved PARP and the Bax/Bcl-2 ratio. CDCA5 knockdown also significantly decreased phosphorylation of ERK1/2 and expression of c-jun. Taken together, these findings suggest a significant role in CRC progression of CRC, likely by activating the ERK signaling pathway.
Collapse
|
38
|
Cai C, Wang W, Tu Z. Aberrantly DNA Methylated-Differentially Expressed Genes and Pathways in Hepatocellular Carcinoma. J Cancer 2019; 10:355-366. [PMID: 30719129 PMCID: PMC6360310 DOI: 10.7150/jca.27832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Methylation plays a significant role in the etiology and pathogenesis of hepatocellular carcinoma (HCC). The aim of the present study is to identify aberrantly methylated-diferentially expressed genes (DEGs) and dysregulated pathways associated with the development of HCC through integrated analysis of gene expression and methylation microarray. Method: Aberrantly methylated-DEGs were identified from gene expression microarrays (GSE62232, GSE74656) and gene methylation microarrays (GSE44909, GSE57958). Functional enrichment and pathway enrichment analyses were performed through the database of DAVID. Protein-protein interaction (PPI) network was established by STRING and visualized in Cytoscape. Subsequently, overall survival (OS) analysis of hub genes was performed by OncoLnc. Finally, we validated the expression level of CDCA5 by quantitative real-time PCR (qRT-PCR) and western blotting, and performed Immunohistochemical experiments utilizing a tissue microarray. Cell growth assay and flow cytometry were behaved to explore the function of CDCA5. Results: Aberrantly methylated-DEGs were enriched in biological process, molecular function, cellular component and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Among them, cell cycle was enriched most frequently, and some terms associated with cancer were enriched, such as p53 signaling pathway, pathways in cancers, PI3K-Akt signaling pathway and AMPK signaling pathway. After survival analysis and validation in TCGA database including methylation and gene expression status, 12 hub genes were identified. Furthermore, the expression level of new gene CDCA5 was validated in HCC cell lines and hepatic normal cell lines through qRT-PCR and western blotting. In additional, immunohistochemistry experiments revealed higher CDCA5 protein expression from HCC tumor tissues compared with paracancer tissues by tissue microarray. Finally, through loss of function, we demonstrated that CDCA5 promoted proliferation by regulating the cell cycle. Conclusions: In summary, the present study implied possible aberrantly methylated-differentially expressed genes and dysregulated pathways in HCC by bioinformatics analysis and experiments, which could be helpful in understanding the molecular mechanisms underlying the development and progression of HCC. Hub genes including CDC20, AURKB, BIRC5, RRM2, MCM2, PTTG1, CDKN2A, NEK2, CENPF, RACGAP1, GNA14 and especially the new gene CDCA5 may serve as biomarkers for diagnosis, treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Changzhou Cai
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weilin Wang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Ward of Liver transplant, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery. First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhenhua Tu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Ward of Liver transplant, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery. First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People`s Hospital, Shenzhen 518112, China
| |
Collapse
|
39
|
Tian Y, Wu J, Chagas C, Du Y, Lyu H, He Y, Qi S, Peng Y, Hu J. CDCA5 overexpression is an Indicator of poor prognosis in patients with hepatocellular carcinoma (HCC). BMC Cancer 2018; 18:1187. [PMID: 30497429 PMCID: PMC6267780 DOI: 10.1186/s12885-018-5072-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/09/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Accurate and early prognosis of disease is essential to clinical decision making, particularly in diseases, such as HCC, that are typically diagnosed at a late stage in the course of disease and therefore carry a poor prognosis. CDCA5 is a cell cycle regulatory protein that has shown prognostic value in several cancers. METHODS We retrospectively evaluated 178 patients with HCC treated with curative liver resection between September 2009 and September 2012 at Nanchong Central Hospital in Nanchong, Sichuan Province, China. Patients were screened for their CDCA5 expression levels and assigned to either the high or low expression group. Patient demographics, comorbidities, clinicopathologic data, such as tumor microvascular invasion status and size, and long-term outcomes were compared between the two groups. The effect of CDCA5 on the proliferation of liver cancer cells was analyzed using in vitro and in vivo assays. RESULTS The present study found that increased CDCA5 expression was associated with increased tumor diameter and microvascular invasion in HCC. It was also found that CDCA5 overexpression may be associated with liver cancer cells. Additionally, this study confirmed that CDCA5 expression was increased in HCC tissue versus normal liver tissue, that CDCA5 expression was associated with decreased survival and that CDCA5 knockdown using shRNA led to cell cycle arrest in the G2/M phase. CONCLUSIONS These findings suggest that CDCA5 expression is associated with poor prognosis in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yunhong Tian
- Department of General Surgery, Nanchong Central Hospital, The second Clinical College of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, 116011, No.6 of JieFang Road, Dalian, China
| | - Cristian Chagas
- Department of Radiology, Wayne State University, Detroit, MI, 48201, USA
| | - Yichao Du
- Department of Hepatobiliary Surgery of the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Lyu
- Department of General Surgery, Nanchong Central Hospital, The second Clinical College of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yunhong He
- Department of General Surgery, Nanchong Central Hospital, The second Clinical College of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Shouliang Qi
- The Sino-Dutch Biomedical and Information Engineering School of Northeastern University, Shenyang, China
| | - Yong Peng
- Department of General Surgery, Nanchong Central Hospital, The second Clinical College of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
40
|
Wang J, Xia C, Pu M, Dai B, Yang X, Shang R, Yang Z, Zhang R, Tao K, Dou K. Silencing of CDCA5 inhibits cancer progression and serves as a prognostic biomarker for hepatocellular carcinoma. Oncol Rep 2018; 40:1875-1884. [PMID: 30015982 PMCID: PMC6111608 DOI: 10.3892/or.2018.6579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
Cell division cycle associated 5 (CDCA5) has been associated with the progression of several types of cancers. However, its possible role and mechanism in hepatocellular carcinoma (HCC) remain unknown. In the present study, immunohistochemical staining and real-time PCR were used to assess CDCA5 protein and mRNA levels in clinical samples. Statistical analysis was performed to explore the clinical correlation between CDCA5 protein expression and clinicopathological features and overall survival in HCC patients. Cell counting and colony formation assays were employed to analyse the effect of CDCA5 on cell proliferation, and flow cytometry was used to study the role of CDCA5 in cell cycle progression and apoptosis. Moreover, subcutaneous xenograft tumour models were implemented to predict the efficacy of targeting CDCA5 in HCC in vivo. We found that CDCA5 expression was significantly higher in HCC tumour tissues, was associated with clinicopathological characteristics, and predicted poor overall survival in HCC patients. Silencing of CDCA5 with small interfering RNA (siRNA) inhibited cell proliferation and induced G2/M cell cycle arrest in vitro. The xenograft growth assay revealed that CDCA5 downregulation impeded HCC growth in vivo. Further study indicated that CDCA5 depletion decreased the levels of ERK1/2 and AKT phosphorylation in vitro and in vivo. Taken together, these results indicate that CDCA5 may act as a novel prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Congcong Xia
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Meng Pu
- Department of Hepatobiliary Surgery, The Air Force General Hospital of the People's Liberation Army, Beijing 100142, P.R. China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Runze Shang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhen Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
41
|
Xu T, Ma M, Dai J, Yu S, Wu X, Tang H, Yu J, Yan J, Yu H, Chi Z, Si L, Sheng X, Cui C, Kong Y, Guo J. Gene expression screening identifies CDCA5 as a potential therapeutic target in acral melanoma. Hum Pathol 2018; 75:137-145. [DOI: 10.1016/j.humpath.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/05/2023]
|
42
|
Shen Z, Yu X, Zheng Y, Lai X, Li J, Hong Y, Zhang H, Chen C, Su Z, Guo R. CDCA5 regulates proliferation in hepatocellular carcinoma and has potential as a negative prognostic marker. Onco Targets Ther 2018; 11:891-901. [PMID: 29503564 PMCID: PMC5824752 DOI: 10.2147/ott.s154754] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background CDCA5 plays an important role in the development of various human cancers, but the associated mechanisms have not been investigated in hepatocellular carcinoma (HCC). Materials and methods We evaluated expression levels and functions of CDCA5 in HCC and showed that CDCA5 is upregulated in HCC tissues compared with paired or unpaired normal liver tissues. Results Increased CDCA5 expression in HCCs was significantly associated with shorter survival of patients. Knockdown of CDCA5 using lentivirus-mediated shRNA significantly inhibited cell proliferation and suppressed cell survival, as well as induced cell cycle arrest at the G2/M phase and cell apoptosis of HCC cells. The tumor suppression effects of CDCA5 knockdown were mediated by decreased expression of cyclin-dependent kinase 1 (CDK1) and CyclinB1, which were increased in HCC tissues comparing with adjacent normal liver tissues. Moreover, upregulation of CDCA5 was positively associated with increased CDK1 and CyclinB1 expression in HCC tissues. Conclusion The present data warrant consideration of CDCA5 as a prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhiqing Shen
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Xueping Yu
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yijuan Zheng
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Xueping Lai
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Julan Li
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Yuxiang Hong
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Huatang Zhang
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Chunlin Chen
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Zhijun Su
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Ruyi Guo
- Department of Infectious Diseases, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
43
|
Phan NN, Wang CY, Li KL, Chen CF, Chiao CC, Yu HG, Huang PL, Lin YC. Distinct expression of CDCA3, CDCA5, and CDCA8 leads to shorter relapse free survival in breast cancer patient. Oncotarget 2018; 9:6977-6992. [PMID: 29467944 PMCID: PMC5805530 DOI: 10.18632/oncotarget.24059] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is a dangerous disease that results in high mortality rates for cancer patients. Many methods have been developed for the treatment and prevention of this disease. Determining the expression patterns of certain target genes in specific subtypes of breast cancer is important for developing new therapies for breast cancer. In the present study, we performed a holistic approach to screening the mRNA expression of six members of the cell division cycle-associated gene family (CDCA) with a focus on breast cancer using the Oncomine and The Cancer Cell Line Encyclopedia (CCLE) databases. Furthermore, Gene Expression-Based Outcome for Breast Cancer Online (GOBO) was also used to deeply mine the expression of each CDCA gene in clinical breast cancer tissue and breast cancer cell lines. Finally, the mRNA expression of the CDCA genes as related to breast cancer patient survival were analyzed using a Kaplan-Meier plot. CDCA3, CDCA5, and CDCA8 mRNA expression levels were significantly higher than the control sample in both clinical tumor sample and cancer cell lines. These highly expressed genes in the tumors of breast cancer patients dramatically reduced patient survival. The interaction network of CDCA3, CDCA5, and CDCA8 with their co-expressed genes also revealed that CDCA3 expression was highly correlated with cell cycle related genes such as CCNB2, CDC20, CDKN3, and CCNB1. CDCA5 expression was correlated with BUB1 and TRIP13, while CDCA8 expression was correlated with BUB1 and CCNB1. Altogether, these findings suggested CDCA3, CDCA5, and CDCA8 could have a high potency as targeted breast cancer therapies.
Collapse
Affiliation(s)
- Nam Nhut Phan
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan.,NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Lun Li
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Han-Gang Yu
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Pung-Ling Huang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan.,Department of Horticulture & Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
44
|
Zhang Z, Shen M, Zhou G. Upregulation of CDCA5 promotes gastric cancer malignant progression via influencing cyclin E1. Biochem Biophys Res Commun 2018; 496:482-489. [PMID: 29326043 DOI: 10.1016/j.bbrc.2018.01.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
The cell division cycle associated 5(CDCA5) was reported to be associated with progression of several human cancers, however, its clinical significance and biological role still remain unknown in gastric cancer(GC). By analyzing The Cancer Genome Atlas(TCGA), we found CDCA5 was significantly upregulated in GC tissues compared to adjacent normal tissues. Tissue microarray(TMA) indicated upregulation of CDCA5 was significantly correlated with more advanced clinicopathological features, and acts as an independent risk factor for worse overall survival(OS) in GC patients. Moreover, silence of CDCA5 suppresses proliferation of GC cells by inducing G1-phase arrest via downregulating Cyclin E1(CCNE1). Our results demonstrate upregulation of CDCA5 promotes GC malignant progression, which may offer a potential prognostic and therapeutic strategy.
Collapse
Affiliation(s)
- Zhengyuan Zhang
- Department of Gastrointestinal Surgery, Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an City, Jiangsu Province, PR China
| | - Mingyang Shen
- Department of Vascular Surgery, Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an City, Jiangsu Province, PR China
| | - Guangrong Zhou
- Department of Gastrointestinal Surgery, Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an City, Jiangsu Province, PR China.
| |
Collapse
|
45
|
Daigo K, Takano A, Thang PM, Yoshitake Y, Shinohara M, Tohnai I, Murakami Y, Maegawa J, Daigo Y. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer. Int J Oncol 2017; 52:155-165. [PMID: 29115586 PMCID: PMC5743338 DOI: 10.3892/ijo.2017.4181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/21/2017] [Indexed: 11/16/2022] Open
Abstract
Oral cancer has a high mortality rate, and its incidence is increasing gradually worldwide. As the effectiveness of standard treatments is still limited, the development of new therapeutic strategies is eagerly awaited. Kinesin family member 11 (KIF11) is a motor protein required for establishing a bipolar spindle in cell division. The role of KIF11 in oral cancer is unclear. Therefore, the present study aimed to assess the role of KIF11 in oral cancer and evaluate its role as a prognostic biomarker and therapeutic target for treating oral cancer. Immunohistochemical analysis demonstrated that KIF11 was expressed in 64 of 99 (64.6%) oral cancer tissues but not in healthy oral epithelia. Strong KIF11 expression was significantly associated with poor prognosis among oral cancer patients (P=0.034), and multivariate analysis confirmed its independent prognostic value. In addition, inhibition of KIF11 expression by transfection of siRNAs into oral cancer cells or treatment of cells with a KIF11 inhibitor significantly suppressed cell proliferation, probably through G2/M arrest and subsequent induction of apoptosis. These results suggest that KIF11 could be a potential prognostic biomarker and therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Kayo Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Phung Manh Thang
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Iwau Tohnai
- Department of Oral and Maxillofacial Surgery, Yokohama City University, Yokohama, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiro Maegawa
- Department of Plastic and Reconstructive Surgery, Yokohama City University, Yokohama, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Chen T, Huang Z, Tian Y, Wang H, Ouyang P, Chen H, Wu L, Lin B, He R. Role of triosephosphate isomerase and downstream functional genes on gastric cancer. Oncol Rep 2017; 38:1822-1832. [PMID: 28737830 DOI: 10.3892/or.2017.5846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022] Open
Abstract
Triosephosphate isomerase (TPI) is highly expressed in many types of human tumors and is involved in migration and invasion of cancer cells. However, TPI clinicopathological significance and malignant function in gastric cancer (GC) have not been well defined. The present study aimed to examine TPI expression in GC tissue and its biological functions. Furthermore, we investigated its downstream genes by gene chip technology. Our results showed that TPI expression was higher in gastric cancer tissues than adjacent tissues, although no statistical differences were found between TPI expression and clinicopathological factors. TPI overexpression in human gastric carcinoma cell line BGC-823 enhanced cell proliferation, invasion and migration, but did not change cell cycle distribution, while TPI knockdown suppressed proliferation, invasion and migration, induced apoptosis and increased G2/M arrest of human gastric carcinoma cell line MGC-803. Since the cell division cycle associated 5 (CDCA5) was identified as the one with the most decreased expression after TPI knockdown, we investigated its role in MGC-803 cells. The results showed that CDCA5 knockdown also inhibited proliferation, migration, induced apoptosis and increased G2/M arrest similarly to TPI knockdown. CDCA5 overexpression promoted MGC-803 cell proliferation, clone formation and migration abilities. These results indicated that TPI expression level might affect GC cell behavior, suggesting that both TPI and CDCA5 might be considered as potential tumor markers related with GC development and might be potential new targets in GC treatment.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Yunxiao Tian
- Department of Pathology, Handan Central Hospital, Handan, Hebei, P.R. China
| | - Haiwei Wang
- Department of Pathology, Handan Central Hospital, Handan, Hebei, P.R. China
| | - Ping Ouyang
- Scientific Research Centre, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Haoqin Chen
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Dongguan, Guangdong, P.R. China
| | - Lili Wu
- Department of Internal Medicine, Dalang Hospital of Dongguan City, Dongguan, Guangdong, P.R. China
| | - Bode Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| | - Rongwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, P.R. China
| |
Collapse
|
47
|
BCIP: a gene-centered platform for identifying potential regulatory genes in breast cancer. Sci Rep 2017; 7:45235. [PMID: 28327601 PMCID: PMC5361122 DOI: 10.1038/srep45235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a disease with high heterogeneity. Many issues on tumorigenesis and progression are still elusive. It is critical to identify genes that play important roles in the progression of tumors, especially for tumors with poor prognosis such as basal-like breast cancer and tumors in very young women. To facilitate the identification of potential regulatory or driver genes, we present the Breast Cancer Integrative Platform (BCIP, http://omics.bmi.ac.cn/bcancer/). BCIP maintains multi-omics data selected with strict quality control and processed with uniform normalization methods, including gene expression profiles from 9,005 tumor and 376 normal tissue samples, copy number variation information from 3,035 tumor samples, microRNA-target interactions, co-expressed genes, KEGG pathways, and mammary tissue-specific gene functional networks. This platform provides a user-friendly interface integrating comprehensive and flexible analysis tools on differential gene expression, copy number variation, and survival analysis. The prominent characteristic of BCIP is that users can perform analysis by customizing subgroups with single or combined clinical features, including subtypes, histological grades, pathologic stages, metastasis status, lymph node status, ER/PR/HER2 status, TP53 mutation status, menopause status, age, tumor size, therapy responses, and prognosis. BCIP will help to identify regulatory or driver genes and candidate biomarkers for further research in breast cancer.
Collapse
|
48
|
Tokuzen N, Nakashiro KI, Tanaka H, Iwamoto K, Hamakawa H. Therapeutic potential of targeting cell division cycle associated 5 for oral squamous cell carcinoma. Oncotarget 2016; 7:2343-53. [PMID: 26497678 PMCID: PMC4823039 DOI: 10.18632/oncotarget.6148] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/30/2015] [Indexed: 11/30/2022] Open
Abstract
Molecularly targeted drugs are used in the treatment of a variety of malignant tumors, but this approach to developing novel therapies for oral squamous cell carcinoma (OSCC) has lagged behind the progress seen for other cancers. We have attempted to find appropriate molecular targets for OSCC and identified cell division cycle associated 5 (CDCA5) as a cancer-related gene which was overexpressed in all the human OSCC cells tested by microarray analysis. In this study, we investigated the expression and function of CDCA5 in OSCC. First, we confirmed that CDCA5 was overexpressed in 4 human OSCC cell lines by quantitative RT-PCR and Western blotting. We then tested the effect of synthetic small interfering RNAs specific for CDCA5 on the growth and invasion of human OSCC cells. Knockdown of CDCA5 markedly inhibited the growth of OSCC cells in vitro and in vivo. We also examined the expression of CDCA5 protein in 80 cases of OSCC immunohistochemically and found a significant association between CDCA5 expression levels and overall survival. These results suggest that CDCA5 functions as a critical gene supporting OSCC progression and that targeting CDCA5 may be a useful therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Norihiko Tokuzen
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Koh-ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hiroshi Tanaka
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Kazuki Iwamoto
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hiroyuki Hamakawa
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
49
|
Kato T, Lee D, Wu L, Patel P, Young AJ, Wada H, Hu HP, Ujiie H, Kaji M, Kano S, Matsuge S, Domen H, Kanno H, Hatanaka Y, Hatanaka KC, Kaga K, Matsui Y, Matsuno Y, De Perrot M, Yasufuku K. SORORIN and PLK1 as potential therapeutic targets in malignant pleural mesothelioma. Int J Oncol 2016; 49:2411-2420. [PMID: 27840913 DOI: 10.3892/ijo.2016.3765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/13/2016] [Indexed: 11/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive type of cancer of the thoracic cavity commonly associated with asbestos exposure and a high mortality rate. There is a need for new molecular targets for the development of more effective therapies for MPM. Using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and an RNA interference-based screening, we examined the SORORIN gene as potential therapeutic targets for MPM in addition to the PLK1 gene, which is known for kinase of SORORIN. Following in vitro investigation of the effects of target silencing on MPM cells, cell cycle analyses were performed. SORORIN expression was analyzed immunohistochemically using a total of 53 MPM samples on tissue microarray. SORORIN was found to be overexpressed in the majority of clinical MPM samples and human MPM cell lines as determined by qRT-PCR. Gene suppression of each SORORIN and PLK1 led to growth inhibition in MPM cell lines. Knockdown of SORORIN showed an increased number of G2M-phase population and a larger nuclear size, suggesting mitotic arrest. High expression of SORORIN (SORORIN-H) was found in 50.9% of all the MPM cases, and there is a tendency towards poorer prognosis for the SORORIN-H group but the difference is not significant. Suppression of SORORIN with PLK1 inhibitor BI 6727 showed a combinational growth suppressive effect on MPM cell growth. Given high-dose PLK1 inhibitor induced drug-related adverse effects in several clinical trials, our results suggest inhibition SORORIN-PLK1 axis may hold promise for the treatment of MPMs.
Collapse
Affiliation(s)
- Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Daiyoon Lee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Licun Wu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Priya Patel
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Ahn Jin Young
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Hironobu Wada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Hsin-Pei Hu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Hideki Ujiie
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mitsuhito Kaji
- Department of Thoracic Surgery, Sapporo Minami-sanjo Hospital, Sapporo, Japan
| | - Satoshi Kano
- Department of Pathology, Kinikyo-Chuo Hospital, Sapporo, Japan
| | | | - Hiromitsu Domen
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiromi Kanno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshiro Matsui
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Marc De Perrot
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
50
|
Thang PM, Takano A, Yoshitake Y, Shinohara M, Murakami Y, Daigo Y. Cell division cycle associated 1 as a novel prognostic biomarker and therapeutic target for oral cancer. Int J Oncol 2016; 49:1385-93. [PMID: 27499128 DOI: 10.3892/ijo.2016.3649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Oral cavity carcinoma (OCC) is one of the most common causes of cancer-related death worldwide and has poor clinical outcome after standard therapies. Therefore, new prognostic biomarkers and therapeutic targets for OCC are urgently needed. We selected cell division cycle associated 1 (CDCA1) as a candidate OCC biomarker. Immunohistochemical analysis confirmed that CDCA1 protein was expressed in 67 of 99 OCC tissues (67.7%), but not in healthy oral epithelia. CDCA1 expression was significantly associated with poor prognosis in OCC patients (P=0.0244). Knockdown of CDCA1 by siRNAs significantly increased apoptosis of tumor cells. These data suggest that CDCA1 represents a novel prognostic biomarker and therapeutic target for OCC.
Collapse
Affiliation(s)
- Phung Manh Thang
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|